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Abstract. We investigate resonance states in three-cluster continuum of some light nuclei 9Be, 9B, 10B, 11B and 11C. These nuclei
are considered to have a three-cluster configuration consisting of two alpha-particles and neutron, proton, deuteron, triton and
nucleus 3He. In this study, we make use two different microscopic three-cluster models. The first model employs the Hyperspherical
Harmonics basis to numerate channels and describe three-cluster continuum. The second model is the well-known complex scaling
method. Our main aim is to find the Hoyle-analog states in these nuclei or, in other words, whether it is possible to synthesize these
nuclei in a triple collision of clusters. We formulate the criteria for selecting such states and apply them to resonance states, emerged
from our calculations. We found that there are resonance states obeying the formulated criteria which make possible syntheses of
these nuclei in a stellar environment.

INTRODUCTION

We are going to search and analyze properties of the Hoyle-like states in light nuclei. It is necessary to recall that the
Hoyle state is a very narrow resonance state in 12C, which was predicted by Fred Hoyle in 1954 [1]. Three years later
this state was experimentally observed by studying beta decays of 12B in Ref. [2]. It is interesting to point out that F.
Hoyle predicted the energy of the 0+ resonance state at E =0.33 MeV above the three alpha-particles threshold, and
Cook et al in Ref. [2] determined the position of the resonance state at E= 0.372±0.002 MeV. One has to compare to
the modern value of the energy which is E=0.3796±0.0002 MeV [3]. This resonance state created by a triple collision
of three alpha-particles is the key element in syntheses of atomic nuclei starting from 12C. The Hoyle state is a way
for the nucleosynthesis of carbon in helium-burning red giant stars, which are rich of alpha-particles. Actually, F.
Hoyle was the first who proclaimed that nuclear synthesis can take place in a triple collision of light nuclei, namely
alpha-particles.

There are a very large number of publications devoted to the 0+ and other resonance states in 12C. Different
methods have been used to determine parameters of the Hoyle state and to shed some light on the nature of this
states and other resonances states, residing in the three-cluster continuum in 12C. However, only few publications
([4, 5, 6, 7, 8, 9]) have been aimed at finding the Hoyle-analog states in light nuclei. They are mainly concentrated on
closest neighbors of the 12C nucleus, namely, 11B and 11C.

In the present paper we consider these nuclei and also 9Be, 9B and 10B. We also consider a large number of states
with different values of the total momentum J and both of negative and positive parities. Before starting in searching
for the Hoyle-analog states, one needs to formulate clear criteria for selecting such states. By analyzing properties of
the Hoyle state, one may suggest the following criteria for the Hoyle analog states in three-cluster systems:

1. Very narrow resonance state.

2. Resonance state which lies close to three-cluster threshold.

3. Resonance state which has the total orbital momentum L = 0.
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We consider the first criterion as the most important because in the case of very narrow (long-lived) resonance states,
and a compound system has more chances to be reconstructed and transformed in to a bound state. However, we will
analyze all resonance states from the point of view of the three criteria.

Our main aim is to find the Hoyle-analogue states in light nuclei 9Be and 9B, 10B, 11B and 11C. In other words,
we are going to study whether light nuclei can be created in triple collision of clusters. The necessary condition for
such a process is the existence of a very narrow resonance state in three-cluster continuum. Actually we consider a
chain of reactions

A1 + A2 + A3 = A∗ ⇒ A + γ

which consists of two steps. In the first step, an excited state (very narrow resonance state) of a compound nucleus is
created in a triple collision of clusters consisting of A1, A2 and A3 nucleons. In the second step, the compound nucleus
by emitting a photon transits from the resonance state to the bound state. The narrower is a resonance state in the first
step, the more is the probability to transit from the resonance to the bound state. For each nucleus we determine energy
and width of resonance states. We select a resonance state with a very small width. We also analyze the wave function
of selected resonance states. These investigations will be performed within a microscopic three-cluster model which
involves the hyperspherical harmonics to distinguish channels of the three-cluster system. For this model, which was
formulated in Ref. [10], we use the abbreviation AMHHB which means the algebraic model of scattering making use
of the hyperspherical harmonics basis. In Ref. [11] this model has been applied to study bound and resonance states
in 12C. It fairly good reproduced the energy and width of the Hoyle state in 12C.

