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Abstract: This study proposed a semi-automatic system for crack detection and quantification, 11 

based on the combination of a trained convolutional neural network (CNN) and a developed 12 

application. Specifically, we tested four commonly used CNNs and determined GoogLeNet for 13 

this study. Then, the transfer learning and fully training of GoogLeNet were further tested on our 14 

testing dataset and a public dataset. The results show that the transfer learning GoogLeNet has 15 

relatively balanced performances on these two datasets, with accuracy of 96.69 % and 88.39%, 16 

respectively. A new sliding window technique (neighborhood scanning) was proposed and 17 

shown almost equivalent performance to the previous dual scanning method. A method for 18 

calculating crack width was presented. The average relative error of this method is 14.58% (0.05 19 

mm), i.e., much smaller than the 36.37% (i.e., 0.14 mm) of the previous method.  An application 20 

was then developed to integrate the proposed methods and other techniques such as edge 21 

detectors, boundary tracking, and threshold segmentation to segment, quantify, and analyze 22 

cracks. Verifications on 23 untrained raw images (eleven with 10240×2048 pixels, twelve with 23 

2592×4608 pixels) show that: (1) the developed system and a previous pixel-level segmentation 24 

system require an average of 9.48s and 10.35s; (2) these two systems show an 80.40% and a 25 

78.64% average intersection over union (IoU). Therefore, the proposed system is a cost-effective 26 

solution for detecting and analyzing cracks on concrete surfaces considering its practical 27 
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performance and time cost. Practically, the proposed system could be used to analyze the images 1 

collected from onsite inspection or from experiment.  2 

1. Introduction 3 

Infrastructures (including numerous concrete structures) must be prudently managed to balance 4 

safety, economy, and sustainability requirements, and the maintenance of such infrastructures 5 

has become a major social concern [1].  Despite the several limitations of visual inspection, it is 6 

a widely accepted methodology used in practice for the asset management of buildings and 7 

bridges [2]. The investigation of concrete defects including cracks is a commonly and necessary 8 

task in an inspection for assessing the conditions of concrete structures. Currently, owing to 9 

advancements in computer technology, researchers are working towards automating the 10 

inspection process using digital image analysis [2].  Cracks are of particular importance for the 11 

safety and maintenance of concrete structures. Therefore, this study mainly focuses on cracks in 12 

concrete structures. Cracks in concrete structures have many causes, such as poor repairs, 13 

contractions owing to rapid temperature decreases, fluctuations between contractions and 14 

expansions from temperature changes, and extra loads. Regardless of the reason, the occurrence 15 

of cracks may affect the appearance of concrete structures, and most importantly, they may 16 

indicate significant structural distress or damage [3].  Crack detection and quantification are two 17 

major challenges for efficiently assessing the severity of cracks [4]. Literature reviews regarding 18 

those two aspects will be described below. 19 

Four ways are available to detect cracks from images: manual detection, image processing 20 

techniques, feature-based machine learning, and deep learning-based algorithms. Manual 21 

detection is usually time consuming and prone to inaccuracy due to inspector fatigue or human 22 

error, and is beyond the scope of this study.  Study progress on the image processing techniques, 23 
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feature-based machine learning, and deep learning-based algorithms are detailed below.  1 

Many image processing techniques have been proposed and applied. These techniques include: 2 

thresholding [5-6]; original or modified edge detection [7-9]; and filter based methods [10-14]. 3 

Thresholding is performed to partition an image into multiple parts or regions based on the 4 

characteristics of the pixels in the image. Edge detectors and filter based methods detect crack 5 

edges by applying various filters to a grayscale image to emphasize discontinuities. However, 6 

image processing techniques cannot cope with the random shape and irregular size of cracks [3]. 7 

In addition, the results of these techniques are noticeably influenced by the illumination and 8 

distortion of images [15]. Although one de-noising technique has been proposed [16] and applied 9 

to a study [17], the usage of this technique is limited as images taken from the real-world vary 10 

extensively.  11 

Another approach of crack detection is to use machine learning algorithms [18-23]. These 12 

algorithms are performed by evaluating whether the signals collected from non-destructive 13 

testing indicate defects. In addition, some researchers combined machine learning algorithms 14 

with image processing techniques [24-26]. Specifically, image processing techniques are first 15 

used to extract features, and then machine learning algorithms to classify these features. 16 

Although machine learning algorithms are introduced in their methods, the results of these 17 

methods are inevitably affected by the performance of image processing techniques, as image 18 

processing is usually the first step in extracting features from images.  19 

In addition, a recent promising development is the introduction and widespread use of deep 20 

learning [27].  As a kind of deep learning, convolutional neural network (CNN) has been 21 

emphasized in image recognition, as it does not rely on the expert set threshold, can effectively 22 

capture the grid topology of images, has high accuracy, can distinguish a large number of 23 



4 

 

categories, and is robust to image variations [17, 28-29]. Many studies have been conducted to 1 

demonstrate the feasibility of CNN and achieved considerable results. Depending on the level of 2 

detail required for prediction, the application of CNN in crack detection can be separated into 3 

three categories: image classification, object detection, and semantic segmentation [29]. Image 4 

classification uses the sub-image database cropped out from raw images to train a classifier for 5 

predicting whether a sub-image is cracked or complete. Target detection classifies targets and 6 

mark the range and location of each type of target (e.g., crack). Semantic segmentation is to 7 

perform pixel level prediction by classifying each pixel as a crack or an intact pixel.  8 

In terms of image classification: Zhang et al. [1] conducted CNN training on pavement images 9 

taken by smartphone, and concluded a remarkable improvement in accuracy relative to machine 10 

learning classifiers trained on manual features. Cha et al. [15] trained a CNN classifier to classify 11 

images as crack or intact regions with help of a slide window. The accuracy of this classifier on 12 

cracks exceeds 98%, i.e., significantly better than the edge detection methods. Eisenbach et al. 13 

[30] trained a CNN to detect asphalt crack, and its performance is better than the two baseline 14 

models. Gopalakrishnan et al. [31] implemented transfer learning to train a classifier on a 15 

combination of asphalt and concrete pavement cracking images, and concluded that pre-trained 16 

VGG-16 CNN yielded the optimal performance. Zhang et al. [32] used transfer learning to 17 

propose a unified detection model for crack and sealed crack, and presented better performance 18 

than the three used benchmarks. Li and Zhao [33] established a CNN model with an accuracy of 19 

