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Abstract

Heat engines are indispensable equipment in our modern society converting supplied heat
into output work. Many efforts have been conducted to improve their performance in
various scientific and engineering fields. The efficiency defined as the ratio of the work
to the supplied heat and the power defined as the work per unit time are often used
to characterize their performance. Carnot demonstrated that the efficiency of any heat
engine is limited by the upper bound called the Carnot efficiency which is achievable in the
quasistatical operation. Although there are many attempt to achieve the Carnot efficiency
in the finite-power heat engines, it is proven that there is a trade-off relation between the
efficiency and power in the heat engines described by the Markov process. The trade-off
relation says that the power vanishes when the efficiency approaches the Carnot efficiency.
On the other hand, the possibility of the compatibility of the Carnot efficiency and finite
power without breaking the trade-off relation by focusing on relaxation times of a system
is proposed. However, complicated dependency of the efficiency, power, and trade-off
relation between them on the relaxation times of the system makes the feasibility of the
scenario non-trivial.

In this thesis, we consider the possibility of the Carnot efficiency in the finite-power
underdamped Brownian Carnot cycle based on the trade-off relation in the system. We
first introduce the previous research of the linear irreversible heat engine as the motivation
for our research. We consider the stochastic process to describe the fluctuating system
and show that there exists the trade-off relation between the efficiency and power in the
heat engines described by the Markov process, based on another previous research. We
consider the Brownian dynamics and construct the Carnot cycle with the instantaneous
adiabatic process. In the cycle, the Carnot efficiency is compatible with the finite power
in the small temperature-difference regime in the vanishing limit of the relaxation times
without breaking the trade-off relation. We also consider the Brownian Carnot cycle with
the finite-time adiabatic process and show that the Carnot efficiency is compatible with the
finite power in the arbitrary temperature difference in the vanishing limit of the relaxation
times.
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Chapter 1

Introduction

1.1 Finite-time heat engine

Heat engines constitute one of the indispensable technologies in our modern society, and
many efforts have been conducted to improve their performance in various scientific or
engineering fields [1]. Heat engines convert supplied heat into output work. Moreover,
their ratio can be used as the efficiency to characterize the performance of heat engines.
The Carnot cycle is one of the most important models of heat engines, which operates
between hot and cold heat baths with constant temperatures Th and Tc (< Th). Moreover,
the cycle is composed of two isothermal processes and two adiabatic processes. Carnot
demonstrated that the efficiency of any heat engine is limited by the upper bound called
the Carnot efficiency [2]:

ηC ≡ 1− Tc

Th
. (1.1)

It is known that we can reach the Carnot efficiency by the reversible cycle, where the
heat engine always remains at equilibrium and is typically operated quasistatically, which
implies that the engine spends an infinitely long time per cycle. Moreover, power, defined
as output work per unit time, is another important quantity for evaluating the performance
of heat engines. When we operate the heat engines quasistatically, the power vanishes.
Thus, several studies have been devoted to investigating the feasibility of finite-power heat
engines with Carnot efficiency [3–16].

1.2 Stochastic thermodynamics

To consider the finite-time heat engine, we have to consider the system out of equilibrium
and introduce the heat and work in that system. Brownian motion is one of the most
important models used to study the nonequilibrium thermodynamics. The motion is
modeled by the Wiener process, which is one of the stochastic processes, in mathematical
terms. Then, we can introduce the equation of motion of the Brownian particle called the
Langevin equation. By considering the kinetic and potential energy of the particle and
their change based on its equation of motion, we can define the thermodynamic quantities
such as internal energy, entropy, heat, and work. Thus, we can construct the heat engine
called the Brownian heat engine by using the Brownian particle. There are many studies
of the efficiency and power of the heat engine [5, 16–27]. The framework connecting the
stochastic dynamics and thermodynamics is called the stochastic thermodynamics [28].
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1.3 Trade-off relation between efficiency and power

Although there are many efforts to achieve the Carnot efficiency with the finite power
in heat engines, their compatibility is denied by the trade-off relation between efficiency
η and power P . It is recently proved in general heat engines described by the Markov
process [29–31]. The trade-off relation is given by

P ≤ Aη(ηC − η), (1.2)

where A is a positive quantity depending on the heat engine details. Based on this relation,
the power should vanish as the efficiency approaches the Carnot efficiency. Similar trade-
off relations to Eq. (1.2) have been obtained in various heat engine models [25,32–34].

On the other hand, the Carnot efficiency may be achievable in a general class of finite-
power Carnot cycles in the vanishing limit of the relaxation times [23]. Although that
seems to contradict the trade-off relation in Eq. (1.2), the power may remain finite if
the quantity A in Eq. (1.2) diverges at the same time as η approaches ηC in that limit.
Thus, the compatibility of the Carnot efficiency and finite power may be allowed without
breaking the trade-off relation in Eq. (1.2). However, complicated dependence of the
quantity A, efficiency η and power P on the relaxation times may make the feasibility of
the scenario nontrivial.

1.4 Purpose of this thesis

In this thesis, we study the underdamped Brownian Carnot cycle and show the compatibil-
ity of the Carnot efficiency and finite power in the vanishing limit of the relaxation times.
We first introduce an important study of the compatibility in the linear irreversible heat
engine as a motivation of our study. We consider the fluctuating system described by the
stochastic process and review the trade-off relation between the efficiency and power in
the heat engines described by the Markov process. We also consider the thermodynamics
of the Brownian motion and construct the Brownian Carnot cycle with the instantaneous
adiabatic processes. In this cycle, we show that the compatibility of the Carnot efficiency
and finite power is achievable in the vanishing limit of the relaxation time of the system
only in the small temperature-difference regime. We also show that the compatibility does
not contradict the trade-off relation. Moreover, we construct the Brownian Carnot cycle
with the finite-time adiabatic processes instead of the instantaneous adiabatic processes.
In this cycle, we show that the above compatibility is achievable in that limit in arbitrary
temperature difference without breaking the trade-off relation.
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Chapter 2

Review: Possibility of Carnot
efficiency with finite power in
linear irreversible heat engine

We review an important previous study of the possibility of the Carnot efficiency with finite
power in the linear irreversible heat engine, which is close to equilibrium, as a motivation
of our study [7]. There are many efforts to study the nonequilibrium system. Especially,
when the system is close to equilibrium, we can consider the irreversible currents such as
the heat current or electric current. The thermodynamics of a system close to equilibrium
is often called the linear irreversible thermodynamics [35–39]. There are many study
related to the heat engine within this regime [3,7–14,16,18,20,29,40–62]. By considering
the system close to equilibrium and introducing the irreversible currents, we construct a
heat engine in the system and show the possibility of the Carnot efficiency with the finite
power.

2.1 Review : Thermodynamic Bounds on Efficiency for Sys-
tems with Broken Time-reversal Symmetry

We consider the steady-state irreversible heat engine close to equilibrium with the broken
time-reversal symmetry. We show that the compatibility of the Carnot efficiency and finite
power is achievable in the heat engine.

2.1.1 Model

We consider the system represented by the schematic illustration in Fig. 2.1. The system
is in contact with the left bath with the temperature TL and chemical potential of electron
µL and the right one with TR(< TL) and µR. In this system, there is the external magnetic
field B to break the time-reversal symmetry. Note that we can use another force such
as Coriolis force to break the time-reversal symmetry instead of the magnetic field. We
assume that TL ≃ TR ≃ T is satisfied. When the temperature and chemical potential of the
left and right baths are different, there are affinities, which is often called thermodynamic
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TL

μL μR

TR

TL > TR

Jq

Jρ

B

Figure 2.1: Schematic illustration of linear irreversible heat engine with the external mag-
netic field. Two currents, for example the electric and heat currents, flow. Because of the
external magnetic field, the time reversal symmetry is broken.

forces, given by

X1 ≡ − µR

TR
−
(
−µL

TL

)
= −∆µ

T
, (2.1)

X2 ≡
1

TR
− 1

TL
= −∆T

T 2
, (2.2)

where we defined ∆T ≡ TR−TL and ∆µ ≡ µR−µL. Because of TL > TR, X2 in Eq. (2.2)
is positive. In the steady-state system, the affinities are independent of time. Since the
affinities in Eqs. (2.1) and (2.2) exist, there are two currents J1 and J2 denoting electric
and heat currents corresponding to X1 and X2, respectively. We assume that J1 and J2
satisfy the Onsager relation given by{

J1(B) =L11(B)X1 + L12(B)X2,

J2(B) =L21(B)X1 + L22(B)X2,
(2.3)

where Lij in Eq. (2.3) is called the Onsager coefficient. Since the system and affinities
are independent of time, J1 and J2 are the stationary currents. By considering the time
reversal of the system [36,37,63], we find that Lij(B) in this system satisfies

Lij(B) = Lji(−B). (2.4)

If the external magnetic field B does not exist, the system has time reversal symmetry
and satisfy the Onsager’s reciprocal relation given by

Lij = Lji. (2.5)

However, when the time-reversal symmetry is broken because of B, the Onsager’s recip-
rocal relation in Eq. (2.5) does not satisfied, and Lij(B) ̸= Lji(B) (i ̸= j) is allowed.

The entropy production rate in this system [36,37,64–66] is defined by

Σ̇ ≡ J1X1 + J2X2 ≥ 0, (2.6)

where we used the second law of the thermodynamics at the last inequality. Then, by

4



using Eq. (2.3), we obtain

Σ̇ = L11

(
X1 +

L12 + L21

2L11
X2

)
+

4L11L22 − (L12 + L21)
2

4L11
X2

2 ≥ 0. (2.7)

Since the entropy production rate should be positive in any value of X1, X2, and B, we
obtain the restriction for the Onsager coefficients as

L11 ≥ 0, L22 ≥ 0, L11L22 −
1

4
(L12 + L21)

2 ≥ 0. (2.8)

2.1.2 Efficiency and power in the linear irreversible heat engine

We consider the heat engine in the linear irreversible thermodynamics. Because of TL >
TR, the heat current J2 should flow from left to right, and we can interpret it as the
supplied heat per unit time. Thus, we consider that J2 > 0 is satisfied. Moreover, in the
above model, we assume that µL < µR is satisfied. When the electronic current flows from
left bath to right bath, the electron moves against the gradient of the chemical potential.
Then, we can interpret that the electron is done the positive work. Thus, we can define
power, which is the work per unit time, as

P ≡ J1∆µ = −J1TX1. (2.9)

Since the supplied heat and work per unit time are defined and independent of the time,
we can define the efficiency of this steady-state heat engine as

η ≡ P

J2
= −J1TX1

J2
. (2.10)

From Eq. (2.2), the Carnot efficiency, which is the upper bound of the efficiency in
Eq. (2.10), is defined by

ηC ≡ −∆T

T
= TX2. (2.11)

Then, using Eqs. (2.3), (2.7), (2.10), and (2.11), we can obtain

ηC − η =
T

J2
Σ̇ ≥ 0. (2.12)

From Eq. (2.12), the efficiency approaches the Carnot efficiency when the entropy produc-
tion rate Σ̇ in Eq. (2.7) vanishes. Then, the Onsager coefficients should satisfy

X1 = −L12 + L21

2L11
X2, L11L22 =

1

4
(L12 + L21)

2. (2.13)

Thus, J1 is given by

J1 = L11X1 + L12X2 =
L12 − L21

2
X2. (2.14)

Using Eqs. (2.9) and (2.14), we can obtain

P =
T

4

L2
12 − L2

21

L11
X2

2 . (2.15)

When the system has time reversal symmetry, Eq. (2.5) is satisfied. Then, from L12 = L21,
the power in Eq. (2.15) vanishes. On the other hand, when the time reversal symmetry is
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broken because of the external magnetic field, the finite-power is allowed even when the
entropy production vanishes. Thus, the compatibility of the Carnot efficiency and finite
power is achievable in the system close to the equilibrium with the broken time-reversal
symmetry.

We showed the compatibility of the Carnot efficiency and finite power in the steady-
state irreversible heat engine. This research triggered a lot of study on whether the Carnot
efficiency and finite power are compatible. Although many efforts have been conducted
to show the compatibility in various models of the steady-state irreversible heat engines
where the Onsager coefficients can be obtained, no model can realize the compatibility of
the Carnot efficiency and finite power [8–13]. In recent years, since the trade-off relation
between the efficiency and power is proved in general heat engines described by the Markov
process, the compatibility may be impossible. In Chap. 6 and 7, however, we reconsider
the compatibility of the Carnot efficiency and finite power based on the trade-off relation
and show the compatibility in the Brownian Carnot cycle. To construct the Brownian
Carnot cycle, we introduce the stochastic process and review the trade-off relation.
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Chapter 3

Stochastic process

Stochastic thermodynamics is a framework connecting the stochastic process and thermo-
dynamics and is used to describe the thermodynamics of the fluctuating system such as a
Brownian particle [28]. The Brownian Carnot cycle is one of the models of heat engines
within the stochastic thermodynamics, where the Brownian particle is used as a working
substance. Since the position and velocity of the Brownian particle fluctuate, we have to
use the stochastic process to describe the Brownian motion. In this chapter, we first intro-
duce the stochastic process and Markov process. We show that all the Markov processes
are described by the master equation. We introduce the Wiener process characterizing the
mathematical aspect of the Brownian motion and show that the Langevin equation can
be used to describe the motion. Moreover, we show that the Fokker-Planck equation can
be used to describe the evolution of the probability distribution of the Brownian particle.
Finally, we consider the equivalence between the Langevin and Fokker-Planck equations.

3.1 Stochastic process

We consider a fluctuating system and introduce the stochastic process to describe it [19,28,
39,67–74]. In the fluctuating system, we assume that the state of the system is described
by N stochastic variables X ≡ (X1, X2, · · · , XN ) depending on time. By measuring the
system at tk ≡ k∆t (k = 0, 1, 2, · · · , n), where ∆t is the duration of observation of the
system, we can derive the results as

X(t0), X(t1), · · · , X(tn). (3.1)

Since these results fluctuate, we can use the stochastic process to describe them. We
introduce a joint probability distribution of Eq. (3.1) as

p(X(tk), tk; · · · ;X(t1), t1;X(t0), t0). (3.2)

In general, X(tk+1) depends on X(t0),X(t1), · · · ,X(tk). Thus, we can define the condi-
tional probability distribution of X(tk+1) under measured X(t0), · · · ,X(tk) as

W (X(tk+1), tk+1|X(tk), tk; · · · ;X(t0), t0) ≡
p(X(tk+1), tk+1;X(tk), tk; · · · ;X(t0), t0)

p(X(tk), tk; · · · ;X(t0), t0)
.

(3.3)

We can often expect that X(tk+1) depends only on X(tk). Then, the conditional

7



probability distribution in Eq. (3.3) satisfies

W (X(tk+1), tk+1|X(tk), tk; · · · ;X(t0), t0) = W (X(tk+1), tk+1|X(tk), tk). (3.4)

When the conditional probability distribution of the stochastic process satisfies Eq. (3.4),
the process is called the Markov process. W (X(tk+1), tk+1|X(tk), tk) is called the tran-
sition probability from (X(tk), tk) to (X(tk+1), tk+1). From Eqs. (3.3) and (3.4), the
probability distribution satisfies the Chapman-Kolmogorov equation:

p(X(tk+1), tk+1) =

∫
dX(tk)W (X(tk+1), tk+1|X(tk), tk)p(X(tk), tk), (3.5)

where we defined dX(tk) ≡ dX1(tk) · · · dXN (tk). Note that unless otherwise specified, the
integration interval is all the regions that variables of integration can take. From Eq. (3.5),
when initial probability distribution p(X(t0), t0) is given, p(X(tk+1), tk+1) is determined
by only the transition probability W (X(tk+1), tk+1|X(t0), t0). Moreover, in the limit of
∆t → 0, we obtain

W (X(tk+1), tk|X(tk), tk) = δ(X(tk+1)−X(tk)). (3.6)

From Eqs. (3.3) and (3.4), we also find that W (X(tk+1), tk+1|X(tk), tk) satisfies

1 =

∫
dX(tk+1)W (X(tk+1), tk+1|X(tk), tk). (3.7)

3.2 Master equation

We obtain Master equation describing all the Markov processes [35,68,69]. UsingW (X ′, t+
∆t|X, t), we can define the transition rate at t, which is the transition probability from
X to X ′ (X ̸= X ′) per unit time, as

wX→X′(t) ≡ lim
∆t→0

W (X ′, t+∆t|X, t)

∆t
. (3.8)

Using wX→X′(t), we can also define the escape rate as

eX(t) ≡
∫

dX ′ wX→X′(t). (3.9)

The multiplication of eX(t) by small ∆t gives the probability where the system escapes
from the state X in ∆t. Then, we can define the probability where the system remains
X between t to t+∆t as

1− eX(t)∆t. (3.10)

Using Eqs. (3.8) and (3.9), we can expect that W (X ′, t+∆t|X, t) is expanded as

W (X ′, t+∆t|X, t) = (1− eX(t)∆t)δ(X ′ −X) + wX→X′(t)∆t+O((∆t)2). (3.11)

Substituting Eq. (3.11) into Eq. (3.5), we obtain

p(X ′, t+∆t) = (1− eX′(t)∆t)p(X ′, t) +

∫
dXwX→X′(t)∆tp(X, t). (3.12)
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Considering ∆t → 0, we obtain the master equation given by

∂p(X)

∂t
=

∫
dX ′ [wX′→X(t)p(X ′, t)− wX→X′(t)p(X, t)

]
, (3.13)

using Eqs. (3.9) and (3.12). When we define

RX→X′ ≡
{

wX→X′(t) (X ̸= X ′)
−eX′ (X = X ′),

(3.14)

we can rewrite Eq. (3.13) as

∂p(X)

∂t
=

∫
dX ′RX′→X(t)p(X ′, t). (3.15)

Because of Eqs. (3.9) and (3.14), RX′→X satisfies∫
dXRX′→X = 0. (3.16)

When X denotes the discretized state, the master equation is given by

d

dt
pX(t) =

∑
X′

RX′→X(t)pX′(t), (3.17)

∑
X

RX′→X(t) = 0, (3.18)

where pX(t) is the probability where we find the system at discretized state X. Since
we do not assume the form of the transition probability for the derivation of the master
equation, any Markov process can be described by the master equation.

3.3 Wiener process and Langevin equation

3.3.1 One-dimensional Wiener process

We consider the Wiener process, which is a mathematical model of the Brownian motion,
and introduce the Langevin equation [28]. We first consider the one-dimensional Wiener
process. We assume that t ≡ n∆t = tn in this section. The process has the following two
properties:

(1). B(s) is a stochastic process and continuous for any s.

(2). For s = t0, t1, · · · , tk, · · · , tn = t, · · · , the increments {B(tk+1) − B(tk)}k=0,1,··· are
independent of each other. Moreover, the probability distribution of the increments
B(tk+1)−B(tk) for all k is the Gaussian distribution:

W (B(tk+1), tk+1|B(tk), tk) =
1√
2π∆t

exp

{
−|B(tk+1)−B(tk)|2

2∆t

}
. (3.19)

By using the increments B(tk+1)−B(tk), B(tn) is given by

B(tn) =

n−1∑
k=0

(B(tk+1)−B(tk)) +B(0). (3.20)
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In the Wiener process, there is a famous lemma called Itô’s lemma. To show that, we
introduce the total variance as

n−1∑
k=0

|B(tk+1)−B(tk)|2 . (3.21)

Because of Eq. (3.19), the average of the quantity in Eq. (3.21) satisfies

n−1∑
k=0

〈
|B(tk+1)−B(tk)|2

〉
=

n−1∑
k=0

∆t = tn. (3.22)

Moreover, when we use t = n∆t = tn, we can obtain〈[
n−1∑
k=0

|B(tk+1)−B(tk)|2 − t

]2〉
=
2t2n
n

. (3.23)

In the limit of ∆t → 0 and n → ∞ with fixed t = n∆t = tn, since the right-hand side of
Eq. (3.23) vanishes, the quantity in Eq. (3.21) satisfies

lim
∆t→0,n→∞

n−1∑
k=0

|B(tk+1)−B(tk)|2 = t. (3.24)

with probability 1. In this chapter, we rewrite lim∆t→0,n→∞ as lim∆t→0 for simplicity. For
infinitesimal increment of time dt, the infinitesimal increment of B can be defined as

dB(t) ≡ B(t+ dt)−B(t) ≡ lim
∆t→0

(B(t+∆t)−B(t)). (3.25)

Because of Eq. (3.24), dB(t) has the order of
√
dt, and we obtain

(dB(t))2 = dt, dB(t)dt = 0, (dt)2 = 0. (3.26)

This property of the infinitesimal quantities is called the Itô’s lemma.
We introduce the function f(B(t)) and its integral with respect to B. We first consider

the case of f(B(t)) = B(t)−B(0) and calculate two quantities:

I1 ≡
n−1∑
l=0

[
l−1∑
k=0

(B(tk+1)−B(tk))

]
(B(tl)−B(tl−1)), (3.27)

I2 ≡
n−1∑
l=0

[
l−1∑
k=0

(B(tk+1)−B(tk))

]
(B(tl+1)−B(tl)). (3.28)

If B is the bounded variation, f(B) is the Riemann integrable, and I1 and I2 become same
in the limit of ∆t → 0 and n → 0 with keeping t = n∆t constant. When B is the Wiener
process, however, I1 and I2 satisfy

I2 − I1 =

n−1∑
k=0

|B(tk+1)−B(tk)|2 +O(∆t) = t+O(∆t). (3.29)

Even in the limit of ∆t → 0, I1 and I2 do not become same. Thus, we have to reconsider

10



the integral of B. We introduce two important definition of integral [70, 71]. The first
definition of integral is called Itô-type stochastic integral (or simply, Itô integral) given by∫ s=t

s=0
f(B) · dB(s) ≡ lim

∆t→0

n−1∑
k=0

f(B(tk))(B(tk+1)−B(tk)). (3.30)

Note that when we use the product “ · ” called the Itô-type product in the left-hand side
of Eq. (3.30), the integral is calculated by Eq. (3.30). For example, we consider the Itô
integral of f(B(s)) = B(s)−B(0) as∫ s=t

s=0
(B(s)−B(0)) · dB(s)

= lim
∆t→0

n−1∑
k=0

[B(tk)−B(0)] (B(tk+1)−B(tk))

= lim
∆t→0

n−1∑
k=0

[
B(tk) +B(tk+1)

2
+

B(tk)−B(tk+1)

2
−B(0)

]
× (B(tk+1)−B(tk))

= lim
∆t→0

n−1∑
k=0

[
B(tk+1)

2 −B(tk)
2

2
− |B(tk+1)−B(tk)|2

2
−B(0)(B(tk+1)−B(tk))

]
=
(B(t)−B(0))2

2
− t

2
, (3.31)

using t = n∆t. The second definition of integral called Stratonovich-type stochastic inte-
gral (or simply, Stratonovich integral), which is very often used in the stochastic thermo-
dynamics, is given by∫ s=t

s=0
f(B) ◦ dB(s) ≡ lim

∆t→0

n−1∑
k=0

f

(
B

(
tk+1

2
+

tk
2

))
(B(tk+1)−B(tk)). (3.32)

When we use the product “ ◦ ” called the Stratonovich-type product, the integral is
calculated by Eq. (3.32). We can use [f(B(tk+1)) + f(B(tk))]/2 instead of f(B(tk+1/2 +
tk/2)) to calculate the integral. For example, the integral of f(B(s)) = B(s) − B(0) is
given by ∫ s=t

s=0
(B(s)−B(0)) ◦ dB(s)

= lim
∆t→0

n−1∑
k=0

[
B(tk+1) +B(tk)

2
−B(0)

]
(B(tk+1)−B(tk))

= lim
∆t→0

n−1∑
k=0

[
B(tk+1)

2 −B(tk)
2

2
−B(0)(B(tk+1)−B(tk))

]
=
(B(t)−B(0))2

2
. (3.33)

More generally, we can define the integral for the stochastic process as∫ s=t

s=0
f(B)×h dB(s) ≡ lim

∆t→0

n−1∑
k=0

f(B(htk+1 + (1− h)tk))(B(tk+1)−B(tk)), (3.34)
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where h (0 ≤ h ≤ 1) is a constant. When h = 0 (h = 1/2), ×h becomes · (◦) and
used for the Itô (Stratonovich) integral. Since we can regard f(htk+1 + (1 − h)tk) as
hf(tk+1) + (1− h)f(tk), the integral of f(B(s)) = B(s)−B(0) is given by∫ s=t

s=0
(B(s)−B(0))×h dB(s)

= lim
∆t→0

n−1∑
k=0

[(hB(tk+1) + (1− h)B(tk))−B(0)] (B(tk+1)−B(tk))

= lim
∆t→0

n−1∑
k=0

[
B(tk+1)

2 −B(tk)
2

2
− (1− 2h)(B(tk+1)−B(tk))

2
−B(0)(B(tk+1)−B(tk))

]
=
(B(t)−B(0))2

2
− (1− 2h)t

2
(3.35)

When we set h = 0 or h = 1/2, we find that Eq. (3.35) becomes the same as Eq. (3.31) or
Eq. (3.33), respectively.

Using Eq. (3.25), we define the quantity ξ(t) as

ξ(t) ≡ dB(t)

dt
= lim

∆t→0

B(t+∆t)−B(t)

∆t
. (3.36)

From Eqs. (3.26) and (3.36), we obtain

⟨ξ(t)⟩ = 0,
〈
ξ(t)ξ(t′)

〉
= δ(t− t′). (3.37)

Then, we introduce the stochastic process X(t) generated by the Wiener process B(t)
from the stochastic differential equation given by

dX(t) = a(X(t), t) + b(X(t), t) · dB(t), (3.38)

where we define dX(t) ≡ X(t+dt)−X(t) = lim∆t→0[X(t+∆t)−X(t)]. We first consider
the case of the Itô-type product used at the product of b(x, t) and dB(t) in Eq. (3.38)
although we can use other products such as the Stratonovich or more general types. Using
Eq. (3.36), we obtain

Ẋ(t) = a(X(t), t) + b(X(t), t) · ξ, (3.39)

where we defined Ẋ(t) ≡ lim∆t→0[X(t + ∆t) − X(t)]/∆t. In the physics, Eq. (3.39) is
called the Langevin equation. Because of ⟨dX(t)⟩ = a(X(t), t)dt,

〈
dX(t)2

〉
= b(X(t), t)dt,

and Itô’s lemma, the quantity df(X(t)) ≡ f(X(t+ dt))− f(X(t)) is given by

df(X(t)) =∂Xf(X(t))dX(t) +
1

2
∂2
Xf(X(t))(dX(t))2

=

[
a(X(t), t) +

b(X(t), t)2[∂2
Xf(X(t))]

2

]
dt+ b(X(t), t)[∂Xf(X(t))] · dB(t),

(3.40)

where we define ∂rf(r) ≡ df(r)/dr.
Instead of Eq. (3.38), we can introduce another stochastic differential equation with

the Stratonovich-type product ◦ as

dX(t) = a(X(t), t) + b(X(t), t) ◦ dB(t). (3.41)
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We here change the Stratonovich-type product in Eq. (3.38) to the Itô type. From the
definition of the Stratonovich integral in Eq. (3.32), we obtain

f(B(s), s) ◦ dB(s) =
1

2
f(B(s), s) · dB(s) +

1

2
f(B + dB, s+ ds) · dB(s)

=f(B, s) · dB(s) +
1

2

∂f(B, s)

∂B
· dB(s). (3.42)

Then, we obtain

dX(t) =

[
a(X(t), t) +

1

2

∂b(X(t), t)

∂X(t)

]
dt+ b(X(t), t) · dB(t), (3.43)

using Itô’s lemma and Eq. (3.40). Moreover, we can introduce another stochastic differ-
ential equation with the general product using ×h defined in Eq. (3.34) as

dX(t) = a(X(t), t) + b(X(t), t)×h dB(t). (3.44)

Similar to the change from the Stratonovich-type product to the Itô one in Eq. (3.42), we
can change the stochastic differential equation with the general product ×h to the Itô one
and obtain

f(B(s), s)×h dB(s) =f(B, s) · dB(s) + h
∂f(B, s)

∂B
· dB(s). (3.45)

Thus, Eq. (3.44) can be rewritten as

dX(t) =

[
a(X(t), t) + h

∂b(X(t), t)

∂X(t)

]
dt+ b(X(t), t) · dB(t). (3.46)

3.3.2 Multidimensional Wiener process

We can extend the one dimensional Wiener process B(t) to the N dimensional one B =
(B1, · · · , BN ). The process has the following two properties:

(1). Bi(s) (i = 1, · · · , N) is the stochastic process and continuous for any s.