The preliminary analysis of three-cluster resonance states in 9B and 9B has been carried out in Ref. [12], and in
Ref. [13] resonance states have been investigated in the mirror nuclei 11B and 11C. In Ref. [14] the AMHHB model
was applied to study the spectrum of bound states in 10B. To make a systematic analysis of resonance states and to
discover the Hoyle analog states in 9Be, 9B, 10B, 11B and 11C we have to make additional calculations and thorough
investigations of peculiarities of resonance wave functions.

Method

To study three-cluster systems we exploit a microscopic model which incorporates the resonating group method and
the hyperspherical harmonics method. The standard ansatz of the RGM for representing the wave function of a three–
s-cluster system is used

ΨE,J =
∑
S ,L

Â
{
[Φ1 (A1)Φ2 (A2)Φ3 (A3)]S ψE,LJ (x, y)

}
J , (1)

where the wave function ψE,LJ (x, y) describes relative motion of clusters and the antisymmetric functions Φν (Aν)
(ν=1, 2, 3) describes internal motion of nucleons inside the cluster with index ν. Two vectors x and y denote one of the
possible sets of the Jacobi vectors. Within this paper, the vector x determines distance between two selected clusters,
while the vector y represents displacement of the third cluster with respect to the center of mass of two selected

clusters. The antisymmetrization operator Â provides full antisymmetrization of the wave function of a compound
system.

To simplify of obtaining wave functions of discrete and continuous spectrum states, we transit from the Jacobi
vectors x and y to the hyperspherical coordinates which consist of hyperradius ρ and five hyperspherical angles which
we denote as Ω5. The hyperradius ρ is defined as

ρ =

√
x2 + y2. (2)

We make use the most popular set of hyperspherical angles which was suggested by Zernike and Brinkman [18]. This
set consists of the hyperspherical angle θ which determine relative lengths of the Jacobi vectors

x = ρ cos θ, y = ρ sin θ, (3)

two angles θx, φx, determining orientation of vector x, and two other angles θy, φy, determining orientation of vector y
in the space. Five hyperspherical angles are able to describe any shape and any orientation (i.e. rotation) of a triangle
connecting centers of mass of three clusters, and hyperradius determines any size of that triangle.
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Having introduced the hyperspherical coordinate, we can represent the three-cluster wave function (1) in the
following form

ΨE,J =
∑

c

Â {[Φ1 (A1)Φ2 (A2)Φ3 (A3)]S ψE,c (ρ)Yc (Ω5)
}

J , (4)

where c is a multiple index c = {K; λ, l; L, S } classifying channels of the three-cluster system and involving the
hypermomentum K, partial orbital momenta λ and l associated with the Jacobi vectors x and y, respectively, and the
total orbital momentum L. The hyperspherical harmonics Yc (Ω5) form a complete set of functions on five-dimension
sphere and thus account for all kinds of motion of a three-cluster system. Components of the many-channel hyperradial
wave function

{
ψE,c (ρ)

}
have to be determined by solving the Schrödinger equation with the selected nucleon-nucleon

potential.
For three-cluster systems, when the internal structure of clusters and the Pauli principle are taking into account,

the wave functions
{
ψE,c (ρ)

}
obey the set of integro-differential equations.

Within the present model a wave function (1) of a three-cluster system is expanded over an infinite set of cluster

oscillator functions
∣∣∣nρ, c〉

ΨE,J =
∑
nρ,c

CE,J
nρ,c

∣∣∣nρ, c〉 ,
where ∣∣∣nρ, c〉 = ∣∣∣nρ,K; λ, l; L

〉
= Â
{
Φ1 (A1)Φ2 (A2)Φ3 (A3) RnρK (ρ, b)Yc (Ω5)

}
, (5)

Rnρ,K (ρ, b) is an oscillator function

Rnρ,K (ρ, b) = (−1)nρ Nnρ,KrK exp

{
−1

2
r2

}
LK+3

nρ

(
r2
)
, r = ρ/b, Nnρ,K = b−3

√√√√
2Γ
(
nρ + 1

)
Γ
(
nρ + K + 3

) , (6)

and b is an oscillator length. In this case, a set of the integro-differential equations is reduced to a set of the algebraic
(matrix) equations ∑

ñρ,̃c

[〈
nρ, c
∣∣∣∣Ĥ∣∣∣∣ ñρ, c̃〉 − E

〈
nρ, c|̃nρ, c̃

〉]
CE,J

ñρ,̃c
= 0, (7)

which can be more easily solved by the numerical methods than the set of integro-differential equations. For continu-

ous spectrum states one has to impose proper boundary conditions for expansion coefficients
{
CE,J

nρ,c

}
. These conditions

have been discussed in Ref. [10] where relations between the discrete
{
CE,J

nρ,c

}
and continuous

{
ψE,c (ρ)

}
wave functions

were established. By including the asymptotic form of expansion coefficients
{
CE,J

nρ,c

}
, which is valid for large values of

hyperradial excitations nρ � 1, we obtain in a closed form the system of equations determining both wave functions
of a continuous spectrum and the corresponding S matrix.