99.06%, which is applicable for complicated images, such as thin cracks, rough surface, and 20 

shadows.   21 

In terms of object detection: Cha et al. [34] used 2366 sub-images cropped from 297 annotated 22 

raw images to train a region-based CNN architecture for detecting five types of damage 23 
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including concrete cracks. Its average accuracy is 88%.   Liu et al. [35] proposed an automatic 1 

robot inspection system that using a CNN established by transfer learning as detection for three 2 

defects including concrete cracks.   3 

In terms of semantic segmentation: Zhang et al. [36] studied the pixel-level pavement crack 4 

detection using the three-dimensional (3D) data (including depth information) from a 3D laser 5 

system. The method yields about 90% accuracy, without the capability of detecting hairline 6 

cracks. Dorafshan et al. [37] compared the performances of CNN with traditional crack detection 7 

methods and concluded that CNN shows significant promise for image-based damage detection 8 

in concrete. Fan et al. [38] used a CNN to learn the crack pixels in pavement images.  9 

Specifically, the model runs with a fixed-size 27×27 window at every pixel, and then provides a 10 

5×5 pixel as a pixel-level output at the center of that patch. The essential of this approach is same 11 

as the image classification CNN. Similarly, Li et al. [39] proposed a pixel-level detection 12 

approach by using an 18 × 18 window centered at that pixel. Alipour et al. [29] reported a pixel-13 

level detector by converting the fully connected layer of the image classification CNN 14 

architecture into convolutional filters. Then, features extracted from different order convolutional 15 

filters are up-sampled to generate a heat map for providing pixel-level prediction. Input of the 16 

model is a pixel annotated dataset. The model over 92% of crack pixels and 99.9% of intact 17 

pixels in the validation set. Using a similar method, Ni et al. [40] proposed a framework to 18 

combine the features extracted from different order convolutional filters to achieve pixel-level 19 

classification. Kang et al. [41] proposed a hybrid method to achieve crack segmentation. 20 

Specifically, a faster region proposal convolutional neural network (Faster R-CNN) is applied to 21 

detect the crack regions. Then, modified tubularity flow field (TuFF) and modified distance 22 

transform method (DTM) are used to segment the crack pixels and quantify crack thickness and 23 



6 

 

length, respectively.  1 

In addition to crack detection, crack quantification is also important for assessing the status of 2 

in-service infrastructure and determining corresponding maintenance measures. Further, many 3 

researches attempted to correlate detailed crack patterns to the quantitative damage states of 4 

concrete beams and panels at different loading stages [42-44].  5 

According to the aforementioned information, the semantic segmentation can not only achieve 6 

crack detection but also crack segmentation, making it the optimal approach for detecting cracks. 7 

However, semantic segmentation algorithms of Fan et al. [38] and Li et al. [39] are not 8 

essentially different from image classification. Although Alipour et al. [29] and Ni et al. [40] 9 

achieved real pixel-level detection, crack detection and quantification remains a challenging 10 

issue because deep learning training using a database of annotated pixels is time and labor costly.  11 

The main goal of this study is to propose (and put in practice) a semi-automatic system 12 

combining a trained convolutional neural network (CNN) and a developed application to detect, 13 

quantify and analyze cracks. Specifically, the following works are done: 14 

(1) Images collected from onsite inspections and indoor experiments are used to generate the 15 

database for this study.  16 

(2) Four commonly used CNNs established by transfer learning are tested on the training and 17 

validation dataset to select a CNN that is suitable for this study.  18 

(3) The transfer learning and fully training of the selected CNN are further tested on the testing 19 

dataset and a public dataset SDNET2018 to determine the optimal model. 20 

(4) A new sliding window technique called "neighborhood scanning" is proposed. Then, the 21 

performance of this method is compared with that of the previous dual scanning method.  22 

(5) A method for calculating crack width is proposed.  The crack widths calculated by this 23 
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method and the previous method are compared with that measured by the crack scale.  1 

(6) An application is then developed to integrate the proposed methods and other techniques 2 

such as edge detectors, boundary tracking, threshold segmentation to segment, quantify, and 3 

analyze cracks.  4 

(7) The performances of the system and a previous pixel-level crack segmentation framework 5 

are compared on the 23 untrained raw images in terms of Intersection over Union (IoU) and 6 

time cost.  7 

(8) The functions of the developed application in counting the distributions of crack width and 8 

crack orientation are illustrated taking an experimental beam as example.  9 

(9) Finally, limitations of this study and its comparisons with other studies are discussed.   10 

2. Methodology  11 

Crack detection and quantification aims to detect crack locations and measure the extent of 12 

surface cracks from the collected digital images, as required for quickly diagnosing crack 13 

propagation [45]. Fig. 1 shows a flowchart of the system used in this study for detecting and 14 

quantifying crack conditions. The entire system includes three stages: pre-processing, crack 15 

detection, and post-processing. In the pre-processing phase, images collected from onsite 16 

inspections and indoor experiments (Section 3.1) are provided to a computer. Then, the images 17 

are subjected to calibration and database generation. In the crack detection phase, the locations of 18 

the cracks are identified from the entire image. In the post-processing phase, the characteristics 19 

of the cracks, such as the width, length, and orientations are analyzed and visualized. Each of 20 

these phases is described more fully below.  21 

2.1 Pre-processing 22 

A digital image is a 2D projection of 3D real-world objects.  Images are not necessarily to be 23 
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orthographic projections. Although a CNN classifier can identify cracks from raw images 1 

without calibration, the perspective error will affect the calculation of the detailed crack 2 

properties, such as the width. Therefore, the images need to be corrected and calibrated against 3 

such perspective errors to facilitate post-processing. In this study, the calibration is only 4 

performed to the indoor experimental images by a composition of rotations, translations, 5 

projective transformation, magnifications, and shears, according to [2]. Onsite inspection images 6 

are not calibrated because of the inability to confirm the exact perspective angle and the distance 7 

from the camera to the structures. An example of the calibration is shown in Fig. 2. In addition, 8 

part of these raw images needed to be cropped into unified sub-images to establish a crack 9 

detection classifier (Section 3.1). In summary, image preprocessing includes calibrating the 10 

image and cropping the raw image into smaller sub-images. The sub-images are manually 11 

annotated as crack or intact to generate the database for training and validation.  12 

2.2 Crack detection  13 

As mentioned earlier, a CNN can be used for crack detection in three ways: image classification, 14 

object localization, or pixel segmentation. Training a CNN classifier is the primary goal of this 15 

study to detect whether a sub-image is crack or intact. Many CNNs were available, such as 16 

AlexNet [15], GoogLeNet [40], Resnet18 [46], and VGG-16 [29]. In addition, it is feasible to 17 

establish a classifier on the training dataset by two modes: fully training and transfer learning 18 

[37]. The former trains the CNN fully from scratch on the training dataset. The latter modifies a 19 

few layers of the CNN configuration according to the dataset. In this study, transfer training is 20 

first performed to the CNN architectures of AlexNet, GoogLeNet, ResNet18, and VGG-16 to 21 

select a suitable CNN for our dataset. Then, the transfer learning and fully training of the 22 

selected CNN will be further tested on the testing dataset and a public dataset SDNET2018 to 23 
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determine the optimal generic model. Detailed testing procedures and results can be found in 1 

