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The current-induced spin polarization (CISP) in a system without the inversion symmetry is known to
efficiently generate the spin current. In this paper we propose another approach, generating the spin current
from the CISP locally arising in a system with the inversion symmetry in the form of the antiparallel CISP in
sublattice structure. In this approach the local CISP is extracted from one of sublattices by a selective contact
between the sublattice and an electrode. As the simplest system with such antiparallel CISP, we consider a
symmetric double-quantum-well structure (DQWS) and calculate the antiparallel CISP and the spin current to
a metallic layer in parallel contact with one well of the DQWS using the Boltzmann equation in the relaxation
time approximation. When the Fermi energy is large enough that the first-excited sub-band is occupied, the
magnitude of the spin current, which is proportional to that of the antiparallel CISP, increases with the interwell
tunnel coupling and reaches twice the value of the decoupled quantum well with the broken inversion symmetry.
Such an estimate suggests that inversion-symmetric systems can be useful in generating the spin current if the
inversion symmetry is locally broken.

DOI: 10.1103/PhysRevB.107.115306

I. INTRODUCTION

The spin current plays an important role in spintronics,
such as switching the magnetization direction in magnetore-
sistive random-access memory (MRAM), which is expected
to realize ultrahigh density and ultralow power consumption
in RAM [1–4]. One way to generate the spin current in non-
magnetic materials is to use the diffusion of current-induced
spin polarization (CISP) [5–10], which occurs in a system
with broken inversion symmetry [11–18]. Such charge-to-spin
conversion has been realized experimentally in many systems,
such as single-layer quantum wells with a spin-split energy
band [11], topological insulators with a spin-momentum lock-
ing [12–14], and heterojunctions of atomic layer and metal
[16,17].

Recently, the locally broken inversion symmetry in a sys-
tem with global inversion symmetry has been attracting a
lot of attention in superconductivity [19–22] and spintronics
[23–36]. The locally broken inversion symmetry exists with
the global inversion symmetry if the system has sublattices.
In such a system, a pair of spin-degenerate states forms
the local spin polarization, which are antiparallel between
two sublattices [23–32]. Such antiparallel spin polarization
has been theoretically derived [23–25] and experimentally
observed in materials such as monolayer PtSe2 and bilayer
WSe2 by using spin- and angle-resolved photoemission spec-
troscopy [26–32]. The antiparallel local spin polarization of
each spin-degenerate pair gives rise to the antiparallel CISP
when contributions from all occupied states are summed in
the presence of a charge current [33–36]. It has been shown

that such antiparallel CISP in a sublattice structure can switch
the sublattice magnetization of the same structure [33,35,36]
for use as memory in antiferromagnetic spintronics [37]. If
an efficient generation of the spin current is possible from the
antiparallel CISP, it will further enhance the importance of the
locally broken inversion symmetry.

In this study, we propose and explore the generation of the
spin current from the antiparallel CISP in a sublattice structure
with the locally broken inversion symmetry in each sublattice.
Our method is to extract the local CISP from one of the sub-
lattices by coupling an electrode selectively to the sublattice.
The selective coupling can be achieved, for example, in a
two-dimensional (2D) buckled structure such as atomic layer
silicene where two sublattices are displaced from each other
in the out-of-plane direction.

As a demonstration of the spin current generation from
the local CISP, we consider a symmetric double-quantum-
well structure (DQWS) [38–46] with the Rashba spin-orbit
interaction (SOI) [47–50]. The symmetric DQWS has the
inversion symmetry with respect to a point between two wells
and exhibits the antiparallel Rashba effective magnetic field,
which produces the antiparallel CISP. In this paper we derive
an analytical formula for the antiparallel CISP and the spin
current to a metallic layer (electrode) in parallel contact with
one well of the DQWS by using the Boltzmann equation in the
relaxation time approximation. We find that the spin current,
which is proportional to the local CISP in the well, increases
with the interwell coupling and reaches twice the value at no
coupling. The DQWS with no interwell coupling is equivalent
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FIG. 1. General model for the generation of the spin current by
l-CISP.

to a pair of isolated quantum wells, each of which has the
broken inversion symmetry.

The organization of this paper is as follows. Section II A
presents a general scheme for generating the spin current
from a system with the locally broken inversion symmetry
and introduces the DQWS and atomic layers as examples.
Section II B presents the Hamiltonian of a system consisting
of the DQWS and electrodes, and describes electronic states in
the DQWS and the electrode when the coupling is absent be-
tween them. Section III describes the Boltzmann equation for
the distribution function generally in a system with the locally
broken inversion symmetry in the presence of the in-plane
electric field Ex in the relaxation time approximation, and
presents expressions for the antiparallel CISP, the spin current,
and the charge current in terms of the distribution function in
the first order of Ex. Section IV presents calculated results in
the DQWS. Here we take into account the difference in the
electrochemical potential �μec which appears between the
DQWS with Ex and the electrode in equilibrium. The potential
difference �μec does not produce the spin current, which is
proportional to the local value of Ex. However, �μec produces
the charge current to the electrode, which gives rise to the
in-plane spatial variation of Ex and consequently that of the
spin current.

II. MODEL AND HAMILTONIAN

A. General model

Figure 1 presents a general model for the generation of the
spin current from a system with the inversion symmetry. The
model consists of a current-induced local spin polarization
(l-CISP) generator with the inversion symmetry, electrodes A
and B for extracting the l-CISP, and source and drain elec-
trodes. The l-CISP generator has sublattices (or layers) A and
B selectively coupled to the electrodes A and B, respectively.
Since the current flows in the xy plane between the source
and drain electrodes, we describe the eigenstate of the l-CISP
generator as |νk〉 with the wave vector k = (kx, ky) and the
band index ν. The in-plane electric field E in the l-CISP
generator induces the l-CISP, which is antiparallel between

FIG. 2. DQWS model.

