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ABSTRACT  12 

Based on a virtual crack extension (VCE) technique in finite element method (FEM), this paper proposes a 13 

rational method of calculating weight functions for inclined shear cracked RC beams with any geometry. As 14 

an inclined shear crack in an RC beam is geometrically determined by the absolute dimensions, shear span to 15 

beam depth ratio, crack inclined angle and crack initiation location, the relations between the weight functions 16 

and these parameters are investigated by either following theoretical equations or varying the parameters in a 17 

certain range. The range is determined to enclose the geometries of inclined critical shear cracks of a large set 18 

of RC beams which were tested under a bending load but failed due to the propagation of a critical inclined 19 

shear crack. Moreover, a method of calculating the weight functions of a shear cracked RC beam with any 20 

geometrical properties is developed numerically using the weight functions calculated and provided in this 21 

study. As a result, it is possible that the shear behaviors of RC beams can be even studied conveniently but also 22 

comprehensively following the theoretical fracture mechanic approach. 23 
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Nomenclature 

a crack length 
β crack inclined angle 
𝛽  crack inclined angle of the reference case 
𝛽   crack inclined angle of an arbitrary case 
c depth of the compression zone 
Cf resultant normal force of concrete in the compression zone 
Δa the amount of virtual crack extension 
δ the maximum deflection 
E Young’s modulus 
fc strength of concrete 
{fI(II)} decomposed nodal force vectors 
φ crack initiation location ratio 
𝜑  crack initiation location ratio of the reference case 
𝜑   crack initiation location ratio of an arbitrary case 
γ1 depth ratio of the equivalent rectangular stress block 
H effective modulus 
h width of the shear span 
h1 crack initiation location 
hI(II) mode I and II weight function components 
𝐼 sectional moment of inertia of the beam 
[J] Jacobian matrix between local coordinates and global coordinates 
[K] global stiffness matrices 
[ki] elemental stiffness 
KI(II) mode I and II stress intensity factors 
ls size of the first ring of elements around the crack tip 
𝜇 displacement constant depending on boundary conditions and applied load 
Nc number of elements around the crack tip 
ν Poisson’s ratio 
ω shear span/beam depth ratio 
𝜔  shear span/beam depth ratio of the reference case 
𝜔   shear span/beam depth ratio of an arbitrary case 
P applied reference load 
ρ longitudinal steel ratio 
𝜎  normal stress in the local x direction 
𝜎  normal stress in the local y direction 
𝜎  shear stress in the local x-y plane 
UI(II) decoupled nodal displacement 
w effective depth of reinforcement 
𝑤  effective depth of reinforcement of an arbitrary case 

 3 
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 1 

1 INTRODUCTION 2 

It is generally believed that a well-designed reinforced concrete (RC) beam subjected to extreme overloads 3 

should fail in a ductile and symptomatic flexure mode rather than a brittle and catastrophic shear mode [1]. 4 

However, as the shear behaviors of RC beams have not been fully uncovered, the shear failure appeared as one 5 

of the commonly observed failure modes of RC beams under service. As a result, the related design codes are 6 

continually changing and normally becoming more stringent [2, 3]. Referencing to current codes, even 7 

structures that were designed in the last few decades may not satisfy the requirements of the latest codes, which 8 

implicates that massive amount of funds may have to be spent on rehabilitating or upgrading the infrastructures. 9 

Therefore, it is of great significance to develop a comprehensive model, free of empirical limitations, for 10 

analyzing the shear behaviors and strength of RC beams. 11 

For a shear critical RC beam, it was concluded that the shear behaviors and strength are associated with the 12 

opening of a major inclined shear crack and a breakdown along this crack. Focusing on this critical inclined 13 

shear crack, researchers believe that it is difficult to predict the post-diagonal cracking behaviors reliably. As 14 

a result, the ultimate failure load was roughly assumed to be equivalent to the inclined cracking load. However, 15 

it was observed that some tested RC beams failed at loads 100% greater than the inclined cracking loads [4], 16 

which means attentions should be paid to the post-cracking behaviors including the propagation of the inclined 17 