(2). For s = t0, t1, · · · , tk, · · · , tn = t, · · · , we consider the increments {Bi(tk+1)−Bi(tk)}k=0,1,···
(i = 1, 2, · · · , N). The increments of Bi and Bj (j ̸= i) are independent. Moreover,
the increments Bi(tk+1)−Bi(tk) and Bi(tk′+1)−Bi(tk′) are also independent when
k ̸= k′. Then, the increments depend on the Gaussian distribution with mean 0 and
variance ∆t, and the transition probability from B(tk) to B(tk+1) is given by

W (B(tk+1), tk+1|B(tk), tk) =
1√

(2π∆t)N
exp

{
−|B(tk+1)−B(tk)|2

2∆t

}
. (3.47)

Similar to the one-dimensional case, for the infinitesimal time increment dt, we define
the infinitesimal increment of B as

dB(t) ≡ B(t+ dt)−B(t) ≡ lim
∆t→0

[B(t+∆t)−B(t)]. (3.48)

We can also derive the Itô’s lemma in N -dimensional Wiener process as

dBi(t)dBj(t
′) = δijδ(t− t′)dt, dBidt = 0, (dt)2 = 0. (3.49)
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Using Eq. (3.36), we define the quantity ξ(t) = (ξ1(t), · · · , ξN (t)) as

ξ(t) ≡ dB(t)

dt
≡ lim

∆t→0

B(t+∆t)−B(t)

∆t
. (3.50)

From Eq. (3.49) and (3.50), we obtain

⟨ξi(t)⟩ = 0, , ⟨ξi(t)ξj(s)⟩ = δijδ(t− s). (3.51)

Similar to the one-dimensional Wiener process, we can define the Itô integral, Stratonovich
integral, and integral with ×h as∫ s=t

s=0
f(B) · dBi(s) ≡ lim

n→∞

n−1∑
k=0

f(B(tk), tk)(Bi(tk+1)−Bi(tk)), (3.52)

∫ s=t

s=0
f(B) ◦ dBi(s) ≡ lim

n→∞

n−1∑
k=0

f(B(tk+1/2 + tk/2))(Bi(tk+1)−Bi(tk)), (3.53)

∫ s=t

s=0
f(B)×h dBi(s) ≡ lim

n→∞

n−1∑
k=0

f(B(htk+1 + (1− h)tk))(Bi(tk+1)−Bi(tk)). (3.54)

By using the Itô-type product, we can introduce the stochastic differential equation

dXi(t) = ai(X, t)dt+
N∑
j=1

bij(X, t) · dBj(t) (1 ≤ i ≤ N). (3.55)

Then, we can derive the N -dimensional Langevin equation as

Ẋi = ai(X, t) +
N∑
j=1

bij(X, t) · ξj(t) (1 ≤ i ≤ N). (3.56)

Similar to the one-dimensional case, we consider the quantity f(X). Because of Eqs. (3.49)
and (3.55), we obtain [75–77]

df(X(t)) =
N∑
i=1

[∂Xif(X(t))]dXi +
N∑

i,j=1

1

2
[∂Xi∂Xjf(X(t))]dXidXj

=

N∑
i=1

ai(X, t)[∂Xif(X(t))] +

N∑
j=1

Gij(X, t)2[∂2
Xi
f(X, t)]

2

 dt

+

N∑
i=1

N∑
j=1

bij(X, t)[∂Xif(X, t)] · dBj , (3.57)

where we define the matrix b ≡ {bij}1≤i,j≤N and

Gij ≡
N∑
k=1

bikbjk = (bb⊤)ij . (3.58)

Similar to the one-dimensional case, we can introduce the stochastic differential equation
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with ×h as

dXi(t) = ai(X, t)dt+
N∑
j=1

bij(X, t)×h dBj(t) (1 ≤ i ≤ N). (3.59)

By the Taylor expansion and Itô’s lemma in Eq. (3.49), we can obtain

f(B(s))×h dBi(s) =f(B(s)) · dBi(s) + h

 N∑
j=1

∂f(B(s))

∂Bj

 · dBi. (3.60)

Thus, we can rewrite Eq. (3.59) by using the Itô product as

dXi(t) =

ai(X, t) + h

 N∑
j=1

∂f(X)

∂Xj

 dt+

N∑
j=1

bij(X, t) · dBj(t) (1 ≤ i ≤ N). (3.61)

3.4 Fokker-Planck equation

We show that we can obtain the Fokker-Planck which is a partial differential equation
describing the dynamics of the probability distribution p(X, t) when the stochastic process
is the Wiener process [75]. By using the delta function δ(X) ≡ δ(X1) · · · δ(XN ), we obtain

W (X ′, t+∆t|X, t) =

∫
dY δ(Y −X ′)W (Y , t+∆t|X, t). (3.62)

Using the Taylor expansion of δ function, 1 we obtain

δ(Y −X ′) = δ(Y −X +X −X ′)

=
∞∑
n=0

1

n!
(Yj1 −Xj1) · · · (Yjn −Xjn)

∂n

∂Xj1 · · · ∂Xjn

δ(X −X ′)

=

∞∑
n=0

(−1)n

n!

∂n

∂X ′
j1
· · · ∂X ′

jn

(Yj1 −Xj1) · · · (Yjn −Xjn)δ(X −X ′). (3.63)

By substituting Eq. (3.63) into Eq. (3.62), we obtain

W (X ′, t+∆t|X, t)

=

∞∑
n=0

(−1)n

n!

∂n

∂X ′
j1
· · · ∂X ′

jn

∫
dY (Yj1 −Xj1) · · · (Yjn −Xjn)W (Y , t+∆t|X, t)δ(X −X ′)

=

[
1 +

∞∑
n=1

(−1)n

n!

∂n

∂X ′
j1
· · · ∂X ′

jn

Mj1,··· ,jn(X, t,∆t)

]
δ(X ′ −X), (3.64)

where we define

Mj1,··· ,jn(X, t,∆t) ≡
∫

dY (Yj1 −Xj1) · · · (Yjn −Xjn)W (Y , t+∆t|X, t). (3.65)

1Considering the Fourier transformation, we can expand the δ function.
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We assume that all Mj1,··· ,jn(X, t,∆t) (n ≥ 1) can be expanded into a Taylor series with
respect to ∆t:

1

n!
Mj1,··· ,jn(X, t,∆t) = Dj1,··· ,jn(X, t)∆t+O((∆t)2). (3.66)

Note that the term of (∆t)0 vanishes because of Eq. (3.6). Using Eqs. (3.5), (3.64), and
(3.66), we obtain

p(X ′, t+∆t) = p(X ′, t) +
∞∑
n=1

(−1)n
∂n

∂X ′
j1
· · · ∂X ′

jn

Dj1,··· ,jn(X
′, t)p(X ′, t)∆t+O((∆t)2).

(3.67)
This is called the Kramers-Moyal expansion for N variables [78]. In the vanishing limit of
∆t in Eq. (3.67), we derive the equation describing the evolution of p(X, t) as

∂p(X, t)

∂t
=

∞∑
n=1

(−1)n
∂n

∂Xj1 · · · ∂Xjn

Dj1,··· ,jn(X, t)p(X, t). (3.68)

In the Wiener process, we can show that Mj1,··· ,jn (n ≥ 3) satisfy 2

Mj1,··· ,jn(X, t,∆t) = 0 (n ≥ 3). (3.69)

This is satisfied in any value of ∆t. Then, since Dj1,··· ,jn also vanishes when n satisfies
n ≥ 3, Eq. (3.68) can be rewritten as

∂p(X, t)

∂t
= −

∑
i,j

(
∂

∂Xi
Di(X, t)− ∂2

∂Xi∂Xj
Dij(X, t)

)
p(X, t), (3.70)

where i and j in the sum in Eq. (3.70) go from 1 to N . Eq. (3.70) is called the Fokker-
Planck equation. We can define the probability current as

ji(X, t) ≡
∑
j

(
Di(X, t)− ∂

∂Xj
Dij(X, t)

)
p(X, t). (3.71)

Then, since we can rewrite Eq. (3.70) as

∂p(X, t)

∂t
+∇ · j = 0 j = (j1, · · · , jN ), (3.72)

the Fokker-Planck equation is interpreted as the continuous equation for the probability
distribution.

3.5 Equivalence of Langevin equation and Fokker-Planck
equation

3.5.1 From Langevin equation to Fokker-Planck equation

We consider the N -dimensional stochastic process X(t) = (X1(t), · · · , XN (t)) and obtain
the Fokker-Planck equation from the Langevin equation. The N dimensional Langevin
equation with Itô-type product is given by Eq. (3.56). Because of df(X(t)) = f(X(t +

2Note that we may use the Pawula’s theorem to show Eq. (3.69) [79].
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dt))− f(X(t)), the function f(X) satisfies

⟨f(X)⟩t+dt = ⟨f(X) + df(X))⟩t , (3.73)

where ⟨· · ·⟩t is the statistical average at t. Using Eq. (3.57), we obtain

⟨f(X)⟩t+dt − ⟨f(X)⟩t

=
N∑
i=1

〈ai(X, t)[∂Xif(X)] +
N∑
j=1

Gij(X, t)[∂Xi∂Xjf(X)]

2

 dt+

N∑
j=1

bij(X)[∂Xif(X)] · dBj

〉
t

.

(3.74)

Because of ⟨dBi⟩t = 0, we obtain

d

dt
⟨f(X)⟩t =

N∑
i=1

〈
ai(X, t)[∂Xif(X)] +

N∑
j=1

Gij(X, t)[∂Xi∂Xjf(X)]

2

〉
t

. (3.75)

The left-hand side of Eq. (3.75) can be rewritten as

d

dt
⟨f(X)⟩t =

d

dt

∫
dX f(X)p(X, t) =

∫
dX f(X)

∂p(X, t)

∂t
. (3.76)

We assume that the probability distribution vanishes at the boundary. Integrating the
right-hand side of Eq. (3.75) by parts, we obtain

N∑
i=1

〈
ai(X, t)[∂Xif(X)] +

N∑
j=1

Gij(X, t)[∂Xi∂Xjf(X)]

2

〉
t

=
∑
i,j

∫
dX f(X)

[
− ∂

∂Xi
ai(X, t)p(X, t) +

1

2

∂2

∂Xi∂Xj
Gij(X, t)p(X, t)

]
. (3.77)

Since f(X) is the arbitrary function of X, from Eqs. (3.75), (3.76), and (3.77), we derive
the partial differential equation of p(X, t) as

∂p(X, t)

∂t
=
∑
i,j

[
− ∂

∂Xi
ai(X, t) +

1

2

∂

∂Xi∂Xj
Gij(X, t)

]
p(X, t). (3.78)

This is the same as the Fokker-Plank equation in Eq. (3.70), and we find that ai and Gij

satisfies
ai = Di, , Gij = 2Dij , (3.79)

comparing Eqs. (3.70) and (3.78).

3.5.2 From Fokker-Planck equation to Langevin equation

We show the derivation of the Langevin equation in Eq. (3.56) from the Fokker-Planck
equation in Eq. (3.70). First, we expressW (X ′, t+∆t|X, t) by the Fokker-Planck equation.
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When ∆t is small, we obtain

p(X ′, t+∆t) = p(X ′, t) +
∂p(X ′, t)

∂t
∆t+O((∆t)2)

=

1−∑
i,j

(
∂

∂X ′
i

Di(X
′, t)− ∂2

∂X ′
i∂X

′
j

Dij(X
′, t)

)
∆t

 p(X ′, t) +O((∆t)2)

≃ exp

−∑
i,j

(
∂

∂X ′
i

Di(X
′, t)− ∂2

∂X ′
i∂X

′
j

Dij(X
′, t)

)
∆t

 p(X ′, t)

=

∫
dX exp

−∑
i,j

(
∂

∂X ′
i

Di(X
′, t)− ∂2

∂X ′
i∂X

′
j

Dij(X
′, t)

)
∆t

 δ(X −X ′)p(X, t),

(3.80)

where we ignored the higher order terms of ∆t and used Eq. (3.70). Since we can replace
from X ′ to X ′ in Di and Dij in Eq. (3.80) by using the relation:

f(X)δ(X −X ′) = f(X ′)δ(X −X ′), (3.81)

comparing Eqs. (3.5) and (3.80), we obtain

W (X ′, t+∆t|X, t) = exp

−∑
i,j

(
∂

∂X ′
i

Di(X
′, t)− ∂2

∂X ′
i∂X

′
j

Dij(X
′, t)

)
∆t

 δ(X −X ′)

= exp

−∑
i,j

(
∂

∂X ′
i

Di(X, t)− ∂2

∂X ′
i∂X

′
j

Dij(X, t)

)
∆t

 δ(X −X ′).

(3.82)

By using the Fourier transformation, delta function is given by

δ(X −X ′) =
1

(2π)N

∫ ∞

−∞
dk exp

[
ik · (X −X ′)

]
. (3.83)

From Eqs. (3.82) and (3.83), we obtain

W (X ′, t+∆t|X, t)

= exp

−∑
i,j

(
∂

∂X ′
i

Di(X, t)− ∂2

∂X ′
i∂X

′
j

Dij(X, t)

)
∆t

 1

(2π)N

∫ ∞

−∞
dk exp

[
ik · (X −X ′)

]

=
1

(2π)N

∫ ∞

−∞
dk exp

∑
i,j

(
−ikiDi(X, t)∆t− kikjDij(X, t)∆t+ iki(Xi −X ′

i)
)

=
1√

(4π∆t)N det{D(X, t)}

× exp

−∑
i,j

[X ′
i −Xi −Di(X, t)∆t]D−1

ij(X, t)[X ′
j −Xj −Dj(X, t)∆t]

4∆t

 , (3.84)
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where we define the vector D and matrix D as

D ≡ {Di}1≤i≤N D ≡ {Dij}1≤i,j≤N . (3.85)

From Eqs. (3.65) and (3.66), the matrix D satisfies

Dij = Dji. (3.86)

Moreover, since D is a positive-semidefinite real symmetric matrix, it has the Cholesky
decomposition form [80–82] given by

D(X, t) = d(X, t)d⊤(X, t), (3.87)

where d is a N×N real lower triangular matrix with positive diagonal elements. Therefore,
we can rewrite W (X, t+∆t|X ′, t) in Eq. (3.84) as

W (X ′, t+∆t|X, t) =
1√

(4π∆t)N (det{d(X, t)})2

× exp

[
−|d−1(X, t)(X ′ −X −D(X, t)∆t)|2

4∆t

]
. (3.88)

From Eq. (3.88), we can find that the process produced by the Fokker-Planck equa-
tion in Eq. (3.70) satisfies the Wiener process defined in Eq. (3.47). To derive of the
Langevin equation from the transition rate in Eq. (3.88), we use the stochastic variable
B = (B1, · · · , BN ) satisfying the transition probability in Eq. (3.47) as

W (B′, t+∆t|B, t) =
1√

(2π∆t)N
exp

{
−|B′ −B|2

2∆t

}
, (3.89)

where we defined B ≡ B(t) and B′ ≡ B(t + ∆t). When we transform the variables B
and B′ into Y ≡

√
2d(X, t)B and Y ′ ≡

√
2d(X, t)B′, respectively, Eq. (3.89) can be

rewritten as

W (Y ′, t+∆t|Y , t) =
1√

(4π∆t)N (det d)2
exp

{
−|d−1(Y ′ − Y )|2

4∆t

}
. (3.90)

When we regard X, B, and Y as the stochastic variables and compare Eqs. (3.88) and
(3.90), we obtain

Xi(t+∆t)−Xi(t)−Di(X, t)∆t = Y ′
i − Yi

=

N∑
j=1

√
2dij(X, t)[Bj(t+∆t)−Bj(t)]. (3.91)

In the limit of ∆t → dt, we can rewrite Eq. (3.91) as

dXi = Di(X, t)dt+
N∑
j=1

√
2dij(X, t) · dBj . (3.92)

Note that we should use the Itô-type product in the right-hand side of Eq. (3.91) since
dij(X, t) depends only on X(t) and t. This is consistent with the discussion in Chap 3.5.1.
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By comparing Eqs. (3.55) and (3.92), we obtain

ai = Di, bij =
√
2dij (3.93)

From Eqs. (3.58), (3.87), and (3.93), we find that Eq. (3.79) is satisfied. Thus, we obtain
the Langevin equation

Ẋi = Di(X, t) +

N∑
j=1

√
2dij(X, t) · ξj(t). (3.94)

Note that ξ(t) ≡ (ξ1(t), · · · , ξN (t)) satisfies

⟨ξi(t)⟩ =0,

⟨ξi(t)ξj(s)⟩ =δijδ(t− s).
(i, j = 1, 2, · · · , N) (3.95)

As we will show in Chap. 5, the Langevin equation can be regarded as the equation motion
of the Brownian particle.

We showed that the master equation, Langevin equation, and Fokker-Planck equation
are derived from the Chapman-Kolmogorov equation characterizing the Markov process.
Especially, since the transition rate of the master equation does not depend on the form
of the transition probability, the master equation can describe any Markov process. Thus,
the results proved in the system described by the master equation hold for the system
described by the Langevin equation or Fokker-Planck equation. Moreover, we showed
that the Langevin equation and the Fokker-Planck equation are equivalent. Thus, we can
choose which of them to use depending on the situation.
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Chapter 4

Review: Trade-off relation
between efficiency and power

4.1 Setting

We review Ref. [29] to show the trade-off relation between efficiency and power of heat
engines described by the Markov process. We consider that the heat engine interacts with
n heat baths with inverse temperature β1, · · · , βn and is operated by the agent. By using
the temperature of the heat bath Tk (k = 1, 2, · · · , n), the inverse temperature satisfies
βk = 1/Tk. We assume that the heat baths are equilibrium at any time.

In the heat engine, N particles whose dynamics are determined by the classical me-
chanics are enclosed. We often use the word “system” to mean the heat engine and the
other word “total system” to mean the heat bath and heat engine, respectively. The par-
ticles may interact each other, collide, and trapped by a potential. Let mi, xi, and vi
(i = 1, · · · , N) denote the mass, position, and velocity of the i-th particle, respectively.
Then, we can consider ω ≡ (x1, · · · ,xN ;v1, · · · ,vN ) as the point of the 6N -dimensional
phase space. We introduce a set of parameter λ(t) characterizing the heat engine. When
we consider a piston as an example of the heat engine, λ(t) represents the volume of the
piston and which of the heat bath interacting, etc at t. Then, we consider the energy of
the system depending on parameter λ as

Eλ(ω) ≡
N∑
i=1

1

2
mi|vi|2 + V λ(x1, · · · ,xN ), (4.1)

where V λ(x1, · · · ,xN ) is the potential and does not depend on the velocity of the particles.
For the derivation of the trade-off relation, we decompose the whole 6N -dimensional

phase space into small 6N -dimensional parallelepiped. We assume that the length of one
side of the parallelepiped is at most ε which is sufficiently small. We can use ω denoting
the center of the small parallelepiped to distinguish the parallelepiped. Then, we introduce
the probability pω(t) where the system is in the parallelepiped whose center is ω at time
t. Using pω(t), we define the entropy S(t) of the system [1,28,83] as

S(t) ≡ −
∑
ω

pω(t) ln pω(t). (4.2)

Since ε is sufficiently small, the energy defined in Eq. (4.1) of all ω in the same par-
allelepiped are almost same. Thus, we define the energy which the system is in the

21



parallelepiped labeled by ω as

Eλ
ω ≡

N∑
j=1

1

2
mj |vj |2 + V λ(x1, · · · ,xN ). (4.3)

Using the probability pω(t), we can define the internal energy as

E(t) ≡
∑
ω

Eλ
ωpω(t). (4.4)

We introduce the discretized master equation in Eq. (3.17) in Sec. 3.2 to describe the
time evolution of pω(t) as

d

dt
pω(t) =

∑
ω′

R
λ(t)
ω′→ωpω′(t), (4.5)

where R
λ(t)
ω′→ω is the transition rate and depends on λ(t) and satisfies Eq. (3.18). Since

the system interacts with the n heat baths and composed of N particles, R
λ(t)
ω′→ω can be

written as

R
λ(t)
ω′→ω = R

0,λ(t)
ω′→ω +

N∑
j=1

n∑
k=1

R
j,k,λ(t)
ω′→ω , (4.6)

where j and k are the index of the particle and heat bath, respectively. R
0,λ(t)
ω′→ω∆t is the

transition probability from ω′ to ω in the time interval ∆t caused by the deterministic

time evolution of the system, which is described by the classical mechanics. R
j,k,λ(t)
ω′→ω ∆t is

the transition probability from ω′ to ω in the time interval ∆t because of the interaction
between the j-th particle and the k-th heat bath. When the system is isolated, in other

words, any heat bath does not interact with the system, R
λ(t)
ω′→ω becomes R

0,λ(t)
ω′→ω. Then,

when λ(t) does not change, R
0,λ(t)
ω′→ω does not depend on time, and the internal energy

conserves and satisfy

d

dt
E(t)

∣∣∣∣
λ(t)=λ0=const.

=
∑
ω,ω′

Eλ0
ω R0,λ0

ω′→ωpω′(t) = 0. (4.7)

Note that Eq. (4.7) is satisfied in any λ0. Moreover, when the system is equilibrium and
isolated, the probability distribution is expected to be uniform because of the principle of

equal weight. Thus, we assume that R
0,λ(t)
ω′→ω satisfies∑
ω′

R
0,λ(t)
ω′→ω = 0. (4.8)

When the system connects with the heat bath with βk and is equilibrium, the probability
distribution becomes the Boltzmann distribution. Then, since it does not change in time,
we can assume ∑

ω′

R
j,k,λ(t)
ω′→ω e−βkE

λ
ω′ = 0 (4.9)

To define the heat and work, we consider the time derivative of Eq. (4.4):

d

dt
E(t) =

∑
ω

dλ(t)

dt

dE
λ(t)
ω

dλ(t)
pω(t) +

∑
ω

Eλ(t)
ω

dpω(t)

dt
. (4.10)
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The first term of the right-hand side of Eq. (4.10) is interpreted as the work because the
internal energy change is caused by the agent who changes λ(t). Then, the second term of
the right-hand side of Eq. (4.10) is interpreted as the heat current flowing from the heat
baths to the system. Thus, the heat current is defined as

Q̇(t) ≡
∑
ω

Eλ(t)
ω

dpω(t)

dt

=
∑
ω,ω′

Eλ(t)
ω R

λ(t)
ω′→ωpω′(t)

=

N∑
j=1

n∑
k=1

∑
ω,ω′

Eλ(t)
ω R

j,k,λ(t)
ω′→ω pω′(t)

=
n∑

k=1

Q̇k(t), (4.11)

where we used Eqs. (4.5), (4.6), and (4.7) and introduced Q̇k as a heat current flowing
from the k-th heat bath:

Q̇k(t) ≡
N∑
j=1

Q̇j,k(t),

Q̇j,k(t) ≡
∑
ω,ω′

Eλ(t)
ω R

j,k,λ(t)
ω′→ω pω(t). (4.12)

4.2 Inequality for heat current

We consider the entropy production of the total system and show the inequality for the
heat current and the entropy production. When the heat flows, the entropy of the heat
baths changes. Since the probability of the system changes simultaneously because of the
flowing heat, the entropy of the system also changes. By using Eq. (4.2), the entropy
change of the system is given by Ṡ(t). Then, considering the total entropy change rate
of the system and heat baths, we can introduce the entropy production rate or the total
system as

Σ̇tot(t) ≡ Ṡ −
n∑

k=1

βkJk(t), (4.13)

where the first and second terms represent the entropy change of the system and heat
baths, respectively. From Eqs. (4.2), (4.5), (4.6), and (4.11), we can rewrite Eq. (4.13) as

Σ̇tot =

N∑
j=1

n∑
k=1

∑
ω,ω′

R
j,k,λ(t)
ω′→ω pω′(t)

(
− log pω′(t)− βkE

λ(t)
ω

)

=
N∑
j=1

n∑
k=1

Σ̇j,k, (4.14)

where we defined

Σ̇j,k ≡
∑
ω,ω′

R
j,k,λ(t)
ω′→ω pω′(t)

(
− log pω(t)− βkE

λ(t)
ω

)
. (4.15)
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For the derivation of the inequality for the heat current, we introduce the quantity

R̃j,k,λ
ω→ω′ ≡ eβk(E

λ
ω−Eλ

ω′ )R
j,k,λ(t)
ω′→ω . (4.16)

Because of Eq. (4.9), R̃j,k,λ
ω→ω′ satisfies∑

ω′

R̃j,k,λ
ω→ω′ = 0. (4.17)

Using Eqs. (3.18) and (4.9), we obtain

∑
ω,ω′

R
j,k,λ(t)
ω′→ω pω′(t)(−βkE

λ(t)
ω ) =

∑
ω,ω′

R
j,k,λ(t)
ω′→ω pω′(t)

(
−βkE

λ(t)
ω′ + log

R
j,k,λ(t)
ω′→ω

R̃j,k,λ
ω′→ω

)

=
∑
ω,ω′

R
j,k,λ(t)
ω′→ω pω′(t)

(
log

R
j,k,λ(t)
ω′→ω

R̃j,k,λ
ω′→ω

)
. (4.18)

Then, we can rewrite Σ̇j,k in Eq. (4.15) as

Σ̇j,k =
∑
ω,ω′

R
j,k,λ(t)
ω′→ω pω′(t)

(
− log pω(t)− βkE

λ(t)
ω′ + log

R
j,k,λ(t)
ω′→ω

R̃j,k,λ
ω′→ω

)

=
∑
ω,ω′

R
j,k,λ(t)
ω′→ω pω′(t)

(
− log pω(t) + log

R
j,k,λ(t)
ω′→ω

R̃j,k,λ
ω′→ω

)
+
∑
ω,ω′

R
j,k,λ(t)
ω′→ω pω′(t) log pω′(t)

=
∑
ω,ω′

R
j,k,λ(t)
ω′→ω pω′(t) log

R
j,k,λ(t)
ω′→ω pω′(t)

R̃j,k,λ
ω′→ωpω(t)

=
∑
ω,ω′

s(R
j,k,λ(t)
ω′→ω pω′(t), R̃j,k,λ

ω′→ωpω(t)) (4.19)

using Eq. (3.18) at the second equality, and we defined s(a, b) ≡ a log(a/b) + b− a. Since
s(a, b) satisfies

s(a, b) ≥ 8

9

(a− b)2

a+ b
≥ 0, (4.20)

we obtain the inequality for Σ̇j,k given by

Σ̇j,k ≥
∑
ω,ω′

8

9

(Ãj,k,−
ω′→ω)

2

Ãj,k,+
ω′→ω

, (4.21)

where we defined
Ãj,k,±

ω′→ω ≡ R
j,k,λ(t)
ω′→ω pω′(t)± R̃j,k,λ

ω′→ωpω(t). (4.22)

By using Eq. (4.17), Jj,k(t) in Eq. (4.12) satisfies

Q̇j,k(t) ≡
∑
ω,ω′

Eλ(t)
ω R

j,k,λ(t)
ω′→ω pω(t)−

∑
ω,ω′

Eλ(t)
ω R̃

j,k,λ(t)
ω→ω′ pω(t)

=
∑
ω,ω′

Eλ(t)
ω

√
Ãj,k,+

ω′→ω

Ãj,k,−
ω′→ω√
Ãj,k,+

ω′→ω

(4.23)
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Using the Cauchy–Schwarz inequality and Eq. (4.21), we obtain

|Q̇j,k(t)| ≤
√
Θj,k(t)Σ̇j,k(t) (4.24)

with

Θj,k(t) =
9

8

∑
ω,ω′

(Eλ(t)
ω )2Ãj,k,+

ω′→ω. (4.25)

Then, we obtain the inequality

(Q̇)2 =

 N∑
j=1

n∑
k=1

Q̇j,k

2

≤
N∑
j=1

n∑
k=1

(
Q̇j,k

)2
≤

N∑
j=1

n∑
k=1

(√
Θj,k(t)Σ̇j,k(t)

)2

≤

 N∑
j=1

n∑
k=1

Θj,k(t)

 N∑
j=1

n∑
k=1

Σ̇j,k(t)


= Θ(t)Σ̇tot, (4.26)

where we defined

Θ(t) ≡
N∑
j=1

n∑
k=1

Θj,k(t). (4.27)

4.3 Derivation of trade-off relation

By using Eq. (4.26), we show the trade-off relation between the efficiency and power of
the heat engines. We consider the heat engine operating between the two heat baths with
the inverse temperatures βh and βc (> βh). Let Qh and Qc denote the heat flowing from
the heat baths with βh and βc to the system, respectively. When we introduce ∆tcyc as
the cycle time, the internal energy and entropy changes of the system should satisfy

E(0) = E(∆tcyc), S(0) = S(∆tcyc). (4.28)

By using Eqs. (4.10) and (4.28), we derive the output work as

W ≡
∫ ∆tcyc

0
dt Q̇ = Qh +Qh. (4.29)

In the heat engine, W and Qh should be positive, and Qc should be negative. Then, we
can define the efficiency η and power P as

η ≡ W

Qh
= 1 +

Qc

Qh
= 1− |Qc|

Qh
, P ≡ W

∆tcyc
. (4.30)
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Carnot showed that the efficiency has the upper bound defined by the temperature of the
heat baths called Carnot efficiency given by [2]

ηC ≡ 1− Tc

Th
= 1− βh

βc
. (4.31)

By using Eq. (4.13), we also derive the total entropy production per cycle as

Σtot ≡
∫ ∆tcyc

0
dt Σ̇tot = −βhQh − βcQc = βcQh (ηC − η) . (4.32)

From Eq. (4.26), we obtain

Q2
h ≤ (|Qh|+ |Qc|)2

≤
(∫ ∆tcyc

0
dt |Q̇|

)2

≤
∫ ∆tcyc

0
dt

√
Θ(t)Σ̇tot

≤ ∆tcycΘ̄Σtot, (4.33)

with

Θ̄ ≡ 1

∆tcyc

∫ ∆tcyc

0
dt Θ(t). (4.34)

Using Eq. (4.29), (4.30), and (4.33), we derive the trade-off relation between the efficiency
and power as

P ≤ Θ̄βcη(ηC − η). (4.35)

We consider the case that Θ̄ is finite. From the inequality in Eq. (4.35), we find that the
power vanishes when the efficiency approaches the Carnot efficiency. Thus, it means that
the compatibility of the Carnot efficiency and finite power is forbidden. However, if Θ̄
diverges, we may achieve the Carnot efficiency in the finite-power heat engine. In chap. 6
and 7, we study the detail of Θ̄ in the underdamped Brownian Carnot cycle and show that
the compatibility of the Carnot efficiency and finite power is possible by considering the
relaxation times of the Brownian particle. In the next chapter, we consider the Brownian
motion and stochastic thermodynamics to construct the Brownian Carnot cycle.
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Chapter 5

Stochastic thermodynamics

We consider the Brownian particle and introduce the thermodynamic quantities to describe
the dynamics of the particle to construct the Brownian Carnot cycle. Since the Brownian
particle is immersed in the medium, it moves randomly because of the random force from
the medium. In this chapter, we introduce the Langevin equation to describe the random
dynamics called the Brownian motion. We first consider the free Brownian motion as the
simplest case to reveal the character of the random force. After that, we consider the
particle trapped by the potential and introduce the thermodynamic quantities. Moreover,
we introduce the Fokker-Planck equation which is equivalent to the Langevin equation to
describe the evolution of the probability distribution of the particle.