A and B sublattices. Here we take the y axis in the direction
of the l-CISP and choose the eigenstate of the electrode to
be the eigenvector of σ̂y the y component of the Pauli spin
operator, which satisfies σ̂y |σy〉 = σy |σy〉 with σy = ±1. Such
a choice is always possible because we neglect the SOI in the
electrodes. Then the eigenstate of the electrode is expressed
as |ησy〉, where η represents other quantum numbers. We
describe the coupling between the l-CISP generator and each
electrode by the tunneling Hamiltonian HT.

Then the Hamiltonian of our general model in Fig. 1 is
expressed by

H = H0 + HEl + HT, (1)

where H0 and HEl are the Hamiltonian of the l-CISP generator
and that of the electrodes, respectively. Their eigenvectors
satisfy

H0|νk〉 = ενk|νk〉, HEl|ξησy〉 = εη|ξησy〉, ξ = A, B (2)

where ενk and εη are the corresponding eigenvalues.
We can apply this general model to any inversion-

symmetric structure as the l-CISP generator if the selective
coupling is possible between one of sublattices to an elec-
trode. One of such structures, which may be the simplest, is
the DQWS in Fig. 2, which we study in subsequent sections.
Another important structure is atomic layer. The group IV
atomic layer in Fig. 3, for example, has sublattices of A and B
sites, which are displaced from each other in the out-of-plane
direction, except graphene. Therefore a selective coupling
is possible by placing another atomic layer on this buckled
atomic layer.

FIG. 3. Atomic layer model.
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FIG. 4. Potential V and the local spin polarization in the DQWS
in Fig. 2. Solid red and blue dashed lines represent the distribution of
spin-up and spin-down states, respectively, at the Fermi energy in the
ground sub-band G and the first excited sub-band E. The direction of
spin is parallel or antiparallel to the effective magnetic field. �k is
the magnitude of the local spin polarization at each well (ξ = L, R).

B. Model and Hamiltonian of DQWS

Figure 2 presents a model with the DQWS as the l-CISP
generator, which consists of two wells, L and R, with the
Rashba spin-orbit coefficients, α(>0) and −α, respectively.
�SAS is the strength of the coupling between L and R wells.
Electrode L and R are selectively coupled to well L and R, re-
spectively. Figure 4 shows the potential and the wave function
in the DQWS. The potential has the mirror symmetry with
respect to the z = 0 plane. The antiparallel Rashba effective
magnetic field is produced by the potential gradient and the
band offset [51].

The Hamiltonian of the DQWS is given by

H0 = p̂2
x + p̂2

y

2m
+ H⊥, (3)

where p̂x and p̂y are the momentum operators and m is the
effective mass of the conduction band. The second term H⊥,
which describes the motion perpendicular to the DQWS, is
given by

H⊥ = −1

2
�SASτ̂1 + α

h̄
τ̂3( p̂yσ̂x − p̂xσ̂y), (4)

where the first term represents the interwell coupling and
the second term expresses the antiparallel Rashba effective
magnetic field. Here τ̂γ (γ = 1, 2 and 3) is the Pauli operator
for pseudospin [52,53] defined by

τ̂1 = |R〉 〈L| + |L〉 〈R| , (5)

τ̂2 = i |R〉 〈L| − i |L〉 〈R| , (6)

τ̂3 = |L〉 〈L| − |R〉 〈R| , (7)

where |L〉 and |R〉 represent the lowest bound state in the left
and right wells, respectively.

FIG. 5. (a) Sub-band structure in the DQWS at the interwell
coupling of �̃SAS = �SAS/(2αkSO) = 2 with kSO = mα/h̄2. Dimen-
sionless energy and momentum are defined by ε̃ = ε/(2αkSO) and
k̃ = k/kSO, respectively. The local spin polarization is shown by
arrows in (b) left and (c) right wells on the Fermi surface at the Fermi
energy of ε̃F = 1.5.

The eigenvector is given by |nσk〉 = |n〉|σ 〉|k〉. Here |k〉 is
the eigenvector of p̂ = ( p̂x, p̂y) corresponding to the eigen-
value h̄k. For each k, |σ 〉 is defined by eb · σ̂ |σ 〉 = σ |σ 〉
where eb = k−1(ky,−kx, 0) with k =

√
k2

x + k2
y is the unit

vector in the direction of the effective magnetic field, σ̂ =
(σ̂x, σ̂y, σ̂z ), and σ = ±1. The vector |n〉 (n = ±1) is given,
for each k and each σ , by

|n〉 = 1√
2

(
√

1 + nσ�k|L〉 − n
√

1 − nσ�k|R〉), (8)

�k = 2αk/

√
�2

SAS + (2αk)2. (9)

The local spin polarization in each well of state |n〉 at k
becomes ∑

σ

〈nσk | σ̂Pξ | nσk〉 = ξn�keb, (10)

where Pξ = |ξ 〉〈ξ | is the projection operator onto well ξ

(ξ = L, R) with ξ = 1 for ξ = L and ξ = −1 for ξ = R.
Equation (10) shows that the magnitude of the local spin
polarization is �k and its direction is opposite between ξ = L
and R and between n = −1 and 1. The eigenvalue of H0 is
given by

εnk = h̄2k2

2m
+ n

2

√
�2

SAS + (2αk)2, (11)

where n is the sub-band index and we also use n = G for
n = −1 and n = E for n = 1, since they are the ground state
and the first-excited state, respectively. The eigenvalue has
no dependence on σ because the DQWS has the inversion
symmetry. The energy difference between the ground and the
first-excited states is �SAS at k = 0, while, at �SAS = 0, it
becomes 2αk, the spin splitting due to the Rashba SOI in a
decoupled quantum well. Figure 5(a) presents the eigenenergy
as a function of k and Figs. 5(b) and 5(c) show the local spin
polarization [Eq. (10)] in well L and R, respectively, on the
Fermi surfaces k = kFG (n = G) and k = kFE (n = E).
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The Hamiltonian of electrode ξ (= L, R) is assumed to be