critical shear crack. In terms of the post-cracking behaviors, it was confirmed that an aggregate interlock in 18 

transferring shear stresses across the diagonal shear crack plays a key role [5, 6]. Fenwich and Paulay also 19 

reported that it is the breakdown of aggregate interlock action that triggers the shear failure based on detailed 20 

measurements of a group of cracked beams [7]. In addition, Walraven's studies showed that this shear stress 21 

transmitted by aggregates is related to the crack width [8]. Similarly, the shear resistance from the longitudinal 22 

reinforcement was reported to have been underestimated by empirically derived ACI expression [2]. All the 23 
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findings improved the cognition of the shear failure mode of RC beams but complicated or even encumbered 1 

the development of a comprehensive analytical model. 2 

Fortunately, a weight function (WF) concept in fracture mechanics [9, 10] provides a possibility for the 3 

development of a comprehensive analytical model. Attributing to the load-independent characteristic of WFs, 4 

the crack tip stress intensity factors (SIFs) as well as the cracking opening displacements (CODs) under any 5 

loading conditions can be calculated with the WFs for the cracked geometry if the crack face stresses from 6 

bridging elements, such as aggregates and rebar are related to the crack width. As the nonlinearities such as 7 

the fictitious cracks in the fracture processing zone (FPZ) can be included in the bridging stress to crack width 8 

relations [11], the WF which is a concept in the linear elastic fracture mechanics (LEFM) may be extended to 9 

nonlinear fractures. Using the analytical WFs for the Mode I crack [12], both the SIFs and CODs of flexural 10 

cracks in RC beams have been calculated in Ref. [13-15]. In fact, the WFs are also applicable for analyzing 11 

beams made of other composite materials, e.g., fiber reinforced concrete (FRC) and polymer cement mortar 12 

(PCM), as well as beams with externally attached reinforcements, e.g., carbon fiber reinforced polymer (CFRP) 13 

sheet, if the bridging effect can be equivalent to stresses relating the cracking width [16-19]. Inversely, the 14 

stresses of the bridging elements can be predicted exploiting the COD profiles measured in real structures as 15 

implemented in [13-15]. Similarly, in terms of the inclined shear cracks, it is also feasible to study the cracking 16 

behaviors theoretically based on fracture mechanics if the mixed mode WFs for the shear cracked beam 17 

geometries can be calculated conveniently, even if not the closed-form analytical expressions like the Mode I 18 

crack. However, no such a method of calculating WFs is available for the shear cracked beam so far.  19 

Therefore, this study aims at proposing a method of calculating WFs for shear cracked RC beams based on a 20 

virtual crack extension (VCE) technique in finite element method [20-22]. Actually, exploiting the mixed mode 21 

WFs from this method, the authors have successfully predicted the fatigue life and determined the dominant 22 
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degradation mechanisms of RC slabs under a moving wheel-type load focusing on the propagation and failure 1 

along a couple of critical punching shear cracks [23, 24].  2 

As the critical shear crack in beams is normally characterized as an approximately inclined straight-line [25, 3 

26], the shear cracked RC beams may be geometrically determined by the absolute dimensions, shear 4 

span/beam depth ratios, crack initiation location and crack inclined angle. Hence, firstly, this study is dedicated 5 

to obtained the relations between the WFs and the geometrical parameters by varying each parameter in a 6 

certain range. To be efficiency, the ranges are determined beforehand to enclose the crack initiation locations 7 

and crack inclined angles of the critical shear crack of a large set of experimental RC beams. With the obtained 8 

results and through theoretical analyses, it is found that the WFs along all the boundaries of a shear cracked 9 

beam of any geometrical properties can be calculated exploiting the corresponding WFs of only one or two 10 

beams with different geometries. Furthermore, a WF calculation method for analyzing the beams with shear 11 

cracks is developed to facilitate applications.  12 

 13 

2 DIAGONAL SHEAR CRACKS IN RC BEAMS 14 

Generally, as shown in Fig. 1, the critical shear crack of an RC beam consists of two branches, whereas the 15 

crack propagation in the second branch is unstable. Once the crack tip reaches the second branch, a brittle 16 

failure is caused by a splitting of concrete and along the second branch line as reported in Ref. [27]. Therefore, 17 

this study focuses on the first branch and provides a convenient WF calculation method for further analyses on 18 

the cracking behaviors of the critical shear cracks in RC beams based on fracture mechanics. 19 

