

HOKKAIDO UNIVERSITY

Title	Mechanical Model for Super-Anisotropic Swelling of the Multi-Cylindrical PDGI/PAAm Gels
Author(s)	Nakajima, Tasuku; Mito, Kei; Gong, Jian Ping
Citation	Polymers, 15(7), 1624 https://doi.org/10.3390/polym15071624
Issue Date	2023-04-01
Doc URL	http://hdl.handle.net/2115/89262
Rights(URL)	https://creativecommons.org/licenses/by/4.0/
Туре	article
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Polymers15(7)(2023)_Nakajima_si.pdf

Mechanical model for super-anisotropic swelling of the multi-cylindrical PDGI/PAAm gels

Tasuku Nakajima 1,2,*, Kei Mito 3, and Jian Ping Gong 1,2

- ¹ Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- ² Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
- ³ Graduate School of Life Science, Hokkaido University, N10W8, Kita-ku, Sapporo 060-0810, Japan
- * Correspondence: tasuku@sci.hokudai.ac.jp

Figure S1. 2-D X-ray diffraction image of the MC-PDGI/PAAm(0.1) gel swollen in PEG aqueous solutions.

Figure S2. FWHM of the first-order X-ray diffraction peak of the MC-PDGI/PAAm(0.1) gel in the swelling regime, measured with longer camera length.

Figure S3. λ_L and λ_D of the string PAAm(0.1) gels as functions of *Q*. Reproduced from the data shown in ref. 18 (K. Mito *et al., Polymer* 2017, 128, 373–378), Copyright 2017, with permission from Elsevier.

Figure S4. Uniaxial stress-strain curves of the rectangular PAAm(x) gels at their reference state, where x=0.1, 0.3 and 0.5. The gels were cut into the dumbbell shape (gauge length: 12 mm, width: 2 mm) and tested. Strain rate was 0.14 s⁻¹. Young's modulus of the gel was determined as initial slope of the curve. $G_{net}(x)$ was calculated by dividing the Young's modulus by 3.

	Supplier	Assay
Acrylamide	Junsei Chemicals	98%+
N,N'-Methylenebisacrylamide	Wako Pure Chemical Industries	99%+
Irgacure 2959	BASF SE	99%
Sodium dodecyl sulfate	MP Biomedicals	99%+
Polyethylene glycol (Mn: 21,170)	Wako Pure Chemical Industries	~100%
Itaconic acid anhydride	Sigma Aldrich	95%+
Dodecanol	Wako Pure Chemical Industries	95%+
Glycidol	Wako Pure Chemical Industries	90%+
Pyridinium <i>p</i> -toluenesulfonate	Wako Pure Chemical Industries	97-102% (by titration)

Table S1. List of the chemicals used in this study with their supplier and standard assay.