HEl = p̂2
x + p̂2

y + p̂2
z

2mEl
+ ε0. (12)

Here the effective mass mEl is the same in ξ = L and R, and
ε0(< 0) is the energy at the band bottom. The eigenvector is
|ξkkzσy〉 and the eigenenergy is

εkkz = h̄2
(
k2 + k2

z

)
2mEl

+ ε0. (13)

The tunneling Hamiltonian is given by

HT =
∑

ξkkzσy

|ξkσy〉〈ξkσy | HT | ξkkzσy〉〈ξkkzσy| + H.c., (14)

where |ξkσy〉 = |ξ 〉|k〉|σy〉 and H.c. denotes the Hermitian con-
jugate of the preceding term. Here we have assumed that
HT has the in-plane translational symmetry and does not
include the spin and that the tunneling occurs between the
electrode and the well in the same side. The matrix element
〈ξkσy | HT | ξkkzσy〉 is then independent of k and σy, and is
assumed to be the same in ξ = L and R.

With use of HT, we express the rate of the transition be-
tween |nσk〉 and |ξkkzσy〉 at the same energy (εnk = εkkz )
in Eq. (31). The value of kz, satisfying εnk = εkkz = h̄2(k2 +
k2

z )/(2mEl) + ε0, varies depending on n and k. However, we
neglect the variation of 〈ξkσy | HT | ξkkzσy〉 with kz by choos-
ing a sufficiently large value of |ε0| such that |ε0| � εF (εF:
the Fermi energy of the DQWS). This is because the vari-
ation of kz is of the order of kzεF/|ε0| from h̄2k2

z /(2mEl) =
−ε0 − h̄2k2/(2mEl) + εnk = −ε0 + O(εF).

III. CALCULATION METHOD AND FORMULAS

We calculate the l-CISP, the spin current, and the charge
current by employing the Boltzmann equation in the first order
of E. We assume that spatial variations of E and the potential
φ are in the length scale much longer than the mean-free path.
Then using local values of E and φ, the steady-state Boltz-
mann equation for the distribution function fνk (of the general
model in Sec. II A) with k the in-plane wave vector and ν the
band index is given, in the relaxation time approximation with
the momentum relaxation time τp, by

(−e)E

h̄
· ∂ fνk

∂k
= − fνk − f0(ενk − eφ,μec)

τp
, (15)

where e(>0) is the absolute value of the electronic charge and
f0(ε, μec) = {exp[(ε − μec)/kBT ] + 1}−1 with μec the elec-
trochemical potential, kB the Boltzmann constant, and T the
temperature. The distribution function is decomposed into the
equilibrium distribution and the deviation f (1)

νk in the first order
of E:

fνk = f0(ενk − eφ,μec) + f (1)
νk , (16)

in which f (1)
νk is obtained, from Eq. (15), to be

f (1)
νk = τpeE · k

h̄k

∂ f0

∂k
. (17)

With use of f (1)
νk , the l-CISP per unit area, σξ = (σξx, σξy, σξz ),

in sub-band (or layer) ξ is given by

σξ = 1

S

∑
νk

f (1)
νk 〈νk | σ̂Pξ | νk〉, (18)

with S the system area.
Spin and charge currents per unit area, js

z,ξ and jc
z,ξ , into

electrode ξ are given by

js
z,ξ = h̄

2
( j↑z,ξ − j↓z,ξ ), (19)

jc
z,ξ = −e( j↑z,ξ + j↓z,ξ ), (20)

where j
σy

z,ξ (σy =↑,↓) is the number current per unit area
of spin-up and spin-down electrons into electrode ξ and is
given by

j
σy

z,ξ = 1

S

∑
νk

∑
η

Wξησy,νk[ fνk − f0(εη, μ
eq
ec )], (21)

where we assumed that electrodes are in equilibrium with
the electrochemical potential μ

eq
ec and the temperature T . The

tunneling rate between the l-CISP generator and electrode ξ ,
Wξησy,νk, is given by

Wξησy,νk = 2π

h̄
|〈ξησy | HT | νk〉|2δ(ενk − eφ − εη ). (22)

The charge current density in the l-CISP generator, jc =
( jc

x , jc
y ), is expressed by

jc = − e

S

∑
νk

fνk

(
1

h̄

∂ενk

∂k

)
. (23)

IV. CALCULATED RESULTS IN DQWS

A. Antiparallel CISP

The l-CISP in well ξ of the DQWS becomes, by applying
Eq. (18) to the DQWS and substituting the local spin polar-
ization in Eq. (10),

σξ = 1

S

∑
nσk

f (1)
nk 〈nσk | σ̂Pξ | nσk〉 = ξ

S

∑
nk

f (1)
nk n�keb, (24)

where n takes either n = −1, 1 or n = G, E. By choosing
E = (Ex, 0, 0), σξ is in the y direction because f (1)

nk = kxg(k)
for E = (Ex, 0, 0) and eb = k−1(ky,−kx, 0). At T = 0, the
l-CISP is obtained to be

σLy = −σRy = eExτp

4π h̄

∑
n

nkFn�kFn . (25)

Figure 6 presents the dependence of σLy on the Fermi energy
εF at fixed values of the interwell coupling, �SAS/(2αkSO) =
0, 2, 5, and 10 (kSO = mαh̄−2). At �SAS = 0, σLy reduces
to the CISP in a single QW and is given in εF > 0 by
σy0 = −eExτpkSO/(2π h̄) with no dependence on εF. With
respect to the εF dependence of σLy, we focus on the re-
gion of �SAS � 2αkSO where εnk becomes a monotonically
increasing function of k as shown in Fig. 5(a). In the
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FIG. 6. The dependence of the l-CISP σLy on the Fermi en-
ergy εF and the interwell coupling �SAS. Dimensionless parameters
are defined by ε̃F = εF/(2αkSO) and �̃SAS = �SAS/(2αkSO). σy0 =
−eExτpkSO/(2π h̄) is the value at �SAS = 0 in εF > 0. In a typical
semiconductor DQWS, εF ∼ 10 meV and �SAS < 3 meV [54–56].

lower-energy region of −�SAS/2 < εF < �SAS/2 where only
the ground sub-band is occupied by electrons, Eq. (25) be-
comes σLy = −(4π h̄)−1eExτpkFG�kFG which increases with
εF. In εF > �SAS/2, on the other hand, the contribution from
the first-excited sub-band suppresses σLy, which decreases
with εF and approaches σy0 in the limit of εF → ∞. Thus σLy

exhibits the maximum at εF = �SAS/2, the value of which is
σLy = 2σy0(�SAS + 2αkSO)/(�SAS + 4αkSO).