5.1 Free Brownian motion

We first consider the free Brownian particle which is not trapped by the potential and
immersed in the medium with temperature T [35]. We assume that the Brownian particle
is large enough that its dynamics is described by the classical mechanics, but small enough
that its fluctuation is non-negligible. As we assumed that the dynamics of the particle is
subjected by the classical mechanics, its state is described by the position x and velocity
v, which are the stochastic variables. Since the force which arises between the particle
and medium is divided into the friction force and the random force, the Langevin equation
given by

ẋ =v,

mv̇ =− γv +
√
Dξ(t), (5.1)

where γ and D are the friction and diffusion coefficients, respectively. ξ(t) is the Gaussian
white noise satisfying

⟨ξ(t)⟩ = 0, (5.2)〈
ξ(t)ξ(t′)

〉
= δ(t− t′), (5.3)

where ⟨· · ·⟩ is the statistical average. To decideD, we solve the second equation in Eq. (5.1)
formally for the initial condition that v has the value v0 at t = 0. For this condition, we
obtain

v(t) = v0 exp
{
− γ

m
t
}
+

√
D

m

∫ t

0
dt′ξ(t′) exp

{
− γ

m
(t− t′)

}
. (5.4)
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From Eq. (5.4), we obtain

⟨v(t1)⟩ = v0 exp
{
− γ

m
t1

}
, (5.5)

⟨v(t1)v(t2)⟩

= v20 exp
{
− γ

m
(t1 + t2)

}
+

D

m2

∫ t1

0
dt′1

∫ t2

0
dt′2δ(t1 − t2) exp

{
− γ

m
(t1 + t2 − t′1 − t′2)

}
= v20 exp

{
− γ

m
(t1 + t2)

}
+

D

2mγ

(
exp

{
− γ

m
(|t1 − t2|)

}
− exp

{
− γ

m
(t1 + t2)

})
. (5.6)

The right-hand side of Eq. (5.5) and the first term of the right-hand side of Eq. (5.6)
approach zero when t1, t2 ≫ m/γ is satisfied. This means that the effect of the initial
condition becomes smaller when t1 and t2 become larger. Thus, we find that m/γ is an
important time scale for the Brownian motion and define it as a relaxation time of the
velocity of the Brownian particle as

τv ≡ m

γ
. (5.7)

Note that this is only determined by the particle and medium. When we consider t1, t2 ≫
τv, the system is almost equilibrium, and Eq. (5.6) is approximated by

⟨v(t1)v(t2)⟩ =
D

2mγ
exp

{
− γ

m
(|t1 − t2|)

}
. (5.8)

When t1 = t2 is satisfied, we obtain 〈
v(t)2

〉
=

D

2mγ
. (5.9)

Moreover, because of the law of equipartition of energy in the statistical mechanics [1],
the average of the kinetic energy of the particle in equilibrium state should satisfy

1

2
m
〈
v2
〉
=

1

2
kBT, (5.10)

where kB is the Boltzmann constant. Comparing Eqs. (5.9) and (5.10), we obtain

D = 2γkBT. (5.11)

This is called the Einstein relation. We consider the mean square displacement
〈
[x(t)− x(0)]2

〉
.

When the time t satisfying t ≫ m/γ, using Eq. (5.6), we obtain the mean square displace-
ment as 〈

[x(t)− x(0)]2
〉
=

∫ t

0
dt1

∫ t

0
dt2 ⟨v(t1)v(t2)⟩ =

D

γ2
|t|. (5.12)

As shown in Eq. (5.12), the mean square displacement is proportional to the time, and
this is one of the character of the free Brownian motion.

5.2 Brownian particle trapped by potential

We consider the Brownian particle trapped by the potential V (x, t). Since the force
associated with the potential acts on the particle, the Langevin equations describing the
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Brownian motion are given by

ẋ =v,

mv̇ =− γv − ∂V (x, t)

∂x
+
√

2γkBTξ(t). (5.13)

We assume that we can change the functional form of V (x, t) arbitrarily. We first consider
one of the important stochastic processes called the Ornstein-Uhlenbeck process. Since
the mass of the particle is sufficiently small, τv = m/γ also becomes small. Then, the
duration of observation ∆t becomes sufficiently larger than τv [16, 24, 84]. For example,
the order of ∆t and τv used in the experiment of the Brownian particle in Ref. [24] are
seconds and milliseconds, respectively. When ∆t ≫ τv is satisfied, the inertial effect of
the Brownian can be neglected, Eq. (5.13) can be rewritten as

γẋ = −∂V (x, t)

∂x
+
√
2γkBTξ(t). (5.14)

Eq. (5.14) is the differential equation of x only, and it is called the overdamped Langevin
equation. In contrast to Eq. (5.14), Eq. (5.13) expressed by x and v is called the under-
damped Langevin equations.

5.2.1 Ornstein-Uhlenbeck process

We here consider the overdamped dynamics of the particle trapped by the time-independent
harmonic potential

V (x) =
1

2
λx2. (5.15)

The overdamped Langevin equation of the particle in this potential is given by

γẋ = −λx+
√
2γkBTξ(t). (5.16)

Similar to the Langevin equation for the free Brownian particle in Eq. (5.1), we can solve
Eq. (5.16) and obtain

x(t) = x0 exp

{
−λ

γ
t

}
+

√
2kBT

γ

∫ t

0
dt′ξ(t′) exp

{
−λ

γ
(t− t′)

}
, (5.17)

where x0 is the initial condition of x(t). Similar to the relaxation time of the velocity in
the free Brownian motion in Eq. (5.7), the relaxation time of this process is given by

τx ≡ λ

γ
. (5.18)

Moreover, from the discussion of Sec. 3, we can derive the transition probabilityW (x, t|x0, 0)
corresponding to Eq. (5.16) as

W (x, t|x0, 0) =

√
λ

2πkBT (1− e−2t/τx)
exp

[
− λ(x− x0e

−2t/τx)2

2kBT (1− e−2t/τx)

]
. (5.19)

The stochastic process with the above transition probability is called the Ornstein-Uhlenbeck
process [68,85].

We introduce the probability distribution for x at t as p(x, t). When we choose the
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initial condition as the delta function δ(x− x0), p(x, t) is given by

p(x, t) =

√
λ

2πkBT (1− e−2t/τx)
exp

[
− λ(x− x0e

−2t/τ )2

2kBT (1− e−2t/τx)

]
. (5.20)

When t ≫ τx is satisfied, Eq. (5.20) is approximated by the Boltzmann distribution:

peq(x) =

√
λ

2πkBT
exp

[
− λx2

2kBT

]
. (5.21)

5.2.2 Definition of heat and work

We define the heat and work as forms of the energy change of the Brownian particle
trapped by the potential V (x, t) and consider its thermodynamics. In thermodynamics,
when the system is contact with the heat bath, the heat is the energy change due to
the interaction between the system and heat bath. We assume that the heat bath is
equilibrium at any time. The first and third terms in the right-hand side of the second
equation in Eq. (5.13) are the forces where the heat bath acts on the particle. When the
particle moves infinitesimal displacement dx due to the forces, we can define the work
done to the particle from the heat bath as the infinitesimal heat given by

dq(t) ≡
[
−γv(t) +

√
2γkBTξ(t)

]
◦ dx(t), (5.22)

where ◦ is the Stratonovich product. We discuss the reason why we use the Stratonovich
product to define the heat in the Appendix A. By taking the statistical average of dq(t),
we obtain the averaged infinitesimal heat dQ flowing to the particle:

dQ ≡ ⟨dq⟩ =
〈[

−γv(t) +
√
2γkBTξ(t)

]
◦ dx(t)

〉
. (5.23)

Hereafter, we call dQ the heat for simplicity. The mechanical energy of the Brownian
particle is given by

e(x, v, t) ≡ 1

2
mv2 + V (x, t). (5.24)

From e(x, v, t), we can define the internal energy of the particle as

E(t) = ⟨e(x, v, t)⟩ = 1

2
m
〈
v2
〉
+ ⟨V (x, t)⟩ . (5.25)

Using Eqs. (5.13) and (5.22), we can derive the infinitesimal change of the mechanical
energy in Eq. (5.24) as

de(x, v, t) =

(
mv̇(t) +

∂V (x, t)

∂x

)
◦ dx(t) + ∂V (x, t)

∂t
dt

=
[
−γv(t) +

√
2γkBTξ(t)

]
◦ dx(t) + ∂V (x, t)

∂t
dt = dq(t) +

∂V (x, t)

∂t
dt. (5.26)

The second term in the right-hand side of Eq. (5.26) is the energy change due to the change
of functional form of the potential. As we assumed that we can change it arbitrarily below
Eq. (5.13), the energy change (∂V (x, t)/∂t)dt is caused by us. Thus, since we can interpret
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it as the work done to the particle by us, we can define the infinitesimal work as

dw(x, t) ≡ ∂V (x, t)

∂t
dt. (5.27)

Then, Eq. (5.26) is rewritten as
de = dq + dw. (5.28)

By taking the statistical average of dw(t), we derive the averaged infinitesimal work dW
done to the particle as

dW (x, t) ≡
〈
∂V (x, t)

∂t
dt

〉
. (5.29)

From Eqs. (5.23), (5.25), (5.26), and (5.29), we obtain

dE = dQ+ dW. (5.30)

We find that Eqs. (5.28) and (5.30) are the first law of thermodynamics for the infinitesimal
energy change in the Brownian motion.

5.2.3 Heat and work in Fokker-Planck system

We define the averaged heat and work by using the Fokker-Planck equation. The equation
corresponding to Eq. (5.13) is derived from the discussion in Sec. 3.5.1 and given by

∂

∂t
p(x, v, t) = − ∂

∂x
jx(x, v, t)−

∂

∂v
jv(x, v, t), (5.31)

where we defined the probability currents as

jx(x, v, t) ≡ vp(x, v, t), (5.32)

jv(x, v, t) ≡ −
[
γ

m
v +

1

m

∂V (x, t)

∂x
+

γkBT

m2

∂

∂v

]
p(x, v, t). (5.33)

The internal energy can be defined as the average of the mechanical energy of the particle:

E(t) ≡
∫ ∫

dxdv e(x, v, t)p(x, v, t) =

∫ ∫
dxdv

[
1

2
mv2 + V (x, t)

]
p(x, v, t). (5.34)

From Eq. (5.34), the time derivative of the internal energy is given by

dE(t)

dt
=

∫ ∫
dxdv

∂e(x, v, t)

∂t
p(x, v, t) +

∫ ∫
dxdv e(x, v, t)

∂p(x, v, t)

∂t

=

∫ ∫
dxdv

∂V (x, t)

∂t
p(x, v, t) +

∫ ∫
dxdv

[
1

2
mv2 + V (x, t)

]
∂p(x, v, t)

∂t
, (5.35)

where we use Eq. (5.24). Since the first term of the right-hand side of Eq. (5.35) is the
averaged energy change, similar to Eq. (5.29), we can interpret it as the averaged work
done to the particle per unit time:

Ẇ (t) ≡
∫ ∫

dxdv
∂V (x, t)

∂t
p(x, v, t). (5.36)
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Because of the first law of thermodynamics, the second term of the right-hand side of
Eq. (5.35) can be interpreted as the heat current flowing from the heat bath to the system:

Q̇ ≡
∫ ∫

dxdv e(x, v, t)
∂p(x, v, t)

∂t
=

∫ ∫
dxdv

[
1

2
mv2 + V (x, t)

]
∂p(x, v, t)

∂t
. (5.37)

When the thermodynamics process lasts for 0 ≤ t ≤ t0, the output work W and heat Q
in this process are defined as

W ≡ −
∫ t0

0
dtẆ (t) (5.38)

Q ≡
∫ t0

0
dtQ̇(t) (5.39)

where we used Eqs. (5.36) and (5.37). Since the internal energy change in this process is
given by E(t0)− E(0), the output work W in Eq. (5.38) and heat Q in Eq. (5.39) satisfy

E(t0)− E(0) = Q−W. (5.40)

Moreover, since the probability distribution p(x, v, t) is introduced, we can define the
entropy of the system as

S(t) ≡ −
∫ ∫

dxdv p(x, v, t) ln{p(x, v, t)}. (5.41)

Since the heat bath is assumed to be equilibrium, the entropy change rate of the heat bath
is given by −Q̇/T . Thus, the entropy production rate of the total system is defined as the
sum of the entropy change rate of the particle and heat bath:

Σ̇tot ≡ Ṡ − Q̇

T
. (5.42)

where we used Eqs. (5.37) and (5.41). Thus, the entropy production in this process is
given by

Σtot ≡
∫ t0

0
dt Σ̇tot = ∆S −

∫ t0

0
dt

Q̇

T
, (5.43)

where we define the entropy change of the system in this process as

∆S ≡ S(t0)− S(0), (5.44)

using Eq. (5.41).

5.3 Entropy production in Langevin system

We consider the time reversal in the thermodynamic process lasting for 0 ≤ t ≤ t0 and
rewrite the entropy production in the system described by the Langevin equations [86–88].
We first introduce the trajectory of the stochastic variables X = (X1, X2, · · · , XN ) in
the phase space as X⃗ ≡ X(t) for 0 ≤ t ≤ t0. For example, when we consider the
Brownian motion, the elements of X can be regarded as the set of the position and
velocity of the particle. When we consider the time-reversal system, the infinitesimal time
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increment dt becomes −dt. Then, although the sign of the position is unchanged, that
of the velocity is inverted. Thus, the elements of X = (X1, X2, · · · , XN ) may be odd or
even under the time-reversal. As the variables in the time-reversal system, we introduce
ϵX ≡ (ϵ1X1, ϵ2X2, · · · , ϵNXN ) where ϵi = ±1 for even and odd variables Xi, respectively.
To summarize, X and dt change to ϵX and (−dt) under the time reversal, respectively.
For the simplicity, we only consider the case that the Langevin equation is given by

dXi = ai(X, t)dt+ bi(X, t) · dBi, (5.45)

using the Itô-type product. We assume that ai(X, t) in Eq. (5.45) is divided into the
reversible part arevi (X, t) and irreversible part airri (X, t):

dXi = arevi (X, t)dt+ airri (X, t)dt+ bi(X, t) · dBi, (5.46)

where arevi (X, t) and airri (X, t) are given by

arevi (X, t) =
1

2
[ai(X, t)− ϵiai(ϵX, t)] , (5.47)

airri (X, t) =
1

2
[ai(X, t) + ϵiai(ϵX, t)] . (5.48)

Moreover, bi(X, t) is unchanged under the time reversal since it is defined by the second
moment of Xi. From Sec. 3.5.1, we derive the Fokker-Planck equation corresponding to
Eq. (5.45) as

∂

∂t
p(X, t) =−

N∑
i=1

∂

∂Xi
ji(X, t)

=−
N∑
i=1

∂

∂Xi

[
ai(X, t)− ∂

∂Xi
Di(X, t)

]
p(X, t), (5.49)

where we defined

ji(X, t) ≡
[
ai(X, t)− ∂

∂Xi
Di(X, t)

]
p(X, t), (5.50)

Di(X, t) =
1

2
bi(X, t)2. (5.51)

Then, by using Eq. (5.46), we obtain

∂

∂t
p(X, t) =

N∑
i=1

∂

∂Xi
[arevi p(X, t)]−

N∑
i=1

∂

∂Xi

[
airri (X, t)− ∂

∂Xi
Di(X, t)

]
p(X, t)

=−
N∑
i=1

∂

∂Xi
[jrevi (X, t) + jirri (X, t)], (5.52)

where we defined

jrevi ≡arevi p(X, t),

jirri ≡airri p(X, t)− ∂

∂Xi
Di(X, t)p(X, t). (5.53)
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x(0)

x(t0 = 5Δt)x(2Δt)
v(2Δt) v(t0 = 5Δt)

v(0)

λ(t)

x†(5Δt) = x(0)

x†(0) = x(5Δt)x†(3Δt) = x(t0 − 3Δt)
v†(0) = − v(5Δt)

v†(5Δt) = − v(0)

v†(3Δt) = − v(t0 − 3Δt)

λR(t) = λ(t0 − t)

Figure 5.1: Schematic illustration of the trajectory X(t) = (x(t),v(t)) (0 ≤ t ≤ 5∆t = t0)
and its time-reversal trajectory X†(t) = (x†(t),v†(t)) of the particle moving in a plane.
The left illustration denotes the trajectory X(t), and the right one denotes its time-
reversal trajectory X†(t). In the illustration, the gray lines denote the trajectories of the
position of the particle. The orange points denote the position of the particle at t = k∆t
(k = 0, 1, · · · , 5). The red triangles denote the direction of the velocity. In the illustration
of X†(t), the direction of the red arrow is in the opposite direction of that of X(t). The
green arrow in the left illustration denotes the time evolution of the protocol λ(t), and
that in the right illustration denotes the time evolution of the time-reversal protocol λR(t).
We find that x†(t) = x(t0− t) and v†(t) = −v(t0− t) are satisfied under the time reversal.

jrevi (jirri ) is a reversible (irreversible) probability current corresponding to Xi.

To derive the entropy production, we introduce P[X⃗] as the probability distribution of
the trajectory X⃗ ≡ X(t) for 0 ≤ t ≤ t0, with the initial probability distribution p(X(0), 0)
describing the state of the system. We also introduce PR[X⃗†] denoting the probability
distribution of the time-reversed trajectory X⃗† ≡ ϵX(t0−t) with reversed protocol, which
is how to change the potential and temperature of the heat bath. (see Fig. 5.1). 1 We
introduce the quantity, which is a function of the trajectory X⃗, given by

A[X⃗] ≡ ln
P[X⃗]

PR[X⃗†]
. (5.55)

Since the Jacobian of the transformation X⃗ → X⃗† is unity, we obtain〈
exp

[
A[X⃗]

]〉
≡
∫

dX⃗ exp
[
A[X⃗]

]
P[X⃗] =

∫
dX⃗†PR[X⃗†] = 1. (5.56)

Note that domain of integration for X⃗ in Eq. (5.56) is over all possible trajectories. More-
over, the probability distribution at the final state should satisfy

p(X(t0), t0) = pR(ϵX(t0), t0). (5.57)

As discussed in Ref. [89], the entropy production of the total system along the trajectory

1Keeping the integral fluctuation theorem [19,89] in mind, we have some options of trajectories instead
of X†(t) = ϵX(t0 − t) for 0 ≤ t ≤ t0 as follows:

XR(t) ≡ X(t0 − t), XT (t) = ϵX(t). (5.54)

More detailed discussion related to the trajectories and entropy change is held in Ref. [86].
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relates to the time reversal and is defined by

∆stot[X⃗] ≡ lnP[X⃗]− lnPR[X⃗†]

= − ln
p(X(t0), t0)

p(X(0), 0)
+ ln

P[X(t0)|X(0)]

PR[ϵX(0)|ϵX(t0)]

= ∆s+∆sb, (5.58)

where we use Eq. (5.57), and ∆s and ∆sb are the entropy change of the system and
heat bath along the trajectory, respectively. Although ∆stot, ∆s, and ∆sb depend on the
trajectory, we often interested only in their statistical average over all the trajectories.
When we take the statistical average, we obtain

Σtot = ∆S +∆Sb, (5.59)

Σtot ≡ ⟨∆stot⟩ , ∆S ≡ ⟨∆s⟩ , ∆Sb ≡ ⟨∆stot⟩ . (5.60)

For simplicity, we hereafter refer to the averaged entropy changes as the entropy changes.
The same applies to the other physical quantities.

Using the transition probability corresponding to the Langevin equations in Eq. (5.45),
we express Σtot by the reversible and irreversible probability currents in Eq. (5.53). We
first consider the infinitesimal increment of the entropy production:

d(∆stot)[X(t+ dt),X(t)] ≡ − ln
p(X(t+ dt), t+ dt)

p(X(t), t)
+ ln

P(X ′, t+ dt|X, t)

PR(ϵX, t+ dt|ϵX ′, t)
, (5.61)

where we defined X ≡ X(t) and X ′ ≡ X(t+ dt), and dt is infinitesimal time increment.
Since P(X ′, t + dt|X, t) is expressed by W (X ′, t + dt|X, t) in Eq. (3.88) in Chap. 3, we
obtain

P(X ′, t+ dt|X, t) = W (X ′, t+ dt|X, t)

=
∏
i

√
1

4πDi(X, t)dt
exp

[
−(X ′

i −Xi − ai(X, t)dt)2

4Di(X, t)dt

]
. (5.62)

To consider the transition probability P(ϵX ′, t+ dt|ϵX, t) in the time-reversal trajectory,
we derive the time-reversal Langevin equation from Eq. (5.45) as

ϵidXi =[−ϵia
rev
i (ϵX ′, t) + ϵia

irr
i (ϵX ′, t)]dt+ bi(ϵX

′, t) · dBi. (5.63)

Thus, by considering the variable transformation from ϵX ′ to ϵX in arevi , airri , and bi, we
can derive the transition probability P(ϵX ′, t+ dt|ϵX, t) as

PR(ϵX, t+ dt|ϵX ′, t) = W (ϵX, t+ dt|ϵX ′, t)

=
∏
i

√
1

4πDi(ϵX, t)dt
exp

[
−(ϵiXi − ϵiX

′
i − ϵi[−arevi (ϵX, t) + airri (ϵX, t)]dt)2

4Di(ϵX, t)dt

−dt

(
∂ϵia

irr
i (ϵX, t)

∂(ϵiXi)
− ∂ϵia

rev
i (ϵX, t)

∂(ϵiXi)

)
+ dt

∂Di(ϵX, t)

∂(ϵiXi)

]
. (5.64)
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Using Eqs. (5.53), (5.61), (5.62), and (5.64), we obtain

Σ̇tot ≡
d ⟨∆stot⟩

dt

=
∑
i

∫
dX

1

p(X, t)Di(X, t)

[
p(X, t)airri (X, t)−Di(X, t)

∂p(X, t)

∂Xi
− p(X, t)

∂Di(X, t)

∂Xi

]2
=
∑
i

∫
dX

jirri (X, t)2

p(X, t)Di(X, t)
, (5.65)

where we assume that the probability density and currents vanish at the boundaries. Thus,
the entropy production in the thermodynamic process from t = 0 to t = t0 is given by

Σtot ≡
∫ t0

0
dt Σ̇tot =

∑
i

∫ t0

0
dt

∫
dX

jirri (X, t)2

p(X, t)Di(X, t)
. (5.66)

5.4 Trade-off relation between efficiency and power in the
underdamped Brownian heat engine

5.4.1 Inequality of entropy production rate

We show the trade-off relation between the efficiency and power in the underdamped
Brownian heat engine based on Ref. [25]. First, we show that when we define R(t) as
the average of the physical quantity r(X, t), there is an inequality between the current of
R(t) and the entropy production rate of the total system. In the underdamped system
discussed in Sec. 5.2, we show that the heat current in Eq. (5.37) flowing from the heat
bath to the particle satisfies the inequality involving the entropy production rate. We
consider the Brownian heat engine and show the trade-off relation between the efficiency
and power by using the inequality.

When we define the average of the physical quantity r(X, t) as

R(t) ≡
∫

dXr(X, t)p(X, t), (5.67)

we can derive its time derivative as

Ṙ(t) ≡
∫

dX
∂r(X, t)

∂t
p(X, t) +

∫
dXr(X, t)

∂p(X, t)

∂t

=

〈
∂r(X, t)

∂t

〉
−
∑
i

∫
dXr(X, t)

∂ji(X, t)

∂Xi

=

〈
∂r(X, t)

∂t

〉
+
∑
i

∫
dX

∂r(X, t)

∂Xi
ji(X, t), (5.68)

using the Fokker-Planck equation in Eq. (5.52). The second term of the right-hand-side of
Eq. (5.68) is a change rate of R(t) expressed by the probability currents. Note that when
r(X, t) is the mechanical energy of the system, with a similar consideration to Sec. 5.2.3,
the first and second terms of the right-hand-side of Eq. (5.68) are the work done to the
system per unit time and the heat current, respectively. Thus, we can define current of
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physical quantity R(t) as

JR(t) ≡
∑
i

∫
dX

∂r(X, t)

∂Xi
ji(X, t). (5.69)

Since the probability current ji can be divided into the reversible part jrevi and irreversible
part jirri , the current in Eq. (5.69) is also divided into two parts as

JR ≡ J rev
R + J irr

R ,

J rev
R ≡

∑
i

∫
dX

∂R

∂Xi
jrevi , J irr

R ≡
∑
i

∫
dX

∂R

∂Xi
jirri . (5.70)

The entropy production rate of the total system is defined in Eq. (5.65). We show that
there is an inequality between the irreversible part of the current of physical quantity in
Eq. (5.70) and entropy production rate in Eq. (5.65). Using the Cauchy-Schwarz inequality
for Eq. (5.69), we can obtain

(∫
dX

∂R

∂Xi
jirri

)2

≤

[∫
dX

(
∂R

∂Xi

)2

Dip

]2 [∫
dX

(jirri )2

pDi

]
. (5.71)

Thus, we derive the inequality as

(J irr
R )2 =

(∑
i

∫
dX

∂R

∂Xi
jirri

)2

≤

(∑
i

∫
dX

(
∂R

∂Xi

)2

Dip

)2

Σ̇tot. (5.72)

We consider the underdamped Brownian motion described by Eq. (5.13) and consider
the heat engine. In the heat engine, we show the trade-off relation between the efficiency
and power by using Eq. (5.72). We first divide the probability currents Eqs. (5.32) and
(5.33) into the reversible parts, jrevx and jrevv , and the irreversible parts, jirrx and jirrv , as

jx(x, v, t) =jrevx (x, v, t) + jirrx (x, v, t),

jv(x, v, t) =jrevv (x, v, t) + jirrv (x, v, t),
(5.73)

where

jrevx (x, v, t) ≡vp(x, v, t), jrevv (x, v, t) ≡ − 1

m

∂V (x, t)

∂x
p(x, v, t),

jirrx (x, v, t) ≡0, jirrv (x, v, t) ≡
(
− γ

m
v − γT (t)

m2

∂

∂v

)
p(x, v, t). (5.74)

Then, we can rewrite the heat current in Eq. (5.37) as

Q̇ =

∫
dx

∫
dv

[
1

2
mv2 + V (x, t)

]
∂p

∂t
=

∫
dx

∫
dv

[
mvjv +

∂V (x, t)

∂x
jx

]
, (5.75)

where we used the Fokker-Planck equation in Eq. (5.52) and assumed that the probability
currents at the boundary vanish. Moreover, the last equality is derived from the integration
by parts. By using Eqs. (5.73), (5.74), and (5.75), the heat current can be rewritten as

Q̇(t) =

∫
dx

∫
dv mvjirrv (x, v, t). (5.76)
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Applying Eq. (5.65) to the underdamped system, we derive the entropy production rate
of the total system as

Σ̇(t) =

∫
dx

∫
dv

m2(jirrv (x, v, t))2

γT (t)p(x, v, t)
, (5.77)

using Eq. (5.74). Similar to Eq. (5.72), by using the Cauchy-Schwarz inequality, we derive
the inequality between the heat current in Eq. (5.76) and the entropy production rate in
Eq. (5.77) as

Q̇2 ≤
(∫

dx

∫
dv γTv2p

)(∫
dx

∫
dv

m2(jirrv )2

γTp

)
= γTσvΣ̇, (5.78)

or, equivalently,

|Q̇| ≤
√
γTσvΣ̇. (5.79)

5.4.2 Trade-off relation in the Brownian heat engine

We introduce the heat engine with the cycle time ∆tcyc by using the underdamped Brow-
nian particle discussed above. When the cycle operates between the heat baths with
temperature Th and Tc (< Th), the Carnot efficiency is given by Eq. (1.1). For conve-
nience, we introduce a function ϕ(t) to describe the time evolution of the temperature
as

1

T (t)
=

1

Tc
−
(

1

Tc
− 1

Th

)
ϕ(t) =

1

Tc
[1− ηCϕ(t)] . (5.80)

Since the internal energy change E(∆tcyc)− E(0) should vanish after the cycle operates,
the output work W and heat Q satisfy

W = Q, (5.81)

where we used Eq. (5.40). After one cycle, the entropy change in Eq. (5.44) of the system
also vanish. Then, the entropy production of the total system in Eq. (5.43) per cycle
satisfies

Σtot = −
∫ ∆tcyc

0
dt
Q̇(t)

T (t)
= − 1

Tc

∫ ∆tcyc

0
dtẆ +

ηC
Tc

∫ ∆tcyc

0
dtϕ(t)Q̇ (5.82)

When we consider the Carnot cycle, ϕ(t) = 1 is satisfied in the hot isothermal process
with Th, and ϕ(t) = 0 is satisfied in the cold isothermal process with Tc. Moreover, the
heat current does not flow in the adiabatic processes. Thus, we can interpret

Qh ≡
∫ ∆tcyc

0
dtϕ(t)Q̇ (5.83)

as the heat flowing from the hot heat bath to the system. Using Eq. (5.83), we can define
the efficiency as

η ≡ W

Qh
. (5.84)
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Then, from Eq. (5.82), we obtain

Σtot = −W

Tc
+

ηC
Tc

Qh =
Qh

Tc
(ηC − η). (5.85)

Because of Eq. (5.85), the efficiency η approaches the Carnot efficiency ηC when the
entropy production Σtot vanishes. Moreover, the power of this heat engine is given by

P ≡ W

∆tcyc
. (5.86)

By using Eq. (5.79) and Cauchy-Schwarz inequality, we can show the inequality between
Qh and Σtot as

(Qh)
2 =

(∫ ∆tcyc

0
dt ϕ(t) Q̇(t)

)2

≤
(∫ ∆tcyc

0
dt ϕ(t)

√
γT (t)σvΣ̇

)2

≤
(∫ ∆tcyc

0
dt ϕ2(t)γT (t)σv

)(∫ ∆tcyc

0
dt Σ̇

)
= ∆tcycT

2
c χΣtot,

(5.87)

where

χ ≡ 1

∆tcycT 2
c

∫ ∆tcyc

0
dt ϕ2(t)γT (t)σv =

γ

∆tcycTc

∫ ∆tcyc

0
dt

ϕ2(t)

1− ηCϕ(t)
σv(t). (5.88)

The work W and Qh should be positive in the heat engine. Then, using Eqs. (5.85),
(5.86), and (5.87), we can show the trade-off relation between the efficiency and power in
the underdamped Brownian heat engine as

P =
W

∆tcyc
=

W

Qh

1

Qh

Q2
h

∆tcyc
≤ η

1

Qh
T 2
c χΣ = χTcη(ηC − η). (5.89)

From Eq. (5.89), we find that the power vanishes when the efficiency approaches the Carnot
efficiency when χ is finite. However, if χ diverges and η approaches ηC simultaneously, we
may achieve compatibility of the Carnot efficiency and finite power.
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Chapter 6

Compatibility of the Carnot
efficiency and finite power in the
small temperature-difference
regime

6.1 Introduction

The Carnot cycle is one of the most important models of heat engines, which operates
between hot and cold heat baths with constant temperatures Th and Tc (< Th). Moreover,
the cycle is composed of two isothermal processes and two adiabatic processes. Carnot
demonstrated that the efficiency of any heat engine is limited by the upper bound called
the Carnot efficiency [2]:

ηC ≡ 1− Tc

Th
. (6.1)

It is known that we can reach the Carnot efficiency by the reversible cycle, where the
heat engine always remains at equilibrium and is typically operated quasistatically, which
implies that the engine spends an infinitely long time per cycle. Moreover, power, defined
as output work per unit time, is another important quantity for evaluating the perfor-
mance of heat engines. When we operate the heat engines quasistatically, power vanishes.
Thus, several studies have been devoted to investigating the feasibility of finite-power heat
engines with Carnot efficiency [3–5,5–16].