For a given RC beam, the first branch is geometrically determined by a crack inclined angle (β) and crack 20 

initiation location (h1), which can be calculated following the methods introduced in Ref. [27] and simply 21 

reinterpreted as follows. According to ACI code [2], the distance of the normal concrete force Cf from the 22 

compression fiber is 0.5γ1c as shown in Fig. 1, where c is the depth of compression zone above the tip of the 23 
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inclined shear crack. This γ1c which depends on the strength of concrete fc is the depth of the equivalent 1 

rectangular stress block. For simplicity, a mean value of 0.72 is assigned to γ1 for all values of concrete fc in 2 

this study. Based on a principle that the sum of moments (about the tip of the inclined crack) of the forces 3 

acting on the right part of the beam shown in Fig. 2 is equal to zero, the inclined angle β should satisfy an 4 

equation expressed as [27] 5 

𝑐𝑜𝑡 𝛽
ℎ 𝑤⁄

1 𝑐 𝑤⁄
𝑐𝑜𝑡𝛽

2.5 𝑐 𝑤⁄
1 𝑐 𝑤⁄

 (1) 

where h and w are the width of the shear span and the effective depth of reinforcement, respectively; c can be 6 

calculated according to Eq. (2) if the maximum compression strain of concrete and elastic modulus of 7 

reinforcement are assumed as 0.002 and 2×105MPa, respectively. These values are acceptable for general cases. 8 

With these values and following [27], one obtains 9 

𝑐
𝑤

600
𝜌
𝑓
𝑐
𝑤

600
𝜌
𝑓

0 (2) 

where ρ is a longitudinal steel ratio which is equal to the cross-sectional area of longitudinal steel rebars 10 

dividing the beam cross-sectional area. 11 

In addition, following the geometrical relations as schematically shown in Fig. 1, the distance h1 of the 12 

initiation of shear crack from the support can be expressed as 13 

ℎ
𝑤

1
𝑐
𝑤

ℎ 𝑤⁄
1 0.36 𝑐 𝑤⁄

𝑐𝑜𝑡𝛽  (3) 

Finally, with the compression depth (c), crack inclined angle (β), and crack initiation location (h1) from solving 14 

Eq. (1) - (3), the geometrical information for the first branch of the critical inclined shear crack can be obtained. 15 

  16 
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 1 

 2 

 3 

 4 

 5 

Fig. 1. Geometrical representation of critical inclined crack 6 

 7 

 8 

 9 

 10 

 11 

Fig. 2. Forces acting on portions of beam where splitting occurs 12 

 13 

3 FORMULATIONS FOR MIXED FRACTURE MODE 14 

The WFs are, in fact, the Green's function for the SIFs in a cracked body. For 2-D mixed mode cracks, 15 

exploiting the VCE technique in FEM combined with symmetric mesh in the crack tip neighborhood as shown 16 

in Fig. 3, the SIFs and nodal WFs are decoupled into Model I and Mode II components because the symmetric 17 

mesh provides the decoupled characteristics for the stresses, strains, displacements and traction field 18 

parameters into Mode I and II components with respect to x axis [22]. For a crack length (a) and inclination 19 

angle (β), the decoupled nodal Mode I WF components hIx(y) and Mode II WF components hIIx(y) at i's nodal 20 

location (xi, yi) can be expressed with the corresponding displacement differentiations (∂UI(II)/∂a) and SIFs 21 

(KI(II)) as 22 

h 

0.5γ1c 

P 

h1 

β 

P 

Cf  c 

w-c First branch 

Second branch 

P 

Cf 

Tf Tf -T 

β 

T 
T 

Vd 

Vd P 

Vc 

Vc 
C 

C 

h 

w 

c 



8 
 

ℎ 𝑥 ,𝑦 ,𝑎,𝛽
𝐻

2𝐾
𝜕𝑈 𝑥 ,𝑦 ,𝑎,𝛽

𝜕𝑎
 (4) 

