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ABSTRACT 25 

 Experimental confirmation of liquid polymorphs of water, high-density liquid (HDL) and low-26 

density liquid (LDL), is desired not only for understanding the liquid state of matters but also for 27 

the origin of the mysterious properties of water. However, this remains challenging because the 28 

liquid-liquid critical point of water lies in experimentally inaccessible supercooling conditions 29 

known as ‘no-man’s land’. Here, we show by in situ optical microscopy that droplets and layers 30 

of a low- and high-density unknown waters (LDUW and HDUW) appear macroscopically 31 

depending on ice polymorphs at non-equilibrium interfaces between water and ices under 32 

experimentally accessible (de)pressurization conditions. These unknown waters were found to 33 

have characteristic velocities (about 20 m/s and 100 m/s for LDUW and HDUW, respectively) 34 

different from water (about 40 m/s) and quasi-liquid layers (QLLs) (about 2 m/s and 0.2 m/s for 35 

droplet and layer forms of QLL, respectively.). Our discoveries provide insight on liquid 36 

polymorphism of water. 37 

  38 
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 Experimental confirmation of polymorphism in single-component liquids is a key to 41 

understanding the liquid state of matter1-3. Unlike crystalline-state polymorphs, whose which can 42 

be well characterized by reciprocal-space analysis because of their long-range ordering, the variety 43 

of disordered liquid states is obscured by the lack of clear expressions to characterize their 44 

structural signatures. Recent studies have suggested that single-component substances can exist in 45 

two or more liquid phases characterized by differences in their density and local ordering; this 46 

phenomenon is referred to as liquid polymorphism3,4. Phase transformation between liquid 47 

polymorphs, i.e. liquid-liquid phase separation (LLPS) or liquid-liquid phase transition (LLPT), 48 

has been theoretically predicted in various pure substances including silicon5, carbon6, hydrogen7, 49 

and nitrogen8. However, experimental confirmation of the phenomenon is exceedingly rare, and a 50 

liquid–liquid critical point at which LLPS takes place has not been experimentally confirmed, 51 

except in the case of sulphur1. This situation is mainly because such LLPTs occur under 52 

experimentally difficult conditions involving high temperatures and pressures, or they occur in 53 

supercooled regions with inevitable contamination by crystal formation9. Such experimental 54 

constraints have seriously hindered the progress of research into liquid polymorphism. 55 

 Water, which is such an abundant material on the Earth that its phase transitions governs 56 

various natural and biological phenomena, is also considered to be a candidate for showing liquid 57 

polymorphism as a consequence of the second-critical-point hypothesis10, which attempts to 58 

explain the origins of the various unique properties of water11, such as its maximum density at 59 

4 °C. In this hypothesis, water is considered to exist as a supercritical state formed from two types 60 

of liquid with different densities and local structures: a low-density liquid (LDL) and a high-61 

density liquid (HDL). LLPS of water into LDL and HDL is considered to arise at a liquid–liquid 62 

critical point that occurs at a low temperature and a high pressure (Figure 1)12. This is because the 63 
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unique properties of water can be elegantly explained by hypothesizing the existence of this liquid–64 

liquid critical point: the second-critical-point hypothesis10,13. This hypothesis has motivated 65 

numerous studies on local structure of water at a molecular scale by spectroscopic14,15, X-ray16,17, 66 

and neutron-scattering experiments18,19 in the supercritical regime. These studies have supported 67 

the hypothesis by suggesting that two structural classes of water fluctuate and change their 68 

correlation lengths in supercooled water depending on the conditions near the liquid–liquid critical 69 

point20. However, no experimental confirmation of a macroscopic LLPS or a LLPT of water has 70 

been found. This is because the liquid–liquid critical point of water lies in experimentally 71 

inaccessible conditions known as ‘no-man’s land’, where supercooling of liquid is obstructed by 72 

rapid crystallization beyond the experimentally accessible time scale16,17. Studies on liquid 73 

polymorphism in water have been seriously hampered by the constraint imposed by this 74 

supercooling limit. 75 

 We have previously discovered by in situ optical microscopy that macroscopic droplets and 76 

layers of high-density unknown water (HDUW) separated from bulk water by a clear interface 77 

appear at the interface between water and high-density ices (ices III and VI) grown or melted by 78 

depressurization or pressurization in a sapphire anvil cell21. In the present work, we found that 79 

macroscopic droplets and layers of low-density unknown water (LDUW) separated from bulk 80 

appear at the interface between water and low-density ice (ice Ih) grown or melted by 81 

depressurization or pressurization in an electrically-regulated sapphire anvil cell (see Experimental 82 