Section 3.2.  2 

2.2.1 Overall configuration 3 

In general, a CNN architecture includes an input layer, learning layers, and an output layer. The 4 

input layer reads the image and transfers it to the learning layers. The learning layers perform 5 

convolution operations by applying filters to extract image features. The output layer classifies 6 

the image according to the target categories, using the features extracted in the learning layers. 7 

The neural network can be trained by assigning target categories to images in a training dataset 8 

and modifying the filter values iteratively through back propagation until the desired accuracy is 9 

achieved.   10 

AlexNet is taken as an example to illustrate the modification of CNNs for this study. AlexNet 11 

is a remarkable CNN for image classification [33]. It is trained on the ImageNet database, and 12 

provides an output with 1000 classes. Since the number of image classes in this study is two 13 

(images with and without cracks), the output number of the classes was modified to two. The 14 

modified AlexNet is shown in Fig. 3; each dimension in the input image indicates the height, 15 

width, and channel (red, green, and blue), respectively. Table 1 presents the detailed 16 

specifications of the modified AlexNet CNN. Notably, the Relu activation function is applied 17 

after the convolution operation and fully connection operation. In addition, normalization and 18 

dropout are also implemented. The softmax layer predicts whether each input image does or does 19 

not contain a crack.  Similarly, the last two layers of the GoogLeNet, ResNet18, and VGG-16 20 

were modified to classify images as crack or intact.  21 

2.2.2 Update of the connection weights 22 

As the initial values of weights are randomly assigned during training, the predicted classes are 23 
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usually inconsistent with the actual classes. The softmax loss function was therefore applied to 1 

assess the deviations between the predicted and actual classes, as defined by Eq. (1).  2 
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The CNN is tuned by repeating the described procedures until desired accuracy is achieved. 17 

During the training, the training dataset is usually separated into sub-training sets to speed up the 18 

training. These sub-sets are called batch sizes. Each complete update out of a batch size is called 19 

an iteration, and each complete update out of the entire training dataset is called an epoch. 20 

2.3 Post-processing 21 

The second objective of this study is to segment and quantity cracks after the established CNN 22 
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classifier detect sub-images with cracks. Because cracks information such as width, length, and 1 

orientations are important for determine damage situations of structures. The post-processing 2 

procedures are shown in Fig. 4. Firstly, the sub-images are converted to grayscale. Then, the 3 

contrast of the grayscale image is enhanced. Mask processing is used for reducing noise and 4 

smoothing image. Next, edge detectors, boundary tracking and threshold segmentation are 5 

performed to segment the image. More details regarding these techniques have been shown in 6 

Gonzales and Woods [48]. Finally, the crack properties such as crack thickness, length, and 7 

orientation can be obtained, as detailed in Section 2.3.1 and Section 2.3.2. Commercial software 8 

is available to achieve such functions, but the use of commercial software makes: (1) the 9 

combination of the CNN classifier and post-processing techniques difficult; (2) the use of 10 

different software will increase the learning costs for human. In addition, it is time and labor 11 

consuming to process all of the sub-images, as every raw image is cropped to thousands of sub-12 

images. To simplify the processing procedures, an application was developed to integrate these 13 

techniques. The details of this application are described in Section 4, along with validation with 14 

practical examples.  15 

2.3.1 Crack quantification 16 

Once the crack has been delineated, an automatic algorithm can be applied to measure the 17 

properties of the crack [3]. The calculable properties include crack width, crack length, crack 18 

orientations, and the others. Crack width is the most important parameter for quantifying the 19 

cracking of a concrete component. In a previous study, the crack’s mean width is measured to 20 

represent its width [49]. To measure the crack width more precisely, a different method was 21 

proposed, as shown in Fig. 5.   22 

To utilize this method, a neighborhood value   is pre-defined.    and     are the edges of a 23 
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crack. The steps for calculating crack width at point P are summarized in Algorithm 1: (1) 1 

forming a dataset using points between the neighborhood lines on edges    and    ; (2) 2 

performing linear regression to the dataset for getting a fitting line l; (3) acquiring line l’ that 3 

perpendicular to l through  point P; and (4) computing the distance from point P to point P’.  4 

In the calculation of the crack width, the points between the neighborhood lines on the edges 5 

   and     are applied to obtain a fitting line. If the entire points on the edges    and     are used, 6 

the orientation of the crack can be obtained. The ratio of the crack pixels in the raw image can be 7 

easily obtained, as all sub-images with cracks are segmented in the post-processing. The crack 8 

length can be obtained by calculating the length of the crack skeleton, as indicated in Fig. 5. 9 

Details regarding crack skeleton can be found in Gonzales and Woods [48]. 10 

2.3.2 Crack statistics and visualization 11 

For each raw image, all cracks can be counted to obtain the statistical characteristics of the 12 

cracking. If raw images of the same structural component are collected in chronological order, 13 

the crack propagation can be inferred using a wind rose map. In addition, if cracks are detected 14 

on each surface of the structural component, crack characteristics can be visualized in 3D [2, 50-15 

51]. These functions are elaborated in Section 4 with practical examples.  16 

3. Building a robust crack classifier 17 

This section introduces the considerations when generating the database and setting the basic 18 

hyperparameters, and the procedures of acquiring a robust a CNN. The optimal hyperparameters 19 

were confirmed by trial and error, according to Bengio et al. [51]. All of the study is performed 20 

on a PC with two GPUs (CPU: Intel© Core© i5-8300H CPU@2.30GHz, RAM: 32GB and GUP 21 

NVIDIA GeForce GTX 1050).   22 

3.1 Database generation 23 
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In this study, a total of 150 raw images from indoor experiments and onsite bridge inspections 1 

were used, as summarized in Table 2. The experimental images were captured with a distance of 2 

1.0 m during the beam bending test. Before the test, these beams have been exposed in the field 3 

for one or two years. The pictures collected during the bridge inspection are shot without known 4 

the distance from the camera to the object. It was expected that the combination of the images 5 

from experiments and inspections would make the classifier general and practically applicable. 6 

The experimental raw images were calibrated. Then 58 experimental and 69 onsite inspection 7 

images were randomly selected from the corresponding groups. The remaining 11 and 12 images 8 

in corresponding groups were used for testing, respectively. The 127 raw images were cropped 9 

into sub-images with 256×256 pixel resolution to build the database for training and validation. 10 

Totally, the database includes 30,480 sub-images, with the ratio of crack and intact images at 1:1; 11 

and includes a broad range of images variances for establishing a robust classifier, as shown in 12 

Figs. 6 (a) and 6(b). In addition, sub-images with cracks on the edge of images and with other 13 

kinds of damages are disregarded, based on the study of Cha et al. [15], as shown in Fig. 6 (c).  14 

