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Abstract 22 

 A novel mesophilic and neutrophilic sulfate-reducing bacterium, strain SF6T, 23 

was isolated from sediment of a brackish lake in Japan. Cells of strain SF6T were motile 24 

and rod-shaped with length of 1.2–2.5 μm and width of 0.6–0.9 μm. Growth was 25 

observed at 10–37°C with an optimum growth temperature of 28°C. The pH range for 26 

growth was 5.8–8.2 with an optimum pH of 7.0. The most predominant fatty acid was 27 

anteiso-C15 : 0. Under sulfate-reducing conditions, strain SF6T utilized lactate, ethanol 28 

and glucose as growth substrate. Chemolithoautotrophic growth on H2 was not 29 

observed, although H2 was used as electron donor. Fermentative growth occurred on 30 

pyruvate. As electron acceptor, sulfate, sulfite, thiosulfate and nitrate supported 31 

heterotrophic growth of the strain. The complete genome of strain SF6T is composed of 32 

a circular chromosome with length of 3.8 Mbp and G + C content of 54 mol%. Analyses 33 

of the 16S rRNA gene and whole genome sequence indicated that strain SF6T belongs to 34 

the genus Pseudodesulfovibrio but distinct form all existing species in the genus. On the 35 

basis of its genomic and phenotypic properties, strain SF6T (= DSM111931T = NBRC 36 

114895T) is proposed as the type strain of a new species, with name of 37 

Pseudodesulfovibrio sediminis sp. nov. 38 

  39 



Introduction 40 

The genus Pseudodesulfovibrio encompasses species of Gram-stain-negative sulfate-41 

reducing bacteria with rod-shaped motile cells (Galushko and Kuever, 2019). The type 42 

species is P. indicus (Cao et al., 2016). According to the List of Prokaryotic Names with 43 

Standing in Nomenclature (LPSN), there are 10 species with validly published names in 44 

this genus, as of the end of February 2022. They include 7 species which were originally 45 

described as Desulfovibrio species, i.e., D. halophilus (Caumette et al. 1991), D. 46 

profundus (Bale et al., 1997), D. aespoeensis (Motamedi and Pedersen 1998), D. 47 

tunisiensis (Ben Ali Gam et al., 2009), D. portus (Suzuki et al., 2009), D. piezophilus 48 

(Khelaifia et al., 2011), D. senegalensis (Thioye et al., 2017). These species were 49 

transferred to the genus Pseudodesulfovibrio in subsequent works (Cao et al., 2016; 50 

Galushko and Kuever 2019; Waite et al., 2020). P. hydrargyri (Ranchou-Peyruse et al., 51 

2018) and P. mercurii (Gilmour et al., 2021) were described as novel species of 52 

Pseudodesulfovibrio, although their type strains had been classified in the genus 53 

Desulfovibrio in the past. ‘P. alkaliphilus’ (Frolova et al., 2021) and ‘P. cashew’ (Zheng 54 

et al., 2021) were recently proposed, while they have not been included in the validation 55 

list yet. It has also been indicated that D. oxyclinae (Kreler et al., 1997), ‘D. 56 

dechloracetivorans’ (Sun et al., 2000) and ‘Desulfovibrio brasiliensis’ (Warthmann et al., 57 



2005) should be reclassified into the genus Pseudodesulfovibrio (Galushko and Kuever  58 

2019; Waite et al., 2020). Although D. oxyclinae is validly published name, proposed 59 

name for its reclassification, ‘P. oxyclinae’, has not been validated because its type strain 60 

is only available in one culture collection (Waite et al., 2020). ‘D. dechloracetivorans’ 61 

cannot be validated or renamed, as its type strain is not available in culture collections at 62 

present. On the other hand, the type strain of ‘D. brasiliensis’ is currently available in two 63 

culture collections (as DSM 15816 and JCM 12178). It was also indicated that 64 

‘Paradesulfovibrio onnuriensis’ is the closest relative of P. senegalensis (Kim et al., 65 

2020), and belongs to a lineage in the Pseudodesulfovibrio.  66 

Phylogenetic analysis based on the 16S rRNA gene indicated that there are two 67 

distinct phylogenetic groups within the genus Pseudodesulfovibrio (Galushko and Kuever, 68 

2019). The divergence between the groups (referred to as “cluster 1” and “cluster 2”, 69 

respectively) is large enough to separate them into different genera. In other words, 70 

reclassification of cluster 2 as a separate genus is to be expected (Galushko and Kuever, 71 