However, as shown in Chap. 4, the trade-off relation between power P and efficiency
η recently proved in general heat engines described by the Markov process [29–31]. The
trade-off relation is given by

P ≤ Aη(ηC − η), (6.2)

where A is a positive quantity depending on the heat engine details. Based on this relation,
the power should vanish as the efficiency approaches the Carnot efficiency. Similar trade-
off relations to Eq. (6.2) have been obtained in various heat engine models [25,32–34]. In
particular, Dechant and Sasa derived a specific expression of A for stochastic heat engines
described by the Langevin equation [25].

Recently, Holubec and Ryabov reported that the Carnot efficiency could be obtained
in a general class of finite-power Carnot cycles in the vanishing limit of the relaxation
times [23]. Although this result seems to contradict the trade-off relation in Eq. (6.2),
they pointed out the possibility that A in Eq. (6.2) diverges in the vanishing limit of
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the relaxation times, and the Carnot efficiency and finite power are compatible without
breaking the trade-off relation in Eq. (6.2). Thus, it may be interesting to study how the
efficiency and power depend on the relaxation times in more detail by using a specific
model.

The Brownian Carnot cycle with instantaneous adiabatic processes and a time-dependent
harmonic potential is a simple model, which is easy to analyze and is frequently used to
study the efficiency and power [17, 22, 23, 90]. However, it is pointed out that the instan-
taneous adiabatic process in the overdamped Brownian Carnot cycle inevitably causes a
heat leakage [17, 90, 91]. In the overdamped dynamics, the inertial effect of the Brownian
particle is disregarded, and the system is only described by its position. Nevertheless,
heat leakage is related to the kinetic energy of the particle, as seen below. When the over-
damped limit is considered in the underdamped dynamics, the averaged kinetic energy of
the Brownian particle is equal to kBT/2 in the isothermal process with temperature T ,
where kB is the Boltzmann constant. Then, after the instantaneous adiabatic processes
in the above cycle, the kinetic energy relaxes toward the temperature of the subsequent
isothermal process, and an additional heat proportional to the temperature difference
flows. This heat leakage decreases the efficiency of the cycle. Thus, we must consider the
underdamped dynamics to evaluate the effect of the heat leakage on the efficiency and
power of the Brownian Carnot cycle with the instantaneous adiabatic processes.

The rest of this chapter is organized as follows. In Sec. 6.2, we introduce the Brownian
particle trapped by the harmonic potential and describe it by the underdamped Langevin
equation. We also introduce the isothermal process and instantaneous adiabatic process
in this section. In Sec. 6.3, we construct the Carnot cycle using the Brownian particle.
In Sec. 6.4, we present the results of numerical simulations of the underdamped Brownian
Carnot cycle when we vary the temperature difference and the relaxation times of the
system. From these results, we demonstrate that the efficiency of our cycle approaches
the Carnot efficiency while maintaining finite power as the relaxation times vanish in the
small temperature-difference regime. In Sec. 6.5, we explain the results of the numerical
simulations in Sec. 6.4 based on the trade-off relation in Eq. (6.2). Section 6.6 presents
the summary and discussion.

6.2 Model

6.2.1 Underdamped system

We consider the underdamped Brownian particle in contact with the heat bath with the
time-dependent temperature T (t) and trapped by a harmonic potential

V (x, t) =
1

2
λ(t)x2, (6.3)

where the stiffness λ(t) depends on the time t. In this chapter, we only consider the case
that the temperature is independent of the time. We can describe the dynamics of the
Brownian particle by the underdamped Langevin equations given by

ẋ =v, (6.4)

mv̇ =− γv − λx+
√

2γkBTξ, (6.5)

where x, v, and m are the position, velocity, and mass of the particle, respectively. In
the following, we set the Boltzmann constant kB = 1 for simplicity. γ is the friction
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constant and is assumed to be independent of the temperature T (t). The Gaussian white
noise ξ(t) satisfies ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = δ(t− t′), where ⟨· · · ⟩ denotes the statistical
average. The dot denotes the time derivative or a quantity per unit time. We introduce
the distribution function p(x, v, t) to describe the state of the system at time t. The time
evolution of p(x, v, t) can be described by the Kramers equation [75] corresponding to
Eqs. (6.4) and (6.5),

∂

∂t
p(x, v, t) =− ∂

∂x
(vp(x, v, t)) +

∂

∂v

[
γ

m
v +

λ

m
x+

γT

m2

∂

∂v

]
p(x, v, t)

=− ∂

∂x
jx(x, v, t)−

∂

∂v
jv(x, v, t),

(6.6)

where jx(x, v, t) and jv(x, v, t) are the probability currents defined as follows:

jx(x, v, t) ≡vp(x, v, t), (6.7)

jv(x, v, t) ≡−
[
γ

m
v +

λ

m
x+

γT

m2

∂

∂v

]
p(x, v, t). (6.8)

The relaxation times of position τx and velocity τv of the Brownian particle are defined as

τx(t) ≡
γ

λ(t)
, (6.9)

τv ≡m

γ
, (6.10)

where τx(t) depends on time through the stiffness λ(t). Note that we fix γ and change τx
and τv by changingm and λ. Here, we define σx(t) ≡ ⟨x2⟩, σv(t) ≡ ⟨v2⟩, and σxv(t) ≡ ⟨xv⟩.
Then, assuming that the probability distribution p(x, v, t) is Gaussian, we obtain

p(x, v, t) =
1√
4π2Φ

exp

{
−σxv

2 + σvx
2 − 2σxvxv

2Φ

}
, (6.11)

where we defined the quantity Φ(t) as

Φ(t) ≡ σx(t)σv(t)− σxv(t)
2. (6.12)

From the Cauchy-Schwarz inequality, Φ should satisfy

Φ(t) ≥ 0. (6.13)

Then, from Eqs. (6.11) and (6.12), we can see that the state of the Brownian particle is
described by only the three variables σx(t), σv(t), and σxv(t). From Eq. (6.6), we can
derive the time evolution equations of σx, σv, and σxv [22] as

σ̇x = 2σxv, (6.14)

σ̇v =
2γT

m2
− 2γ

m
σv −

2λ

m
σxv, (6.15)

σ̇xv = σv −
λ

m
σx −

γ

m
σxv. (6.16)

We can use Eqs. (6.14)–(6.16) to describe the time evolution of the system instead of
Eq. (6.6). Under the Gaussian distribution in Eq. (6.11), the internal energy E(t) and
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entropy S(t) of the particle are given by

E(t) ≡
∫ ∞

−∞
dx

∫ ∞

−∞
dv p(x, v, t)

[
1

2
mv2 +

1

2
λ(t)x2

]
=

1

2
mσv(t) +

1

2
λ(t)σx(t), (6.17)

S(t) ≡−
∫ ∞

−∞
dx

∫ ∞

−∞
dv p(x, v, t) ln{p(x, v, t)} =

1

2
lnΦ(t) + ln(2π) + 1. (6.18)

6.2.2 Isothermal process

We define the heat and work during a time interval ti < t < tf in an isothermal process. In
this process, the Brownian particle interacts with the heat bath at a constant temperature
T . We assume that the stiffness λ(t) changes smoothly in this process. The heat current Q̇
flowing from the heat bath to the Brownian particle is defined as the statistical average of
the work performed by the force from the heat bath to the Brownian particle (see Chap. 4
of Ref. [28]),

Q̇(t) ≡
〈(

−γv +
√
2γTξ(t)

)
◦ v
〉
, (6.19)

where ◦ represents the Stratonovich-type product. Using Eqs. (6.4) and (6.5), we derive
the heat current Q̇(t) as follows:

Q̇(t) =
1

2
λ(t)σ̇x(t) +

1

2
mσ̇v(t). (6.20)

Thus, we obtain the heat Q flowing in this interval as

Q =

∫ tf

ti

dt

(
1

2
λσ̇x

)
+

∫ tf

ti

dt

(
1

2
mσ̇v

)
= Qo +∆K, (6.21)

where

Qo ≡
∫ tf

ti

dt

(
1

2
λσ̇x

)
, (6.22)

∆K ≡1

2
mσv(tf )−

1

2
mσv(ti). (6.23)

Here, Qo represents the heat related to the potential change, and ∆K is the difference
between the initial and final (averaged) kinetic energies of the Brownian particle. In the
overdamped system [17], Qo is regarded as the heat instead of Q in Eq. (6.21). However,
in the underdamped system under consideration, the heat also includes the kinetic part
∆K.

The output work during this interval is defined as follows:

W ≡ −
∫ tf

ti

dt

∫ ∞

−∞
dx

∫ ∞

−∞
dv p(x, v, t)

∂V (x, t)

∂t
= −1

2

∫ tf

ti

dt λ̇σx

= Q−∆E,

(6.24)

where we used Eqs. (6.17) and (6.21) for the derivation from the middle to the last equality,
and defined ∆E ≡ E(tf ) − E(ti). The last equality in Eq. (6.24) represents the first law
of thermodynamics.
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Figure 6.1: Schematic illustration of the Brownian Carnot cycle. In each box, the bottom
horizontal line denotes the position coordinate x, and the boundary curve of the green
filled area denotes the probability distribution of x. The red solid line corresponds to the
harmonic potential. This cycle is composed of (i) hot isothermal process, (ii) instantaneous
adiabatic process, (iii) cold isothermal process, and (iv) instantaneous adiabatic process.

6.2.3 Instantaneous adiabatic process

As an adiabatic process connecting the end of the isothermal process with temperature Ti

to the beginning of the next isothermal process with temperature Tf , we use instantaneous
changes in the potential and heat bath at t = t0, which we regard as the final time of the
isothermal process with temperature Ti [17]. In this process, the stiffness λ(t) jumps from
λi to λf , and we instantaneously switch the temperature of the heat bath from Ti to Tf ,
maintaining the probability distribution unchanged. Because this process is instantaneous,
no heat exchange occurs, and the output work W ad

i→f is equal to the negative value of the

internal energy change ∆Ead
i→f due to the first law of thermodynamics as

W ad
i→f = −∆Ead

i→f = −1

2
(λf − λi)σx(t0). (6.25)

6.3 Carnot cycle

We construct a Carnot cycle operating between the two heat baths with the temperatures
Th and Tc (see Fig. 6.1) by combining the isothermal processes and the instantaneous
adiabatic processes introduced in Sec. 6.2.

First, we define a protocol of a finite-time Carnot cycle with stiffness λ(t) as follows:
The hot isothermal process with temperature Th lasts for 0 < t < ∆th, and the stiffness
λ varies from λA to λB [Fig. 6.1(i)]. In the following instantaneous adiabatic process,
we switch the stiffness from λB to λC and the temperature of the heat bath from Th to
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Tc at t = ∆th, [Fig. 6.1(ii)]. The cold isothermal process with temperature Tc lasts for
∆th < t < ∆th +∆tc, and the stiffness λ varies from λC to λD [Fig. 6.1(iii)]. In the last
instantaneous adiabatic process, we switch the stiffness from λD to λA and the temperature
of the heat bath from Tc to Th at t = ∆tcyc, Fig. 6.1(iv), where ∆tcyc ≡ ∆th +∆tc is the
cycle time, which is assumed nonzero. The final state of the Brownian particle in the cold
(hot) isothermal process should agree with the initial state in the hot (cold) isothermal
process.

We assume that the stiffness λ(t) can be expressed as follows:

λ(t) = Λ(s)

(
s ≡ t

∆tcyc

)
, (6.26)

using the scaling function Λ(s) (0 ≤ s ≤ 1). Under this assumption, we can change the
time scale of the protocol maintaining the protocol form unchanged, by selecting another
value of ∆tcyc. We also assume that ∆th/∆tcyc and ∆tc/∆tcyc are finitely fixed for any
value of ∆tcyc. Furthermore, we assume that λ(t2)/λ(t1) is finite at any time t2 and t1,
where they are in the same isothermal process. We use this assumption to show that the
heat current after the relaxation at the beginning of the isothermal processes is noninfinite
in the Appendix C. Note that the word “finite” may situationally be used considering two
meanings, “nonzero” (e.g., “finite power”) or “noninfinite” (e.g., “finite time”). In this
chapter, however, we refer to “nonzero and noninfinite” by “finite” except for the two
examples above.

To consider the quasistatic Carnot cycle corresponding to the above finite-time Carnot
cycle, we must consider the limit of ∆tcyc → ∞ and use the stiffness λqs(t) related to the
finite-time stiffness through Eq. (6.26). Here, the index “qs” of Xqs denotes the physical
quantity X evaluated in the quasistatic limit.

6.3.1 Quasistatic Carnot cycle: Quasistatic efficiency

We formulate the efficiency of the quasistatic Carnot cycle. To this end, we need to
quantify the heat leakage caused by the adiabatic process. As the adiabatic processes
are instantaneous, the initial distributions of the quasistatic isothermal processes do not
agree with the equilibrium distributions at the temperature of the heat bath. Thus, a
relaxation at the beginning of the isothermal processes exists, and in general, the relaxation
is irreversible. After the relaxation in the quasistatic isothermal process with temperature
T , the time derivative of the variables satisfies

σ̇qs
x (t) = 0, σ̇qs

v (t) = 0, σ̇qs
xv(t) = 0. (6.27)

Subsequently, from Eqs. (6.14)–(6.16), we obtain those values as follows:

σqs
x (t) =

T

λqs(t)
, σqs

v (t) =
T

m
, σqs

xv(t) = 0, (6.28)

and the distribution in Eq. (6.11) in the quasistatic limit agrees with the Boltzmann
distribution

pqs(x, v, t) =

√
mλqs(t)

4π2T 2
exp

{
−λqs(t)x2 +mv2

2T

}
. (6.29)

After the relaxation in each quasistatic isothermal process, the system is in equilibrium
with the heat bath and satisfies Eq. (6.28). Using Eqs. (6.18) and (6.28), we derive the
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quasistatic entropy as follows:

Sqs(t) =
1

2
lnσqs

x (t) +
1

2
lnσqs

v (t) + ln(2π) + 1

=
1

2
ln

(
T

λ(t)

)
+

1

2
ln

(
T

m

)
+ ln(2π) + 1. (6.30)

As mentioned above, the quasistatic isothermal processes are composed of the relax-
ation part and the part after the relaxation. Because the instantaneous adiabatic process
[Fig. 6.1(iv)] just before the quasistatic hot isothermal process [Fig. 6.1(i)] does not change
the probability distribution, the initial distribution agrees with the final distribution in
the quasistatic cold isothermal process. Thus, the variables σqs

x , σqs
v , and σqs

xv begin the
quasistatic hot isothermal process with the following values:

σqs
x =

Tc

λqs
D

, σqs
v =

Tc

m
, σqs

xv = 0, (6.31)

where we used Eq. (6.28). In the relaxation at the beginning of this process, the stiffness
almost remains λqs

A , and the variables relax to

σqs
x =

Th

λqs
A

, σqs
v =

Th

m
, σqs

xv = 0, (6.32)

owing to Eq. (6.28).
From Eqs. (6.31) and (6.32), the kinetic energy is mσv/2 = Tc/2 in the initial state

and changes to Th/2 during the relaxation. The kinetic energy remains Th/2 after the
relaxation because the system is in equilibrium with the heat bath at temperature Th

during the quasistatic hot isothermal process. Thus, a change in the kinetic energy in
Eq. (6.23) in the quasistatic hot isothermal process is given by

∆Kqs
h =

∆T

2
, (6.33)

where ∆T ≡ Th−Tc. We can also derive the heat related to the potential change during the
relaxation Qrel,o,qs

h as follows. As the stiffness remains λqs
A during the relaxation, Qrel,o,qs

h

is derived as

Qrel,o,qs
h =

∫ Th/λ
qs
A

Tc/λ
qs
D

1

2
λqs
A dσx =

1

2
λqs
A

(
Th

λqs
A

− Tc

λqs
D

)
, (6.34)

using Eq. (6.22). The entropy change of the Brownian particle in this relaxation is given
by

∆Srel,qs
h ≡ 1

2
ln

(
Th

λqs
A

λqs
D

Tc

)
+

1

2
ln

(
Th

Tc

)
, (6.35)

where we used Eqs. (6.30)–(6.32).
After the relaxation in the quasistatic hot isothermal process, the probability distri-

bution maintains the Boltzmann distribution in Eq. (6.29) with T = Th, and σv does not
change. Therefore, the final state of the process should satisfy

σqs
x =

Th

λqs
B

σqs
v =

Th

m
, σqs

xv = 0, (6.36)
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where we used Eq. (6.28). Because the second term on the right-hand side of Eq. (6.30)
does not change in the quasistatic hot isothermal process, we derive the entropy change
∆Siso,qs

h after the relaxation in this process as follows:

∆Siso,qs
h ≡ 1

2
ln

(
λqs
A

λqs
B

)
. (6.37)

Note that the quantities with the index “iso” do not include the contribution from the
relaxation. Thus, the heat supplied to the Brownian particle after the relaxation in this
process is given by

Th∆Siso,qs
h =

Th

2
ln

(
λqs
A

λqs
B

)
. (6.38)

The heat related to the potential change in the quasistatic hot isothermal process is

Qo,qs
h = Th∆Siso,qs

h +Qrel,o,qs
h . (6.39)

Therefore, by using Eq. (6.33), the heat flowing in the quasistatic hot isothermal process
is given by

Qqs
h =Qo,qs

h +∆Kqs
h = Th∆Siso,qs

h +Qrel,o,qs
h +

1

2
∆T

=Th∆Siso,qs
h +Qrel,qs

h , (6.40)

whereQrel,qs
h denotes the heat flowing during the relaxation at the beginning of this process,

as

Qrel,qs
h ≡ Qrel,o,qs

h +
1

2
∆T. (6.41)

From Eq. (6.24), the work in this process is given by

W qs
h = Qqs

h −∆Eqs
h , (6.42)

where ∆Eqs
h represents the internal energy change in this process.

After the instantaneous adiabatic process [Fig. 6.1(ii)], the quasistatic cold isothermal
process [Fig. 6.1(iii)] begins with the variables in Eq. (6.36), and the variables relax to

σqs
x =

Tc

λqs
C

σqs
v =

Tc

m
, σqs

xv = 0, (6.43)

where we used Eq. (6.28). Similar to the quasistatic hot isothermal process, the change
in the kinetic energy in Eq. (6.23) satisfies

∆Kqs
c = −∆T

2
. (6.44)

We also define the heat related to the potential change during the relaxation in the qua-
sistatic cold isothermal process as

Qrel,o,qs
c ≡ 1

2
λqs
C

(
Tc

λqs
C

− Th

λqs
B

)
. (6.45)

Then, the flowing heat and the entropy change of the particle during this relaxation are
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given by

Qrel,qs
c ≡1

2
λqs
C

(
Tc

λqs
C

− Th

λqs
B

)
− 1

2
∆T, (6.46)

∆Srel,qs
c ≡1

2
ln

(
Tc

λqs
C

λqs
B

Th

)
+

1

2
ln

(
Tc

Th

)
, (6.47)

similarly to Eqs. (6.35) and (6.41), where we used Eqs. (6.22), (6.30), (6.36), and (6.43)–
(6.45).

After the relaxation, the variables change to the state in Eq. (6.31). Then, the entropy
change after the relaxation in the quasistatic cold isothermal process is given by

∆Siso,qs
c ≡ 1

2
ln

(
λqs
C

λqs
D

)
. (6.48)

The heat related to the potential change in the quasistatic cold isothermal process is

Qo,qs
c = Tc∆Siso,qs

c +Qrel,o,qs
h , (6.49)

where we used Eqs. (6.45) and (6.48). Thus, the heat flowing in the quasistatic cold
isothermal process is given by

Qqs
c =Qo,qs

c +∆Kqs
c

=Tc∆Siso,qs
c +Qrel,qs

c , (6.50)

where we used Eqs. (6.44)–(6.49). From Eq. (6.24), the work in this process is given by

W qs
c = Qqs

c −∆Eqs
c , (6.51)

where ∆Eqs
c is the internal energy change in this process. After the quasistatic cold

isothermal process [Fig. 6.1(iii)], the system proceeds to the instantaneous adiabatic pro-
cess [Fig. 6.1(iv)] and returns to the initial state of the quasistatic hot isothermal process.

Subsequently, we consider the efficiency of the quasistatic Carnot cycle. As the cycle
closes, the entropy change in the particle per cycle vanishes as

∆Srel,qs
h +∆Siso,qs

h +∆Srel,qs
c +∆Siso,qs

c = 0, (6.52)

where we used Eqs. (6.35), (6.37), (6.47), and (6.48). Because the internal energy change
in the particle per cycle vanishes, we derive the work per cycle from the first law of
thermodynamics as

W qs =Qqs
h +Qqs

c , (6.53)

using Eqs. (6.42) and (6.51). In our quasistatic cycle, the entropy production per cycle
Σqs, by which we imply the total entropy production per cycle including the particle and
heat baths, is obtained as follows:

Σqs ≡ −
Qqs

h

Th
− Qqs

c

Tc
. (6.54)

Because an entropy change in the particle per cycle vanishes, as seen from Eq. (6.52),
the entropy production per cycle Σqs is expressed only by the entropy change of the heat
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baths. Using Eqs. (6.40), (6.53), and (6.54), we can derive the quasistatic efficiency as

ηqs ≡ W qs

Qqs
h

= ηC − TcΣ
qs

Qqs
h

. (6.55)

From Eq. (6.55), Σqs should vanish to obtain ηC. Using Eqs. (6.40), (6.50), and (6.52), we
can rewrite Σqs in Eq. (6.54) as

Σqs =−
Th∆Siso,qs

h +Qrel,qs
h

Th
− Tc∆Siso,qs

c +Qrel,qs
c

Tc

=∆Srel,qs
h −

Qrel,qs
h

Th
+∆Srel,qs

c − Qrel,qs
c

Tc
(6.56)

=
1

2

(
− ln

(
Tcλ

qs
A

Thλ
qs
D

)
+

Tcλ
qs
A

Thλ
qs
D

− 1

)
+

1

2

(
− ln

(
Thλ

qs
C

Tcλ
qs
B

)
+

Thλ
qs
C

Tcλ
qs
B

− 1

)
+

(∆T )2

2ThTc
,

where we used Eqs. (6.35), (6.41), (6.46), and (6.47) at the last equality. The first and

second terms on the right-hand side of Eq. (6.56), derived from Qrel,o,qs
h,c in Eqs. (6.34)

and (6.45) and the first term of ∆Srel,qs
h,c in Eqs. (6.35) and (6.47), denote the entropy

production related to the potential energy in the relaxation in the hot and cold isothermal
processes, respectively. The last term of Eq. (6.56) comes from the heat related to the
kinetic energy. To achieve the Carnot efficiency, the entropy production should vanish, as
shown in Eq. (6.55). In the overdamped Brownian Carnot cycle with the instantaneous
adiabatic process in previous studies [16, 17, 23], the Carnot efficiency is obtained in the
quasistatic limit. In the overdamped cycle, (∆T )2/(2ThTc) in Eq. (6.56) does not exist
because σv is not considered. Thus, the entropy production in the overdamped cycle is
given by

Σo,qs ≡ f

(
Tcλ

qs
A

Thλ
qs
D

)
+ f

(
Thλ

qs
C

Tcλ
qs
B

)
, (6.57)

where f is defined as
f(u) ≡ − lnu+ u− 1, (6.58)

where f(u) is a downwardly convex function with the minimum value of f(1) = 0. Thus,
for the entropy production Σo,qs to vanish, the following condition is derived:

Th

λqs
A

=
Tc

λqs
D

,
Th

λqs
B

=
Tc

λqs
C

. (6.59)

This condition was adopted in the previous studies on the overdamped Brownian Carnot
cycle [16, 17, 23] in the quasistatic limit. We impose this condition on our underdamped
cycle to reduce entropy production. Then, we obtain

∆Srel,qs
h +∆Srel,qs

c = 0, (6.60)

using Eqs. (6.35) and (6.47). Thus, from Eq. (6.52), we derive

∆Siso,qs
h = −∆Siso,qs

c ≡ ∆Sqs. (6.61)

In addition, because Qrel,o,qs
h in Eq. (6.34) and Qrel,o,qs

c in (6.45) vanish, we obtain
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Qo,qs
h = Th∆Sqs, Qo,qs

c = −Tc∆Sqs, (6.62)

Qrel,qs
h = −Qrel,qs

c =
1

2
∆T, (6.63)

using Eqs. (6.39), (6.41), (6.46), and (6.49). The heat in Eqs. (6.40) and (6.50) can also
be rewritten as follows:

Qqs
h = Th∆Sqs +

1

2
∆T, Qqs

c = −Tc∆Sqs − 1

2
∆T. (6.64)

Using Eqs. (6.53) and (6.64), We can rewrite the work in Eq. (6.53) and the efficiency in
Eq. (6.55) as follows:

W qs =∆T∆Sqs, (6.65)

ηqs ≡W qs

Qqs
h

=
∆T∆Sqs

Th∆Sqs + 1
2∆T

< ηC. (6.66)

Despite considering the quasistatic limit of our Carnot cycle, however, the quasistatic
efficiency ηqs is smaller than the Carnot efficiency because of the heat leakage ∆T/2 in
the denominator in Eq. (6.66), which is derived from a kinetic energy change in the particle
due to the relaxation.

Here, we consider the small temperature-difference regime ∆T → 0 and assume that
∆Sqs = O(1) > 0. Then, we obtain ∆T∆Sqs = O(∆T ). As the contribution of the heat
leakage to ηqs in Eq. (6.66) can be of a higher order of ∆T in the small temperature-
difference regime, ηqs is approximated by the Carnot efficiency as

ηqs =
∆T∆Sqs

Th∆Sqs
+O[(∆T )2] = ηC +O[(∆T )2]. (6.67)

6.3.2 Finite-time Carnot cycle: Efficiency and power

In the following, we formulate the efficiency and power of the finite-time Carnot cycle. We
assume that Eq. (6.59) is satisfied in the quasistatic limit of this cycle. When we use the
protocol in Eq. (6.26), we obtain

λqs
i = λi (i = A,B,C,D), (6.68)

and we can remove the index “qs” in Eq. (6.59). In general, finite-time processes are
irreversible, and the work and heat of the finite-time isothermal processes are different
from those of quasistatic processes. Thus, we express the work and heat in our finite-time
cycle by using those in the quasistatic limit and the differences between the finite-time
and quasistatic quantities. Below, we mainly consider the finite-time Carnot cycle. Thus,
when we deal with a finite-time isothermal process or a finite-time cycle, we simply refer
to them as an isothermal process or a cycle, respectively. Using Eq. (6.68), we can rewrite
the entropy changes in Eqs. (6.37) and (6.48) in terms of the stiffness λ(t) as

∆Siso,qs
h =

1

2
ln

(
λqs
A

λqs
B

)
=

1

2
ln

(
λA

λB

)
= ∆Sqs, (6.69)

∆Siso,qs
c =

1

2
ln

(
λqs
C

λqs
D

)
=

1

2
ln

(
λC

λD

)
= −∆Sqs. (6.70)
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From Eq. (6.21), we derive the heat flowing from the hot heat bath to the Brownian
particle in the hot isothermal process as

Qh = Qo
h +∆Kh, (6.71)

where

Qo
h =

1

2

∫ ∆th

0
dt λσ̇x,

∆Kh =
1

2
mσv(∆th)−

1

2
mσv(0).

(6.72)

Note that Qo
h and ∆Kh become Qo,qs

h = Th∆Sqs in Eq. (6.62) and ∆Kqs
h = ∆T/2 in

Eq. (6.33), respectively, under the condition of Eq. (6.59) in the quasistatic limit, as
discussed in Sec. 6.3.1. Moreover, we find that Qo

h and ∆Kh differ from Th∆Sqs and
∆T/2 because the process is not quasistatic. Here, we define the irreversible work W irr

h to
measure the difference between Qo

h and Th∆Sqs as

W irr
h ≡Th∆Sqs −Qo

h. (6.73)

Then, the heat in the hot isothermal process in Eq. (6.71) can be rewritten as follows:

Qh =Th∆Sqs −W irr
h +∆Kh, (6.74)

using Eqs. (6.71) and (6.73). Moreover, using Eqs. (6.24) and (6.74), we obtain the output
work in the hot isothermal process as

Wh = Th∆Sqs −W irr
h +∆Kh −∆Eh, (6.75)

where ∆Eh represents the internal energy change in this process. The reason that we call
W irr

h the irreversible work will be clarified later when we consider the output work per
cycle.