3.2 Optimal model 15 

3.2.1 Performance evaluation 16 

To obtain a CNN model with excellent robustness, four commonly used CNNs from other 17 

studies were tested: AlexNet [15], GoogLeNet [40], Resnet18 [46], and VGG-16 [29]; the results 18 

are summarized in Table 3. The performances of these CNNs were evaluated using five metrics, 19 

as depicted in Fig. 7. In defining these metrics, TP, TN, FP, and FN refer to true positives, true 20 

negatives, false positives, and false negatives, respectively. Recall or true positive rate (TPR) is 21 

the ratio of correct predictions to total crack sub-images. Similarly, the true negative rate (TNR) 22 

indicates the ratio of correct noncrack predictions to the total number of noncrack sub-images. 23 
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Precision is the ratio of correct crack predictions to all crack predictions. Accuracy (ACC) is the 1 

ratio of correct crack or intact predictions to the total number of sub-images. The F1 score is the 2 

harmonic mean of the recall and precision. In addition, time cost is also used as an index to 3 

evaluate these four CNNs.  4 

3.2.2 Hyperparameters 5 

All of the CNNs were trained using an SGD algorithm with a mini-batch size of 256 out of 6 

30,480 images. The last layers of all of the CNNs were modified to two outputs, as the output of 7 

our dataset was "crack" or "intact". A logarithmically decreasing learning rate was applied in the 8 

training, according to Cha and Choi [15]. The dropout rate at the dropout layer was 0.5. The 9 

other hyperparameters remained at default values.  10 

3.2.3 Comparisons 11 

The database was divided into 70% for training and 30% for validation. The four commonly used 12 

CNNs were trained for 80 epochs on the training set until the loss function reached a plateau, 13 

which showed the convergence of the weights. Table 3 presents the detailed performance of the 14 

four transfer learning CNNs on the training and validation sets.  Fig. 8 shows that the accuracies 15 

of the models increase from the AlexNet to the best performing VGG-16. However, VGG-16 16 

spends 346 minutes per epoch in the training of the model. In addition, there is no significant 17 

difference in performance between GoogLeNet and RestNet18 on the applied database. The 18 

GoogLeNet was therefore chosen to analyze the rest of this study. Furthermore, the 19 

performances of the fully training and transfer learning using the GoogLeNet were tested, as 20 

summarized in Table 4. Fig. 9 clearly indicates that fully training outperforms transfer learning. 21 

Table 5 shows the testing results of the transfer learning model and the fully training model on a 22 

public database SDNET2018 [37]. On this public database, the performance of the transfer 23 
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learning model is superior to that of the fully training model (Fig. 10), which is contrary to the 1 

test results on the testing dataset in this study. In addition, the test results of fully training on 2 

SDNET2018 are greatly compromised compared with that on the testing dataset of this study. 3 

One possible reason is that the transfer learning can avoid overfitting to some extent. Therefore, 4 

the transfer training GoogLeNet was considered the optimal model to implement analysis.   5 

Fig. 11 shows the loss and accuracy during training and validation. Each epoch of training and 6 

validation took approximately 39 minutes. The trained GoogLeNet was further tested below.  7 

3.3 Comparisons of scanning approaches 8 

Extensive tests were conducted to validate the optimal CNN from the previous section. Owing to 9 

the random distribution of the cracks, and it was difficult to locate cracks depending only on 10 

lump-sum scan in a large image; therefore, other algorithms were required to locate the crack 11 

positions. In addition, a sub-image with cracks on the edge of it can cause misclassification.  To 12 

correctly identify the cracks, a 256 × 256 pixel window was designed for scanning the image 13 

twice [15], as shown in Fig. 12(a). This method is hereafter referred to as "dual scanning". 14 

Except for the dual scanning method, a new scanning method called "neighborhood scanning" 15 

was proposed, as depicted in Fig. 12(b). The first scanning of this new scanning method is the 16 

same as the previous method. The only difference is that the second scanning of the proposed 17 

method is not performed on the entire image, but rather only on the neighborhood of the cracks 18 

identified in the first scanning. To avoid repeat scanning in the second operation of the proposed 19 

method, the same region is scanned only once.  20 

To compare the proposed and previous scanning methods, 23 of the raw images that were not 21 

used to build the training and validation sets were scanned according to the abovementioned two 22 

methods. Using the evaluation metrics in Section 3.2.1, the performances of the two scanning 23 
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methods are summarized in Table 6. Neighborhood scanning shows a performance equivalent to 1 

that of the previous dual scanning method in terms of the five metrics, as shown in Fig. 13. In 2 

addition, the achieved accuracy of the two methods are quite remarkable with around 95.5 %, i.e., 3 

nearly identical to the accuracy (96.69%) of the validation in the previous section. Encouragingly, 4 

the performance of the trained CNN is still impressive, even though field and experimental 5 

images are used for testing. The average recorded testing time required for each image using the 6 

neighbourhood and dual scanning methods are 6.48 s and 7.11 s, respectively.  7 

Because the raw images used in this study were collected from bridge inspections and beam 8 

bending tests, the inspection and experimental images were separately applied to verify the 9 

classifier. Figs. 14 and 15 show the testing results of two onsite images. These images can 10 

provide a clear understanding of how the classifier functions. For inspection images, all evident 11 

cracks can be identified by these two scanning methods. In addition, the unions of the detected 12 

crack regions using these two methods are roughly the same. However, the numbers of crack 13 

regions detected by the neighbourhood are less than that by the dual scanning method. This 14 

occurs because the dual scanning method detected more sub-images with cracks on the edges of 15 

them. The false positive and false negative regions (positions) are marked in Figs. 14 (b) and (c) 16 

and Figs. 15 (b) and (c). Most false positives are distributed at: (1) the interface between the pier 17 

and background, as shown in FP-1~FP-4 in Fig. 14 (b) and FP-1~FP-3 in Fig. 14 (c); (2) the 18 

edges of the pier, as shown in FP-5~FP-7 in Fig. 14 (b) and FP-4~FP-6 in Fig. 14 (c); and (3) the 19 

corners, as shown in FP-1~FP-4 in Fig. 15 (b) and FP-1~FP-3 in Fig. 15 (c). Most false negatives 20 

are caused by insufficient illumination (FN-1 in Figs. 14 (b) and (c), FN-4~FN-5 in Figs. 15 (b) 21 

and (c)), and tiny cracks (FN-2 in Figs. 14 (b) and (c), FN-1~FN-3 in Figs. 15 (b) and (c)). These 22 

occur because our database included insufficient samples regarding these situations.   23 
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Fig. 16 shows testing results for an experimental image using the two scanning methods. Figs. 1 

16 (b) and (c) show that both scanning methods can detect thick cracks, even though the numbers 2 

of detected regions in those two methods are different. The dual scanning and neighborhood 3 

scanning methods detected 139 and 122 regions, respectively. In Figs. 16 (b) and (c), all false 4 

negatives are found to be caused by the tiny cracks, because illumination conditions in the 5 

laboratory are more ideal than the onsite conditions. Some false positive regions are located at 6 

the interface between the fresh and elder cement, as shown at FP-3 and FP-4 in Figs. 16 (b) and 7 