Figure 7 shows the dependence of σLy on the interwell
coupling �SAS at fixed values of the Rashba coefficient,
2αkF/εF = 0.2, 0.3, and 0.5 (kF = √

2mεF/h̄), in the region

FIG. 7. The dependence of the l-CISP σLy on the interwell
coupling �SAS and the Rashba coefficient α in εF > �SAS/2
where both the ground and the first-excited sub-bands are occu-
pied. �̌SAS = �SAS/εF, α̌ = 2αkF/εF (kF = √

2mεF/h̄), and σy1 =
σy0/α̌ = −eExτpkF/(8π h̄). Dashed and dash-dotted lines plot σdk

[Eq.(28)] and σds [Eq. (29)], respectively, at α̌ = 0.2.

of εF > �SAS/2 in which both the ground and the first-excited
sub-bands contribute to σLy. We find that �SAS enhances
σLy. Since kFn in Eq. (25) is given in εF > �SAS/2 by kFn =√

k2
F+2k2

SO−nmh̄−2
√

�2
SAS+(2αkF )2+(2αkSO )2, σLy becomes

σLy = σy0

(
1 + �2

SAS

�2
SAS + (2αkF)2

)
, (26)

which indicates that σLy increases from σy0 at �SAS = 0 to
2σy0 in the limit of �SAS/(2αkF) → ∞. This enhancement
originates from the increasing difference in the local spin
polarization �k between the ground and the first-excited sub-
bands at the Fermi energy. To show this, we divide Eq. (25)
into two terms

σLy = σdk + σds, (27)

with

σdk = − eExτp

8π h̄
(kFG − kFE)(�kFG + �kFE )

= σy0

�2
SAS + 2(αkF)2

[
1 +

√
1 − �2

SAS/
(
4ε2

F

)]
�2

SAS + (2αkF)2
, (28)

σds = − eExτp

8π h̄
(kFG + kFE)(�kFG − �kFE )

= σy0

�2
SAS + 2(αkF)2

[
1 −

√
1 − �2

SAS/
(
4ε2

F

)]
�2

SAS + (2αkF)2
. (29)

The �SAS dependence of σdk and that of σds at 2αkF/εF =
0.2 are indicated by dashed and dash-dotted lines in Fig. 7.
These plots show that the twofold increase of σLy with �SAS

is given by the increase of σds, which in turn is given by
the increase of �kFG − �kFE . Therefore the twofold increase
of σLy originates from the k dependence of the local spin
polarization �k , which is unique to a system with the locally
broken inversion symmetry. As derived from Eqs. (28) and
(29), σdk = σy0 and σds = 0 at �SAS = 0 and σdk = σds = σy0

at �SAS/(2αkF) → ∞.

B. Spin current

We calculate the spin current and the charge current by
considering two driving forces, the in-plane electrical field
E and the electrochemical potential difference between the
DQWS and the electrode �μec = μec − μ

eq
ec = −eφ. By ap-

plying Eqs. (19), (21), and (22) to the DQWS model, the spin
current to electrode ξ is given by

js
z,ξ = 1

S

∑
σy

h̄σy

2

∑
nσk

∑
kz

Wnσk,ξkkzσy

[
fnk − f0

(
εkkz , μ

eq
ec

)]
,

(30)

with

Wnσk,ξkkzσy=
2π

h̄
|〈nσk | HT | ξkkzσy〉|2δ

(
εnk − eφ − εkkz

)
,

(31)
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and is expressed as

js
z,ξ = 1

S

∑
σy

h̄σy

2

∑
nσk

|〈nσk | ξkσy〉|2

× 1

τξ

[
fnk − f0

(
εnk − eφ,μeq

ec

)]
, (32)

with τξ , the lifetime of state |ξkσy〉 due to tunneling to elec-
trode ξ , defined by

1

τξ

=
∑

kz

2π

h̄
|〈ξkσy | ĤT | ξkkzσy〉|2δ

(
εnk − eφ − εkkz

)
. (33)

Since the matrix element 〈ξkσy | ĤT | ξkkzσy〉 has no depen-
dences on ξ , k, and σy and a negligible dependence on kz

owing to the assumptions made in Sec. II B, τ−1
ξ is propor-

tional to the density of states, whose dependence on εnk −
eφ is also negligible owing to the assumption of |ε0| � εF

(Sec. II B). Then we obtain

js
z,ξ = jsE

z,ξ + jsμec
z,ξ , (34)

with

jsE
z,ξ = h̄

2τξ S

∑
nσk

f (1)
nk 〈nσk | σ̂yPξ | nσk〉, (35)

jsμec
z,ξ = h̄

2τξ S
�μec

∂

∂μec

∑
nσk

f0
(
εnk, μ

eq
ec

)〈nσk | σ̂yPξ | nσk〉,

(36)

where jsE
z,ξ and jsμec

z,ξ are components driven by E and �μec,
respectively. Since f0(εnk, μ

eq
ec ), an isotropic distribution in k

space, does not produce the spin polarization, we have jsμec
z,ξ =

0 and obtain

js
z,ξ = h̄

2τξ

σξy. (37)

We find that the spin current is proportional to the l-CISP σξy

driven by Ex, and is not produced by �μec.