2019). 72 

In this study, a novel sulfate-reducing bacterium isolated and characterized, as a 73 

representative of a new species in the genus Pseudodesulfovibrio. 74 

 75 



Materials and methods 76 

 77 

Enrichment and isolation  78 

 79 

The novel isolate, strain SF6T was isolated from sediment of a brackish lake, 80 

Lake Akkeshi in Japan. Water depth of the sampling site (43.05° N 144.89° E) was 1.6 m. 81 

At the time of sampling, temperature and of pH of overlying water were 22.3℃ and 8.0 82 

respectively. Throughout this study, a bicarbonate-buffered and sulfide-reduced defined 83 

medium was used as basal medium. The basal medium for marine sulfate-reducing 84 

bacteria was prepared as described previously (Widdel & Bak, 1992), and headspace of 85 

culture bottles was filled with N2 /CO2 (80 : 20, v/v). To establish the first enrichment, 86 

0.2 g of the sediment was taken from 5–6 cm layer and inoculated into the basal medium 87 

supplemented with 5 mM formate. The culture bottle was incubated at 18°C in the dark. 88 

The grown culture was transferred to the same medium three times. The resulting 89 

enrichment culture was subjected to agar shake dilution. A black colony was picked up 90 

in the same medium and incubated at 18°C. After growth became visible, grown culture 91 

was transferred to the basal medium supplemented with 5 mM lactate, and incubation 92 

temperature was changed to 28°C. Finally, pure culture of strain SF6T was obtained from 93 

the culture grown on lactate, by agar shake dilution. Purity of the resulting culture was 94 



confirmed by microscopic observation with a phase-contrast microscope (Axioplan 2; 95 

Zeiss) and repeated sequencing of the 16S rRNA gene fragments.  96 

 97 

Phylogenetic analysis based on the 16S rRNA gene 98 

   Nearly full length of the 16S rRNA gene was amplified by PCR with primer pair of 99 

27F and 1492R (Lane, 1991). The PCR product was directly sequenced, and the resulting 100 

sequence was subjected to blastn search to identify the closest relatives. Phylogenetic  101 

analysis was conducted using MEGA version 11 (Tamura et al., 2021), as described below. 102 

The 16S rRNA gene sequence of strain SF6T was aligned with those of type strains in the 103 

genus Pseudodesulfovibrio, using the MUSCLE algorithm. With the resulting alignment, 104 

models for genetic distance calculation were evaluated by using the model selection tool 105 

in MEGA. With the best model giving the lowest Bayesian Information Criterion (BIC) 106 

score, genetic distances were calculated by excluding positions with gaps. 107 

 108 

Phenotypic characterization 109 

   In all experiments for phenotypic characterizations, strain SF6T was cultured at 28°C 110 

in the basal medium supplemented with 5 mM lactate, unless otherwise specified. Its 111 

growth was monitored as turbidity of cultures.  112 



Effect of temperature on growth was examined by culturing at 5, 8, 10, 13, 15, 18, 22, 113 

25, 28, 30, 32, 35, 37, 42 and 45°C. Effect of salinity on growth was examined by altering 114 

NaCl concentration to 0.1, 0.6, 1.1, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5 and 115 

7.0% (w/v). To investigate effect of pH on growth, composition of the medium was 116 

modified by replacing bicarbonate with 20 mM MES, MOPS, or TAPS. The MES-117 

buffered medium was used to test growth at pH 5.3, 5.5, 5.8, 6.0, 6.2, 6.4, 6.6 and 6.8, by 118 

adjusting the pH with NaOH. In the same way, MOPS-buffered medium was used for pH 119 

6.5, 7.0, 7.3, 7.5, 7.8. The pH of TAPS-buffered medium was adjusted to 7.8, 8.0, 8.2, 120 

8.4, 8.6, 8.8 and 9.0. 121 

 Utilization of growth substrates was tested in the basal medium, supplemented with 122 

one of the following substrates (mM; unless otherwise specified); formate (5), acetate (5), 123 

propionate (2), lactate (5), butyrate (5), isobutyrate (5), malate (5), succinate (5), fumarate 124 

(5), benzoate (2), pyruvate (5), citrate (5), methanol (5), ethanol (5), glucose (5) and yeast 125 

extract (0.05% w/v). Hydrogen-dependent autotrophic growth was tested under a gas 126 

mixture of N2, H2 and CO2 (50:40:10 v/v/v, 200 kPa total pressure). For formate and 127 

hydrogen, growth was also assessed in the presence of acetate (1 mM) as carbon source. 128 