Having obtained the expansion coefficients for any state of the three-cluster continuum, we can easily construct
its wave function in the coordinate space:

ψE,c (ρ) =
∑
nρ

CE,J
nρ,cRnρ,K (ρ, b) , ψE,LJ (x, y) =

∑
nρ,c

CE,J
nρ,cRnρ,K (ρ, b)Yc (Ω5) . (8)

To get more information about the state under consideration we will study different quantities which can be ob-
tained with the wave function in discrete or coordinate spaces. With wave functions in the discrete oscillator quantum
number representation we can determine a weight Wsh of the oscillator function belonging to the oscillator shell Nsh
in this wave function:

Wsh (Nsh) =
∑

nρ,c∈Nsh

∣∣∣∣CE,J
nρ,c

∣∣∣∣2 . (9)

where the summation is performed over all hyperspherical harmonics and hyperradial excitations obeying the follow-
ing condition Nos = 2nρ+K. Here Nos is fixed. Basis wave functions (6) belongs to the oscillator shell with the number
of oscillator quanta Nos = 2nρ + K. It is convenient to numerate the oscillator shells by Nsh ( = 0, 1, 2, . . . ), which we

determine as Nos = 2nρ + K = 2Nsh + Kmin, where Kmin = L for normal parity states π = (−1)L and Kmin = L + 1 for
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abnormal parity states π = (−1)L+1. Thus we account oscillator shells starting from a ”vacuum” shell (Nsh = 0) with
minimal value of the hypermomentum Kmin compatible with a given total orbital momentum L.

The weights Wsh we will calculate both for bound and resonance states. For a bound state, the wave function of
which is normalized by the condition 〈

ΨE,J |ΨE,J
〉
=
∑
nρ,c

∣∣∣∣CE,J
nρ,c

∣∣∣∣2 = 1, (10)

and this quantity Wsh determines the probability. For the continuous spectrum state, when the wave function is nor-
malized by the condition 〈

ΨE,J |ΨẼ,J

〉
=
∑
nρ,c

CE,J
nρ,cC

Ẽ,J
nρ,c = δ

(
k − k̃

)
, (11)

this quantity has a different meaning. It determines the relative contribution of the different oscillator shells and also
the shape of the resonance wave function in the oscillator representation.

By employing the wave function in the coordinate space we determine the average distances between clusters R1

and R2

R1 =

√
A

(A1 + A2) A3

√∫
y2
∣∣∣ψE,LJ (x, y)

∣∣∣2 dxdy, R2 =

√
(A1 + A2)

A1A2

√∫
x2
∣∣∣ψE,LJ (x, y)

∣∣∣2 dxdy. (12)

In our notations, R2 determines average distance between alpha-particles, while R1 determines distance of the third
cluster to the center of mass of two alpha particles. It is obvious, that the average distances R1 and R2 can be calculated
for the bound state only, since for resonance states integrals in Eq. (12) diverge. In Ref. [12] we suggested to extent
to resonance states the definition of average distances R1 and R2. For this aim we restricted the integration within the
internal part of the resonance wave functions which was normalized to unity. Recall that the internal part of a wave
function is represented in the region (0≤ ρ ≤ ρmax in the coordinate space or 0≤ nρ ≤ N(i) in the oscillator space)
where distances between clusters are relatively small and effects intercluster interactions are very strong.

Results and discussions.

For all nuclei under consideration we employ the Minnesota potential ([20, 21]) (MP) or the modified Hasegawa-
Nagata potential [22, 23] (MHNP). Both the central and spin-orbital components of these potentials are taken into
account.

In such a type of calculations we have only one free parameter to be selected. This is the oscillator length b which
is common for all clusters of a compound nucleus. In our calculations the oscillator length b is fixed by minimizing
the energy of the three-cluster threshold.

The Majorana parameter m of the MHNP and the exchange parameter u of the MP are very often used as an
adjustable parameter. We adjust parameters m and u to reproduce the energy of the ground state of a compound
system measured from the three-cluster threshold.