The heat in Eq. (6.21) in the cold isothermal process is given by

Qc = Qo
c +∆Kc, (6.76)

where

Qo
c =

1

2

∫ ∆tcyc

∆th

dt λσ̇x, (6.77)

∆Kc =
1

2
mσv(∆tcyc)−

1

2
mσv(∆th) = −∆Kh. (6.78)

Similar to Qo
h and ∆Kh, Qo

c becomes −Tc∆Sqs and ∆Kc becomes −∆T/2 under the
condition of Eq. (6.59) in the quasistatic limit. In the same way as the hot isothermal
process, we can define the irreversible work W irr

c in this process and rewrite the heat in
Eq. (6.76) as follows:

W irr
c ≡− Tc∆Sqs −Qo

c , (6.79)

Qc =− Tc∆Sqs −W irr
c +∆Kc. (6.80)
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Using Eqs. (6.24) and (6.80), we derive the output work in the cold isothermal process as

Wc = −Tc∆Sqs −W irr
c +∆Kc −∆Ec, (6.81)

where ∆Ec represents the internal energy change in this process.
As the cycle closes, the internal energy change per cycle in the particle vanishes. From

the first law of thermodynamics, we derive the output work per cycle as

W =Qh +Qc = ∆T∆Sqs −W irr
h −W irr

c , (6.82)

using Eqs. (6.75), (6.78), and (6.81). As mentioned above, the irreversible works arise
from the irreversibility of the isothermal processes. If the irreversible works in Eq. (6.82)
vanish, the work will be the same as W qs in Eq. (6.65). Thus, we call W irr

h,c the irreversible
works as the difference between W in Eq. (6.82) and W qs. Using Eqs. (6.74) and (6.82),
we obtain the efficiency η and power P of the Carnot cycle as follows:

η ≡ W

Qh
=

∆T∆Sqs −W irr
h −W irr

c

Th∆Sqs −W irr
h +∆Kh

, (6.83)

P ≡ W

∆tcyc
=

∆T∆Sqs −W irr
h −W irr

c

∆tcyc
. (6.84)

6.3.3 Small relaxation-times regime

We consider the Carnot cycle in the regime where the relaxation times τv and τx(t) (0 ≤
t ≤ ∆tcyc) are sufficiently small, which is of our main interest. From Eq. (C.15) in the
Appendix C, the kinetic energy in this regime is approximated by

1

2
mσv(0) =

1

2
mσv(∆tcyc) ≃

1

2
Tc,

1

2
mσv(∆th) ≃

1

2
Th. (6.85)

Thus, the kinetic energy change in the isothermal processes is given by

∆Kh = −∆Kc ≃
∆T

2
, (6.86)

similarly to the quasistatic case, where we used Eq. (6.78). From Eqs. (6.74), (6.80), and
(6.86), the heat in the isothermal processes can be evaluated as follows:

Qh ≃ Th∆Sqs −W irr
h +

∆T

2
, (6.87)

Qc ≃ −Tc∆Sqs −W irr
c − ∆T

2
. (6.88)

From Eq. (6.83), the efficiency in the small relaxation-times regime is given by

η ≃
∆T∆Sqs −W irr

h −W irr
c

Th∆Sqs −W irr
h + ∆T

2

. (6.89)

Holubec and Ryabov pointed out the possibility of obtaining Carnot efficiency in a gen-
eral class of finite-power Carnot cycle in the vanishing limit of the relaxation times [16,23].
In our underdamped Brownian Carnot cycle, we have to consider the heat leakage [∆T/2
in the denominator in Eq. (6.89)] because the kinetic energy cannot be neglected. Thus,
it may be impossible to achieve the Carnot efficiency in our finite-power Carnot cycle.
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Nevertheless, if W irr
h and W irr

c vanish in the vanishing limit of the relaxation times, the
efficiency will reach the quasistatic efficiency in Eq. (6.66), and we can achieve the Carnot
efficiency as seen from Eq. (6.67) in the small temperature-difference regime. Subsequently,
we study how the efficiency and power depend on the relaxation times and temperature
difference in Sec. 6.4.

6.4 Numerical simulations

In this section, we show the results of efficiency and power obtained through the numerical
simulations of the proposed Brownian Carnot cycle as varying the relaxation times and
temperature difference. In these simulations, we solved Eqs. (6.14)–(6.16) numerically by
using the fourth-order Runge-Kutta method. The specific protocol λ(t) for our simulations
is given by

λ(t) =


Th

σa(1 + b1
t

∆th
)2

(0 ≤ t ≤ ∆th)

Tc

σb(1 + b2
t−∆th
∆tc

)2
(∆th ≤ t ≤ ∆tcyc),

(6.90)

where σa and σb (> σa) are positive constants, and we defined b1 ≡
√
σb/σa − 1 and

b2 ≡
√

σa/σb − 1. This protocol is inspired by the optimal protocol in the overdamped
Brownian Carnot cycle [16, 17] and satisfies Eq. (6.59) assigned to the protocol. This
protocol also satisfies the scaling condition in Eq. (6.26). For all the simulations, we fixed
σb/σa = 2.0, Tc = 1.0, ∆th = ∆tc = 1.0, and γ = 1.0 and varied the temperature difference
∆T , or equivalently, the temperature Th. We calculated the heat in Eqs. (6.71) and (6.76)
and the work W = Qh+Qc in Eq. (6.82) from the solution of Eqs. (6.14)–(6.16). Using the
heat and work, we also numerically calculated the efficiency η = W/Qh using Eq. (6.83)
and power P = W/∆tcyc using Eq. (6.84). Before starting to measure the thermodynamic
quantities, we waited until the system settled down to a steady cycle. Moreover, when
we take the limit m → 0, the relaxation time of velocity τv = m/γ vanishes. By a simple
calculation from Eqs. (6.9) and (6.90), we find that τx satisfies

γσa
Th

≤ τx(t) ≤
γσb
Tc

. (6.91)

Thus, the smaller σa and σb are, the smaller τx is. When we take the limit σa, σb → 0
while maintaining σb/σa finite, τx(t) vanishes and λ(t) = γ/τx(t) from Eq. (6.9) diverges.
Because τx(0) ∝ σa and τv ∝ m are satisfied, we varied the massm and the parameter σa to
vary the relaxation times. Note that in the numerical simulations, we selected a time step
smaller than the relaxation times. Specifically, we set the time step as min(m,σa)× 10−2

because of τx(0) ∝ σa and τv ∝ m.
To evaluate the efficiency in Eq. (6.83) obtained numerically, we compared it with the

quasistatic efficiency ηqs in Eq. (6.66). Because ηC in Eq. (6.1) is proportional to ∆T , the
ratio of ηqs in Eq. (6.67) to ηC in the small temperature-difference regime satisfies

ηqs

ηC
= 1−O(∆T ). (6.92)

Similarly, we evaluate the power in Eq. (6.84) by using a criterion P ∗ defined as follows:

P ∗ ≡ W qs

∆tcyc
=

∆T∆Sqs

∆tcyc
, (6.93)
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Figure 6.2: The ratio of the efficiency in Eq. (6.83) to the Carnot efficiency in our cycle with
the protocol in Eq. (6.90) when τx varies at (a) τv = 10−3 and (b) τv = 10−6. Because
the parameter σa is proportional to τx(0) in the protocol in Eq. (6.90), we vary σa to
make τx small. Similarly, we vary the mass m because it is proportional to τv. In these
simulations, we set σa = 10−2 (purple plus), σa = 10−4 (green square), and σa = 10−6

(orange triangle). The red solid line corresponds to the ratio of ηqs in Eq. (6.66) to the
Carnot efficiency. The efficiency appears to approach the Carnot efficiency in the vanishing
limit of σa (or τx), m (or τv), and ∆T .

where W qs is the quasistatic work in Eq. (6.53). Here, we regard the power as finite when
the power in Eq. (6.84) is the same order as P ∗.

Figure 6.2 shows the ratio of the efficiency of the proposed cycle with the protocol in
Eq. (6.90) to the Carnot efficiency. We can see that the efficiency approaches ηqs with
τx, τv → 0. Considering Eqs. (6.66) and (6.89), we can expect that the irreversible works
disappear. Thus, the efficiency can be regarded as the Carnot efficiency in the small
relaxation-times and small temperature-difference regime.

Figure 6.3 shows the ratio of the power to P ∗ in Eq. (6.93), corresponding to Fig. 6.2.
At any ∆T , we can see that the power approaches P ∗ as τx, τv → 0 . As the power in
Eq. (6.84) is defined using the work in Eq. (6.82), the ratio of P to P ∗ is the same as
the ratio of W to W qs in Eq. (6.53). When the power P approaches P ∗, the work W
approaches W qs. This implies that the irreversible works vanish. Because the power is of
the same order as P ∗ from Fig. 6.3, we can consider the power to be finite. Therefore,
Figs. 6.2 and 6.3 imply that the Carnot efficiency and finite power are compatible in the
vanishing limit of the relaxation times in the small temperature-difference regime.

6.5 Theoretical analysis

This section analytically shows that it is possible to achieve the Carnot efficiency in our
cycle in the vanishing limit of the relaxation times in the small temperature-difference
regime without breaking the trade-off relation in Eq. (6.2), as implied in the numerical
results in Sec. 6.4.

In general, the efficiency decreases when the entropy production increases, as shown
in Eq. (6.97). As the adiabatic processes have no entropy production because no heat
exchange is present, we have only to consider the entropy production in the isothermal
processes. In the small relaxation-times regime, the efficiency in Eq. (6.83) is approxi-
mated by that in Eq. (6.89). If W irr

h,c → 0 is satisfied in the vanishing limit of the relax-
ation times, the efficiency in Eq. (6.89) approaches the quasistatic efficiency in Eq. (6.66).
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Figure 6.3: The ratio of the power in Eq. (6.84) to P ∗ in Eq. (6.93) in the proposed cycle
corresponding to Figs. 6.2(a) and 6.2(b). The power appears to approach P ∗ in Eq. (6.93)
in the vanishing limit of σa (or τx), m (or τv), and ∆T .

As seen in Eq. (6.67), it is expected that the contribution of the heat leakage to the
efficiency can be neglected in the small temperature-difference regime. Thus, the effi-
ciency in Eq. (6.83) approaches the Carnot efficiency in the small relaxation-times and
small temperature-difference regime, and the power in Eq. (6.84) also approaches P ∗ in
Eq. (6.93) simultaneously.

The numerical results imply that the irreversible works vanish in the vanishing limit of
the relaxation times τx and τv. To derive a similar conclusion analytically, we first show
that the irreversible works relate to the entropy production given by

Σ ≡ −Qh

Th
− Qc

Tc
. (6.94)

Similarly to Σqs in Eq. (6.54), the entropy production Σ is expressed only by an entropy
change in the heat baths. In the small relaxation-times regime, we can express Σ in
Eq. (6.94) as follows:

Σ ≃
−∆T

2 − Th∆Sqs +W irr
h

Th
+

∆T
2 + Tc∆Sqs +W irr

c

Tc
=

W irr
h

Th
+

W irr
c

Tc
+

(∆T )2

2ThTc
, (6.95)

using Eqs. (6.87) and (6.88). The last term on the right-hand side of Eq. (6.95) comes
from the heat leakage due to the instantaneous adiabatic processes. From Eq. (6.95), the
entropy production can be regarded as zero in the small temperature-difference regime
when the irreversible works vanish. In general, the entropy production in Eq. (6.94) can
also be rewritten as

Σ =
Qh

Tc
(ηC − η), (6.96)

where we used Eqs. (6.1) and (6.83). This equation shows that the efficiency approaches
the Carnot efficiency when the entropy production vanishes. Thus, by using Eqs. (6.95)
and (6.96), we obtain the efficiency as

η = ηC − TcΣ

Qh
≃ ηC − Tc

Qh

(
W irr

h

Th
+

W irr
c

Tc

)
+O[(∆T )2], (6.97)
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in the small relaxation-times regime. Here, the contribution of the heat leakage to the
efficiency is O[(∆T )2], and it is negligible in the small temperature-difference regime.

We consider the trade-off relation in Eq. (6.2) to discuss the compatibility of the Carnot
efficiency and finite power in our Brownian Carnot cycle. Using Eq. (6.96), we can rewrite
Eq. (6.2) as

P ≤ ηTc

Qh
AΣ (6.98)

in terms of the entropy production Σ. When the quantity AΣ is nonzero in the vanishing
limit of the entropy production Σ, implying that A should diverge, the finite power may
be allowed. In fact, when the entropy production Σ vanishes in the small temperature-
difference regime, the irreversible works should vanish because of Eq. (6.95). Then, the
power in Eq. (6.84) approaches P ∗ in Eq. (6.93), which implies that the power is regarded
as finite. Thus, we find the expression AΣ in our cycle below.

In our Carnot cycle, by using a function ϕ(t), the time evolution of the temperature
is described as

1

T (t)
=

1

Tc
−
(

1

Tc
− 1

Th

)
ϕ(t)

=
1

Tc
[1− ηCϕ(t)] .

(6.99)

ϕ(t) ≡

{
1 (0 < t < ∆th)

0 (∆th < t < ∆tcyc).
(6.100)

As shown in Sec. 5.4.2, the entropy production rate of the total system is given by the
irreversible probability current. Applying Eq. (67) from Ref. [25], we can divide the
probability currents in Eqs. (6.7) and (6.8) into the reversible parts, jrevx and jrevv , and the
irreversible parts, jirrx and jirrv , as

jx(x, v, t) =jrevx (x, v, t) + jirrx (x, v, t),

jv(x, v, t) =jrevv (x, v, t) + jirrv (x, v, t),
(6.101)

where

jrevx (x, v, t) ≡vp(x, v, t), jirrx (x, v, t) ≡ 0,

jrevv (x, v, t) ≡− λ(t)

m
xp(x, v, t),

jirrv (x, v, t) ≡
(
− γ

m
v − γT (t)

m2

∂

∂v

)
p(x, v, t).

(6.102)

Then, the heat current and entropy production rate is given by

Q̇(t) =

∫ ∞

−∞
dx

∫ ∞

−∞
dv mvjirrv (x, v, t). (6.103)

Σ̇(t) =

∫ ∞

−∞
dx

∫ ∞

−∞
dv

m2(jirrv (x, v, t))2

γT (t)p(x, v, t)
. (6.104)
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We derive Qh and Σtot

Qh =

∫ ∆th

0
dt

∫ ∞

−∞
dx

∫ ∞

−∞
dv mvjirrv =

∫ ∆tcyc

0
dt

∫ ∞

−∞
dx

∫ ∞

−∞
dv ϕ(t)mvjirrv , (6.105)

Σ =

∫ ∆tcyc

0
dt Σ̇(t) =

∫ ∆tcyc

0
dt

∫ ∞

−∞
dx

∫ ∞

−∞
dv

m2(jirrv (x, v, t))2

γT (t)p(x, v, t)
. (6.106)

using Eqs. (5.75), (6.100), (6.103), and (6.100). As shown in Sec. 5.4.2, because γT (t)σv
and Σ̇ are positive, we can derive the following bound for the heat in Eq. (6.105):

(Qh)
2 =

(∫ ∆tcyc

0
dt ϕ(t) Q̇(t)

)2

≤
(∫ ∆tcyc

0
dt ϕ(t)

√
γT (t)σvΣ̇

)2

≤
(∫ ∆tcyc

0
dt ϕ2(t)γT (t)σv

)(∫ ∆tcyc

0
dt Σ̇

)
= ∆tcycT

2
c χΣ,

(6.107)

where

χ ≡ γ

∆tcycTc

∫ ∆tcyc

0
dt

ϕ2(t)

1− ηCϕ(t)
σv(t), (6.108)

and we used Eq. (5.79). Using Eqs. (6.96) and (6.107), we can derive the trade-off relation
in our cycle as

P =
W

∆tcyc
=

W

Qh

1

Qh

Q2
h

∆tcyc

≤η
1

Qh
T 2
c χΣ

=χTcη(ηC − η).

(6.109)

By comparing Eqs. (6.98) and (6.109), we obtain A = Tcχ. We will show that in the
limit of τx, τv → 0, the entropy production Σ vanishes and χ diverges while χΣ maintains
positive. For this purpose, we rewrite Eq. (6.104) as follows. In our model (Sec. 6.2), the
probability distribution was assumed to be the Gaussian distribution shown in Eq. (6.11).
Thus, we can differentiate the distribution function p(x, v, t) with respect to v as

∂p

∂v
=

σxvx− σxv

σxσv − σxv2
p. (6.110)

We can rewrite the entropy production rate in Eq. (6.104) by using the variables σx, σv,
and σxv and derive the expression of Σ̇ under the assumption of the Gaussian distribution
as

Σ̇(t) =

∫ ∞

−∞
dx

∫ ∞

−∞
dv

m2

γTp

{(
γ

m
v +

γT

m2

∂

∂v

)
p

}2

=
m2

γT

∫ ∞

−∞
dx

∫ ∞

−∞
dv

{
γ

m
v +

γT

m2

σxvx− σxv

σxσv − σxv2

}2

p

=

γ
m (T −mσv)

2 + (2T −mσv)γ
σxv

2

σx

T
(
mσv − τvγ

σxv
2

σx

) , (6.111)
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where we used Eqs. (6.9), (6.10), (6.15), (6.20), (6.102), and (6.110). Using Eqs. (6.15)
and (6.20), we obtain

Q̇ =
γ

m
(T −mσv). (6.112)

Thus, Eq. (6.111) can be rewritten as

Σ̇(t) =
τvQ̇

2 + (2T −mσv)γ
σxv

2

σx

T
(
mσv − τvγ

σxv
2

σx

) . (6.113)

Integrating Eq. (6.113) with respect to time, we derive the entropy production per cycle
Σ in our cycle as

Σ =

∫ ∆tcyc

0
dt
τvQ̇

2(t) + [2T (t)−mσv(t)]γ
σxv

2(t)
σx(t)

T (t)
(
mσv(t)− τvγ

σxv
2(t)

σx(t)

) . (6.114)

6.5.1 Small relaxation-times regime

We evaluate the entropy production in Eq. (6.114) in the small relaxation-times regime.
In the hot isothermal process, the process can be divided into the relaxation part and the
part after the relaxation. Because the relaxation time of the system at the beginning of
the hot isothermal process is given by τ0 ≡ max(τx(0), τv), the entropy production in the
hot isothermal process Σh is divided as

Σh ≡
∫ ∆th

0
dt Σ̇ =

∫ τ0

0
dt Σ̇ +

∫ ∆th

τ0

dt Σ̇, (6.115)

where the first and second terms in Eq. (6.115) represent the entropy production in the
relaxation and after the relaxation, respectively. We first evaluate the entropy production
after the relaxation. From Eqs. (C.15) and (C.17) in the Appendix C, the variables σx,
σv, and σxv after the relaxation satisfy

σx ≃ T

λ
, σv ≃ T

m
, σxv ≃ − T

2λ2

dλ

dt
, (6.116)

where T is Th or Tc. Then, we can obtain

γ
σxv

2(t)

σx(t)
≃ τx(t)T

4

(
d

dt
lnλ(t)

)2

. (6.117)

The heat current Q̇(t) in Eq. (6.20) is represented as

Q̇(t) ≃1

2
λ(t)σ̇x(t) ≃ −T

2

(
d

dt
lnλ

)
, (6.118)

where we used Eq. (6.116), and Q̇ is noninfinite because d(lnλ)/dt is noninfinite. Note
that we obtain

d

ds
lnΛ =∆tcyc

d

dt
lnλ,

dQ

ds
=∆tcyc

dQ

dt
= −T

2

(
d

ds
lnΛ

)
, (6.119)
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Figure 6.4: Time evolution of Q̇h(t) (purple solid line), its potential part λσ̇x/2 (green
dashed line), and its kinetic part mσ̇v/2 (sky-blue dotted line) in the hot isothermal
process. We can see a relaxation at the beginning of the process. The lower figure is an
enlargement view of a part of the upper figure, which shows that Q̇h(t) ≃ λ(t)σ̇x(t)/2 and
mσ̇v(t) ≃ 0 are satisfied. In this simulation, we used λ(t) in Eq. (6.90) and set Th = 2.0,
Tc = 1.0, th = tc = 1.0, m = 0.1, σa = 0.1, γ = 1.0, and σb/σa = 2.0.

using s and Eqs. (6.26) and (6.118). Because d(lnλ)/dt is noninfinite, d(lnΛ)/ds and
dQ/ds are also noninfinite after the relaxation when ∆tcyc is finite. Figure 6.4 shows
a time evolution of the heat current Q̇h, its potential part λσ̇x/2, and its kinetic part
mσ̇v/2 in the hot isothermal process with the protocol in Eq. (6.90). In this simulation,
we used the same parameters as in Sec. 6.4. From the figure, we can see a relaxation at
the beginning of the process. As implied in Eq. (6.118), the heat current Q̇h is almost
equal to its potential part λσ̇x/2, and the kinetic part mσ̇v/2 almost vanishes after the
relaxation.

Using Eqs. (6.113), (6.116), and (6.117), the entropy production rate after the relax-
ation is given by

Σ̇(t) ≃ 1

∆tcycT

τv
∆tcyc

(
dQ(s)
ds

)2
+ τx

∆tcyc
T 2

4

(
d
ds lnΛ

)2
T − τv

∆tcyc
τx

∆tcyc
T
4

(
d
ds lnΛ

)2 , (6.120)

where we used s = t/∆tcyc to compare the cycle time ∆tcyc and the relaxation times τx
and τv. Then, we derive the entropy production after the relaxation in the hot isothermal
process as

∫ ∆th

τ0

dt Σ̇ ≃ 1

Th

∫ ∆th/∆tcyc

τ0/∆tcyc

ds

τv
∆tcyc

(
dQ(s)
ds

)2
+ τx

∆tcyc

T 2
h
4

(
d
ds lnΛ

)2
Th − τv

∆tcyc
τx

∆tcyc
Th
4

(
d
ds lnΛ

)2 . (6.121)

To consider the entropy production in the relaxation, we rewrite Σ̇ in Eq. (6.113) by using
the heat current in Eq. (6.20) and the time derivative of the entropy in Eq. (6.18) as
follows:

Σ̇(t) = Ṡ(t)− Q̇(t)

T (t)
. (6.122)

Because the temperature of the heat bath is constant, we derive the entropy production
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in the relaxation in the hot isothermal process as∫ τ0

0
dt Σ̇ = S(τ0)− S(0)−

Qrel
h

Th
, (6.123)

where Qrel
h is the heat flowing in this relaxation. In the small relaxation-times regime, the

relaxation is very fast (see the Appendix C), and the stiffness is regarded to be unchanged
in the relaxation. From Eq. (C.15), σx is also unchanged during the relaxation under the
condition of Eq. (6.59). Thus, the heat related to the potential change in Eq. (6.22) in
the relaxation vanishes. By using Eqs. (6.21) and (6.86), Qrel

h is evaluated as

Qrel
h ≃ ∆T

2
. (6.124)

In addition because d(lnΛ)/ds is noninfinite, as shown in the Appendix C, we can approx-
imate the entropy in Eq. (6.18) after the relaxation by

S(t) ≃ 1

2
ln(T 2(t)) +

1

2
ln

(
4π2

mλ(t)

)
+ 1, (6.125)

where we used the approximation

mλ(σxσv − σxv
2) ≃ T 2 − τx

∆tcyc

τv
∆tcyc

T 2

4

(
d

ds
lnΛ

)2

≃ T 2, (6.126)

from Eqs. (6.26) and (6.116). The initial state of the hot isothermal process is given by
the final state of the cold isothermal process as

σx ≃ Tc

λD
, σv ≃ Tc

m
, σxv ≃ − Tc

2λ2
D

dλ

dt

∣∣∣∣
t=∆tcyc−0

, (6.127)

from Eq. (6.116). Because the stiffness remains λA in the relaxation, the variables relax
to the following values:

σx ≃ Th

λA
, σv ≃ Th

m
, σxv ≃ − Th

2λ2
A

dλ

dt

∣∣∣∣
t=0+0

, (6.128)

from Eq. (6.116). Using Eqs. (6.125)–(6.128), the difference between S(0) and S(τ0) can
be approximated by

S(τ0)− S(0) ≃ 1

2
ln(T 2

h )−
1

2
ln(T 2

c ) +
1

2
ln

(
λD

λA

)
. (6.129)

We can then evaluate the entropy production in the relaxation in Eq. (6.123) as∫ τ0

0
dt Σ̇ ≃1

2
ln(T 2

h )−
1

2
ln(T 2

c ) +
1

2
ln

(
λD

λA

)
− ∆T

2Th
=

1

2
ln

(
Th

Tc

)
− ∆T

2Th
, (6.130)

using Eqs. (6.59), (6.68), (6.124), and (6.129). Thus, by using Eqs. (6.121) and (6.130),
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Figure 6.5: The ratio of the efficiency to the Carnot efficiency derived from the numerical
simulations in Fig. 6.2 in Sec. 6.4 (purple plus) and theoretical analysis (sky-blue solid
line). We set m = 10−3 and σa = 10−2. Although the relaxation times corresponding to
these parameters are not very small among the parameters used in Fig. 6.2, the theoretical
result and numerical simulations show a good agreement. We have confirmed a better
agreement with smaller parameters (data not shown).

the entropy production in the hot isothermal process in Eq. (6.115) is given by

Σh ≃1

2
ln

(
Th

Tc

)
− ∆T

2Th
+

1

Th

∫ ∆th/∆tcyc

τ0/∆tcyc

ds

τv
∆tcyc

(
dQ(s)
ds

)2
+ τx

∆tcyc

T 2
h
4

(
d
ds lnΛ

)2
Th − τv

∆tcyc
τx

∆tcyc
Th
4

(
d
ds lnΛ

)2 . (6.131)

Similarly, the entropy production in the cold isothermal process Σc is given by

Σc ≡
∫ ∆tcyc

∆th

dt Σ̇ ≃ 1

2
ln

(
Tc

Th

)
+

∆T

2Tc
(6.132)

+
1

Tc

∫ 1

(∆th+τ1)/∆tcyc

ds

τv
∆tcyc

(
dQ(s)
ds

)2
+ τx

∆tcyc

T 2
c
4

(
d
ds lnΛ

)2
Tc − τv

∆tcyc
τx

∆tcyc
Tc
4

(
d
ds lnΛ

)2 ,

where τ1 ≡ max(τx(∆th + 0), τv) is the relaxation time at the beginning of the cold
isothermal process. Because no entropy production is present in the adiabatic processes,
the entropy production Σ per cycle in the small relaxation-times regime is given by

Σ =Σh +Σc

≃ 1

Th

∫ ∆th/∆tcyc

τ0/∆tcyc

ds

τv
∆tcyc

(
dQ(s)
ds

)2
+ τx

∆tcyc

T 2
h
4

(
d
ds lnΛ

)2
Th − τv

∆tcyc
τx

∆tcyc
Th
4

(
d
ds lnΛ

)2
+

1

Tc

∫ 1

(∆th+τ1)/∆tcyc

ds

τv
∆tcyc

(
dQ(s)
ds

)2
+ τx

∆tcyc

T 2
c
4

(
d
ds lnΛ

)2
Tc − τv

∆tcyc
τx

∆tcyc
Tc
4

(
d
ds lnΛ

)2
+
(∆T )2

2ThTc
, (6.133)

using Eqs. (6.131) and (6.132).
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Comparing Eqs. (6.95) and (6.133), we can derive the expression of the irreversible
works as

W irr
h =

∫ ∆th/∆tcyc

τ0/∆tcyc

ds

τv
∆tcyc

(
dQ(s)
ds

)2
+ τx

∆tcyc

T 2
h
4

(
d
ds lnΛ

)2
Th − τv

∆tcyc
τx

∆tcyc
Th
4

(
d
ds lnΛ

)2 , (6.134)

W irr
c =

∫ 1

(∆th+τ1)/∆tcyc

ds

τv
∆tcyc

(
dQ(s)
ds

)2
+ τx

∆tcyc

T 2
c
4

(
d
ds lnΛ

)2
Tc − τv

∆tcyc
τx

∆tcyc
Tc
4

(
d
ds lnΛ

)2 . (6.135)

As shown in the Appendix C, dQ/ds and d(lnΛ)/ds are noninfinite after the relaxation.
Thus, the entropy production rate in Eq. (6.120) after the relaxation vanishes in the
vanishing limit of the relaxation times. From Eqs. (6.134) and (6.135), it turns out that
the integrand of W irr

h,c, which is Th,cΣ̇, vanishes at any s in the vanishing limit of the
relaxation times, and the irreversible works also vanish. Therefore, we can confirm that
the efficiency in Eq. (6.89) approaches the quasistatic efficiency in Eq. (6.66) in this limit,
theoretically explaining the results of the numerical simulations. Figure 6.5 compares the
efficiency obtained from the numerical simulations in Fig. 6.2 and the efficiency derived
from the theoretical analysis in the small relaxation-times regime. Here, the efficiency of
the theoretical analysis was derived by calculating the irreversible works in Eqs. (6.134)
and (6.135) and substituting them into Eq. (6.89). Note that we used Eq. (6.118) to
calculate dQ/ds in Eqs. (6.134) and (6.135). We can see that the theoretical result and
numerical simulations show a good agreement.