ℎ 𝑥 , 𝑦 ,𝑎,𝛽
𝐻

2𝐾
𝜕𝑈 𝑥 ,𝑦 ,𝑎,𝛽

𝜕𝑎
 (5) 

where H is an effective modulus which is E for plane strain and E/(1-ν2) for plane strain. E and ν are material 1 

Young’s modulus and Poisson’s ratio, respectively. Subscript I(II) means Mode I and Mode II components. 2 

Thus, hI(II)x and hI(II)y are WF components along the x and y axes in (x, y) coordinate system respectively for 3 

Mode I or II fracture problems. Correspondingly, UI(II)x and UI(II)y are the displacement components along the 4 

x and y axes respectively for Mode I or II deformation, which can be determined according to [22] within the 5 

symmetric region in the crack tip neighborhood. From Eq. (4) and (5), it is found that, in order to obtain the 6 

nodal WFs, the displacement differentiations (∂UI(II)/∂a) and SIFs (KI(II)) should be expressed with data that 7 

can be output from FEM, such as global stiffness matrices and nodal displacement vectors.  8 

For Mode I and Mode II SIFs KI(II), they can be obtained following their relationships with strain energy release 9 

rate which is the change in potential energy in a given loading system produced by the virtual crack extension. 10 

And KI(II) can be expressed as 11 

𝐾 𝐻
1
2
𝑈

𝜕 𝐾
𝜕𝑎

𝑈 𝑈
𝜕 𝑓
𝜕𝑎

⁄

 (6) 

where [K] and {fI(II)} are the global stiffness matrices and decomposed nodal force vectors, respectively. And 12 

∂[K]/∂a and ∂{fI(II)}/∂a are the changes of [K] and {fI(II)} due to the VCE as shown in Fig. 3. Obviously, 13 

∂{fI(II)}/∂a equals 0 in the absence of body-force loading, thermal loading, and crack-face loading conditions, 14 

which can be ensured for RC beam analyses where the crack-face bridging stresses are considered separately. 15 

As [K] is an integration of all elemental stiffness [ki] which depends on the individual elemental geometry, 16 

shape function and elastic properties, the variation of the global stiffness matrices with respect to the VCE 17 

∂[K]/∂a is given as 18 
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𝜕 𝐾
𝜕𝑎

𝑘 | ∆ 𝑘 |
∆𝑎

 (7) 

where [ki] is elemental stiffness matrix. Nc is the number of elements around the crack tip because only the 1 

elemental geometry of crack tip elements is perturbed by the VCE as shown in Fig. 3. Δa is the amount of 2 

VCE in a direction collinear with the oblique crack. 3 

For the decoupled displacement derivatives, ∂{UI(II)(xi, yi, a, β)}/∂a, they can be obtained through applying a 4 

chain rule of differentiation of UI(II)(xi, yi, a, β) with respect to the crack length (a). Considering the inclined 5 

angle β for a given shear crack is constant, the obtain decoupled displacement derivatives are expressed as 6 

𝜕 𝑈
𝜕𝑎

𝑑 𝑈
𝑑𝑎

𝜕 𝑈
𝜕𝑥

∙
𝑑𝑥
𝑑𝑎

𝜕 𝑈
𝜕𝑦

∙
𝑑𝑦
𝑑𝑎

 (8) 

Since the stresses, strains, and displacements should satisfy the equilibrium equation and compatibility 7 

condition as 8 

𝐾 𝑈 𝑓 0 (9) 

Taking total differentiation of Eq. (9) with respect to crack length (a) and after rearrangement, the first term in 9 

the right part of Eq. (8) is given as 10 

𝑑 𝑈
𝑑𝑎

𝐾
𝑑 𝑓
𝑑𝑎

𝑑 𝐾
𝑑𝑎

𝑈  (10) 

where [K]-1 is the inverted matrix of the global stiffness of original crack geometry. d{fI(II)}/da=0.0 for the 11 

targeted case. As among the three determinants of the global stiffness matrix [K], i.e. elemental geometry, 12 

shape function and elastic properties, the elemental geometry is the only factor that relates to the crack length, 13 

d[K]/da should be the same as ∂[K]/∂a and can be calculated following Eq. (7).  14 