(c). The rest false positive regions are distributed where thin and long voids exist (FP-1 in Figs. 8 

16 (b) and (c)), and where shellfish growth linearly (FP-2 in Figs. 16 (b) and (c)).  9 

The testing results indicate that the built classifier can correctly detect most cracks or intact 10 

regions, by combining with the dual or neighborhood scanning methods. However, the classifier 11 

will cause misdetections in the previously mentioned situations. In addition, there are no 12 

significant differences between the dual and neighborhood scanning methods in terms of the 13 

evaluation metrics. The former method can detect more edge cracks. The latter method usually 14 

takes less time to scan the same raw image. Considering the unions of the regions detected by 15 

these two methods are almost the same, the performance of the neighborhood scanning method is 16 

acceptable for the post-processing described below.  17 

4 Development of the post-processing application 18 

The trained CNN can be used to predict the class of a new image combined with the 19 

neighborhood scanning method, but the specification of the crack pixel cannot be determined.  In 20 

addition, the misidentified regions must be addressed in post-processing. Image processing 21 

techniques described in Section 2.3 are included in the application. Therefore, different 22 

processing techniques can be used depend on images to obtain the optimal segmentation effect. 23 
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In addition, the crack property acquisition methods including the algorithm described in Section 1 

2.3.1 are integrated in the developed application. The introductions and verifications of this 2 

application are described below. 3 

4.1 Application development 4 

Fig. 17 shows screenshots of the developed application for post-processing. The developed 5 

application mainly includes two modules: module 1 for processing the detected crack regions, 6 

and module 2 for providing the crack analysis of the raw image. Specifically, the first model is 7 

mainly used for the rapid processing of crack regions detected by the classifier in Section 3, so as 8 

to obtain crack pixels. Once all of the crack pixels are obtained, they are stitched together and 9 

transferred to the second module for calculation of the other properties of the crack, such as the 10 

crack width, length, and orientation. These two modules are shown in Figs. 17 (a) and (b), 11 

respectively. The application can be run automatically or manually. The former analyzes images 12 

according to the default settings and the latter according to the settings of the operator. 13 

Verification of the developed application is conducted based on practical examples, as described 14 

below.  15 

4.2 Practical comparisons 16 

On the raw images in the testing set (Section 3.1), the practical performances of the developed 17 

system are compared with that of a previous pixel-level crack segmentation framework [29], 18 

using Intersection over Union (IoU) and time cost as evaluation indexes. The equation of IoU is 19 

    
                   

                   
                                                         (5) 20 

The comparitive results are summarized in Table 7.  im1 to im12 are the results for the twelve 21 

onsite inspection raw imgaes.  im13 to im23 are the results for the eleven expeimental raw 22 

images.   23 
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The results show that the developed system and the previous framework exhibited an 80.40% 1 

and a 78.64% average IoU, respectively. The developed system took an average of 9.48s, and the 2 

previous framework took an average of 10.35s. Specifically, the performances of the developed 3 

system and the previous framework vary with image conditions. Experimental images take more 4 

time than onsite images because of the larger size of the images.  For the same raw image, the 5 

developed system usually takes less time than the previous framework. IoU shows that the 6 

developed system is comparable to the previous framework for the experimental images. The 7 

reason is that the images taken in the laboratory have less interference; enabling both methods 8 

achieve good results.  These two methods also show approximately the same IoU values for the 9 

onsite images except for im1, im2, and im5.  10 

On these three images, the IoU of the development system is 0.05 greater than that of the 11 

previous framework. Therefore, these three images with complex backgrounds are detailed in Fig. 12 

18. Although the previous framework shows good performance on trained images with 13 

monotonous backgrounds and good illumination, its performance is inferior to our developed 14 

system when the method is tested on untrained complex backgrounds (Fig. 18).  15 

These 23 examples show that the performance of the developed system is not inferior to the 16 

previous framework. In addition, the developed system usually cost less time than the previous 17 

framework. Therefore, the developed system is a cost-effective solution that can detect and 18 

quantify cracks from images collected from onsite inspections or from experiments.  19 

4.3 Crack analysis 20 

Detailed information such as crack patterns, width and length are also crucial for understanding 21 

the damage in structures, because this information can be used to track the damage status of 22 

different components in civil structures. Therefore, the crack analysis focuses on the accurate 23 
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acquisition of detailed crack information.  1 

4.3.1 Crack width comparison 2 

To verify the accuracy of the crack width obtained from the proposed algorithm, the algorithm 3 

(with a   value of 7) is applied to calculate the crack widths at 57 positions selected from 4 

untrained eleven experimental images. Then the calculated results of these 57 positions are 5 

compared with the measured results by the crack scale shown in Fig. 19. In addition, Adhikari et 6 

al. [2] utilized the mean width to quantify cracks according to Eq. (6).  7 

           
          

                ⁄
                                                      (6)  8 

Therefore, the mean width method will also be used for comparison to verify the effectiveness 9 

of the system for measuring crack widths. All cracks are quantified in units of mm.  10 

Table 8 shows the comparisons of the proposed algorithm, mean width, and the measurements. 11 

The relative error and absolute error of the proposed algorithm and that of the mean value 12 

method are calculated taking the measured values as truths. Fig. 20 shows the relative and 13 

absolute error distributions of these positions. The absolute error of 35 positions obtained using 14 

the proposed algorithm is less than 0.05 mm, while that of 25 locations obtained by the mean 15 

method is greater than 0.1 mm. Similarly tendency can be found for the relative error. The 16 

relative error of the proposed algorithm is less than 20% at more than 40 positions, but that of the 17 

mean value method is greater than 40% at more than 20 positions. The average relative error 18 

(Table 8) of the proposed algorithm is 14.58% (0.05 mm), i.e., the same as the thinnest crack 19 

width measurable by the crack scale (Fig. 19 (a)). In addition, the average relative error of this 20 

method is much smaller than the 36.37% (i.e. 0.14 mm) of the mean value method.  21 

Crack widths greater than 0.2 are considered detrimental to concrete structures according to 22 

Japan road association [52]. Therefore, the relative errors of these two methods are respectively 23 
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divided into two groups broken down by crack width 0.2mm, as shown in Fig. 21. The method of 1 

this study has a balanced performance for both cracks smaller or larger than 0.2 mm with relative 2 

error of 16.84% and 13.91%, respectively. However, the mean value method produces a relative 3 

error of almost 70% for cracks smaller than 0.2 mm, and produces that of nearly 30% for the 4 

cracks greater than 0.2 mm. As a result, the proposed method is effective in measuring both thin 5 

and thick crack widths, and is more accurate than the previous mean value method at these 57 6 

positions. However, it should be mentioned that more verifications of this algorithm are 7 

necessary in future.  8 

4.3.2 Crack width distribution 9 

Fig. 22 shows the crack width distribution at the front, back, and bottom of a beam obtained by 10 

the developed application and algorithm.  These three images were taken and calibrated after the 11 

beam failed in a bending test. Various crack shapes can be found in these images. Different from 12 

previous studies [2, 49] that use the mean width of a crack as its width the proposed algorithm 13 

can calculate the crack width at each position along the crack, as can be clearly seen from Fig. 22. 14 