We provide a qualitative explanation for the behavior of the efficiency in Figs. 6.2
and 6.5, as below. We consider the case that the relaxation times are small but finite.
Then, from the above discussion, W irr

h and W irr
c are positive and small. When ∆T is

large, ∆T∆Sqs in the numerator of Eq. (6.89) is sufficiently larger than W irr
h,c since we

use the protocol satisfying ∆Sqs = O(1) in the numerical simulation. Since Th is larger
than ∆T , Th∆Sqs in the denominator of Eq. (6.89) is also sufficiently larger than W irr

h,c.
Thus, the efficiency should mainly depend on Th, ∆T , and ∆Sqs as shown in Eq. (6.89).
Although the efficiency is smaller than the Carnot efficiency because of ∆T/2 due to the
heat leakage in the denominator of Eq. (6.89), the heat leakage becomes small and the
efficiency increases toward the Carnot efficiency as ∆T becomes small. At the same time,
however, the irreversible works can be comparable to ∆T∆Sqs. From Eq. (6.90), the
stiffness in each isothermal process depends only on the corresponding temperature. Since
dQ/ds in Eqs. (6.134) and (6.135) is evaluated by the protocol as shown in Eq. (6.118),
W irr

h,c depend only on the temperature of each isothermal process, but do not depend on
∆T in the lowest order of ∆T . Thus, the irreversible works maintain finite even when ∆T
vanishes. Then, ∆T∆Sqs in Eq.(6.89) approaches zero while W irr

h,c are positively finite.
Thus, the efficiency turns from increase to decrease as ∆T becomes small and takes the
maximum for a specific value of ∆T as shown in Figs. 6.2 and 6.5.

By using s = t/∆tcyc, the quantity ϕ(t) in Eq. (6.100) can be expressed as

ϕ(s) =

{
1 (0 < s < ∆th/∆tcyc)

0 (∆th/∆tcyc < s < 1).
(6.136)

Thus, χ in Eq. (6.108) is rewritten by using the relaxation time of the velocity as

χ =
1

∆tcyc

∆tcyc
τv

(
1

Tc

∫ 1

0
ds

mσvϕ
2

1− ηCϕ

)
=

C

∆tcyc

∆tcyc
τv

, (6.137)
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Figure 6.6: The quantities χ in Eq. (6.108) and χΣ when τx and τv are varied. Because
the parameter σa is proportional to τx(0) in the protocol in Eq. (6.90), we vary σa to
make τx be small. Similarly, we vary the mass m because it is proportional to τv. In
these simulations, we used (σa = 0.1,m = 0.1) (purple plus), (σa = 0.01,m = 0.01) (green
cross), and (σa = 0.001,m = 0.001) (sky-blue square). We can see that χ diverges at each
∆T when we consider the limit of σa,m → 0 (τx, τv → 0). In addition, we can also see
that the values of χΣ are positively finite for the vanishing limit of ∆T for any relaxation
times.

where C is a positive constant given by

C ≡ 1

Tc

∫ 1

0
ds

mσvϕ
2

1− ηCϕ
. (6.138)

In the relaxation at the beginning of each isothermal process, mσv is positively finite.
After the relaxation, mσv is approximated by the temperature of the heat bath. Thus, C
is positively finite. From Eq. (6.137), χ turns out to diverge in the limit of τv/∆tcyc → 0
when ∆tcyc is finite. Although τv/∆tcyc → 0 is satisfied even when ∆tcyc diverges and
τv is maintained finite, we do not consider that case because it is in the quasistatic limit.
Using Eqs. (6.133) and (6.137), we can obtain χΣ as follows:

χΣ ≃ C

∆tcycTh

∫ ∆th/∆tcyc

τ0/∆tcyc

ds

(
dQ
ds

)2
+

τxT 2
h

4τv

(
d
ds lnΛ

)2
Th − τv

∆tcyc
τx

∆tcyc
Th
4

(
d
ds lnΛ

)2
+

C

∆tcycTc

∫ 1

(∆th+τ1)/∆tcyc

ds

(
dQ
ds

)2
+ τxT 2

c
4τv

(
d
ds lnΛ

)2
Tc − τv

∆tcyc
τx

∆tcyc
Tc
4

(
d
ds lnΛ

)2
+

C

τv

(∆T )2

2ThTc
. (6.139)

Here, we consider the vanishing limit of the relaxation times in the small temperature-
difference regime and evaluate the efficiency and power in this limit. As seen in Eq. (6.97),
the efficiency approaches the Carnot efficiency when Σ vanishes. Moreover, we evaluate Σ
in the vanishing limit of τx and τv in the small temperature-difference regime. In this limit,
we can show that dQ/ds and d(lnΛ)/ds in Eq. (6.133) do not diverge after the relaxation
(see the Appendix C). Thus, when the relaxation times vanish at any time after the
relaxation, the entropy production rate always vanishes from Eq. (6.120), and the first
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and second terms on the right-hand side of Eq. (6.133) also vanish. In addition, when
∆T is small, the third term in Eq. (6.133), which is due to the relaxation, is O[(∆T )2]
and can be ignored. Therefore, the entropy production per cycle in Eq. (6.133) should
be O[(∆T )2], and the efficiency can be regarded as the Carnot efficiency because of the
reasoning presented below Eq. (6.97). Then, because dQ/ds and d(lnΛ)/ds are always
noninfinite, the first and second terms on the right-hand side of Eq. (6.139) are positively
finite in the vanishing limit of τx and τv. Even when ∆T is small, χΣ is positive, and
the right-hand side of the trade-off relation in Eq. (6.109) is positive. Therefore, the
finite power may be allowed even when Σ vanishes. In the above limit, because the
irreversible works in Eqs. (6.134) and (6.135) vanish, the power in Eq. (6.84) approaches
P ∗ in Eq. (6.93), which implies that the power is finite. Therefore, the Carnot efficiency
is achievable in the finite-power Brownian Carnot cycle without breaking the trade-off
relation in Eq. (6.109).

In Fig. 6.6, we numerically confirmed that χ increases and χΣ remains positively finite
in the limit of ∆T → 0 when we consider smaller relaxation times. We can expect χ
to diverge while maintaining χΣ positively finite in the vanishing limit of the relaxation
times in the limit of ∆T → 0. This result implies that Σ vanishes while maintaining χΣ
positively finite, and we can expect that Σ vanishes and χ diverges simultaneously in the
vanishing limit of the relaxation times.

6.6 Summary and discussion of this chapter

Motivated by the previous study [23], we studied the relaxation-times dependence of the
efficiency and power in a Brownian Carnot cycle with the instantaneous adiabatic pro-
cesses and time-dependent harmonic potential, described by the underdamped Langevin
equation. In this system, we numerically showed that the Carnot efficiency is compatible
with finite power in the vanishing limit of the relaxation times in the small temperature-
difference regime. We analytically showed that the present results are consistent with
the trade-off relation between efficiency and power, which was proved for more general
systems in [25, 29, 30]. By expressing the trade-off relation using the entropy production
in terms of the relaxation times of the system, we demonstrated that such compatibility
is possible by both the diverging constant and the vanishing entropy production in the
trade-off relation in the vanishing limit of the relaxation times.

In the numerical simulation results in Sec. 6.4, we used a specific protocol. However,
we can use other protocols satisfying the following three conditions to achieve the Carnot
efficiency and finite power in the small temperature-difference regime. The first condition
is that the protocol should satisfy the condition in Eq. (6.59). For such a protocol, the heat
leakage in the relaxation at the beginning of the isothermal processes is O(∆T ). Thus,
heat leakage can be neglected in the small temperature-difference regime, compared with
the heat flowing in the isothermal processes. The second condition is that the stiffness
is expressed by using a scaling function as in Eq. (6.26). The third condition of the
protocols is that the stiffness diverges at any time of time. This is satisfied by the vanishing
relaxation time of position, and it is one of the necessary conditions for the entropy
production rate vanishing after the relaxation, as we showed in Sec. 6.5. When the entropy
production rate at any time vanishes, irreversible works also vanish, which allows us to
derive the compatibility of the Carnot efficiency and finite power in the small temperature-
difference regime.

Note that we showed that achieving both the Carnot efficiency and finite power is
possible in the small temperature-difference regime without breaking the trade-off relation
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in Eq. (6.98) of the proposed cycle. In the linear irreversible thermodynamics, which
can describe the heat engines operating in the small temperature-difference regime, the
currents of the systems are described by the linear combination of affinities, and their
coefficients are called the Onsager coefficients. When these coefficients have the reciprocity
resulting from the time-reversal symmetry of the systems, a previous study [7] showed that
the compatibility of the Carnot efficiency with finite power is forbidden. The same study
also showed that the compatibility can be allowed in the systems without time-reversal
symmetry. However, in some studies related to the concrete systems without time-reversal
symmetry [8–13], the compatibility has not been found thus far. On the other hand, there
is a possibility of the compatibility of the Carnot efficiency and finite power when the
Onsager coefficients with reciprocity show diverging behaviors (cf. Eq. (7) in Ref. [31]).
The Onsager coefficients of our Carnot cycle can be obtained in the same way as Ref. [18],
which have reciprocity. In the vanishing limit of the relaxation times, we can show the
divergence of these Onsager coefficients. Although the effect of the asymmetric limit of
the non-diagonal Onsager coefficients on the linear irreversible heat engines realizing the
Carnot efficiency at finite power was studied in Ref. [7], this case is different from our case
where all of the Onsager coefficients show the diverging behaviors.

Furthermore, another study reported the compatibility of the Carnot efficiency with
finite power using a time-delayed system within the linear response theory [92]. Because
the time-delayed systems are not described by the Markovian dynamics, the trade-off
relation in Eq. (6.2) may not be applied to them. Thus, there may be a possibility to
achieve the Carnot efficiency in finite-power non-Markovian heat engines. In this paper,
however, we showed that achieving both the Carnot efficiency and finite power is possible
in a Markovian heat engine.

Although we have used the instantaneous adiabatic process, the other type of adiabatic
process can be used for the study of the Brownian Carnot cycle [23, 24, 27, 91]. In this
adiabatic process, the system contacts with a heat bath with varying temperature that
maintains vanishing heat flow between the system and the heat bath on average. While
the Brownian Carnot cycle utilizing this adiabatic process does not suffer from the heat
leakage, mathematical treatment may become more difficult. In Chap. 7, we discuss the
Brownian Carnot cycle with the finite-time adiabatic process.
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Chapter 7

Achieving Carnot efficiency in
finite-power Brownian Carnot
cycle with arbitrary temperature
difference

7.1 Introduction

In Chap. 6, we used an underdamped Brownian Carnot cycle, where the instantaneous
change of the potential and temperature of the heat bath is used as an adiabatic pro-
cess [17, 22, 23, 90]. We theoretically and numerically showed the compatibility of the
Carnot efficiency and finite power in the vanishing limit of the relaxation times in the
small temperature-difference regime. This result was obtained by explicitly expressing the
relaxation-times dependence of A and η in Eq. (6.2). In the large temperature-difference
regime, however, we cannot achieve the compatibility even in the vanishing limit of the
relaxation times. Just after the instantaneous adiabatic processes, there exists a relaxation
of the kinetic energy of the particle. The heat flowing in the relaxation is regarded as the
inevitable heat leakage that reduces the efficiency. Since the heat leakage is proportional
to the temperature difference, we cannot neglect it for a large temperature difference.
Thus, the compatibility of the Carnot efficiency and finite power has not been established
yet without the restriction of the small temperature difference.

In this chapter, we will show that the compatibility of the Carnot efficiency and finite
power is achievable in the vanishing limit of the relaxation times in an underdamped
Brownian Carnot cycle with arbitrary temperature difference,, where finite-time adiabatic
processes [27, 91] are introduced instead of the instantaneous ones. To be more specific,
we assume that in this cycle, the Brownian particle is in contact with the heat bath with
time-dependent temperature T (t) and trapped by a time-dependent harmonic potential
in Eq. (6.3). Then, a finite-time adiabatic process can be realized by carefully controlling
both of the temperature of the heat bath and stiffness to prevent the heat flowing at any
time during the process. Similar to Chap. 6, note that the word “finite” in this paper
means “nonzero” and “noninfinite.” For example, the finite-time adiabatic process means
the adiabatic process where the time taken for this process is not zero and not infinite.
Remarkably, this carefully-controlled adiabatic process can eliminate the heat leakages
that exist in the instantaneous adiabatic process because of the continuous nature of the
process. From the detailed calculations, we can show that A in Eq. (6.2) in our cycle

66



diverges while making the entropy production per cycle vanish, under the fixed cycle
time in the vanishing limit of the relaxation times for arbitrary temperature difference.
Therefore, we can establish the compatibility of the Carnot efficiency and finite power
within the framework of the trade-off relation in Eq. (6.2).

This chapter is organized as follows. In Sec. 7.2, we introduce the thermodynamic
processes, where the Brownian particle is in contact with the heat bath at any time and
introduced in Sec. 6.2, and consider them in the small relaxation-times regime. In Sec. 7.3,
we consider the finite-time adiabatic processes. In Sec. 7.4, we construct the Carnot cycle
by using the isothermal and finite-time adiabatic processes. In Sec. 7.5, we theoretically
show that the compatibility of the Carnot efficiency and finite power is achievable without
breaking the trade-off relation in Eq. (6.2). In Sec. 7.6, we present the results of numerical
simulations of our cycle when we vary the temperature difference and relaxation times of
the system. In Sec. 7.7, we summarize this chapter.

7.2 Thermodynamic process

We consider a Brownian particle in Sec. 6.2.1 and introduce thermodynamic process lasting
for ti ≤ t ≤ tf . In this chapter, the temperature may depend on the time and we define
Xi ≡ X(ti), Xf ≡ X(tf ), and

∆X ≡ Xf −Xi (7.1)

for any physical quantity X(t). Then, the time taken for this process is given by

∆t ≡ tf − ti. (7.2)

In the thermodynamic process, we operate T (t) and λ(t). Generally, they are functions
of t including their initial and final values and ∆t. We call these functions protocol.
We also call the thermodynamic process in contact with the heat bath with the constant
temperature the isothermal process, where we we can choose λ(t) independently of T (t).
On the other hand, in the finite-time adiabatic process, T (t) and λ(t) cannot be chosen
independently once ∆t is fixed (see Sec. 7.3). As we will see, when we give ∆t, we have
to control T (t) and λ(t) to satisfy the restrictions in that process.

To define the work and heat, we consider the internal-energy change rate given by

Ė(t) =

∫
dx

∫
dv

∂p(x, v, t)

∂t

[
1

2
mv2 +

1

2
λ(t)x2

]
+

∫
dx

∫
dv p(x, v, t)

(
1

2
λ̇(t)x2

)
,

(7.3)

using Eq. (6.17). Similar to the isothermal process discussed in Sec. 6.2.2, when the
temperature depends on the time, we can define the work and heat per unit time.

Ẇ (t) ≡ −
∫

dx

∫
dv p(x, v, t)

(
1

2
λ̇(t)x2

)
= −1

2
λ̇(t)σx(t), (7.4)

Q̇(t) ≡
∫

dx

∫
dv

∂p(x, v, t)

∂t

[
1

2
mv2 +

1

2
λ(t)x2

]
=
1

2
mσ̇v(t) +

1

2
λ(t)σ̇x(t)

=
γ

m
[T (t)−mσv(t)], (7.5)
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using the Eqs. (6.14), (6.15), and (7.3). Then, from Eqs. (7.4) and (7.5), we obtain the
output work W and heat Q in this process as

W ≡−
∫ tf

ti

dt
1

2
λ̇(t)σx(t), (7.6)

Q ≡
∫ tf

ti

dt
γ

m
[T (t)−mσv(t)] = W +∆E. (7.7)

Using Eqs. (6.14)-(6.16), (6.18), and (7.5), we can derive the entropy production rate Σ̇
of the total system including the heat bath and particle as

Σ̇(t) ≡Ṡ(t)− Q̇(t)

T (t)
=

γ
m (T −mσv)

2 + (2T −mσv)γ
σxv

2

σx

T
(
mσv −mσxv

2

σx

)
=
m

γ

Q̇2

Tmσv
+

γ

m

Tσxv
2

mσv (σxσv − σxv2)
≥ 0, (7.8)

where the last inequality comes from Eq. (6.13). From Eq. (7.8), we obtain the entropy
production of the total system in this process as

Σ =

∫ tf

ti

dt Σ̇(t) = ∆S −
∫ tf

ti

dt
Q̇(t)

T (t)
, (7.9)

where ∆S ≡ Sf − Si is the entropy change of the particle in this process.

7.2.1 Thermodynamic process in the small relaxation-times regime

We consider the thermodynamic process mentioned in Sec. 7.2, in the small relaxation-
times regime where the relaxation times in Eqs. (6.9) and (6.10) are sufficiently smaller
than ∆t = tf − ti at any time. Below, we refer to “small relaxation time” when τj/∆t ≪ 1
(j = x, v) is satisfied. We assume that ∆t is finite in this regime. For convenience, we
introduce a normalized time

s ≡ t− ti
∆t

(0 ≤ s ≤ 1). (7.10)

In the small relaxation-times regime in this process, we assume that T (t) and λ(t) (ti ≤
t ≤ tf ) depend on time and vary smoothly and slowly, that is, on the time scale sufficiently
longer than the relaxation times τx and τv. Moreover, we also assume that T (t′)/T (t) and
λ(t′)/λ(t) are finite at any times t and t′ (ti ≤ t′ ≤ tf ). We can rewrite λ(t′)/λ(t) as

λ(t′)

λ(t)
=

τx(t)

τx(t′)
, (7.11)

by using Eq. (6.9). From Eq. (7.11), we find that the assumption above Eq. (7.11) means
that when we make τx(t) small, τx(t

′) for any t′ in the same process also becomes small.
From the Taylor expansion, we have

T (t+ δt)

T (t)
≃ 1 + δt

d

dt
lnT (t), (7.12)

λ(t+ δt)

λ(t)
≃ 1 + δt

d

dt
lnλ(t), (7.13)
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where δt is assumed to be sufficiently smaller than ∆t. Since, from the assumption above
Eq. (7.11), the left-hand side of Eqs. (7.12) and (7.13) are finite, d(lnT )/dt and d(lnλ)/dt
do not diverge even when the relaxation time of position vanishes, in other words, λ(t) in
Eq. (6.9) diverges. As shown in Appendix C, the variables σx, σv, and σxv in the small
relaxation-times regime can be approximated by

σx ≃ T

λ
, σv ≃ T

m
, σxv ≃ 1

2

d

dt

(
T

λ

)
. (7.14)

We can rewrite σxv in Eq. (7.14) as

σxv ≃ T

2λ

d

dt
ln

(
T

λ

)
=

τxT

2γ

d

dt
ln

(
T

λ

)
, (7.15)

using Eq. (6.9). Because d(lnT )/dt and d(lnλ)/dt do not diverge, σxv vanishes when
τx vanishes. Then, since we can neglect σxv

2 compared with σxσv, Φ in Eq. (6.12) is
approximated by

Φ ≃ T 2

mλ
. (7.16)

We consider the heat current in Eq. (7.5) in the small relaxation-times regime. In the
vanishing limit of the relaxation times, Q̇ in Eq. (7.5) appears to diverge since γ/m = 1/τv
diverges, which is the coefficient of T −mσv in Eq. (7.5). However, since mσv approaches
T in the above limit from Eq. (7.14), Q̇ may become finite. In fact, we can evaluate Q̇
using Eq. (7.14) and the second line of Eq. (7.5). By using Eq. (??), we obtain

λ(t)σ̇x(t) ≃ T

(
d

dt
ln

T

λ

)
, mσ̇v ≃ Ṫ = T

d

dt
lnT. (7.17)

Then, the heat current Q̇(t) in Eq. (7.5) is approximated by

Q̇(t) =
1

2
mσ̇v +

1

2
λσ̇x ≃ T

2

(
d

dt
ln

T 2

λ

)
. (7.18)

Since d(lnT )/dt and d(lnλ)/dt do not diverge even in the vanishing limit of the relax-
ation times, Q̇ does not diverge. Similarly, the entropy production rate in Eq. (7.8) is
approximated by

Σ̇(t) ≃ 1

T

τvQ̇
2 + τxT 2

4

(
d
dt ln

T
λ

)2
T − τvτxT

4

(
d
dt ln

T
λ

)2 =
1

∆t

1

T

τv
∆t

(
dQ
ds

)2
+ τxT

4∆t

(
d
ds ln

T
λ

)2
T − τv

∆t
τx
∆t

T
4

(
d
ds ln

T
λ

)2 , (7.19)

where we used Eqs. (6.9), (6.10), (7.10), and (6.116). Since Q̇ and d ln(T/λ)/dt do not
diverge, and ∆t is finite, we can see that dQ/ds and d ln(T/λ)/ds do not diverge. Thus,
we can see that the entropy production rate Σ̇ vanishes in the vanishing limit of τx and
τv. The entropy production in this process in the small relaxation-times regime is given
by

Σ ≃
∫ 1

0
ds

1

T

τv
∆t

(
dQ
ds

)2
+ τxT 2

4∆t

(
d
ds ln

T
λ

)2
T − τv

∆t
τx
∆t

T
4

(
d
ds ln

T
λ

)2 , (7.20)

Since Σ̇ vanishes in the vanishing limit of the relaxation times, the entropy production Σ
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also vanishes.

7.3 Finite-time adiabatic process

To construct the Carnot cycle, we consider the adiabatic process connecting the end of
the isothermal process with the temperature Ti and the beginning of the other isothermal
process with the temperature Tf . We introduce the finite-time adiabatic process where
the heat current in Eq. (7.5) vanishes at any time. In such a process, we should control
the temperature of the heat bath so as to satisfy

T (t) = mσv(t). (7.21)

Then, using Eqs. (6.15) and (7.21), we find that λ(t) should satisfy

λ(t) = − Ṫ (t)

2σxv(t)
. (7.22)

Since the heat Q in Eq. (7.7) also vanishes in this process, we derive the relation between
the output work and the internal energy change in this process as

W = −∆E. (7.23)

Moreover, since Q̇ vanishes, the entropy change of the particle in this process satisfies

∆S = Σ ≥ 0, (7.24)

where we used Eq. (7.9).
Next, we consider how to choose the protocol in the finite-time adiabatic process.

We cannot choose ∆t, T , and λ independently since they have to satisfy the restriction
in Eq. (7.22). We consider the case that the relaxation times is much smaller than ∆t,
because the entropy production of the total system vanishes in the vanishing limit of the
relaxation times, as mentioned below Eq. (7.20). For the entropy production of the total
system to vanish in the vanishing limit of the relaxation times, ∆t should be much larger
than the relaxation times. Thus, we specify how to choose the protocol when we give a
finite ∆t.

In the finite-time adiabatic process with ∆t given, σx, σv, σxv, T , and λ should satisfy
Eqs. (6.14)–(6.16), and (7.21). In Appendix D, we derive the protocol of the finite-time
adiabatic process from Eqs. (6.14)–(6.16), and (7.21) when we give the time evolution of
σx(t). Then, T (t) and λ(t) are expressed by σx(t). To determine σx(t), we have to give
the initial and final values and how to connect them. We assume that we can arbitrarily
connect these values as long as σx(t) is smooth. Keeping the small relaxation-times regime
of our interest in mind, we impose the following condition on the initial and final values
of σx(t). Since the finite-time adiabatic process continuously connects the isothermal
processes, we assume that Ti and λi (Tf and λf ) in the finite-time adiabatic process are
the same as those at the end (beginning) of the isothermal process with Ti (Tf ). In the
small relaxation-times regime, the isothermal process should satisfy Eq. (7.14) at any time.
Thus, the initial and final values of σx(t) should satisfy

σxi ≃
Ti

λi
, σxf ≃

Tf

λf
. (7.25)
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Below, we only consider the finite-time adiabatic process satisfying the condition in Eq. (7.25).
σxi and σxf are changeable only through λi and λf since Ti and Tf are assumed to be
given in the Carnot cycle. Moreover, when we construct the Carnot cycle in the small
relaxation-times regime in Sec. 7.4, we assume that we can determine the initial and final
values of λ(t) only in the hot isothermal process among the four processes, which specif-
ically correspond to λ1 and λ2 in Fig. 7.1, respectively. Thus, we can give λi (λf ) in the
finite-time adiabatic process connecting the end of the hot (cold) isothermal process and
the beginning of the cold (hot) isothermal process, where λi = λ2 (λf = λ1) in Fig. 7.1.
This means that we can give only one of σxi and σxf arbitrarily in the finite-time adiabatic
process. The other is determined by the condition for ∆t as shown below.

The previous study [91] considered the finite-time adiabatic process in the overdamped
regime of the present model and revealed how ∆t depends on the time evolution of the
protocol and the state of the particle. We here develop a similar discussion to Ref. [91] and
reveal restriction among ∆t and the five variables (T (t) and λ(t) as the protocol and σx(t),
σv(t), and σxv(t) representing the state of the Brownian particle) in our underdamped
system. From Eqs. (6.12), (6.14)–(6.16), and (7.21), we obtain

dΦ

dt
=

d

dt
(σxσv − σxv

2)

=2σxv
T

m
+ σx

(
2γT

m2
− 2γ

m

T

m
− 2λ

m
σxv

)
− 2σxv

(
T

m
− λ

m
σx −

γ

m
σxv

)
=
2γ

m
σxv

2 =
γ

2m

(
dσx
dt

)2

. (7.26)

We derive ∆Φ in the finite-time adiabatic process as

∆Φ =

∫ tf

ti

dt
dΦ

dt
=

1

2

γ

m

∫ tf

ti

dt

(
dσx
dt

)2

=
1

2

γ

m

1

∆t

∫ 1

0
ds

(
dσx
ds

)2

, (7.27)

using Eq. (7.10). Thus, we obtain ∆t as

∆t =
1

2

γ

m

1

∆Φ

∫ 1

0
ds

(
dσx
ds

)2

. (7.28)

When Φ at the beginning and end of the finite-time adiabatic process satisfies Eq. (7.16),
Eq. (7.28) can be rewritten as

∆t ≃ γ

2

1

T 2
f /λf − T 2

i /λi

∫ 1

0
ds

(
dσx
ds

)2

. (7.29)

Giving the finite ∆t and σx(t) including an undetermined value σxf (σxi), we show
how to determine λf (λi) to satisfy Eq. (7.29). Since we can give only one of λi and λf ,
we consider each case. We first consider the case of giving λi. In the small relaxation-
times regime, we obtain σ̇x(t) = 2σxv(t) = O(τx(t)) from Eqs. (6.14) and (7.15). Moreover,
since λi/λ(t) is finite for any t from the assumption above Eq. (7.11), we obtain O(τx(t)) =
O(τxi). Thus, the order of dσx(s)/ds = ∆tσ̇x(t) is O(τxi) for any t, and the order of the
integral in Eq. (7.29) is O(τ2xi). To make Eq. (7.29) consistent with the finite ∆t in the
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vanishing limit of τxi, we impose the condition for λi and λf as

T 2
f

λf
− T 2

i

λi
=

α

γ
τ2xi =

αγ

λ2
i

, (7.30)

where α is a finite constant to be determined. Then, from Eq. (7.29), we obtain

∆t ≃ λ2
i

2α

∫ 1

0
ds

(
dσx
ds

)2

. (7.31)

Because λi = γ/τxi and the order of the integral in Eq. (7.31) is O(τ2xi), the product of λ2
i

and the integral remains finite even when we make τxi small. When we give the finite ∆t,
α in Eq. (7.31) should be positively finite. Noting that σx(t) connecting σxi and σxf is
given, where σxi is determined by the given λi from Eq. (7.25) and σxf is to be determined,
the result of the integral in Eq. (7.31) becomes the function of σxf , which can be rewritten
in terms of λf , using Eq. (7.25). Solving Eqs. (7.30) and (7.31), we can formally obtain α
and λf .

We can see that the entropy production of the total system is given by

Σ =∆S ≃ 1

2
ln

(
T 2
f

λf

λi

T 2
i

)
≃ 1

2
ln

(
1 +

ατxi
T 2
i

)
, (7.32)

from Eqs. (6.18), (7.16), (7.24), and (7.30). Therefore, the entropy production vanishes in
the vanishing limit of the relaxation times (τxi → 0).

Next, we consider the case of giving λf . Then, we impose the condition instead of
Eq. (7.30) as

T 2
f

λf
− T 2

i

λi
=

α′

γ
τ2xf =

α′γ

λ2
f

, (7.33)

where α′ is a finite constant to be determined. By the similar discussion to the case of
giving λi, we find that α′ is positively finite, and obtain

∆t ≃
λ2
f

2α′

∫ 1

0
ds

(
dσx
ds

)2

, (7.34)

Σ ≃− 1

2
ln

(
1−

α′τxf
T 2
f

)
. (7.35)

When we give ∆t, we can obtain α′ and λi by solving Eqs. (7.33) and (7.34). From
Eq. (7.35), we can see that the entropy production vanishes in the vanishing limit of the
relaxation times (τxf → 0).

7.4 Carnot cycle in the small relaxation-times regime

We construct a Carnot cycle in the small relaxation-times regime by connecting the hot
and cold isothermal processes with the temperature Th and Tc (< Th) by the finite-time
adiabatic processes (Fig. 7.1). We assume that T (t) and λ(t) are smooth during each pro-
cess and continuous in the whole cycle including all the switchings between the processes.
Note that mσv(t) = T (t) holds in the finite-time adiabatic processes from Eq. (7.21), but
that equality may not hold in the isothermal processes. This may be inconsistent with
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Figure 7.1: Schematic illustration of the Brownian Carnot cycle. In each box, the bottom
horizontal line denotes the position coordinate x, and the boundary curve of the green
filled area denotes the probability distribution of x. The red solid line corresponds to the
harmonic potential with λi (i = 1, 2, 3, 4). This cycle is composed of (i) the hot isothermal
process, (ii) the finite-time adiabatic process, (iii) the cold isothermal process, and (iv)
the finite-time adiabatic process.

the continuity assumption of T (t) at the switchings between the isothermal and finite-
time adiabatic processes, which means that the finite-time adiabatic processes may not be
realized under the continuous T (t). In the small relaxation-times regime, however, since
the approximate equality σv ≃ T/m in Eq. (7.14) is satisfied in the isothermal processes,
we can regard Eq. (7.21) as being approximately satisfied at the beginning and end of
the finite-time adiabatic processes. That is, the consistency with the continuity assump-
tion of T (t) recovers in the small relaxation-times regime. Thus, since we are interested
in whether the compatibility of the Carnot efficiency and finite power is possible in the
vanishing limit of the relaxation times, we consider only the Carnot cycle in the small
relaxation-times regime.