Sulfide production was assessed by mixing the culture with sulfide detection reagent 129 

consisting of 5 mM CuCl2 and 50 mM HCl (Cord-Ruwisch, 1985). Fermentative growth 130 



and utilization of electron acceptors were tested with a modified version of the basal 131 

medium which contained no sulfate. In the test of fermentation, the sulfate-free medium 132 

was supplemented with ethanol (5), pyruvate (10), lactate (5), succinate (5), malate (5) or 133 

fumarate (5). As electron accepters, thiosulfate (10), elemental sulfur (0.5 % w/v), sulfite 134 

(1 and 5), nitrate (10) and tetrathionate (5) were tested in the presence of 5 mM lactate. 135 

For cellular fatty acid analysis, strain SF6 was grown in the basal medium supplemented 136 

with 20 mM lactate. The fatty acid profile was obtained with the Sherlock Microbial 137 

Identification System (MIDI) version 6.0 (database; MOORE6). 138 

 139 

Genomic characterization 140 

   Whole genome sequencing was performed using the platforms of Illumina NextSeq 141 

and Nanopore GridION. Short and long reads from the platforms were subjected to hybrid 142 

assembly using Unicycler (Ver 0.4.7). The assembled genome sequence was annotated 143 

with DFAST (Tanizawa et al., 2018).  144 

   As genome relatedness indices between SF6T and its close relatives, values 145 

of average nucleotide identity (ANI) and average amino acid identity (AAI) were 146 

calculated by using tools provided by Kostas lab (http://enve-omics.ce.gatech.edu/). The 147 

Genome-to-Genome Distance Calculator provided by DSMZ were used to calculate 148 



digital DNA–DNA hybridization (dDDH) values, by applying the formula 2 (Meier-149 

Kolthoff et al., 2013).  150 

A genome-based taxonomic classification was carried out with the Genome 151 

Taxonomy Database (GTDB) (Parks et al., 2018). Taxonomic position of the strain SF6T 152 

in the GTDB (release 95) was identified using GTDB-Tk (Chaumeil et al., 2020).  153 

 154 

 155 

Results and Discussion  156 

 157 

Physiological and chemotaxonomic characteristics 158 

The fundamental characteristics of strain SF6T are summarized in Table 1 and 159 

presented in the species description. Cells of strain SF6T were motile, rod-shaped, 0.6–160 

0.9 μm in width, 1.2–2.5 μm in length. Under the sulfate-reducing conditions, strain 161 

SF6T grew at 10–37°C with optimum growth at 28°C, and grew at pH range of 5.8–8.2 162 

with the optimum pH of 7.0. The NaCl range for growth was 0.6–6.5 %, with optimum 163 

growth at 2.0%. 164 

In the presence of sulfate, lactate, ethanol and glucose supported heterotrophic 165 

growth of SF6T accompanying sulfide production. The molar ratio of generated sulfide 166 



to consumed lactate never exceeded 0.8. This upper limit is clearly lower than expected 167 

ratio for complete oxidation of lactate (1.5), suggesting incomplete lactate oxidation by 168 

strain SF6T. Chemolithotrophic growth on hydrogen was not observed. Formate and 169 

hydrogen were utilized as electron donor, but acetate was required as carbon source for 170 

growth. Among the substrate tested, only pyruvate supported fermentative growth of the 171 

strain. The pyruvate-dependent growth was also observed in the presence of sulfate, but 172 

sulfide was not detected in this case. This means that strain SF6T grows by fermentation 173 

of pyruvate, but does not use it as electron donor for sulfate reduction. This pattern of 174 

pyruvate utilization was previously reported in P. alkaliphilus F-1T (Frolova et al., 175 

2021). In addition to sulfate, sulfite, thiosulfate and nitrate were used as electron 176 

acceptor for lactate oxidation. 177 

In the cellular fatty acid profile of cells grown on lactate, anteiso-C15 : 0 was 178 

predominant, accounting for 21% of total. Other major components (>10% of total) 179 

were summed feature 10 (C18:1ω7c and/or unknown 17.834; 13.3%), C18 : 0 (11.7%), C16 : 180 

1ω7c (11.6%) and C16 : 0 (10.1%). All fatty acids detected are shown in Table S1. 181 

 182 

Genomic features 183 

   The complete genome of strain SF6T was reconstructed by assembling 184 



3,394,816 DNBSEQ reads and 126,221 GridION reads, with coverage of 330-fold. It 185 

consists of a single circular chromosome with size of chromosome 3,764,150 bp and 186 

G+C content of 54.0% (Table 1). In the genome, 3527 protein-coding sequences, 9 187 

RNA genes and 57 tRNA genes were predicted. Three copies of the 16S rRNA gene had 188 

identical sequence. The encoded proteins include those involved in glycolysis via 189 