Methods and Supporting Information (SI) Text S1)22. In addition, we determined the ratio between 83 

the interfacial tension and the viscosity–the so-called characteristic velocity. The results confirmed 84 
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that LDUW and HDUW differ from previously observed waters, including the quasi-liquid layer 85 

observed at air–ice interfaces23,24. 86 

Figure 1. Phase relations of water, and the experimental conditions for the in situ 87 
observations of the water–ice interfaces. Phase relations of water and our observation 88 
conditions. The red star indicates the conditions for the observations of the water–ice Ih interface 89 
in this study. The black squares indicate the conditions for observations of water–high-pressure 90 
ice III or ice VI interfaces in a previous study21. The solid brown line indicated by TM shows the 91 
melting temperatures of the ices. The liquid water below TM is metastable supercooled water. The 92 
region where supercooled water can exist is highlighted in yellow. The purple dashed line indicated 93 
by TH is the temperature at which homogeneous nucleation inevitably occurs and supercooled 94 
water cannot exist because of the supercooling limit; the temperature region below TH is therefore 95 
the so-called ‘no-man’s land’, highlighted in purple. The dashed green line indicated by TX is the 96 
amorphous ice crystallization line. The red circle indicates the liquid–liquid critical point (LLCP). 97 
The red dashed line emanating from the liquid–liquid critical point is the expected first-order 98 
transition line between LDL (low-density amorphous ice, LDA) and HDL (high-density 99 
amorphous ice, HDA) above (below) Tx. The region highlighted in the brownish colour emanating 100 
from the liquid–liquid critical point is the region that contains the dynamic crossover lines between 101 
LDL-like and HDL-like water, as suggested by previous studies and summarized by Taschin et al. 102 
12 The range of this region was depicted by reference to Ref. 12. Stable, metastable, and predicted 103 
metastable phases are indicated by the rectangles surrounded black solid, dotted, and dotted double 104 
lines, respectively. 105 
 106 
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Figure 2 shows in situ bright-field optical micrographs of the interface between bulk water and 107 

ice grown in water by depressurization (see also SI Movie S1). Liquid droplets separated from the 108 

bulk water with a clear interface between the water and the growing ice Ih when effective 109 

overdepressure of about 2.3 GPa to drive crystal growth was applied at the interface25 in the 110 

electrically-regulated anvil cell (Figure 2, SI Text S2). This overdepressure corresponds to a 111 

thermodynamic driving force for crystallization of about 8.6 × 10–21 J. The water–ice interface 112 

exhibited a macroscopically smooth morphology before depressurization (Figures 2 A 0 s and B 0 113 

s) but upon depressurization, it exhibited wavelike pattern (Figures 2 A 0.16 s and B 0.16 s), 114 

resulting in the formation of droplets through breakaway of the tips of the waves (Figures 2 A 0.53 115 

s and B 0.53 s). This indicated that the substance that exhibited the wavelike pattern was also liquid. 116 

The resulting liquid coalesced when a droplet reached a step-like contrast, indicating that this step-117 

like contrast arose from the existence of a thin layer of liquid (Figures 2 A 0.73 s and B 0.73 s). 118 

We confirmed the existence of the thin layer of liquid by in situ observation with an optical 119 
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microscope equipped with a Fizeau-type laser interferometer (See Materials and Methods and SI 120 

Movie S2).  121 

Figure 2. Time-lapse micrographs showing the appearance of LDUW at the interface 122 
between water and ice grown by decompression. (A) Time-lapse micrographs captured by the 123 
in situ observations. (B) Magnified images of the regions indicated by the white dashed squares 124 
denoted by a–d. The white arrows indicate droplets of LDUW. A 0 s shows the initial state before 125 
decompression. A 0.16 s–0.73 s show time-lapse micrographs after decompression. The pressure 126 
was maintained in A 0.16 s–0.73 s. (C) Schematics showing the temporal evolution of the 127 
morphology of LDUW. The magenta and cyan solid lines indicate the corresponding schematic 128 
for the temporal evolution of the morphology shown in micrographs B 0.16 s–0.73 s underlined 129 
with magenta and cyan solid lines. The yellow and grey arrows in the right-hand bottom corner 130 
show the operations of decompression and retention, respectively. See also SI Movie S1. 131 
  132 