We use the following protocol: (i) The hot isothermal process lasts for t1 ≤ t ≤ t2.
The temperature of the heat bath satisfies T (t) = Th, and the stiffness λ(t) changes from
λ1 to λ2. (ii) The finite-time adiabatic process connecting the end of the hot isothermal
process and the beginning of the cold one lasts for t2 ≤ t ≤ t3. The temperature of
the heat bath changes from Th to Tc, and the stiffness changes from λ2 to λ3. (iii) The
cold isothermal process lasts for t3 ≤ t ≤ t4. The temperature of the heat bath satisfies
T (t) = Tc, and the stiffness λ(t) changes from λ3 to λ4. (iv) The finite-time adiabatic
process connecting the end of the cold isothermal process and the beginning of the hot
one lasts for t4 ≤ t ≤ t1 + ∆tcyc, where ∆tcyc is the cycle time. The temperature of the
heat bath changes from Tc to Th, and the stiffness changes from λ4 to λ1. In the above
protocol, we assume that we can choose λ1 and λ2 arbitrarily and also assume that we
choose the time taken for each process to be finite. When λ2 is given, the initial value of
τx of the finite-time adiabatic process (ii) is determined from Eq. (6.9). Then, since ∆t in
this process is assumed to be finite, the condition of the finite-time adiabatic process in
Eq. (7.30) should be satisfied because of the discussion in Sec. 7.3. Applying Eq. (7.30)
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to the finite-time adiabatic process (ii), we impose the condition as

T 2
c

λ3
−

T 2
h

λ2
= αh→c

γ

λ2
2

, (7.36)

where αh→c is a finite positive constant. Here, the indexes “h → c” and “c → h” denote
the quantities in the finite-time adiabatic processes (ii) and (iv), respectively. When we
give σx(t) and ∆t in this process, we obtain the equation for αh→c and λ3 from Eq. (7.31).
By solving Eqs. (7.31) and (7.36) simultaneously, we can obtain αh→c and λ3. In the
finite-time adiabatic process (iv), the final value of τx is given since λ1 is determined.
Then, since ∆t in this process is assumed to be finite, the condition in Eq. (7.33) should
be satisfied. Applying Eq. (7.33) to the finite-time adiabatic process (iv), we impose the
condition as

T 2
h

λ1
− T 2

c

λ4
= α′

c→h

γ

λ2
1

, (7.37)

where α′
c→h is a finite positive constant. When we give σx(t) and ∆t in this process, we

can obtain λ4 and α′
c→h by solving Eqs. (7.34) and (7.37) simultaneously. For convenience,

we introduce the function ϕ(t) to describe the time evolution of the temperature T (t) as

T (t) =
ThTc

Th + (Tc − Th)ϕ(t)
. (7.38)

In our Carnot cycle, since we assume that T (t) is continuous, ϕ(t) should also be contin-
uous, satisfying 

ϕ(t) = 1 (t1 ≤ t ≤ t2)
0 ≤ ϕ(t) ≤ 1 (t2 ≤ t ≤ t3)
ϕ(t) = 0 (t3 ≤ t ≤ t4)
0 ≤ ϕ(t) ≤ 1 (t4 ≤ t ≤ t1 +∆tcyc).

(7.39)

7.4.1 Construction of the Carnot cycle

In the hot isothermal process (i), the time taken for this process is given by

∆th ≡ t2 − t1. (7.40)

We choose ∆th as a finite value. When the entropy of the particle changes from S1 to S2

in this process, the entropy change ∆Sh in this process is given by

∆Sh ≡ S2 − S1. (7.41)

Substituting T (t) = Th into Eq. (7.9), the heat Qh flowing from the heat bath to the
particle in this process is expressed by the entropy change of the particle ∆Sh and entropy
production of the total system Σh in this process as

Qh = Th∆Sh − ThΣh. (7.42)

Since the entropy production Σh is nonnegative as seen from Eq. (7.8), we derive the
inequality

Th∆Sh ≥ Qh. (7.43)
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Qh > 0 should be satisfied since the heat should flow from the heat bath to the particle in
the hot isothermal process in the Carnot cycle useful as a heat engine. Therefore, Th∆Sh

as the upper bound of Qh in Eq. (7.43) has to be positive, and we obtain a necessary
condition for the hot isothermal process:

S2 > S1. (7.44)

Since we consider the small relaxation-times regime, we can derive a condition for λ1 and
λ2 from Eq. (7.44). From Eqs. (6.18) and (7.16), the entropy change in the hot isothermal
process in this regime can be approximated by

∆Sh ≃ 1

2
ln

(
λ1

λ2

)
. (7.45)

Because of ∆Sh > 0, λ1 and λ2 should satisfy

λ1 > λ2. (7.46)

Moreover, λ1/λ2 is finite because of the assumption above Eq. (7.11). Then, because of
Eqs. (7.45) and (7.46), ∆Sh in the small relaxation-times regime is positively finite.

In the finite-time adiabatic process (ii), the entropy change of the particle ∆Sh→c is
equal to the entropy production of the total system Σh→c because of Eq. (7.24). When
the entropy of the particle changes from S2 to S3, we obtain

∆Sh→c ≡ S3 − S2 = Σh→c. (7.47)

From the nonnegatively of Σh→c in Eq. (7.8), the relation

S3 ≥ S2 (7.48)

should be satisfied. The time taken for this process is given by

∆th→c ≡ t3 − t2. (7.49)

We choose ∆th→c as a finite value.
In the isothermal process (iii), we can repeat the discussion similar to the isothermal

process (i). In this process, the entropy of the particle changes from S3 to S4. Then, the
time ∆tc taken for this process, the entropy change ∆Sc, and the heat Qc flowing from
the heat bath to the particle in this process are given by

∆tc ≡t4 − t3, (7.50)

∆Sc ≡S4 − S3, (7.51)

Qc =Tc∆Sc − TcΣc, (7.52)

where Σc is the entropy production of the total system in this process. We choose ∆tc as
a finite value. Note that we cannot determine the sign of ∆Sc at this point by considering
the sign of Qc unlike the case of the hot isothermal process (i). We will determine the
sign of ∆Sc later by considering the sum of the entropy change of the particle during one
cycle.

In the finite-time adiabatic process (iv), the entropy change of the particle ∆Sc→h is
equal to the entropy production of the total system Σc→h because of Eq. (7.24). For the
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Figure 7.2: The entropy of the Brownian particle and temperature of the heat bath in
our Carnot cycle with the finite-time adiabatic processes. From the restriction of the
finite-time adiabatic processes, the entropy at the ends of the isothermal processes should
satisfy S2 ≤ S3 and S4 ≤ S1.

cycle to close, the entropy of the particle should change from S4 to S1, which leads to

∆Sc→h ≡ S1 − S4 = Σc→h. (7.53)

Since the entropy production Σc→h is nonnegative, S4 and S1 should satisfy

S1 ≥ S4. (7.54)

The time taken for this process is given by

∆tc→h ≡ (t1 +∆tcyc)− t4. (7.55)

We choose ∆tc→h as a finite value.
After one cycle, the system returns to the initial state. Then, from Eqs. (7.44),

(7.48), and (7.54), we obtain the trapezoid-like T -S diagram of our cycle in Fig. 7.2 from
Eqs. (7.44), (7.48), and (7.54). The sum of the entropy change of the particle satisfies

∆Sh +∆Sh→c +∆Sc +∆Sc→h = 0. (7.56)

Using Eqs. (7.47), (7.53), and (7.56), we obtain

∆Sc = −(∆Sh +Σh→c +Σc→h). (7.57)

Using Eqs. (6.18) and (7.16), we find that the entropy change of the particle in the cold
isothermal process in the small relaxation-times regime can be approximated by

∆Sc ≃
1

2
ln

(
λ3

λ4

)
< 0, (7.58)

where the last inequality comes from ∆Sh + Σh→c + Σc→h > 0 and Eq. (7.57). Then, we
obtain

λ3 < λ4. (7.59)
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From the first law of the thermodynamics, we derive the output work per cycle as

W =Qh +Qc

=Th∆Sh + Tc∆Sc − ThΣh − TcΣc (7.60)

=(Th − Tc)∆Sh − ThΣh − Tc(Σh→c +Σc +Σc→h),

using Eqs. (7.42), (7.52), and (7.57). Since the entropy production of the total system in
each process is nonnegative, the work W has the upper bound W0 as

W0 ≡ (Th − Tc)∆Sh ≥ W. (7.61)

Since Th − Tc and ∆Sh are finite, W0 is also finite. When the entropy production in each
process vanishes, we obtain W = W0 from Eq. (7.60). By using Eqs. (7.40), (7.49), (7.50),
and (7.55), the time taken for each process satisfies

∆tcyc = ∆th +∆th→c +∆tc +∆tc→h. (7.62)

Since the time taken for each process is finite, ∆tcyc is finite. Using Eqs. (6.1), (7.43), and
(7.61), we obtain the conditions for the efficiency η and power P of our cycle as

η ≡W

Qh
≤ W0

Th∆Sh
=

(Th − Tc)∆Sh

Th∆Sh
= ηC (7.63)

P ≡ W

∆tcyc
≤ W0

∆tcyc
=

(Th − Tc)∆Sh

∆tcyc
≡ P0, (7.64)

where P0 is the power when W = W0 is satisfied. When the entropy productions Σh, Σc,
Σh→c, and Σc→h vanish, Qh and W approach Th∆Sh in Eq. (7.43) and W0 in Eq. (7.61),
respectively. Then, the efficiency approaches the Carnot efficiency ηC and the power
approaches P0.

7.5 Theoretical analysis

7.5.1 Trade-off relation

We show the trade-off relation between the efficiency η and power P in our cycle. From
Eq. (7.8), we obtain the following inequality:

Σ̇ ≥ Q̇2

γTσv
, (7.65)

or equivalently,

|Q̇| ≤
√
γTσvΣ̇. (7.66)

Since the finite-time adiabatic processes satisfy Q̇ = 0, Qh can be written as

Qh =

∫ t2

t1

dt Q̇ =

∫ t1+∆tcyc

t1

dt ϕ(t)Q̇(t), (7.67)
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where we used Eq. (7.39). Then, by using the Cauchy-Schwarz inequality, we derive the
inequality for Qh as

Q2
h =

(∫ t1+∆tcyc

t1

dt ϕQ̇

)2

≤ ∆tcycT
2
c χΣcyc, (7.68)

using Eq. (7.66), where Σcyc is the entropy production of the total system per cycle and
χ is defined as

χ ≡ γ

T 2
c ∆tcyc

∫ t1+∆tcyc

t1

dt ϕ(t)2T (t)σv(t). (7.69)

Multiplying both sides of Eq. (7.68) by W/(∆tcycQ
2
h), we derive the inequality for the

power in Eq. (7.64) as

P ≤ T 2
c η

Qh
χΣcyc. (7.70)

using Eq. (7.63). Since the entropy change of the particle vanishes after one cycle, the
entropy production of the total system per cycle is equal to that of the heat bath. Thus,
the entropy production per cycle relates to the efficiency as

Σcyc =− Qh

Th
− Qc

Tc
=

Qh

Tc
(ηC − η), (7.71)

using Eqs. (6.1), (7.60), and (7.63). From Eq. (7.71), it turns out that the efficiency
becomes the Carnot efficiency when Σcyc vanishes. By using Eqs. (7.70) and (7.71), we
can derive the trade-off relation between the efficiency and power:

P ≤ χTcη(ηC − η). (7.72)

This inequality is the same as Eq. (6.109) in Sec. 6.5, where we applied the method based
on Sec. 5.4.2.

7.5.2 Compatibility of the Carnot efficiency and finite power

We show the compatibility of the Carnot efficiency and finite power in the vanishing limit
of the relaxation times in our cycle. If the entropy productions of the total system in all
the processes vanish, the entropy production per cycle vanishes. Then, from Eq. (7.71),
we can achieve the Carnot efficiency because of Eq. (7.71), and the power also approaches
a finite P0 in Eq. (7.64). Thus, we evaluate the entropy production in each process in the
small relaxation-times regime.

From Eq. (7.20), the entropy productions in the isothermal processes are given by

Σh ≃ 1

Th

∫ 1

0
dsh

τv
∆th

(
dQ
dsh

)2
+ τx

∆th

T 2
h
4

(
d

dsh
ln Th

λ

)2
Th − τx

∆th
τv
∆th

Th
4

(
d

dsh
ln Th

λ

)2 , (7.73)

Σc ≃
1

Tc

∫ 1

0
dsc

τv
∆tc

(
dQ
dsc

)2
+ τx

∆tc

T 2
c
4

(
d
dsc

ln Tc
λ

)2
Tc − τx

∆tc
τv
∆tc

Tc
4

(
d
dsc

ln Tc
λ

)2 , (7.74)
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where sh and sc are the normalized times in the corresponding isothermal processes:

sh ≡ t− t1
∆th

, sc ≡
t− t3
∆tc

. (7.75)

In the isothermal processes, λ is not constant because of Eqs. (7.46) and (7.59), while
T is constant.s Then, from Eq. (7.18), we find that dQ/dsh in Eq. (7.73) and dQ/dsc
in Eq. (7.74) are finite when λ changes smoothly except when λ takes extremal values.
Thus, in the vanishing limit of the relaxation times, the integrand in Eqs. (7.73) and (7.74)
vanishes, and Σh and Σc also vanish.

Since we choose ∆th→c and ∆tc→h as finite values, αh→c and α′
c→h in Eqs. (7.36)

and (7.37) are positively finite because of the discussion below Eq. (7.31). By applying
Eqs. (7.32) and (7.35) to the present finite-time adiabatic processes (ii) and (iv), respec-
tively, we derive the entropy productions of the total system in these processes as

Σh→c ≃
1

2
ln

(
1 +

αh→cτx(t2)

T 2
h

)
, (7.76)

Σc→h ≃− 1

2
ln

(
1−

α′
c→hτx(t1)

T 2
h

)
. (7.77)

These entropy productions vanish in the vanishing limit of the relaxation times.
Note that there may exist an entropy production at the switchings between the isother-

mal and finite-time adiabatic processes. As shown in Appendix E, this entropy production
is caused by the discontinuity of the time derivative of T (t) and λ(t) at the switchings,
although we assume that T (t) and λ(t) are continuous. However, we can also show that
this entropy production is negligible in the small relaxation-times regime.

Using Eqs. (7.73), (7.74), (7.76), and (7.77), we obtain the entropy production of the
total system per cycle:

Σcyc =Σh +Σc +Σh→c +Σc→h

≃ 1

Th

∫ 1

0
dsh

τv
∆th

(
dQ
dsh

)2
+ τx

∆th

T 2
h
4

(
d

dsh
ln Th

λ

)2
Th − τx

∆th
τv
∆th

Th
4

(
d

dsh
ln Th

λ

)2
+

1

Tc

∫ 1

0
dsc

τv
∆tc

(
dQ
dsc

)2
+ τx

∆tc

T 2
c
4

(
d
dsc

ln Tc
λ

)2
Tc − τx

∆tc
τv
∆tc

Tc
4

(
d
dsc

ln Tc
λ

)2
+

1

2
ln

(
1 +

αh→cτx(t2)

T 2
h

)
− 1

2
ln

(
1−

α′
c→hτx(t1)

T 2
h

)
. (7.78)

From the discussion below Eqs. (7.75) and (7.77), the entropy productions in all the
processes vanish in the vanishing limit of the relaxation times, and Σcyc also vanishes in
this limit. Then, the heat Qh in Eq. (7.42) and work W in Eq. (7.60) become Th∆Sh in
Eq. (7.43) and W0 in Eq. (7.61), respectively. Thus, the efficiency in Eq. (7.63) approaches
the Carnot efficiency, and the power in Eq. (7.64) approaches P0. Since ∆tcyc in Eq. (7.62)
andW0 are finite, P0 is finite. Although this may seem to be inconsistent with the trade-off
relation in Eq. (7.72), we below show that there is no inconsistency.

In the small relaxation-times regime, since σv is approximated by Eq. (7.14), χ in
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Eq. (7.69) is approximated by

χ ≃ 1

τv∆tcyc

(∫ t1+∆tcyc

t1

dt ϕ2T 2

)
=

1

τv

(∫ 1

0
dscyc ϕ2T 2

)
=

C

τv
, (7.79)

where scyc ≡ (t− t1)/∆tcyc, and C is a constant defined as

C ≡
∫ 1

0
dscyc ϕ2T 2. (7.80)

Since T is finite and ϕ satisfies Eq. (7.39), C is finite. From Eq. (7.79), χ turns out to
diverge in the vanishing limit of the relaxation times.

Next, we consider the right-hand side of Eq. (7.70). In the small relaxation-times
regime, χΣcyc in Eq. (7.70) is approximated by

χΣcyc ≃
C

Th
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0
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1
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αh→cτx(t2)

T 2
h

)
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ln
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c→hτx(t1)

T 2
h

)
(7.81)

from Eqs. (7.78) and (7.79). As shown below Eq. (??), dQ/dsh and dQ/dsc in the isother-
mal processes are finite except when λ takes extremal values. Then, the first term of the
numerator of the integrand in the first and second terms of Eq. (7.81) is positively finite
even in the vanishing limit of the relaxation times since ∆th and ∆tc are finite. Thus,
the first and second terms in Eq. (7.81) do not vanish in the vanishing limit of the re-
laxation times, which means that χΣcyc does not vanish in this limit, while Σcyc vanishes
and the efficiency approaches the Carnot efficiency because of Eq. (7.71). Therefore, the
right hand-side of the trade-off relation in Eq. (7.70) does not vanish, which means that
the finite power is allowed. In fact, the power also approaches the finite P0 in this limit.
Thus, the compatibility of the Carnot efficiency and finite power is achievable by taking
the vanishing limit of the relaxation times in our Brownian Carnot cycle with arbitrary
temperature difference.

7.6 Numerical simulation

We show numerical results of the compatibility of the Carnot efficiency and finite power
in the vanishing limit of the relaxation times. In this simulation, we solved Eqs. (6.14)–
(6.16) numerically by the fourth-order Runge-Kutta method. Our specific protocol in the
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Figure 7.3: The difference between the Carnot efficiency and our efficiency measured with
the protocol in Eqs. (7.82), (7.90), and (7.91) when we vary the relaxation times τx(t1)
and τv, which are proportional to w1 and m, respectively. In these simulations, we set
w1 = m = 10−2 (purple plus), w1 = m = 10−3 (green square), and w1 = m = 10−4

(orange circle). The efficiency appears to approach the Carnot efficiency in the vanishing
limit of w1 (or τx) and m (or τv).
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Figure 7.4: The power in Eq. (7.64) of our cycle, corresponding to Fig. 7.3. The power
approaches P0 in Eq. (7.102) in the vanishing limit of w1 (or τx) and m (or τv) for any
temperature difference.

isothermal processes is given by

T (t) =Th (t1 ≤ t ≤ t2),

T (t) =Tc (t3 ≤ t ≤ t4), (7.82)

λh(t) =
Th

w1

[
1 + (

√
w2/w1 − 1) t−t1

∆th

]2 (t1 ≤ t ≤ t2),

λc(t) =
Tc

w3

[
1 + (

√
w4/w3 − 1) t−t3

∆tc

]2 (t3 ≤ t ≤ t4),

where λh(t) and λc(t) are the time evolution of λ(t) in the isothermal process with tem-
perature Th,c, and wj (j = 1, 2, 3, 4) are positive parameters. This protocol is inspired by
the optimal protocol in the overdamped Brownian Carnot cycle with the instantaneous
adiabatic processes [16,17] and used in our previous study [26]. From Eqs. (6.9) and (7.82),
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Figure 7.5: The right-hand side of Eq. (7.72) corresponding to Fig. 7.3. Although the
efficiency approaches the Carnot efficiency in the limit of w1,m → 0 (τx, τv → 0) in
Fig. 7.3, χTcη(ηC − η) remains almost unchanged. This means that χ diverges in this
limit.

we obtain

wj =
T (tj)

λj
=

T (tj)

γ
τx(tj). (7.83)

Note that, using Eqs. (7.14) and (7.83), we obtain

σx(tj) ≃ wj (7.84)

in the small relaxation-times regime. From Eqs. (7.46) and (7.83), w2/w1 > 1 should be
satisfied. For all the simulations, we fixed w2/w1 = 2.0, since we can choose w1 and w2

arbitrarily, corresponding to the assumption that we can choose λ1 and λ2 arbitrarily, as
mentioned above Eq. (7.36). Note that w2/w1 should be finite since λ1/λ2 is finite as
shown below Eq. (7.46). We also fixed Tc = 1.0, ∆th = ∆tc = 1.0, and γ = 1.0 and varied
w1, m, and the temperature difference Th−Tc (or equivalently, the temperature Th). Note
that Eqs. (7.83) and (7.84) satisfy the condition in Eq. (7.25).

We have to consider the finite-time adiabatic processes to determine w3 and w4. By
using Eqs. (7.36), (7.37), and (7.83), we obtain

w3 =
Th

Tc
w2 +

γαh→c

T 2
hTc

w2
2, (7.85)

w4 =
Th

Tc
w1 −

γα′
c→h

T 2
hTc

w2
1, (7.86)

where αh→c and α′
c→h are constants. Below, we explain how to determine w3, w4, αh→c,

and α′
c→h from Eqs. (7.31), (7.34), (7.85), and (7.86) when ∆th→c and ∆tc→h are given.

First, we give σx(t) in the finite-time adiabatic processes to obtain the protocol. From
Eq. (7.84), we give σx,h→c(t) satisfying σxi,h→c = w2 and σxf,h→c = w3. Although σxi,h→c is
given since we can give w2, σxf,h→c is undetermined. Similarly, we give σx,c→h(t) satisfying
σxi,c→h = w4 and σxf,c→h = w1, where σxf,c→h is given and σxi,c→h is undetermined.
Moreover, we assume ∆th→c = ∆tc→h = 1.0. Using σx(t), ∆th→c, and ∆tc→h, we can
obtain the equations for w3, w4, αh→c, and α′

c→h from Eqs. (7.31) and (7.34) in our cycle.
Then, solving those equations together with Eqs. (7.85) and (7.86), we can determine w3,
w4, αh→c, and α′

c→h. Note that we can choose ∆th→c and ∆tc→h arbitrarily as long as
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Figure 7.6: (a) Efficiency and (b) power derived from the numerical simulations in Figs. 7.3
and 7.4 (purple plus) and theoretical analysis (sky-blue solid line). We set w1 = m = 10−2.
Although the relaxation times corresponding to these parameters are not very small among
the parameters used in Fig. 7.3, the theoretical results and numerical simulations show a
good agreement. We have confirmed a better agreement with smaller parameters (data
not shown).

they are finite, although we set ∆th→c = ∆tc→h = 1.0 in our simulation for simplicity.
In the finite-time adiabatic processes, we give

σx(t) =

{
wh→c(t) (t2 ≤ t ≤ t3)

wc→h(t) (t4 ≤ t ≤ t1 +∆tcyc),
(7.87)

wh→c(t) ≡ w2 + (w3 − w2)(t− t2)/∆th→c, (7.88)

wc→h(t) ≡ w4 + (w1 − w4)(t− t4)/∆tc→h (7.89)

to obtain the protocol. Then, from Eqs. (D.3) and (D.5) in Appendix D, we find that the
protocol is obtained as

Th→c(t) =

(
1−

w3
t−t2

∆th→c

wh→c(t)

)
Th +

w3
t−t2

∆th→c

wh→c(t)
Tc (t2 ≤ t ≤ t3),

Tc→h(t) =

(
1−

w1
t−t4

∆tc→h

wc→h(t)

)
Tc +

w1
t−t4

∆tc→h

wc→h(t)
Th (t4 ≤ t ≤ t1 +∆tcyc), (7.90)

λh→c(t) =
2Th→c(t)− γ (w3−w2)

∆th→c

2wh→c(t)
(t2 ≤ t ≤ t3),

λc→h(t) =
2Tc→h(t)− γ (w1−w4)

∆tc→h

2wc→h(t)
(t4 ≤ t ≤ t1 +∆tcyc). (7.91)

Note that the approximate equality in Eq. (7.84) becomes equality only in the vanishing
limit of the relaxation times. Although we derived the protocol in the adiabatic processes
by regarding σx(tj) as wj(j = 1, 2, 3, 4) in Eqs. (7.87)–(7.89), the equality in Eq. (7.84)
is not satisfied exactly in the simulation. Thus, the time evolution of σx(t) realized by
solving Eqs. (6.14)–(6.16) with the protocol in Eqs. (7.90) and (7.91) is not exactly the
same as the given σx(t) in Eq. (7.87). However, their difference becomes small when the
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relaxation times are sufficiently small. Moreover, because the domains of wh→c and wc→h

are t2 ≤ t ≤ t3 and t4 ≤ t ≤ t1 +∆tcyc, respectively, they satisfy

0 ≤
w3

t−t2
∆th→c

wh→c(t)
,
w1

t−t4
∆tc→h

wc→h(t)
≤ 1. (7.92)

Thus, Tc ≤ Th→c(t), Tc→h(t) ≤ Th is satisfied because of Eq. (7.90). Then, Th→c(t) and
Tc→h(t) are finite at any time even in the vanishing limit of wj (j = 1, 2, 3, 4). By using
Eq. (7.87), we can calculate the integral in Eqs. (7.31) and (7.34). Then, ∆th→c and ∆tc→h

in the small relaxation-times regime satisfy

∆th→c ≃
T 2
h

2αh→c

(
w3

w2
− 1

)2

, (7.93)

∆tc→h ≃
T 2
h

2α′
c→h

(
w4

w1
− 1

)2

. (7.94)

From Eqs. (7.85) and (7.86), we obtain

w3

w2
=

Th

Tc
+

γαh→c

T 2
hTc

w2 ≃
Th

Tc
, (7.95)

w4

w1
=

Th

Tc
−

γα′
c→h

T 2
hTc

w1 ≃
Th

Tc
, (7.96)

where the last approximate equalities hold because wj in Eq.(7.83) is sufficiently small in
the small relaxation-times regime and αh→c and α′

c→h should be finite for any value of the
relaxation times. Then, Eqs. (7.93) and (7.94) become

∆th→c ≃
T 2
h

2αh→c

(
Th

Tc
− 1

)2

, (7.97)

∆tc→h ≃
T 2
h

2α′
c→h

(
Th

Tc
− 1

)2

. (7.98)

Since we choose ∆th→c = ∆tc→h = 1.0, αh→c and α′
c→h are given by

αh→c ≃
T 2
h

2

(
Th

Tc
− 1

)2

, (7.99)

α′
c→h ≃

T 2
h

2

(
Th

Tc
− 1

)2

. (7.100)

From Eqs. (7.85), (7.86), (7.99), and (7.100), we obtain w3 and w4.
By numerically calculating the integrals in Eqs. (7.6) and (7.7) from the solution to

Eqs. (6.14)–(6.16), we obtained the heat Qh and Qc in Eqs. (7.42) and (7.52) and the work
W in Eq. (7.60). Using the heat and work, we also calculated the efficiency η = W/Qh in
Eq. (7.63) and power P = W/∆tcyc in Eq. (7.64). In this simulation, we choose the initial
condition as σx(t1) = w1, σv(t1) = Th/m, and σxv(t1) = 0. Before starting to measure
the thermodynamic quantities, we waited until the system settled down to a steady cycle.
Therefore, our results are insensitive to the initial condition. When we consider the small
relaxation-times regime in the present protocol, we should take the limit of w1 → 0 and
the limit of m → 0 for the following reasons. In the limit of w1 → 0, we can see that
all wj vanish from w2/w1 = 2.0 and Eqs. (7.85) and (7.86). Then, wh→c(t) in Eq. (7.88)
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and wc→h(t) in Eq. (7.89) vanish at any time. Since T (t) is finite at any time in the
limit of w1 → 0 as shown below Eq. (7.92), λ(t) in Eqs. (7.82) and (7.91) diverges and
the relaxation time of position τx(t) in Eq. (6.9) vanishes at any time. Moreover, in the
limit of m → 0, the relaxation time of velocity τv in Eq. (6.10) vanishes. Note that
in the numerical simulations, we selected a time step smaller than the relaxation times.
Specifically, we set the time step of the Runge-Kutta method as min(w1,m)×10−2 because
of τx(t1) = γw1/Th and τv = m/γ.

We here confirm that the present protocol satisfies the assumption of finite T (t′)/T (t)
and λ(t′)/λ(t), as mentioned above Eq. (7.11), where t and t′ are any times in a process.
Since Tc ≤ T (t) ≤ Th is satisfied at any time, T (t′)/T (t) is finite in all the processes.
Moreover, from Eqs. (7.95) and (7.96) and the finite w2/w1, we find that w3/w1 and
w4/w1 are also finite. Then, using Eqs. (7.82), (7.88), (7.89), and (7.91), we can confirm
that λ(t′)/λ(t) is finite in all the processes even in the vanishing limit of the relaxation
times.

Figure 7.3 shows the difference between the Carnot efficiency and our efficiency mea-
sured with the protocol in Eqs. (7.82), (7.90), and (7.91). In Chap. 6, the Carnot efficiency
is achievable only in the small temperature-difference regime even when we take the van-
ishing limit of the relaxation times. In contrast to that, we can see that the efficiency
approaches the Carnot efficiency in this limit even when the temperature difference is
large.

Figure 7.4 shows the difference between P0 in Eq. (7.64) and P corresponding to
Fig. 7.3. In the small relaxation-times regime, we obtain

∆Sh ≃ 1

2
ln

(
w2

w1

)
=

1

2
ln 2, (7.101)

using w2/w1 = 2.0 and Eqs. (7.45) and (7.83). In the vanishing limit of the relaxation
times, since the approximate equality in Eq. (7.14) becomes equality, the approximate
equality in Eq. (7.101) also becomes equality. Then, we obtain W0 = (Th − Tc) ln 2/2
because of Eq. (7.61). Since we use ∆th = ∆tc = ∆th→c = ∆tc→h = 1.0, we have
∆tcyc = 4.0 in our simulation. Thus, we obtain

P0 =
ln 2

8
(Th − Tc), (7.102)

from Eq. (7.64). From Fig. 7.4, we can see that the power approaches P0 in the vanishing
limit of the relaxation times for arbitrary temperature difference. Thus, the power turns
out to be finite.