In addition, these three images can be stitched to provide a 3-D visualization of the beam, as 15 

described in Section 4.3.4.  16 

4.3.3 Crack direction statistics. 17 

Field inspections require determining the locations and orientations of cracks. Therefore, after 18 

the cracks are identified, the crack orientations can be counted to obtain the statistical 19 

characteristics of the crack orientation distribution in polar coordinates.  Figs. 23 (a), (b), and (c) 20 

show the counted results for Figs. 22 (a), (b), and (c), respectively. In Fig. 23, the crack 21 

orientation distributions of the corresponding image can be clearly determined. In addition, if the 22 

raw images of the same component are collected in chronological order, a crack propagation 23 
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trace can be inferred by combining the findings in Figs. 22 and 23.  1 

4.3.4 3D visualization 2 

If the cracks on each surface of a component are obtained, the developed application can present 3 

and analyze the surface damage in 3D [2, 50]. The results of the images in Fig. 22 are stitched to 4 

generate a 3D model of a beam. Fig. 24 shows cracks on the front and bottom faces, respectively. 5 

Obviously, the magnitudes and orientations of cracks can be intuitively observed based on the 6 

cracks directions statistics in 3D visualization. Based on this model, additional information (such 7 

as crack density) can be calculated to determine the severity of cracks and cracking patterns. If 8 

the crack information are provided and shown in the 3D model of Fig. 24 in chronological order, 9 

the model can be used for tracking the crack development at various stages of loading. In the real 10 

world, images collected from inspections can be analyzed and projected onto the 3D model of 11 

the structure. Infrastructure managers can be notified when the crack exceeds limitations, or can 12 

formulate intervention strategies according to crack propagation patterns, thereby facilitating the 13 

effectiveness of the management.  14 

5. Discussion and future work 15 

5.1 Practical application results 16 

Once the proposed system is put into use in structures, it is possible to detect and quantify cracks 17 

based only on digital images. Thus, the inspection efficiency and reliability are enhanced. 18 

However, from the viewpoint of practical applications, it is not feasible for the developed system 19 

to extract any object attributes from any image. To further describe the applicable range of the 20 

proposed system, Fig. 25 shows some complicated images that will cause the classifier to fail in 21 

detection. Failure detections are distributed at: (1) the interface between the backgrounds and 22 

infrastructure (Figs. 25 (a) and (b)); (2) the bonding position between the elder and fresh cement 23 
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(Fig. 25 (c)); (3) the long-thin void (Fig. 25 (d)); (4) the linear growth traces of shellfish (Figs. 1 

25 (e) and (f)); and (5) sub-images with tiny cracks (Fig. 25 (g)) or without sufficient 2 

illumination (Fig. 25 (k)). The failure of the trained classifier in these situations can be traced to 3 

the fact that there are insufficient similar sub-images in the training dataset.  4 

In addition, some sub-images with cracks can be correctly detected by the classifier, but these 5 

sub-images are difficult to be further processed for the developed application, owing mainly to 6 

uneven illumination and thin cracks. In Fig. 26(a), only the crack pixels with good illumination 7 

can be determined by the developed application. For the thin cracks, only some scatter debris can 8 

be obtained (Fig. 26 (b)), or only a part of the pixel is retrieved (Fig. 26 (c)).  These drawbacks 9 

can be avoided to some extent by providing images with higher resolution and better illumination, 10 

or by improving the developed application.  11 

Furthermore, the neighborhood scanning method is proposed for identifying all crack regions 12 

from a raw image.  However, the second scanning largely depends on the accuracy of the first 13 

scanning. In other words, the second scanning may fail if some positions are misjudged in the 14 

first scanning. The neighborhood scanning method takes less time than the dual scanning method, 15 

and can detect the union of the crack regions that is almost the same as the dual scanning method. 16 

However, the former method is inferior to the latter method in detecting the sub-images with 17 

edge cracks. In addition, it is difficult to determine the optimal size of the scanning window, as 18 

the testing images may have various sizes and scales. Although the proposed algorithm 19 

outperforms the mean width method, the effectiveness of this algorithm is affected by the 20 

performance of the crack segmentation. A 3D model is established using the images from a beam 21 

after failure, but no images at various stages of loading are used to verify the applicability of the 22 

system to observe the evolution of crack patterns. In addition, the original image still requires 23 
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calibration to correctly calculate the crack width and other crack characteristics. We hope that 1 

these limitations can be resolved by improving our system.  2 

5.2 Comparison with other studies using the CNN  3 

The developed system is a semi-automatic system. Specifically, the trained CNN classifier can 4 

automatically identify the crack regions. Then, the developed application can be run 5 

automatically or manually to quantify cracks. Compared with the traditional image classification 6 

CNN which only realizes crack detection, this system can not only realize crack detection, but 7 

also quantify cracks. In addition, the CNN classifier and the developed application can be used 8 

independently to meet the needs at different stages. Although the system is not as automated as 9 

semantic segmentation, it reduces the cost of building the pixel-level annotation databases for 10 

deep learning training. Kang et al. [41] proposed a similar two steps method. In this two steps 11 

method, three independent algorithms including Faster R-CNN, modified TuFF, and modified 12 

DTM are integrated. The integration and modification of this hybrid method is superior to our 13 

system in two points: (1) this hybrid method is more automated than our system; (2) the 14 

performance of crack segmentation by this hybrid method is improved compared with that of our 15 

system. However, our system shows advantages in three aspects: (1) the two parts of our system 16 

can operate independently, and can provide more crack information except for crack width and 17 

crack length; (2) the calculated results of crack properties are shown in mm instead of pixels; (3) 18 

verification images are more complex than those of Kang et al. (most images contain only one 19 

crack).  20 

Furthermore, our system takes less time, and is not inferior to a previous pixel-level crack 21 

segmentation framework [29]. Therefore, it can be concluded that the system proposed in this 22 

study is a cost-effective solution for crack detection and analysis.  23 
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Although this system is tested on 23 complex images from both onsite and experiment, this 1 

study is only the first step in building a robust system. Because not all possible crack patterns, 2 

background materials, textures and color appearances are included in the database. Therefore, an 3 

important part of the required work is to enlarge the database to include a wider variety of crack 4 

patterns and background characteristics.  Another task is to improve the proposed system by 5 

verifying with more examples, by tuning hyperparameter, and by modifying the proposed 6 

algorithm. In the future, other classifiers will be developed to detect various types of superficial 7 

damage, such as voids, spalling, and corrosion.  In addition, the system is expected to collaborate 8 

with the bridge management systems (BMSs) to facilitate the processing of inspection images, as 9 

manual processing of onsite inspection images is time consuming and costly. Furthermore, the 10 

information obtained by our system can be used to understand the preliminary situation of a 11 

bridge, and can provide the basis for further detailed investigations if any abnormalities exist.  12 