In all our calculations we use a standard set of the hyperspherical harmonics and hyperradial excitations. Positive
parity states are calculated with the hyperspherical harmonics Kmin ≤ K ≤ Kmax. where Kmax = 14 for the positive
parity states and Kmax = 13 for the negative parity states. The minimal value of the hypermomentum Kmin equals the
total orbital momentum L for normal parity states π = (−1)L and Kmin = L + 1 for the non-normal parity states. The
total number of channels Nch depends on the total angular momentum J and the total orbital moment L. To achieve
the asymptotic region and to provide sufficient precision of our calculations we take into account the hyperradial
excitation up to 70. This value of hyperradial excitations and the number of the hyperspherical channels cover a large
range of intercluster distances and different shapes of the three-cluster triangle.

In this section we are going to reexamine some results obtained in previous papers concentrating our much
interest to properties of the Hoyle state in 12C.

In Table 1 we compare parameters of resonance states obtained within AMHHB [11] and CSM [24]. There are
some consistencies in these two different methods of obtaining resonance states in the three-cluster continuum. Energy
and total width of the first 0+ resonance state (the Hoyle state) are very close in both methods. The same is observed
for other narrow 1− resonance states in 12C.
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TABLE 1. Low-lying resonance states in 12C calculated
within the AMHHB and CSM.

CSM [24] AMHHB [11]

Jπ E, MeV Γ, keV E, MeV Γ, keV
0+ 0.76 2.4 0.68 2.9

1.66 1480 5.16 534
2+ 2.28 1100 2.78 10
1− 3.65 0.30 3.52 0.21
3− 1.51 2.0×10−3 0.67 8.34

In Fig. 1 we display the structure of the wave function of the Hoyle state. As we see the weights of oscillator
shells have very large amplitudes and main contribution to the wave function in the internal region comes from the
oscillator shells 0 ≤ Nsh ≤ 30. In the asymptotic region, this function has an oscillatory behavior with much smaller
amplitude. We consider such a behavior of a resonance wave function as a ’standard’ or pattern for the Hoyle analog
states.

FIGURE 1. Weights of different oscillator shells in the wave function of the first 0+ resonance state in 12C.

We determined the shape of the triangle comprised of three alpha-particles in bound and resonance states. The
average distances between clusters are displayed in Table 2. It is interesting to note that the shape of resonance states,
shown in Table 2, is almost independent on the energy and total width of the resonance state, and the structure of
resonance wave functions. The main conclusion one may deduce from Table 2 is that the average distances between
alpha-particles are rather large. The ground state of 12C shows a compact three-cluster configuration, as it is expected.

Having reanalyzed properties of the Hoyle state and other resonance states in 12C, we suggest the following
criteria for the Hoyle-analog states:

• The Hoyle-analog state is a very narrow resonance state in the three-cluster continuum.
• The wave function of the Hoyle-analog state has large values of amplitudes Wsh in the internal region.

As we pointed out above, we consider the first criterion is the most important one. We believe that the more
long-lived resonance state has more chances that the system transits from a resonance state into a bound states, and
vise versa. It is well-known that a resonance state could substantially increase a cross section of a processes if the
total width of this resonance state is very small. To quantify the ”narrowness” of a resonance state we will calculate
the ratio Γ/E. For the original Hoyle state this ratio is 2.24 × 10−7.
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TABLE 2. The energy, width and average distances
R1, R2 between clusters for the ground state and for
the 0+ and 1− resonance states in 12C.

Jπ E, MeV Γ, keV R1, fm R2, fm
0+ -11.37 - 3.12 3.60

0.68 2.9 6.95 8.02
5.16 534 6.43 7.43

1− 3.52 0.21 6.07 7.00

Now we consider the spectra of resonance states in 11B and 11C. The energy and width of resonance states in the
three-cluster continua of 11B and 11C, respectively, were calculated in Ref. [13]. By using the criteria for selecting the
candidate to the Hoyle-analog states, formulated above, we selected four resonance states in 11B and four resonance
states in 11C. In Table 3 we display the properties of the selected resonance states in 11B and 11C, and compare them
with some bound states.

TABLE 3. Parameters of resonance states in 11B and 11C selected as candidates to the
Hoyle-analog states.