C. Spatial variations

The electrochemical potential difference �μec = −eφ,
however, produces the charge current to electrodes, which in
turn gives rise to the spatial variation of Ex and consequently
that of the spin current. We calculate such spatial variations
with Kirchhoff’s first law.

The charge current densities jc
z,ξ (x) [Eq. (20)] and jc

x (x)
[Eq. (23)] are given by

jc
z,L = jc

z,R = g0φ(x), jc
x = σ0Ex(x), (38)

where g0 is the conductance between the DQWS and each
electrode per unit area and σ0 is the electrical conductivity of
the DQWS. Kirchhoff’s first law, applied to the area of the
DQWS with width dx and unit length, gives

jc
x (x) − jc

x (x + dx) − [
jc
z,L(x) + jc

z,R(x)
]
dx = 0, (39)

which leads to

d2φ(x)

dx2
− φ(x)

λ2
= 0, λ =

√
σ0/2g0, (40)

where λ represents the length scale of the variation. By im-
posing the zero net current to each electrode

∫
jc
z,ξ (x)dx = 0,

we obtain φ(x) and Ex(x) to be

φ(x) = −�φ

2

sinh(x/λ)

sinh(Le/2λ)
, (41)

Ex(x) = �φ

2λ

cosh(x/λ)

sinh(Le/2λ)
, (42)

where �φ is the voltage drop across the electrode length Le.
Figure 8(a) shows a schematic view of spatial variations of the
spin current js

z , the charge currents jc
z , and jc

x . The spin current
js
z (x) and Ex(x) are the smallest at the electrode center (x = 0)

because the charge current flows out to electrodes in x < 0 and
flows in to the DQWS in x > 0. Figure 8(b) and 8(c) present
the λ dependence of Ex(x) and φ(x). As shown in Eq. (39),
λ is longer when the DQWS has a higher conductivity and
junctions to electrodes have a lower conductance. Since the
spin current at each x is proportional to Ex(x), the total spin
current to each electrode is determined by �φ, the potential
drop in the electrode length.

V. CONCLUSIONS

We have proposed the generation of the spin current from
the antiparallel CISP, which occurs in a system with the
locally broken inversion symmetry, by selectively coupling
an electrode to one of sublattices (or layers) with the local
CISP. Since a variety of materials and systems have the locally
broken inversion symmetry, we expect that our proposal could
enhance the possibility of finding an efficient spin current
source. Especially, atomic layer materials with sublattices
displaced from each other in the out-of-plane direction are
promising candidates in that the selective coupling can be
implemented by simply placing another layer as the electrode
onto the layer with the antiparallel CISP.

We have demonstrated generating the spin current from the
antiparallel CISP in a system consisting of the DQWS and
electrodes as the simplest example. We have calculated the an-
tiparallel CISP in the DQWS using the Boltzmann equation in
the relaxation time approximation, and found, in the large
Fermi energy region with the first-excited sub-band occupied,
that the magnitude of the antiparallel CISP increases by two
when the interwell coupling is increased from no coupling
(decoupled quantum wells with broken inversion symmetry)
to a strong coupling, even though the local spin polarization
of the spin-degenerate eigenstate pair decreases with the in-
terwell coupling. This twofold increase originates from the
momentum dependence of the local spin polarization, which
is unique to the system with the locally broken inversion sym-
metry. Such interwell-coupling dependence of the antiparallel
CISP is reflected in the spin current to each electrode because
the spin current is proportional to the local CISP in one well,
to which the electrode is coupled, as long as tunneling rates
to the electrode are approximately the same in all eigenstates
occupied in the DQWS.

The spin current generation from the antiparallel CISP in
DQWS, in which the charge current along x induces the spin
polarization along y to flow along z, can be regarded as a spin
Hall effect [57–61] and categorized as the intrinsic spin Hall
effect [59,60] because it originates from the band structure and
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FIG. 8. (a) Schematic view of spatial variations of the spin current js
z (blue solid arrow), the charge current jc

z (red dashed), and jc
x (black

dashed). Le is the electrode length. Spatial variations of (b) Ex (x) and (c) φ(x) are presented for λ̃ = λ/Le = 0.3, 0.5, and 1.0.

the spin polarization of each eigenstate. In the spin Hall effect
in the bulk, the charge current first produces the spin current,
which then accumulates the antiparallel spin polarization on
opposite surfaces. On the other hand, in the present DQWS,
the charge current first induces the antiparallel spin polariza-
tion in two wells, which then generates the spin current by
diffusing into electrodes. It has a close correspondence with
the spin current generation from 3D topological insulators
in which opposite surfaces exhibit antiparallel CISP [12–14].
However, the present DQWS, as we have demonstrated in this

paper, has a unique feature brought by the interwell coupling,
which is absent in 3D topological insulators with decoupled
surfaces.
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[1] I. Žutić, J. Fabian, and S. D. Sarma, Spintronics: Fundamentals
and applications, Rev. Mod. Phys. 76, 323 (2004).

[2] A. Chernyshov, M. Overby, X. Liu, J. K. Furdyna, Y. Lyanda-
Geller, and L. P. Rokhinson, Evidence for reversible control of
magnetization in a ferromagnetic material by means of spin-
orbit magnetic field, Nat. Phys. 5, 656 (2009).

[3] T. Liu, X. Wang, H. Wang, G. Shi, F. Gao, H. Feng, H. Deng,
L. Hu, E. Lochner, P. Schlottmann, S. von Molnár, Y. Li, J.
Zhao, and P. Xiong, Linear and nonlinear two-terminal spin-
valve effect from chirality-induced spin selectivity, ACS Nano
14, 15983 (2020).