6. Conclusions 13 

In this study, a semi-automated system integrating a trained CNN model and a developed 14 

application was proposed and studied. The trained CNN model is capable of detecting cracks or 15 

intact regions from given raw images. The developed application can reveal detailed crack 16 

information. A comprehensive analysis of the developed system in this study reveals the 17 

following conclusions:  18 

(1) Comparisons of the performances of the AlexNet, GoogLeNet, ResNet18, and VGG-16 19 

configurations using six metrics (including time cost) indicate that the GoogLeNet is a suitable 20 

architecture for this study. Then, transfer learning and fully training of GoogLeNet were verified 21 

on our testing dataset and a public dataset, respectively. The results show that the transfer 22 

learning GoogLeNet has relatively balanced performances on these two datasets, with accuracy 23 
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of 96.69 % and 88.39%, respectively. In addition, the transfer learning GoogLeNet can correctly 1 

classify 96.03 % of cracks and 97.35% of intact regions in the testing dataset.   2 

(2) The proposed neighborhood scanning method has an accuracy of 95.33 % for cracks and 3 

95.26% for intact regions, similar to that of the previous dual scanning method (with an accuracy 4 

of 95.17 % for cracks and that of 95.87% for intact regions). The neighborhood scanning method 5 

usually takes less time than the dual scanning method. However, the former is inferior to the 6 

latter in detecting the sub-images with edge cracks.  7 

(3) Practical comparisons of the neighborhood scanning method and the dual scanning method 8 

show that both methods are susceptible to uneven illumination, complex backgrounds, and tiny 9 

cracks.  10 

 (4) The verifications of the developed system and a previous pixel-level crack segmentation 11 

framework on 23 untrained raw images show that these two methods exhibited an 80.40% and a 12 

78.64% average IoU, respectively. In addition, the developed system usually cost less time than 13 

the previous framework for the same raw image.  14 

(5) The proposed algorithm and the previous crack mean value method were used to calculate 15 

the crack width at 57 positions in the testing images. The results indicate that the average relative 16 

error of the proposed algorithm is 14.58% (0.05 mm), i.e., much smaller than the 36.37% (0.14 17 

mm) of the previous method. 18 

(6) The developed application is capable of counting the statistical distributions of cracks and 19 

generating a 3D model of a structure object. Therefore, the developed application has the 20 

potential to be used to observe the evolution of crack patterns during beam bending test, or to 21 

analyze the images collected from onsite inspections.  22 

(7) Overall, the results show that the developed system is a cost-effective solution for 23 
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detecting and analyzing cracks on concrete surfaces, considering its practical performance and 1 

time cost. Future work will improve the system, and validate the proposed techniques on more 2 

practical and complicated images. Further, the proposed system could be combined with a BMS 3 

to enhance efficiency and reliability of decision-making and management.  4 
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Fig. 1. Flowchart of the system 

  

 

 
Fig. 2. Example of calibration 
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Fig. 3. Illustration of the AlexNet’s architecture. conv# = convolution; pool# = pooling; Relu #= 

activation function; Norm#= normalization; fc# =full connection; k# = kernel of each operation; 

DP#=Dropout; SM=softmax;  

  

 
Fig. 4. Flow chart for post-processing 
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Fig. 5. Depiction for calculating crack properties. 

 
Fig. 6. Typical cropped images: (a) images with crack from experiment; (b) images with crack from 

onsite inspection; and (c) disregarded images 

 

 

Fig. 7. Performance evaluation metrics used in this study 
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Fig. 8. Performances of different CNNs. 
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Fig. 9. Metrics of the GoogleNet in transfer and full learning. 
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Fig. 10. Performances of the transfer and fully learned models on SDNT2018. 
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Fig. 11. Loss and accuracy during training and validation. 
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Fig. 12. Crack detection: (a) Dural scanning; and (b) Neighborhood scanning. 
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Fig. 13. Test results using dual scanning and neighborhood scanning. 
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                                  (a) Original                                             (b) Dual (Number of crack position =28) 

 
 (c) Neighborhood (Number of crack position =19) 

Fig. 14. Crack detection on field image 1. 

  
                                  (a) Original                                             (b) Dual (Number of crack position =34) 

 
 (c) Neighborhood (Number of crack position =28) 

Fig. 15. Crack detection on field image 2 
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(a) Original 

 
(b) Dual (Number of crack regions =139) 

 
(c) Neighborhood (Number of crack regions =122) 

Fig. 16. Crack detection on experimental image 

 

 

 

  
(a)                                                                                  (b) 

Fig. 17. The developed application for post-processing: (a) processing for every regions; (b) crack 

analysis for each raw image 
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Fig. 18. Comparative studies using our system and a picel-level segmentation framework. 

 

     
(a)                                                  (b) 

Fig. 19. (a) Crack scale; (b) Crack measuring. 
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Fig. 20. Relative and absolute error distributions. 
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Fig. 21. Relative error of those two methods, broken down by crack width of 0.2 mm 

  

 
(a) 

 
(b) 

 
(c)  

Fig. 22. Superimposed images of crack width distribution: (a) front; (b) back; (c) bottom. 
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    (a)                                           (b)                                               (c) 

Fig. 23. Cracks directions statistics from Figs. 22 (a), (b), and (c). 

 

 

Fig. 24. 3D visualization of a beam 
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Fig. 25. Failure of detection by the trained classifier. 
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Fig. 26. The superimposed images by the trained CNN and the developed application. 
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Table 1. Detailed specifications of the AlexNet 

Layer 
Kernel size 
(Height×Width×

Depth) 

Stride Pad 
Output size 
(Height×Width×

Depth) 

Input - - - 227×227×3 

Conv1 11×11×3 4 0 55×55×96 

Pool1 3×3 2 0 27×27×96 

Conv2 5×5×3 1 2 27×27×256 

Pool2 3×3 2 0 13×13×256 

Conv3 3×3×3 1 1 13×13×384 

Conv4 3×3×3 1 1 13×13×384 

Conv5 3×3×3 1 1 13×13×256 

Pool3 3×3 2 0 6×6×256 

Fc1 6×6×256 - - 1×1×4096 

Fc2 - - - 1×1×4096 

Fc3 - - - 1×1×4096 

SM - - - 1×1×2 

  

Algorithm 1 Crack width calculation. 