 133 
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Observations by interferometric microscopy showed that the wetting liquid layer spread over a 134 

wide area of the ice surface, suggesting that its wetting angle was less than 90°. If the wetting angle 135 

θ was in the range 90–180° the thickness of the liquid layer (h) would have been unrealistically 136 

large on the basis of the following equation for wetting of a substrate by a spherical droplet of 137 

radius r: 138 

ℎ = 𝑟𝑟(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)   (1) 139 

Equation (1) suggests that the thickness t is in the range r < t < 2r for 90° < θ < 180°. Because 140 

2r corresponds to the in-plane size of the liquid layer and this size was 100–200 µm (SI Movie 141 

S2), the thickness must have been at least 150–100 µm if the wetting angle is assumed to be more 142 

than 90°. This thickness is comparable with the thickness of the sample chamber determined from 143 

the thickness of a hole in the gasket after the experiment. However, the observations clearly 144 

showed that the thickness of the thin layer was markedly smaller than that of the sample chamber. 145 

Therefore, the wetting angle must have been less than 90°. This allowed us to estimate whether 146 

the density of the liquid comprising the thin layer was lower than that of bulk water by using 147 

Young’s equation26: 148 

𝛾𝛾𝐼𝐼𝐼𝐼 = 𝛾𝛾𝐼𝐼𝐼𝐼 + 𝛾𝛾𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (2) 

where 𝛾𝛾𝐼𝐼𝐼𝐼 , 𝛾𝛾𝐼𝐼𝐼𝐼 , and 𝛾𝛾𝐿𝐿𝐿𝐿  are the ice–bulk water, ice–newly discovered liquid, and newly 149 

discovered liquid–bulk water interfacial free energies, respectively. From this equation, the 150 

constraint θ < 90° leads to 𝛾𝛾𝐼𝐼𝐼𝐼 > 𝛾𝛾𝐼𝐼𝐼𝐼, implying that the structure of the liquid thin layer is more 151 

similar to that of ice Ih, (with a lower density than that of bulk water) compared with that of bulk 152 
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water. Therefore, the density of the thin layer is probably lower than that of bulk water. Hereinafter, 153 

we refer to this unknown liquid at the water–ice Ih interface as ‘LDUW’. 154 

 Droplets of LDUW were also observed on melting ice Ih (Figures 3 and SI Movie S3). Upon 155 

pressurization corresponding to 8.6 × 10–21 J of thermodynamic driving force for melting, droplets 156 

separated from the bulk water and a clear interface appeared (Figures 3 A 0.10 s and B 0.10 s). 157 

Initially, some of these droplets had a non-hemispherical elongated shape that changed into a 158 

hemispherical shape through splitting into smaller droplets within one second (Figures 3 A 0.30 s 159 

and B 0.30 s). We also observed that moving droplets coalesced within one second, clearly 160 

demonstrating their fluid nature. Observations by interferometric microscopy confirmed the 161 

existence of a thin layer of liquid when the ice was melted by pressurization (SI Movie S2). 162 
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Figure 3. Time-lapse micrographs showing the appearance of LDUW at the interface 163 
between water and ice melted by compression. (A) Time-lapse micrographs captured by the in 164 
situ observations. The ice crystal had a ring-like shape because the edge of the disk-like single 165 
crystal in contact with the thermally conducting copper gasket tended to grow faster than the 166 
central region distant from the gasket. (B) Magnified images of the regions indicated by the white 167 
dashed squares denoted by a–d. The white arrows indicate droplets of LDUW. A 0 s shows the 168 
initial state before compression. A 0.10 s–1.27 s show time-lapse micrographs after compression. 169 
The pressure was maintained in A 0.10 s–1.27 s. (C) Schematic showing the temporal evolution 170 
of the morphology of LDUW. The magenta and cyan solid lines indicate the corresponding 171 
schematic of the temporal evolution of the morphology shown in micrographs B underlined by 172 
magenta and cyan solid lines. The yellow and grey arrows in the right-hand bottom corner indicate 173 
the operations of compression and retention, respectively. See also SI Movie S3. 174 

 175 

 We also succeeded in determining the characteristic velocity of LDUW by analysing the 176 

dynamics of coalescence of a small liquid droplet with a liquid thin layer (Figures 4 A and SI 177 