[4] H. Wu, A. Chen, P. Zhang, H. He, J. Nance, C. Guo, J. Sasaki,
T. Shirokura, P. N. Hai, B. Fang, S. A. Razavi, K. Wong, Y.
Wen, Y. Ma, G. Yu, G. P. Carman, X. Han, X. Zhang, and K. L.
Wang, Magnetic memory driven by topological insulators, Nat.
Commun. 12, 6251 (2021).

[5] V. Edelstein, Spin polarization of conduction electrons induced
by electric current in two-dimensional asymmetric electron sys-
tems, Solid State Commun. 73, 233 (1990).

[6] V. K. Kalevich and V. L. Korenev, Effect of electric field on the
optical orientation of 2D electrons, JETP Lett. 52, 230 (1990).

[7] A. Y. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, and
N. S. Averkiev, Current-induced spin polarization at a single
heterojunction, Appl. Phys. Lett. 85, 5929 (2004).

[8] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,
Current-Induced Spin Polarization in Strained Semiconductors,
Phys. Rev. Lett. 93, 176601 (2004).

[9] C. L. Yang, H. T. He, L. Ding, L. J. Cui, Y. P. Zeng, J. N. Wang,
and W. K. Ge, Spectral Dependence of Spin Photocurrent and
Current-Induced Spin Polarization in an InGaAs/InAlAs Two-
Dimensional Electron Gas, Phys. Rev. Lett. 96, 186605 (2006).

[10] M. Trushin and J. Schliemann, Anisotropic current-induced
spin accumulation in the two-dimensional electron gas with
spin-orbit coupling, Phys. Rev. B 75, 155323 (2007).

[11] Y. Wang, R. Ramaswamy, M. Motapothula, K. Narayanapillai,
D. Zhu, J. Yu, T. Venkatesan, and H. Yang, Room-temperature
giant charge-to-spin conversion at the SrTiO3-LaAlO3 oxide
interface, Nano Lett. 17, 7659 (2017).

115306-7

https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1038/nphys1362
https://doi.org/10.1021/acsnano.0c07438
https://doi.org/10.1038/s41467-021-26478-3
https://doi.org/10.1016/0038-1098(90)90963-C
https://doi.org/10.1063/1.1833565
https://doi.org/10.1103/PhysRevLett.93.176601
https://doi.org/10.1103/PhysRevLett.96.186605
https://doi.org/10.1103/PhysRevB.75.155323
https://doi.org/10.1021/acs.nanolett.7b03714


SUZUKI, KITAGAWA, TEZUKA, AND AKERA PHYSICAL REVIEW B 107, 115306 (2023)

[12] A. R. Mellnik, J. S. Lee, A. Richardella, J. L. Grab, P. J.
Mintun, M. H. Fischer, A. Vaezi, A. Manchon, E.-A. Kim, N.
Samarth, and D. C. Ralph, Spin-transfer torque generated by a
topological insulator, Nature (London) 511, 449 (2014).

[13] K. Kondou, R. Yoshimi, A. Tsukazaki, Y. Fukuma, J. Matsuno,
K. S. Takahashi, M. Kawasaki, Y. Tokura, and Y. Otani, Fermi-
level-dependent charge-to-spin current conversion by Dirac
surface states of topological insulators, Nat. Phys. 12, 1027
(2016).

[14] K. Kondou, H. Tsai, H. Isshiki, and Y. Otani, Efficient spin
current generation and suppression of magnetic damping due
to fast spin ejection from nonmagnetic metal/indium-tin-oxide
interfaces, APL Mater. 6, 101105 (2018).

[15] M. B. Jungfleisch, W. Zhang, J. Sklenar, W. Jiang, J. E. Pearson,
J. B. Ketterson, and A. Hoffmann, Interface-driven spin-torque
ferromagnetic resonance by Rashba coupling at the interface
between nonmagnetic materials, Phys. Rev. B 93, 224419
(2016).

[16] Q. Shao, G. Yu, Y.-W. Lan, Y. Shi, M.-Y. Li, C. Zheng,
X. Zhu, L.-J. Li, P. K. Amiri, and K. L. Wang, Strong
rashba-edelstein effect-induced spin-orbit torques in monolayer
transition metal dichalcogenide/ferromagnet bilayers, Nano
Lett. 16, 7514 (2016).

[17] Y. Liu and Q. Shao, Two-dimensional materials for energy-
efficient spin-orbit torque devices, ACS Nano 14, 9389
(2020).

[18] S. Karube, N. Tezuka, M. Kohda, and J. Nitta, Anomalous
Spin-Orbit Field via the Rashba-Edelstein Effect at the W/Pt
Interface, Phys. Rev. Appl. 13, 024009 (2020).

[19] M. H. Fischer, F. Loder, and M. Sigrist, Superconductivity and
local noncentrosymmetricity in crystal lattices, Phys. Rev. B 84,
184533 (2011).

[20] D. Maruyama, M. Sigrist, and Y. Yanase, Locally non-
centrosymmetric superconductivity in multilayer systems,
J. Phys. Soc. Jpn. 81, 034702 (2012).

[21] S. Nakosai, Y. Tanaka, and N. Nagaosa, Topological Super-
conductivity in Bilayer Rashba System, Phys. Rev. Lett. 108,
147003 (2012).

[22] S. Khim, J. F. Landaeta, J. Banda, N. Bannor, M. Brando,
P. M. R. Brydon, D. Hafner, R. Küchler, R. Cardoso-Gil, U.
Stockert, A. P. Mackenzie, D. F. Agterberg, C. Geibel, and E.
Hassinger, Field-induced transition within the superconducting
state of CeRh2As2, Science 373, 1012 (2021).

[23] X. Zhang, Q. Liu, J.-W. Luo, A. J. Freeman, and A. Zunger,
Hidden spin polarization in inversion-symmetric bulk crystals,
Nat. Phys. 10, 387 (2014).

[24] C. Cheng, J.-T. Sun, X.-R. Chen, and S. Meng, Hidden spin
polarization in the 1t-phase layered transition-metal dichalco-
genides MX2 (M = Zr, Hf; X = S, Se, Te), Sci. Bull. 63, 85
(2018).