Input: neighborhood  ,         ,   ,    

Output: distance d 

for i between      and      

      dataset  {     ;      } 

end for 

l   linear regression(dataset) 

l’   line perpendicular to l through P  

P’   intersection of l’ and     

d distance(P,P’) 

 

 
Table 2. Specification of raw images and generation of database 

Source 
Raw Images  Database 

No Size Training/Validation Testing  Pixel Training/Validation 

Experiment 69 10240×2048 58 11  
256×256 30,480 

Field  81 2592×4608 69 12  

 

 
Table 3. Performances of the four pre-trained CNN configurations. 

 
Re TNR Pre ACC F1 

Time per 

epoch (min) 

AlexNet 0.9377  0.9831  0.9819  0.9606  0.9593  24.84 

Googlenet 0.9604  0.9736  0.9737  0.9669  0.9670  38.82 

Resnet18 0.9661  0.9678  0.9678  0.9689  0.9670  45.33 

VGG-16 0.9724  0.9680  0.9683  0.9740  0.9704  346.6 

 
Table 4. Performances of the transfer and fully training of GoogleNet. 

  Re TNR Pre ACC F1 

Transfer 0.9603  0.9735  0.9737  0.9669  0.9670  

Fully 0.9720  0.9758  0.9761  0.9709  0.9740  
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Table 5. Performances of the transfer and fully training on SDNET2018 

  Re TNR Pre ACC F1 

Transfer(SDNET2018) 0.8905 0.8772 0.8798 0.8839 0.8851 

Fully(SDNET2018) 0.8100 0.8004 0.8048 0.8133 0.8074 

 

Table 6. Comparisons of the dual scanning and the neighborhood scanning 

  Rec TNR Pre ACC F1 
Average 

Time(s) 

Neig 0.9533 0.9526 0.9651 0.9555 0.9592  6.48 

Dual 0.9517 0.9587 0.9672 0.9551 0.9594  7.11 

 

Table 7. Comparison of the developed system and the previous framework 

Image 
IoU Time cost 

This  Previous This  Previous 

im1 0.7535 0.6958 7.0209  7.6364 

im2 0.7005 0.6523 7.0114  7.6142 

im3 0.8184 0.8301 7.0030  7.6435 

im4 0.8350 0.8385 7.0373  7.6772 

im5 0.7583 0.5540 7.0436  7.6369 

im6 0.8427 0.8456 7.0591  7.6207 

im7 0.8266 0.8192 7.0398  7.6466 

im8 0.8389 0.8270 6.9890  7.6141 

im9 0.7544 0.7573 6.9825  7.6854 

im10 0.8301 0.8211 7.0557  7.6059 

im11 0.8030 0.8015 7.0241  7.5988 

im12 0.8265 0.8165 7.0181  7.6024 

im13 0.8206  0.8292  12.2009  13.2951 

im14 0.7585  0.7603  12.1531  13.3312 

im15 0.8441  0.8127  12.1458  13.3013 

im16 0.8069  0.8184  12.1485  13.3193 

im17 0.8424  0.8159  12.1506  13.3248 

im18 0.8228  0.8123  12.1455  13.2847 

im19 0.7888  0.7652  12.1369  13.3349 

im20 0.7933  0.7993  12.1436  13.3010 

im21 0.8359  0.8042  12.2002  13.3236 

im22 0.7840  0.7956  12.1751  13.3112 

im23 0.8076  0.8165  12.1552  13.3408 
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Table 8.  Comparisons of crack width measurement methods 

No 
This study 

(mm) 

Mean 

(mm) 

Measured 

(mm) 

Relative 

Error of 

predicted 

values 

(%) 

Relative 

error of 

mean 

values 

(%) 

No 
This study 

 (mm) 

Mean 

(mm) 

Measured 

(mm) 

Relative 

Error of 

calculated 

values 

(%) 

Relative 

error of 

mean 

values 

(%) 

1 0.30 0.38 0.22 35.08 71.15 30 1.60 1.56 1.15 38.93 35.55 

2 0.25 0.34 0.23 8.96 49.32 31 0.43 0.50 0.34 26.87 46.54 

3 0.23 0.32 0.25 8.34 29.84 32 0.44 0.49 0.37 19.46 33.40 

4 0.40 0.43 0.34 18.10 25.78 33 0.48 0.54 0.41 17.01 31.72 

5 0.35 0.43 0.30 17.63 42.97 34 0.15 0.26 0.21 27.50 21.95 

6 0.08 0.21 0.06 33.60 245.30 35 0.89 0.76 0.65 35.39 16.79 

7 0.11 0.23 0.15 29.15 52.54 36 0.26 0.36 0.27 2.54 32.78 

8 0.22 0.34 0.22 1.58 56.65 37 0.73 0.76 0.74 0.77 2.89 

9 0.93 0.98 0.72 28.61 36.42 38 0.21 0.29 0.18 18.96 63.14 

10 0.40 0.51 0.32 24.65 60.87 39 0.73 0.69 0.67 9.48 2.78 

11 0.23 0.34 0.23 0.31 48.33 40 0.30 0.38 0.28 6.97 36.93 

12 0.36 0.31 0.30 19.31 1.70 41 0.32 0.41 0.34 6.34 20.26 

13 0.24 0.33 0.27 12.18 21.83 42 1.51 1.48 1.19 26.42 24.09 

14 0.26 0.34 0.23 14.41 48.67 43 0.16 0.24 0.16 2.63 51.33 

15 0.25 0.33 0.26 4.22 25.39 44 0.16 0.28 0.17 6.21 63.18 

16 0.32 0.39 0.31 3.03 27.28 45 0.88 0.76 0.92 3.75 16.93 

17 0.10 0.25 0.16 34.94 55.32 46 0.22 0.30 0.19 18.13 56.39 

18 0.13 0.22 0.17 23.60 26.78 47 0.46 0.52 0.51 8.33 2.70 

19 0.17 0.27 0.17 2.73 56.94 48 0.40 0.39 0.35 15.71 11.79 

20 0.69 0.70 0.67 3.88 5.14 49 0.18 0.29 0.22 15.69 36.05 

21 0.65 0.60 0.63 2.93 3.56 50 0.26 0.34 0.28 7.32 22.48 

22 0.63 0.65 0.52 22.57 26.11 51 0.13 0.25 0.15 15.99 68.03 

23 0.40 0.50 0.41 2.99 21.28 52 0.12 0.22 0.14 12.20 58.52 

24 0.45 0.53 0.37 22.16 42.74 53 0.25 0.32 0.27 8.70 19.78 

25 0.65 0.65 0.60 7.70 7.04 54 1.76 1.69 1.52 15.97 11.33 

26 0.41 0.51 0.33 23.70 53.51 55 0.64 0.74 0.56 12.94 32.41 

27 0.20 0.24 0.18 12.77 35.15 56 0.21 0.27 0.27 21.65 1.19 

28 0.18 0.29 0.20 7.98 46.83 57 0.21 0.21 0.21 0.76 1.65 

29 0.28 0.36 0.29 1.27 26.26 Average 0.42 0.48 0.38 14.58 36.37 
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