Movie S4). It is known that the process of coalescence of a small droplet with a large one can be 178 

regarded as a weak perturbation of the contact line for the larger droplet. When the contact angle 179 

of the droplet is small enough to validate the lubrication approximation (θ << 1 rad)27, the temporal 180 

evolution of the relaxation of the amplitude of the contact lines perturbed by a mode with wave 181 

vector q is described by the following equation28,29: 182 

𝑢𝑢𝑞𝑞 = 𝑢𝑢𝑞𝑞(0)𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑉𝑉∗𝜃𝜃3𝑞𝑞

3𝑙𝑙
𝑡𝑡� 

 
(3) 

where 𝑉𝑉∗ =  𝛾𝛾 𝜂𝜂⁄  is the characteristic velocity (where γ and η are the interfacial tension and 183 

shear viscosity of LDUW, respectively), and 𝑢𝑢𝑞𝑞(0) is the initial value of the amplitude. The 184 

logarithmic factor 𝑙𝑙 = ln (𝐿𝐿/𝑎𝑎) is a cutoff parameter to eliminate a singularity at the contact line 185 

and at infinite distance; here, a is the molecular size (3.7 Å for water) and L is the approximate 186 

size of the larger liquid droplet. From Eq. (3), the relaxation time is given by 𝜏𝜏𝑞𝑞 = 3𝑙𝑙/(𝑉𝑉∗𝜃𝜃3𝑞𝑞).  187 
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 188 
Figure 4. Temporal evolution of the pattern of the contact line during the coalescence of a 189 
droplet and a thin layer of LDUW. (A) Time-lapse micrographs showing the temporal change 190 
in the pattern of the contact line during the coalescence of the droplet and the thin layer of LDUW. 191 
The white arrow indicates the droplet coalescing with the thin layer. (B) Temporal evolution of 192 
the amplitude uq. The black dots are measured data. The data are fitted well by Eq. (3) (the red 193 
dotted line). See also SI Movie S4. 194 
 195 

 196 

 197 



 13 

We can regard the thin layer as a large droplet that absorbs the small droplet in the relaxation 198 

process. An analysis of the in situ microinterferogram showed that the wetting angle was in the 199 

range 1.76–1.82° (~0.03 rad), ensuring that the lubrication approximation is valid (See SI Text S3). 200 

Figures 4 B shows the measured temporal evolution of the amplitude of the contact line in the 201 

observation shown in Figures 4 A. The measured value was well fitted by Eq. (3), allowing us to 202 

calculate the relaxation time to be 0.467 s and q–1 ~𝑢𝑢𝑞𝑞(0)  to be 8.78 µm. Therefore, 𝑉𝑉∗  is 203 

estimated to be in the range 19.3 to 21.2 m/s. This value is one order of magnitude larger than that 204 

of a quasi-liquid droplet (~2 m/s) and two orders of magnitude larger than that of a layer on the 205 

air–ice interface (~0.2 m/s)28. Note that the values for the quasi-liquid layer are based on the 206 

interfacial tension for air, whereas that of LDUW is based on that for water. The interfacial tension 207 

between liquids with the same composition should generally be smaller than that for air. This leads 208 

to the estimation that the characteristic velocity of LDUW should be much smaller than that of the 209 

quasi-liquid layer if their viscosities are similar. Nevertheless, the characteristic velocity of LDUW 210 

is much larger than that of the quasi-liquid layer, meaning that the viscosity of LDUW must be 211 

less than that of the quasi-liquid layer. Therefore, LDUW is distinguishable from the quasi-liquid 212 

layer. In addition, the maximum value of the viscosity of LDUW can be estimated to be about 213 

1.6 × 10–3 Pa·s (See SI Text S4), which confirms that LDUW is liquid, because the value is much 214 

smaller than that at the glass-transition temperature (1012 Pa·s)30. This estimated value is also 215 

smaller than that of bulk water (~2.3 × 10−3 Pa·s)31,32 under the conditions of our observations 216 

(−10 °C and 107 MPa), (See SI Text S5). These c omparisons confirmed that LDUW is 217 

distinguishable from previously observed forms of water. 218 

 In situ optical microscopy has previously shown that macroscopic droplets and layers of 219 

HDUW appear at the interface between water and high-pressure ices III and VI grown or melted 220 