[25] L. Yuan, Q. Liu, X. Zhang, J.-W. Luo, S.-S. Li, and A. Zunger,
Uncovering and tailoring hidden Rashba spin-orbit splitting in
centrosymmetric crystals, Nat. Commun. 10, 906 (2019).

[26] J. M. Riley, F. Mazzola, M. Dendzik, M. Michiardi, T.
Takayama, L. Bawden, C. Granerød, M. Leandersson, T.
Balasubramanian, M. Hoesch, T. K. Kim, H. Takagi, W.
Meevasana, P. Hofmann, M. S. Bahramy, J. W. Wells, and
P. D. C. King, Direct observation of spin-polarized bulk bands
in an inversion-symmetric semiconductor, Nat. Phys. 10, 835
(2014).

[27] M. Gehlmann, I. Aguilera, G. Bihlmayer, E. Mlynczak, M.
Eschbach, S. Döring, P. Gospodaric, S. Cramm, B. Kardynal, L.
Plucinski, S. Blügel, and C. M. Schneider, Quasi 2D electronic
states with high spin-polarization in centrosymmetric MoS2

bulk crystals, Sci. Rep. 6, 26197 (2016).
[28] D. Santos-Cottin, M. Casula, G. Lantz, Y. Klein, L. Petaccia, P.

Le Fèvre, F. Bertran, E. Papalazarou, M. Marsi, and A. Gauzzi,
Rashba coupling amplification by a staggered crystal field, Nat.
Commun. 7, 11258 (2016).

[29] S.-L. Wu, K. Sumida, K. Miyamoto, K. Taguchi, T. Yoshikawa,
A. Kimura, Y. Ueda, M. Arita, M. Nagao, S. Watauchi,
I. Tanaka, and T. Okuda, Direct evidence of hidden lo-
cal spin polarization in a centrosymmetric superconductor
LaO0.55 F0.45BiS2, Nat. Commun. 8, 1919 (2017).

[30] W. Yao, E. Wang, H. Huang, K. Deng, M. Yan, K. Zhang, K.
Miyamoto, T. Okuda, L. Li, Y. Wang, H. Gao, C. Liu, W. Duan,
and S. Zhou, Direct observation of spin-layer locking by local
Rashba effect in monolayer semiconducting ptse2 film, Nat.
Commun. 8, 14216 (2017).

[31] E. Razzoli, T. Jaouen, M.-L. Mottas, B. Hildebrand, G. Monney,
A. Pisoni, S. Muff, M. Fanciulli, N. C. Plumb, V. A. Rogalev,
V. N. Strocov, J. Mesot, M. Shi, J. H. Dil, H. Beck, and P.
Aebi, Selective Probing of Hidden Spin-Polarized States in
Inversion-Symmetric Bulk mos2, Phys. Rev. Lett. 118, 086402
(2017).

[32] N. Ghobadi and S. B. Touski, Structural, electrical and optical
properties of bilayer SiX (X = N, P, As and Sb), J. Phys.:
Condens. Matter 33, 285502 (2021).

[33] J. Železný, H. Gao, K. Výborný, J. Zemen, J. Mašek, A.
Manchon, J. Wunderlich, J. Sinova, and T. Jungwirth, Rel-
ativistic Néel-Order Fields Induced by Electrical Current in
Antiferromagnets, Phys. Rev. Lett. 113, 157201 (2014).

[34] Y. Yanase, Magneto-electric effect in three-dimensional cou-
pled zigzag chains, J. Phys. Soc. Jpn. 83, 014703 (2014).

[35] P. Wadley, B. Howells, J. Železný, C. Andrews, V. Hills,
R. P. Campion, V. Novák, K. Olejník, F. Maccherozzi, S. S.
Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth, Y.
Mokrousov, J. Kuneš, J. S. Chauhan, M. J. Grzybowski, A. W.
Rushforth, K. W. Edmonds et al., Electrical switching of an
antiferromagnet, Science 351, 587 (2016).

[36] H. Watanabe and Y. Yanase, Symmetry analysis of current-
induced switching of antiferromagnets, Phys. Rev. B 98,
220412(R) (2018).

[37] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Antifer-
romagnetic spintronics, Nat. Nanotechnol. 11, 231 (2016).

[38] T. Koga, J. Nitta, H. Takayanagi, and S. Datta, Spin-Filter
Device Based on the Rashba Effect Using a Nonmagnetic Res-
onant Tunneling Diode, Phys. Rev. Lett. 88, 126601 (2002).

[39] P.-Q. Jin and Y.-Q. Li, Magnification of the spin Hall effect in a
bilayer electron gas, Phys. Rev. B 76, 235311 (2007).

[40] E. Bernardes, J. Schliemann, M. Lee, J. C. Egues, and D. Loss,
Spin-Orbit Interaction in Symmetric Wells with Two Subbands,
Phys. Rev. Lett. 99, 076603 (2007).

[41] R. S. Calsaverini, E. Bernardes, J. C. Egues, and D. Loss,
Intersubband-induced spin-orbit interaction in quantum wells,
Phys. Rev. B 78, 155313 (2008).

[42] M. Akabori, S. Hidaka, H. Iwase, S. Yamada, and U. Ekenberg,
Realization of In0.75Ga0.25As two-dimensional electron gas bi-
layer system for spintronics devices based on Rashba spin-orbit
interaction, J. Appl. Phys. 112, 113711 (2012).