Embden-Meyerhof pathway, membrane transport of monosaccharides, respiratory 190 

nitrate reduction to nitrite and nitrogen fixation.  191 

Some genes encoding key enzymes for inorganic carbon fixation by sulfate 192 

reducers were not identified in the genome of strain SF6T. The genome lacks the fhs and 193 

acsB genes, encoding and formate-tetrahydrofolate ligase and carbon monoxide 194 

dehydrogenase/acetyl-CoA synthase, respectively. These enzymes are key components 195 

of the Wood–Ljungdahl pathway. In addition, formate-tetrahydrofolate ligase also plays 196 

a critical role in carbon fixation via reductive glycine pathway (Sánchez-Andrea et al., 197 

2020). 198 

 199 

Taxonomic assignment 200 

   In the blastn analysis of the 16S rRNA gene sequence, high sequence identities were 201 



observed between strain SF6T and type strains of Pseudodesulfovibrio species (Table 1). 202 

Among them, P. indicus J2T showed the highest identity of 97.4%. By constructing 203 

phylogenetic tree of the 16S rRNA gene, it was indicated that strain SF6T belongs to the 204 

genus Pseudodesulfovibrio (Fig. 1). The tree also indicated that strain SF6T is 205 

phylogenetically distinct from existing species, and belongs to the cluster 1 defined in 206 

the previous study (Galushko and Kuever, 2019).  207 

 Some genomic characteristics are consistent with the results of 16S rRNA gene 208 

analysis which suggested that strain SF6T represents a novel species. The G + C content 209 

of strain SF6T is distinct from those of other type strains of Pseudodesulfovibrio species 210 

(except for P. profundus), with differences greater than 4% (Table 1). In general, 211 

differences between genomic G + C contents of strains from the same species are 1 % or 212 

smaller (Meier-Kolthoff et al., 2014). The values of ANI, AAI and dDDH between 213 

strain SF6T and the type strains of Pseudodesulfovibrio species are shown in Table 1. 214 

All these values are lower than threshold for species delineation. Further, the genome of 215 

strain SF6T was subjected to phylogenomic analysis with the GTDB-tk. By 216 

phylogenetic analysis based on 120 conserved proteins (Parks et al., 2018), strain SF6T 217 

was classified as a novel species in the genus Pseudodesulfovibrio.  218 

The creation of new species, suggested by the phylogenetic analyses, is 219 



supported by some phenotypic characteristics which differentiate strain SF6T from other 220 

species (Table 1). For the species represented by strain SF6T, the name 221 

Pseudodesulfovibrio sediminis sp. nov. is proposed here. 222 

   223 

Description of Pseudodesulfovibrio sediminis sp. nov. 224 

Pseudodesulfovibrio sediminis  (se.di’mi.nis. L. gen. n. sediminis, of sediment). 225 

Cells and rod shaped, 1.2–2.5 μm in length and 0.6–0.9 μm in width. Grows at 10–226 

37°C with an optimum growth at 28°C. The pH range for growth is 5.8–8.2, with an 227 

optimum pH of 7.0. Grows with 0.6–6.5% NaCl (optimum 2.0%). Predominant fatty acid 228 

is anteiso-C15 : 0. Under sulfate-reducing conditions, grows on lactate, ethanol and glucose. 229 

Acetate, propionate, butyrate, isobutyrate, malate, succinate, fumarate, benzoate, 230 

pyruvate, citrate, methanol and yeast extract are not utilized as growth substrate. Formate 231 

and hydrogen are utilized as electron donor for growth with acetate as carbon source. 232 

Ferments pyruvate but does not use it as electron doner for sulfate reduction. Does not 233 

ferment malate and fumarate. Uses sulfate, sulfite, thiosulfate and nitrate as electron 234 

acceptor. G + C content of genomic DNA of the type strain is 54.0 mol%.  235 

The type strain SF6T (= DSM111931T = NBRC 114895T) was isolated from sediment 236 



of a brackish lake in Japan.  237 

The GenBank/EMBL/DDBJ accession number for the complete genome of strain SF6T 238 

is AP024485. 239 

 240 
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 357 

Figure legend 358 

Fig. 1. Phylogenetic position of strain SF6T within the genus Pseudodesulfovibrio, based 359 

on the 16S rRNA gene sequences. The phylogenetic tree was inferred by using the 360 

maximum likelihood method and Kimura 2-parameter model. A discrete gamma 361 

distribution was used to model evolutionary rate differences among sites, allowing some 362 

sites to be invariable. All positions containing gaps and missing data were eliminated, 363 

leaving a total of 1340 positions in the final dataset. Numbers on nodes represent 364 

percentage values of 1000 bootstrap resampling.  365 
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