 14 

in bulk water21. Thus, the observations in this study showed that both low- and high-density 221 

unknown waters can be observed macroscopically at interfaces of water with various ice 222 

polymorphs in analogy with the LDL–HDL pair even under conditions far from those of the so-223 

called ‘no-man’s land’ (Figure 1). Although the observation of the low- and high-density unknown 224 

waters does not directly show the existence of LDL, HDL and their critical point, signs of 225 

transitions between an LDL and HDL have been suggested not only for supercooled water but also 226 

for water at temperature above the melting temperature as a dynamic crossover between LDL-like 227 

and HDL-like water13. Although a dynamic crossover is not a first-order transition, its line is 228 

characterized by a change in the slope of the dependency of the physical and structural properties 229 

of water, such as its viscosity, spectroscopic stretching band, or rotational correlation time, with 230 

pressure or temperature. The pressure region where the dynamic crossover has been suggested to 231 

occur ranges from about 150 to 300 MPa13, where high-pressure ice III is stable if the temperature 232 

is below the melting temperature (Figure 1). The structures of ice Ih and ice VI are similar to the 233 

local structures of LDL and HDL, respectively, whereas ice III has an intermediate structure20,33-234 

36 (Figure S7). These relationships imply a relationship between the region of dynamic crossover 235 

and the stable regions of ices, leading to a relationship between the pair of LDL-like and HDL-236 

like waters above the melting temperature and the LDUW–HDUW pair. This relationship can be 237 

inferred not only from the local structure, but also from the physical properties. Our analysis of 238 

the dewetting dynamics of HDUW at the water–ice III interface showed that its characteristic 239 

velocity is about 100 m/s (See SI Text S6 and SI Movie S5). This value is roughly an order of 240 

magnitude larger than that for LDUW, suggesting that LDUW is much more viscous than HDUW. 241 

This is consistent with the relationship between the LDL and HDL forms predicted by a molecular-242 

dynamics simulation, which suggested that the viscosity of LDL is an order of magnitude larger 243 
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than that of HDL near the estimated conditions for the LDL–HDL first-order transition (−65.15°C, 244 

50 MPa)37. A detailed comparison of LDUW and HDUW might provide further insights into their 245 

relationships with LDL and HDL. 246 

 In summary, we have discovered, by in situ optical microscopic observations, that a 247 

macroscopic layer and droplets of an unknown form of water with a lower density than that of bulk 248 

water can appear at a nonequilibrium water–ice Ih interface. We also succeeded in determining the 249 

characteristic velocities of LDUW and HDUW to be about 20 m/s and 100 m/s, respectively. These 250 

results suggest that LDUW and HDUW have different local structures from previously observed 251 

forms of water, including the quasi-liquid layer at the air–ice Ih interface. Taken in conjunction 252 

with our previous observations, which showed macroscopic separation of HDUW from bulk water 253 

at the interfaces between water and high-pressure ices III and VI, we have therefore shown that 254 

LDUW and HDUW can be observed at nonequilibrium interfaces between water and various forms 255 

of ice, in an analogous manner to LDL and HDL, under the conditions far from ‘no-man’s land’. 256 

The macroscopic appearance of LDUW and HDUW with a lifetime observable by conventional 257 

optical microscopy is possibly significant for the development of research, not only on the origin 258 

of the unique properties of water hidden in the “no-man’s land” region, but also the liquid 259 

polymorphisms of single-component systems in regions where there are experimental constraints, 260 

such as supercooling limits of the pure liquid. 261 

 262 

A dynamic sapphire anvil cell electrically-regulated by piezo actuators (d-SAC) was used for 263 

the high-pressure experiment (See SI Text S1 for details)22. Ultrapure water from an ultrapure-264 

water-producing apparatus (Simplicity UV; Merck Millipore, Burlington, MA, USA) fed with 265 
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distilled water (Kyoei Seiyaku Co., Tokyo, Japan) was used as the mother liquid for crystallization 266 

of ice Ih. A single crystal of ice Ih in water was repeatedly melted and grown by compression and 267 

decompression using the d-SAC in the low-temperature room kept at -10oC. The interface between 268 

the water and the ice Ih crystal repeatedly grown and melted in synchronization with 269 

(de)compression was observed in situ by bright-field microscopy, differential-interference phase-270 

contrast microscopy, and Fizeau-type laser interferometric microscopy using an inverted optical 271 

microscope (IX71; Olympus Corp., Tokyo, Japan) located in the low-temperature room.  272 
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