Figure 7.5 shows the upper bound of the power in Eq. (7.72). We can see that the
upper bound of the power remains finite even when the efficiency approaches the Carnot
efficiency as shown in Fig. 7.3. This means that χ in Eq. (7.69) diverges in the vanishing
limit of the relaxation times, and also means that the finite power is allowed.

In Fig. 7.6, we compare the results of the numerical simulation with the theoretical
analysis derived in Sec. 7.5 for the efficiency and power. To obtain the theoretical re-
sults in Fig. 7.6, we calculated the entropy productions in Eqs. (7.73), (7.74), (7.76), and
(7.77). Note that we used Eq. (7.18) to calculate Q̇ in Eqs. (7.73) and (7.74) from the time
derivative of the protocol in Eq. (7.82). Moreover, we set ∆Sh = ln 2/2 in the theoretical
analysis as in the numerical simulation. Then, we derived the heat in the hot isothermal
process and work from Eqs. (7.42) and (7.60). Using the heat and work, we can obtain
the efficiency in Eq. (7.63) and power in Eq. (7.64). The numerical simulation and the-
oretical analysis in Fig. 7.6 show a good agreement. Thus, this result shows the validity
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of the theoretical analysis in Sec. 7.5. From Figs. 7.3, 7.4, and 7.5, we can see that the
compatibility of the Carnot efficiency with finite power is achievable without breaking the
trade-off relation.

7.7 Summary of this chapter

We studied the relaxation-times dependence of the efficiency and power in an underdamped
Brownian Carnot cycle with the finite-time adiabatic processes [27,91] and time-dependent
harmonic potential. We showed that the compatibility of the Carnot efficiency and finite
power is achievable in the vanishing limit of the relaxation times in our cycle. In Chap. 6,
we showed that the compatibility of the Carnot efficiency and finite power is possible
only in the small temperature-difference regime in the Brownian Carnot cycle with the
instantaneous adiabatic processes. In this chapter, we considered the finite-time adiabatic
processes and represented the entropy production in terms of the relaxation times in the
small relaxation-times regime. Then, the entropy production vanishes in the vanishing
limit of the relaxation times. We constructed the Carnot cycle with the finite-time adi-
abatic processes in the small relaxation-times regime. By the theoretical analysis of our
cycle, we derived the trade-off relation and showed that in the vanishing limit of the re-
laxation times, the entropy production per cycle vanishes, in other words, the efficiency
approaches the Carnot efficiency. Then, we also showed that the finite power is achievable
without breaking the trade-off relation in Eq. (7.72). Moreover, we confirmed that our
theoretical analysis agrees with the results of our numerical simulation. We finally note
that we can use other protocols satisfying the assumption above Eq. (7.11) and continuity
at the switchings between the processes instead of the present protocol in our simulation.

86



Appendix

A Reason of using the Stratonovich-type product in the
definition of the heat

We explain why we use the Stratonovich-type product to define the heat current in
Eq. (5.22). For the simplicity, we consider the heat in the free Brownian motion. We
assume that x(t) is the one-dimensional stochastic process produced by the Langevin
equation:

ẋ =v,

mv̇ =− γv +
√
2γkBTξ(t). (A.1)

In the stochastic process, there are some definition of the integral such as Itô integral and
Stratonovich integral. They are generalized to the integral used by the ×h∫ s=t

s=0
f(x)×h dx(s) ≡ lim

∆t→0

n−1∑
k=0

f(x(htk+1 + (1− h)tk))(x(tk+1)− x(tk)). (A.2)

When the Brownian particle is described by the Langevin equation in Eq. (A.1), by using
×h, we can define the heat flowing from the heat bath to the particle between s = 0 and
s = t as

qh ≡
∫ s=t

s=0

[
−γv(s) +

√
2γkBTξ(s)

]
×h dx(s)

= lim
∆t→0

n−1∑
k=0

[
−γv(tk)

2 + v(tk)
√

2γkBTξ(tk) (A.3)

+hv(tk)∆t

(
−γv̇(tk) +

1

∆t

√
2γkBT (ξ(tk+1)− ξ(tk)

)]
∆t. (A.4)

Since v(tk) satisfies

v(tk) =
k−1∑
l=0

(vl+1 − vl) =
1

m

k−1∑
l=0

[−γv(tl) +
√
2γkBTξ(tl)], (A.5)

Eq. (A.3) is rewritten as

qh = lim
∆t→0

n−1∑
k=0

[
−γv(tk)

2 − h
2γkBT

m

]
∆t (A.6)
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where we use the Itô’s lemma. Because of the heat, the kinetic energy of the particle
changes. Since the mechanical energy change in each step is given by mv(tk+1)

2/2 −
mv(tk)

2/2, the mechanical energy change between s = 0 and s = t is given by

∆e = lim
∆t→0

n−1∑
k=0

[
mv(tk+1)

2

2
− mv(tk)

2

2

]
= lim

∆t→0

n−1∑
k=0

[
− γ

m
v(tk)

2 +
γkBT

m

]
, (A.7)

where we used Eq. (A.5). From the physical requirements, the total energy should conserve
in the total system, and qh = ∆e should be satisfied. Comparing Eqs. (A.3) and (A.7),
we obtain h = 1/2, and the product ×h becomes the Stratonovich product ◦.

B Review: Entropy production along a trajectory

We consider a Brownian motion governed by the overdamped Langevin equation

ẋ = µF (x, λ(t)) +
√
2Dξ, (B.1)

where µ, D, and λ are the mobility, diffusion constant, and protocol, respectively. Note
that they satisfy the Einstein’s relation T = µD, where T is the temperature of the
heat bath. We assume that the force F (x, λ(t)) is divided into the force from the potential
−∂V (x, λ(t)))/∂x and the force applied to the particle directly f(x, λ(t)). ξ is the Gaussian
white noise satisfying ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = δ(t − t′). The Fokker-Planck equation
corresponding to Eq. (B.1) is given by

∂p(x, t)

∂t
= −∂j(x, t)

∂x
= − ∂

∂x

(
µF (x, λ)−D

∂

∂x

)
p(x, t). (B.2)

When the trajectory is given by x(t), we can define the trajectory-dependent entropy for
the system as

s(t) ≡ − ln p(x(t), t). (B.3)

Then, the averaged entropy of the system is defined as

S(t) ≡ −
∫

dx p(x, t) ln{p(x, t)} ≡ ⟨s(t)⟩ . (B.4)

Note that p(x, t) in Eq. (B.3) is the solution of Eq. (B.2). From Eq. (B.3), the entropy
change rate of the system along the trajectory is given by

ṡ(t) = − 1

p(x, t)

∂p(x, t)

∂t

∣∣∣∣
x(t)

− 1

p(x, t)

∂p(x, t)

∂x

∣∣∣∣
x(t)

ẋ

= − 1

p(x, t)

∂p(x, t)

∂t

∣∣∣∣
x(t)

+
1

p(x, t)

j(x, t)

Dp(x, t)

∣∣∣∣
x(t)

ẋ− µF (x, λ)

D

∣∣∣∣
x(t)

ẋ, (B.5)

where we used Eqs. (B.2) and (B.3). In overdamped dynamics, the force applied from the
heat bath to the particle is given by −µẋ +

√
2Dξ. Thus, the heat current flowing from

the heat bath to the particle is defined as

q̇ ≡ (−µẋ+
√
2Dξ) ◦ ẋ = −F (x, λ) ◦ ẋ. (B.6)
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Since the heat bath is assumed to be equilibrium, the entropy change rate of the heat bath
is defined by

ṡb ≡ − q̇

T
=

µF (x, λ) ◦ ẋ
D

. (B.7)

By using Eqs. (B.5) and (B.7), the trajectory-dependent entropy production is given by

ṡtot ≡ ṡb + ṡ(t) = − 1

p(x, t)

∂p(x, t)

∂t

∣∣∣∣
x(t)

+
1

p(x, t)

j(x, t)

Dp(x, t)

∣∣∣∣
x(t)

ẋ. (B.8)

When the evolution of the probability distribution p(x, t) is described by the Fokker-
Planck equation in Eq. (B.2), from Eq. (3.82), we obtain

p(x′, t+∆t) = p(x′, t) +
∂p(x′, t)

∂t
∆t+O(∆t2)

≃
∫

dx

(
1− 1

p(x, t)

∂j(x, t)

∂x′
∆t

)
δ(x− x′)p(x, t), (B.9)

where ∆t is sufficiently small. From Eq. (B.9), we derive the transition probability as

W (x′, t+∆t|x, t) =
(
1− 1

p(x, t)

∂j(x, t)

∂x′
∆t

)
δ(x− x′). (B.10)

Thus, we obtain

〈
x′|x, t

〉
=

∫
dx′ x′W (x′, t+∆t|x, t) = x− j(x, t)

p(x, t)
∆t (B.11)

Then, ⟨ẋ|x, t⟩ is derived as

⟨ẋ|x, t⟩ = lim
∆t→0

1

∆t

〈
x′ − x|x, t

〉
=

j(x, t)

p(x, t)
. (B.12)

Substituting Eq. (B.12) into Eq. (B.13), we obtain

ṡtot ≡ ṡb + ṡ(t) = − 1

p(x, t)

∂p(x, t)

∂t

∣∣∣∣
x(t)

+
1

p(x, t)

j(x, t)2

Dp(x, t)2

∣∣∣∣
x(t)

. (B.13)

Considering the average on ṡtot over all the trajectories, we derive the averaged entropy
production of the total system as

Σ̇tot ≡ ⟨ṡtot⟩ =
∫

dx
j(x, t)2

Dp(x, t)
≥ 0 (B.14)

The averaged entropy change of the heat bath is given by

Ṡb ≡ ⟨ṡb⟩ =
∫

dx
F (x, t)j(x, t)

T
, (B.15)

where we used Eqs. (B.7) and (B.12) and the Einstein’s relation. From Eqs. (B.13), (B.14),
and (B.15), the averaged entropy change of the system is given by

Ṡ = ⟨ṡ⟩ = Σ̇tot − Ṡb (B.16)

We obtain the fluctuation theorems by considering the time reversal. We assume that
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the domain of t is given by 0 ≤ t ≤ t0. Under the time reversal, λ(t) and x(t) become
λ†(t) ≡ λ(t0 − t) and x†(t) ≡ x(t0 − t), respectively. When we give the initial and final

values x0 = x(0) = x†(t0) = x†t0 and xt0 = x(t0) = x†(0) = x†0, by considering the
transition probability corresponding to Eq. (B.1), we obtain [93]

ln
p[x(t)|x0]
p†[x†(t)|x†0]

=

∫ t

0

F (x, t) ◦ ẋ
T

dt = ∆sb. (B.17)

We define the initial probability of the time-reversed trajectory as p1(x
†
0) ≡ p1(xt). When

we define the quantity as

R[x(t), λ(t); p0, p1] ≡ ln
p[x(t)|x0]p0

p†[x†(t)|x†0]p1(x
†
0)

= ∆sb + ln
p0(x)

p1(xt)
, (B.18)

we find that it satisfies〈
e−R

〉
≡
∑

x(t),x0

p[x(t)|x0]p0(x0)e−R =
∑

x(t),x0

p†[x†(t)|x†0]p1(x
†
0) = 1. (B.19)

Moreover, from Eq. (B.3), we derive the entropy change along the trajectory as

ln
p0(x)

p1(xt)
= ∆s. (B.20)

Then, since R in Eq. (B.18) becomes the entropy change of the total system along the
trajectory −∆stot, we find that Eq. (B.19) becomes〈

e−∆stot
〉
= 1. (B.21)

Using the Jensen’s inequality, we derive the second law of thermodynamics as

Σtot = ⟨∆stot⟩ ≥ 0. (B.22)

In the above discussion, we obtained the entropy production of the along the tra-
jectory by considering the time reversal. We generalize it to the system described by
the overdamped coupled Langevin equations and has the discrete n-states. We introduce
the transition rate wm→n from the state m to the state n. Then, the evolution of the
probability distribution is described by the master equation given by

d

dt
pn(t) =

∑
m ̸=n

[wm→npm − wn→mpn]. (B.23)

We assume that the system evolves along the stochastic trajectory n(t) and its state
changes from n−

j to n+
j at tj . Similar to Eq. (B.3), the entropy of the system along the

trajectory is defined as
s(t) ≡ − ln pn(t)(t). (B.24)

From Eq. (B.23), its time derivative is given by

ṡ(t) = − 1

pn(t)

∂pn(t)

∂t
−
∑
j

δ(t− tj) ln
pn+

j (tj)

pn−
j (tj)

(B.25)
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The second term is the entropy change of the system due to the jump at tj . Since the
entropy change of the heat bath along trajectory in Eq. (B.17) is written only by the
transition probability of the trajectory and that of the time-reversal trajectory, we can
derive it by using the transition rate as

ṡb(t) ≡ −
∑
j

δ(t− tj) ln
wn−

j →n+
j

wn+
j →n−

j

. (B.26)

Using Eqs. (B.25)and and (B.26), we define the entropy production of the total system
along the trajectory as

ṡtot ≡ ṡ+ ṡb = − 1

pn(t)

∂pn(t)

∂t
−
∑
j

δ(t− tj) ln
pn+

j (tj)
wn−

j →n+
j

pn−
j (tj)

wn+
j →n−

j

. (B.27)

Thus, we derive the averaged ṡ, ṡb, and ṡtot as

Ṡ(t) ≡⟨ṡ⟩ =
∑
n,k

pnwk→n ln
pn
pk

, (B.28)

Ṡb(t) ≡⟨ṡb⟩ =
∑
n,k

pnwk→n ln
wn−

j →n+
j

wn+
j →n−

j

, (B.29)

Ṡtot ≡⟨ṡtot⟩ =
∑
n,k

pnwk→n ln
pn+

j (tj)
wn−

j →n+
j

pn−
j (tj)

wn+
j →n−

j

. (B.30)

C Derivation of Eqs. (6.116) and (7.14)

We show that the variables σx, σv, and σxv behave like Eqs. (6.116) and (7.14) in the
small relaxation-times regime when the temperature T (t) and stiffness λ(t) satisfy the
assumption above Eq. (7.11). For the above purpose, we first show that the variables σx,
σv, and σxv relax toward Eqs. (6.116) and (7.14) when the temperature T and stiffness
λ are constant. After that, we consider the case that the temperature T (t) and stiffness
λ(t) depend on time and show that these variables satisfy Eqs. (6.116) and (7.14).

We assume that a thermodynamic process lasts for ti ≤ t ≤ tf and we thus have
∆t = tf − ti in Eq. (7.2). The temperature T and stiffness λ are assumed to be constant.
When we set σx(ti) = σx0, σv(ti) = σv0, and σxv(ti) = σxv0 as an initial condition, we can
solve Eqs. (6.14)–(6.16) using the Laplace transform [90], and we can obtain σx and σv
as follows:

σx(t) =
T

λ
+

m

λ
D1e

− γ
m
(t−ti) +

(γ +mω∗)2

4λ2
D2e

−( γ
m
−ω∗)(t−ti) +

(γ −mω∗)2

4λ2
D3e

−( γ
m
+ω∗)(t−ti),

(C.1)

σv(t) =
T

m
+D1e

− γ
m
(t−ti) +D2e

−( γ
m
−ω∗)(t−ti) +D3e

−( γ
m
+ω∗)(t−ti), (C.2)

where

ω∗ ≡ γ

m

√
1− 4

mλ

γ2
, (C.3)
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D1 ≡
λ

mω∗2

(
4
T

m
− 2σv0 − 2

λ

m
σx0 − 2

γ

m
σxv0

)
, (C.4)

D2 ≡− 1

2ω∗2

[
γT

m2

( γ

m
− ω∗

)
+

(
2
λ

m
− γ2

m2
+

γ

m
ω∗
)
σv0 − 2

λ2

m2
σx0 + 2

λ

m

(
− γ

m
+ ω∗

)
σxv0

]
,

(C.5)

D3 ≡− 1

2ω∗2

[
γT

m2

( γ

m
+ ω∗

)
+

(
2
λ

m
− γ2

m2
− γ

m
ω∗
)
σv0 − 2

λ2

m2
σx0 + 2

λ

m

(
− γ

m
− ω∗

)
σxv0

]
.

(C.6)

We can also derive σxv using Eqs. (6.14) and (C.1). Note that since the exponential terms
in Eqs. (C.1) and (C.2) vanish as t → ∞, σx and σv relax to time-independent T/λ and
T/m, respectively. Using τx in Eq. (6.9) and τv in Eq. (6.10), we can rewrite Eq. (C.3) as

ω∗ =
1

τv

√
1− 4

τv
τx

. (C.7)

Then, the exponential functions in Eqs. (C.1) and (C.2) are represented by

e−
γ
m
(t−ti) = e−(t−ti)/τv , (C.8)

e−(
γ
m
−ω∗)(t−ti) = e

−
(
1−

√
1−4 τv

τx

)
(t−ti)/τv

, (C.9)

e−(
γ
m
+ω∗)(t−ti) = e

−
(
1+

√
1−4 τv

τx

)
(t−ti)/τv

. (C.10)

By considering the magnitude relationship between τx and τv, we show that the re-
laxation time of the system is evaluated as max(τx, τv). When τx ≤ 4τv, ω

∗ in Eq. (C.7)
becomes purely imaginary. Thus, we can consider that the exponential terms in Eqs. (C.1)
and (C.2), which are expressed by Eqs. (C.8)–(C.10), are sufficiently smaller than the first
terms of Eqs. (C.1) and (C.2) when

t− ti ≫ τv (C.11)

is satisfied. Therefore, we can regard the relaxation time of the system as τv. On the other
hand, the case of τx > 4τv is as follows. Since the exponential function of the second terms
in Eqs. (C.1) and (C.2) is expressed by the relaxation times as in Eq. (C.8), it becomes
sufficiently smaller than the first terms when Eq. (C.11) is satisfied. Moreover, because the
fourth terms in Eqs. (C.1) and (C.2) are expressed by Eq. (C.10) and 1+

√
1− 4τv/τx > 1,

those terms are also sufficiently smaller than the first terms when Eq. (C.11) is satisfied.
When 4τv/τx becomes small, however, 1 −

√
1− 4τv/τx in the exponent of Eq. (C.9), by

which the third terms in Eqs. (C.1) and (C.2) are expressed, approaches 0 and we have to
reconsider the case. When τx ≫ τv, the exponent of Eq. (C.9) is approximated by

− 1

τv

(
1−

√
1− 4

τv
τx

)
(t− ti) ≃ − 2

τx
(t− ti) , (C.12)

which makes Eq. (C.9) vanish when

t− ti ≫ τx (C.13)
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is satisfied. Then, the third terms of Eqs. (C.1) and (C.2) are sufficiently smaller than
the first terms. When τx ≫ τv, the time for the third terms in Eqs. (C.1) and (C.2) to
vanish is longer than the time for the second and fourth terms to vanish. Therefore, the
relaxation time of the system is evaluated as τx. In summary, the relaxation time of the
system is represented by

τ ≡ max(τx, τv). (C.14)

Therefore, we can see that when t− ti ≫ τ is satisfied, σx and σv are approximated by

σx ≃ T

λ
, σv ≃ T

m
(C.15)

from Eqs. (C.1) and (C.2). When σx and σv are changing toward Eq. (C.15), we consider
that the system is in the relaxation. Moreover, when t − ti ≫ τ is satisfied, we use the
phrase “after the relaxation”. Since the initial condition is included only in D1, D2, and
D3 in Eqs. (C.4)–(C.6), we find that the variables σx and σv relax to the values determined
by T , m, and λ even when we choose other initial conditions. In the limit of τ → 0, σx
and σv satisfy Eq. (C.15) when t− ti > 0.

From Eq. (6.16), we can obtain σxv by differentiating Eq. (C.1) with respect to time.
Because T and λ are assumed to be constant, the time derivative of the first term in
Eq. (C.1) vanishes. Moreover, we can neglect the exponential terms after the relaxation.
After the relaxation, we can see that the time derivative of the remaining terms in Eq. (C.1)
also vanishes. Thus, σxv vanishes after the relaxation.

Subsequently, we consider the thermodynamic process where the temperature T and
stiffness λ depend on time. In the statement above Eq. (7.11), we assumed that T and
λ vary smoothly and slowly. Then, in the small relaxation-times regime, we can expect
that the fast relaxation dynamics rapidly vanishes and only the slow dynamics remains
accompanying the change of T and λ. Therefore, as the resulting approximate dynamics,
we obtain the same expression as Eq. (C.15), by replacing the constant T and λ with
the time-dependent variables. Then, we obtain the time derivative of σx and σv after the
relaxation in the process as

σ̇x ≃ d

dt

(
T

λ

)
=

T

λ

(
d

dt
ln

T

λ

)
, σ̇v ≃ Ṫ

m
. (C.16)

From Eqs. (6.14) and (C.16), σxv becomes

σxv(t) =
1

2
σ̇x ≃ T (t)

2λ(t)

(
d

dt
ln

T (t)

λ(t)

)
. (C.17)

Therefore, we obtain the results in Eqs. (6.116), (7.14), and (7.15) in the small relaxation-
times regime. In Appendix E, we mention that we may need to reconsider these results
at the switching between the processes.

D Derivation of the protocol in the finite-time adiabatic
process

We derive the protocol of the finite-time adiabatic process by giving a finite ∆t and the time
evolution of σx(t). We assume that the finite-time adiabatic process lasts for ti ≤ t ≤ tf ,
and the temperature changes from Ti to Tf . In the finite-time adiabatic process, we need
to specify the time evolution of the five variables (T (t) and λ(t) in the protocol and σx, σv,
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and σxv to representing the state of the Brownian particle). In the finite-time adiabatic
process in Sec. 7.3, however, there are only four equations in Eqs. (6.14)–(6.16) and (7.21).
Therefore, we have insufficient number of the equations. However, we can obtain the closed
equations if we give the time evolution of one of the five variables.

As we show below, we obtain the protocol by giving the time evolution of σx(t). To
determine the time evolution of σv, σxv, T , and λ, we solve Eqs. (6.14)–(6.16) and (7.21).
From the given σx and Eq. (6.14), we obtain σxv. Using Eqs. (6.14) and (7.21), we can
rewrite Eqs. (6.15) and (6.16) as

Ṫ =− λσ̇x, (D.1)

mσ̈x =2T − 2λσx − γσ̇x. (D.2)

From Eq. (D.1), we obtain λ(t) as

λ(t) = − Ṫ (t)

σ̇x(t)
. (D.3)

Substituting this into Eq. (D.2), we derive the differential equation of T as

Ṫ +

(
d

dt
lnσx

)
T =

1

2

(
d

dt
lnσx

)
(mσ̈x + γσ̇x) . (D.4)

By solving Eq. (D.4), we can derive the time evolution of T (t) as

T (t) =
1

2σx(t)

(
γ

∫ t

ti

σ̇x(t)
2dt+ 2Tiσxi +

m

2
σ̇x(t)

2 − m

2
σ̇xi

2

)
, (D.5)

using the initial condition T (ti) = Ti. Then, from Eq. (7.21), we obtain σv. Note that ∆Φ
in the finite-time adiabatic process satisfies

∆Φ =
σxfTf

m
− σxiTi

m
− 1

4
(σ̇xf

2 − σ̇xi
2) =

1

2

γ

m

∫ tf

ti

σ̇x(t)
2dt, (D.6)

where we used Eqs. (6.12), (6.14), (7.21), and (7.27). From Eqs. (D.5) and (D.6), we can
confirm that T (t) satisfies T (tf ) = Tf . Substituting T (t) in Eq. (D.5) and the given σx(t)
into Eq. (D.3), we can obtain the time evolution of λ(t).

E Entropy production at the switchings

We show that the entropy production at the switchings between the isothermal and finite-
time adiabatic processes can be neglected in the small relaxation-times regime. In Sec. 7.4,
although we assumed that T and λ in our Carnot cycle are continuous at the switchings,
we do not assume that the time derivative of T and λ are continuous. If σxv always
satisfies Eq. (7.14) even in the vicinity of the switchings and the time derivative of T and
λ are discontinuous at the switchings, σxv becomes discontinuous. However, the variables
σx, σv, and σxv should be continuous because their time evolution is described by the
differential equations in Eqs. (6.14)–(6.16). Thus, we may consider that the variables do
not satisfy Eq. (7.14) just after the switchings and relax to Eq. (7.14). This means that
there exists a relaxation just after the switchings.

From Eq. (7.71), the entropy production per cycle should vanish to achieve the Carnot
efficiency. Thus, the entropy production in the relaxation after the switchings may af-
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Figure E.1: Heat flowing between t2 and t in the finite-time adiabatic process (ii) in
Fig. 7.1. In this simulation, we used the protocol in Eqs. (7.82), (7.90), and (7.91) in
Sec. 7.6. We chose Th = 10.0, Tc = 1.0, and the other parameters used in the numerical
simulation in Sec. 7.6. We here set t2 = 1.0. Thus, the finite-time adiabatic process
(ii) lasts for 1.0 ≤ t ≤ 2.0. We find that although the relaxation after the switching at
t = t2 exists, the heat flowing in the relaxation becomes smaller when the relaxation times
become smaller.

fect the efficiency. We evaluate the entropy production in the total system due to that
relaxation in the small relaxation-times regime and show that it can be neglected. Since
the variables σx, σv, and σxv may not satisfy Eqs. (7.14) and (7.15) in the relaxation,
we cannot rewrite the entropy production rate by using the relaxation times as shown in
Eq. (7.19). However, since the variables just before the switchings and after the relaxation
satisfy Eqs. (7.14) and (7.15), we can evaluate the entropy of the particle and heat flow-
ing in the relaxation as shown below. Then, by using Eq. (7.9), we evaluate the entropy
production.

Although we here focus on the switching from the hot isothermal process to the finite-
time adiabatic process, corresponding to t = t2 in Fig. 7.1, the similar discussion is avail-
able in the other switchings. At that switching, the temperature and stiffness satisfy
T = Th and λ = λ2, respectively. When we assume that T and λ vary smoothly and slowly,
as in the statement above Eq. (7.11), we can expect that T and λ remain unchanged in
the relaxation. Then, σx and σv just before the switching and after the relaxation are the
same because of Eqs. (7.14) and (7.15). Thus, from Eqs. (6.18) and (7.16), the entropy
change of the particle in this relaxation satisfies

∆Srel ≃ 0, (E.1)

in the small relaxation-times regime because of Eqs. (6.18) and (7.16), where the index
“rel” means the quantity in this relaxation. Moreover, since T and λ are regarded as
unchanged in the relaxation, we can see from Eq. (7.14) that each of σx and σv just before
the relaxation takes the same value as that after the relaxation. Therefore, we can evaluate
the heat Qrel flowing in this relaxation in the small relaxation-times regime as

Qrel ≃1

2
m(∆σv)

rel +
1

2
λ2(∆σx)

rel ≃ 0 (E.2)

from Eqs. (7.5) and (7.7). Figure E.1 shows that the relaxation exists after the switching
at t = t2 in the finite-time adiabatic process (ii) in Fig. 7.1 with the protocol in Sec. 7.6.
However, we can see that the heat flowing in the relaxation becomes smaller when the
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relaxation times become smaller. Thus, we can neglect Qrel in Eq. (E.2) in the small
relaxation-times regime. Since we can regard T as Th in the relaxation, we derive the
entropy production Σrel of the total system in this relaxation by using Eqs. (7.9), (E.1),
and (E.2) as

Σrel ≃∆Srel − Qrel

Th
≃ 0. (E.3)

Thus, the entropy production Σrel can be neglected in the small relaxation-times regime.

F Numerical simulation of Langevin system

We show Heun’s method to solve the Langevin equation numerically. For simplicity, we
consider the one-dimensional Langevin equation:

dX(t) = a(X, t)dt+ b(X, t) ◦ dB(t), X(t0) = X0, (F.1)

using the Stratonovich-type product. When X ′
n is the approximate solution at t = tn, we

obtain the difference equation for X ′
n as

X ′
n+1 = X ′

n +
1

2
(a1 + a2)∆t+

1

2
(b1 + b2)ξn

√
∆t, (F.2)

a1 ≡ a(X ′
n, t), a2 ≡ a(X ′

n + a1∆t+ ξn
√
∆t, t+∆t), (F.3)

b1 ≡ b(X ′
n, t), b2 ≡ b(X ′

n + a1∆t+ ξn
√
∆t, t+∆t) (F.4)

from Eq. (F.1), where ∆t is a time step and ξ(t) is the Gaussian white noise satisfying
⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(s)⟩ = δ(t − s). The Box–Muller’s method is often used to generate
the Gaussian white noise from a uniformly distributed random numbers [80]. Because of
the Itô’s lemma in Eq. (3.26), we express a increment of the Wiener process as ξn

√
∆t.

Similar to Sec. 5.2.3, we can calculate the heat and work in the underdamped Langevin
system [28].

Figure F.1 shows the numerical results of the (a) Efficiency and (b) power in the Brow-
nian Carnot cycle with the finite-time adiabatic process derived from solving Eqs. (6.14)–
(6.16) and Langevin equations in Eqs. (6.4) and (6.5). Although the numerical result of
the Langevin equations fluctuates, it shows a good agreement with the numerical result
of Eqs. (6.14)–(6.16).
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Figure F.1: The numerical results of the (a) Efficiency and (b) power in the Brownian
Carnot cycle with the finite-time adiabatic process derived from solving Eqs. (6.14)–(6.16)
(purple plus) and Langevin equations in Eqs. (6.4) and (6.5) (green triangle). We used
the protocol in Sec. 7.6 and set w1 = m = 10−2. The red lines in the left and right figures
show the Carnot efficiency in Eq. (1.1) and P0 in Eq. (7.64), respectively. In the Langevin
simulation, we chose the time step as ∆t = 10−5 and calculated the average values of 10000
times for the work and heat to obtain the efficiency and power. We used the standard
error to obtain the error bars.
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