Nucleus Jπ E, MeV Γ, keV Γ/E R1, fm R2, fm
3/2− -11.055 2.60 2.88

11B 1/2+ 0.437 15.26 3.49×10−2 10.48 6.77
5/2− 0.583 5.14×10−4 8.81×10−7 4.71 7.20
3/2− 0.755 0.58 7.7×10−4 5.36 7.75
5/2+ 1.047 1.54 1.47×10−3 4.98 7.47

3/2− -9.073 2.64 2.90
1/2+ 0.906 162.94 10.75 7.08

11C 5/2− 0.783 9.64×10−5 1.23×10−7 3.20 3.87

3/2− 0.805 9.93×10−3 1.23×10−5 5.02 6.86
5/2+ 1.460 0.90 6.16×10−4 5.00 6.69

Figure 2 demonstrating wave functions of the 5/2− resonance states in 11B and 11C explicitly indicate that these
resonance states can be considered as the Hoyle analog state. Both resonance states have very large amplitudes of
weights Wsh. Structure of the wave functions of the 5/2− resonance states in 11C looks like as a wave function of a
bound state. These results also show that the average distances between clusters R1 and R2 in these resonance states
are very close to average distances for bound states.

In Table 4 we show the three-cluster resonance states in 10B calculated with the MP. Details of these calculations
can be found in Ref. [14]. As we can see in Table 4, there are a few narrow resonance states which can be considered
as candidates to the Hoyle-analog states. Three resonance states have the total width less than 12 keV.

TABLE 4. Parameters of resonance states in 10B.

Jπ E, MeV Γ, keV Γ/E R1, fm R2, fm
1+ 0.604 232.30 0.384

0.987 7.08 7.17×10−3 6.67 10.67
2+ 1.055 12.063 11.43×10−3 6.64 10.83

2.810 170.74 60.76×10−3

3+ 1.062 11.73 11.05×10−3 6.43 10.35
2.202 526.47 0.239

1− 1.100 76.75 69.77×10−3 9.31 10.84
1.820 562.71 0.309

In Table 4 we also show the average distances between interacting clusters.
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FIGURE 2. Weights of oscillator shells in the wave functions of the 5/2− resonance states in 11B and 11C.

As we see in Table 4, all resonance states selected as the candidates to the Hoyle-analog states have a dispersed
configuration with a large distance between alpha particles.

FIGURE 3. Weights of different oscillator shells in wave functions of the 3+ and 1+ resonance states in 10B.

Let us turn our attention to the wave functions of the selected resonance states. In Fig. 3 we display shell weights
in wave functions of the narrow 3+ and 1+ resonance states in 10B. One notices, that the compact three-cluster con-
figuration (Nsh =0) has a relatively large contribution to these wave functions. The shapes of the curves are similar to
the shape of the Hoyle state (Fig. 1), however the amplitudes are much more smaller. We assume that the interplay of
the attractive potential, created by the central and spin-orbital parts of the nucleon-nucleon interaction, and repulsive
potential, formed by the Coulomb interaction, does not create a favorable situation for very narrow resonance states
in 10Be.

Conclusion

We have performed a systematic investigation of the three-cluster resonance states in light nuclei 9Be, 9B, 10B, 11B, 11C
and 12C. These nuclei have been considered to have a three-cluster structure composed of two alpha particles and an s-
shell nucleus. A microscopic three-cluster model was applied to search and to study resonance states embedded in the
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three-cluster continuum. This model imposes proper boundary conditions by employing hyperspherical coordinates
and hyperspherical harmonics. Having reanalyzed properties of the Hoyle state, we formulated criteria for the Hoyle-
analog states. Among these resonances, we have found the Hoyle-analog states in these nuclei. The Hoyle-analog
states are created by a collision of two alpha particles and a neutron, proton, triton and nucleus 3He. These resonance
states have very small width.

TABLE 5. Parameters of the Hoyle-analog states in light nuclei 9Be, 9B, 11B and 11C.

Nucleus Configuration Jπ E, MeV Γ, keV Γ/E
9Be α + α + n 5/2− 0.897 2.36·10−2 2.63·10−5

9B α + α + n 3/2− 0.379 1.08·10−3 2.84·10−6

5/2− 2.805 18.0·10−3 6.42·10−6

11B α + α +3 H 5/2− 0.583 5.14·10−4 8.87·10−7

3/2− 0.755 0.58 7.70×10−4

5/2+ 1.047 1.54 1.47×10−3

11C α + α +3 He 5/2− 0.783 9.64·10−5 1.23·10−7

3/2− 0.805 9.93·10−3 1.23·10−5

5/2+ 1.460 0.90 6.16×10−4

In Table 5 we collect the parameters of the Hoyle-analog states in light nuclei under consideration. From this
Table we deduced new criterion for the Hoyle-analog states. A three-cluster resonance state can be treated as the
Hoyle-analog state if the ratio E/Γ < 1.47×10−3 for this resonance state.
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