115306-8

https://doi.org/10.1038/nature13534
https://doi.org/10.1038/nphys3833
https://doi.org/10.1063/1.5050848
https://doi.org/10.1103/PhysRevB.93.224419
https://doi.org/10.1021/acs.nanolett.6b03300
https://doi.org/10.1021/acsnano.0c04403
https://doi.org/10.1103/PhysRevApplied.13.024009
https://doi.org/10.1103/PhysRevB.84.184533
https://doi.org/10.1143/JPSJ.81.034702
https://doi.org/10.1103/PhysRevLett.108.147003
https://doi.org/10.1126/science.abe7518
https://doi.org/10.1038/nphys2933
https://doi.org/10.1016/j.scib.2017.12.003
https://doi.org/10.1038/s41467-019-08836-4
https://doi.org/10.1038/nphys3105
https://doi.org/10.1038/srep26197
https://doi.org/10.1038/ncomms11258
https://doi.org/10.1038/s41467-017-02058-2
https://doi.org/10.1038/ncomms14216
https://doi.org/10.1103/PhysRevLett.118.086402
https://doi.org/10.1088/1361-648X/abfdf0
https://doi.org/10.1103/PhysRevLett.113.157201
https://doi.org/10.7566/JPSJ.83.014703
https://doi.org/10.1126/science.aab1031
https://doi.org/10.1103/PhysRevB.98.220412
https://doi.org/10.1038/nnano.2016.18
https://doi.org/10.1103/PhysRevLett.88.126601
https://doi.org/10.1103/PhysRevB.76.235311
https://doi.org/10.1103/PhysRevLett.99.076603
https://doi.org/10.1103/PhysRevB.78.155313
https://doi.org/10.1063/1.4766749


SPIN-CURRENT GENERATION FROM LOCAL SPIN … PHYSICAL REVIEW B 107, 115306 (2023)

[43] F. G. G. Hernandez, L. M. Nunes, G. M. Gusev, and A. K.
Bakarov, Observation of the intrinsic spin Hall effect in a two-
dimensional electron gas, Phys. Rev. B 88, 161305(R) (2013).

[44] S. Souma, A. Sawada, H. Chen, Y. Sekine, M. Eto, and T. Koga,
Spin Blocker Using the Interband Rashba Effect in Symmetric
Double Quantum Wells, Phys. Rev. Appl. 4, 034010 (2015).

[45] A. Khaetskii and J. C. Egues, Giant edge spin accumulation in
a symmetric quantum well with two subbands, Europhys. Lett.
118, 57006 (2017).

[46] K. Hayashida and H. Akera, D’yakonov-perel’ spin relaxation
in a bilayer with local structural inversion asymmetry, Phys.
Rev. B 101, 035306 (2020).

[47] F. J. Ohkawa and Y. Uemura, Quantized surface states of a
narrow-gap semiconductor, J. Phys. Soc. Jpn. 37, 1325 (1974).

[48] Y. A. Bychkov and E. I. Rashba, Oscillatory effects and the
magnetic susceptibility of carriers in inversion layers, J. Phys.
C 17, 6039 (1984).

[49] Y. A. Bychkov and E. I. Rashba, Properties of a 2D electron gas
with lifted spectral degeneracy, JETP Lett. 39, 78 (1984).

[50] S. Faniel, T. Matsuura, S. Mineshige, Y. Sekine, and T. Koga,
Determination of spin-orbit coefficients in semiconductor quan-
tum wells, Phys. Rev. B 83, 115309 (2011).

[51] H. Akera, H. Suzuura, and Y. Egami, Gate-voltage-induced
switching of the Rashba spin-orbit interaction in a composition-
adjusted quantum well, Phys. Rev. B 95, 045301 (2017).

[52] T. Ishikawa and H. Akera, Antiparallel spin Hall current in a
bilayer with skew scattering, Phys. Rev. B 100, 125307 (2019).

[53] T. Ishikawa and H. Akera, Ac response of spin-pseudospin cur-
rent in a double quantum well, Jpn. J. Appl. Phys. 61, 063002
(2022).

[54] G. S. Boebinger, H. W. Jiang, L. N. Pfeiffer, and K. W. West,
Magnetic-Field-Driven Destruction of Quantum Hall States in
a Double Quantum Well, Phys. Rev. Lett. 64, 1793 (1990).

[55] S. Q. Murphy, J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer,
and K. W. West, Many-Body Integer Quantum Hall Effect:
Evidence for New Phase Transitions, Phys. Rev. Lett. 72, 728
(1994).

[56] A. A. Bykov, D. R. Islamov, A. V. Goran, and A. I. Toropov,
Microwave photoresistance of a double quantum well at high
filling factors, JETP Lett. 87, 477 (2008).

[57] M. I. Dyakonov and V. I. Perel, Possibility of orienting electron
spins with current, Sov. Phys. JETP 13, 467 (1971).

[58] M. I. Dyakonov and V. I. Perel, Current-induced spin orien-
tation of electrons in semiconductors, Phys. Lett. A 35, 459
(1971).

[59] S. Murakami, N. Nagaosa, and S.-C. Zhang, Dissipationless
quantum spin current at room temperature, Science 301, 1348
(2003).

[60] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and
A. H. MacDonald, Universal Intrinsic Spin Hall Effect, Phys.
Rev. Lett. 92, 126603 (2004).

[61] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,
Observation of the spin Hall effect in semiconductors, Science
306, 1910 (2004).

115306-9

https://doi.org/10.1103/PhysRevB.88.161305
https://doi.org/10.1103/PhysRevApplied.4.034010
https://doi.org/10.1209/0295-5075/118/57006
https://doi.org/10.1103/PhysRevB.101.035306
https://doi.org/10.1143/JPSJ.37.1325
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1103/PhysRevB.83.115309
https://doi.org/10.1103/PhysRevB.95.045301
https://doi.org/10.1103/PhysRevB.100.125307
https://doi.org/10.35848/1347-4065/ac6644
https://doi.org/10.1103/PhysRevLett.64.1793
https://doi.org/10.1103/PhysRevLett.72.728
https://doi.org/10.1134/S0021364008090063
https://doi.org/10.1016/0375-9601(71)90196-4
https://doi.org/10.1126/science.1087128
https://doi.org/10.1103/PhysRevLett.92.126603
https://doi.org/10.1126/science.1105514