The last two terms of Eq. (8) serve as the correction factors of changing the total displacement derivatives to 15 

partial displacement derivatives for the oblique cracks, which are null for nodes without geometric changes as 16 

a result of VCE. For a collinear VCE with an oblique crack, we have dx/da=1.0 and dy/da=0. The finite element 17 
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evaluation of ∂{UI(II)}/∂x in Eq. (8) resulting from the VCE can be obtained following [22] using a Jacobian 1 

matrix [J] between local coordinates and global coordinates.  2 

Substituting Eq. (6) and Eq. (8) into Eq. (4) and Eq. (5), the nodal WFs for Mode I and Mode II for an oblique 3 

edge crack geometry with crack length (a) and inclination angle (β) at (xi, yi) locations can be obtained and 4 

expressed as 5 

ℎ 𝑥 ,𝑦 ,𝑎,𝛽
𝐻

2𝐾
𝑑 𝑈

𝑑𝑎
𝜕 𝑈

𝜕𝑥
𝑑𝑥
𝑑𝑎

 (11) 

ℎ 𝑥 , 𝑦 ,𝑎,𝛽
𝐻

2𝐾
𝑑 𝑈

𝑑𝑎
𝜕 𝑈

𝜕𝑥
𝑑𝑥
𝑑𝑎

 (12) 
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Fig. 3. Symmetric mesh in crack tip neighborhood with respect to the global x axis 15 

 16 

4 RESULTS AND DISCUSSIONS  17 

4.1 Shear crack geometry for RC beams 18 

To improve calculation efficiency, the initiation locations and inclined angles are calculated beforehand for the 19 

critical shear cracks in sets of RC beams from a series of literatures. And then, the WF variations with respect 20 
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to these two parameters will be investigated in two ranges which can enclose the geometries of the employed 1 

RC beams. Applying the introduced theories in section 2, the theoretical crack initiation locations and inclined 2 

angles are evaluated and shown in Fig. 4 for the sets of RC beams tested by [5, 29-36]. As the exploited beams 3 

are with various strengths of concrete (from 10.5 MPa to 98.8 MPa), reinforcement ratios (from 0.5% to 3.36%), 4 

shear span to beam depth ratios, and absolute geometrical sizes (beam depth ranging from 7 cm to 120 cm), 5 

they are of good representative of the RC beams failed due to a critical shear crack. From Fig. 4, it is found 6 

that the crack initiation location (h1/h) and inclined angle (β) for almost all the RC beams fall in two ranges of 7 

{0.4, 0.6} and {40°, 60°}, respectively. Thus, to be efficient, these two ranges are employed for further 8 

calculations of obtaining the relations between the WFs and the two geometrical properties in this study. 9 

 10 
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(a) Inclined angle vs. shear span ratio                    (b) Initiation location vs. shear span ratio 12 

Fig. 4. Initiation locations and inclined angles for critical shear cracks in RC beams 13 

 14 

4.2 Weight function 15 

This study aims at uncovering and summarizing the relations between all WFs along the general load applied 16 

boundaries and all the parameters which geometrically determine a shear cracked RC beam (Fig. 5), i.e. 17 

absolute dimensions, shear span/beam depth ratios (h/w), crack initiation location (h1/h) and crack inclined 18 
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angle (β). In this study, the shear span/beam depth ratio and the crack initiation location are simply represented 1 

by ω and φ, respectively. In this study, focuses will be concentrated on investigating and deducing the 2 

variations and regulations of WFs with respect to these geometrical parameters. 3 

As the dependence of WF on constraint conditions for a given crack geometry can be circumvented as reported 4 

in Ref. [16], a simple constraint condition shown in Fig. 6 is employed for all calculations. A pure bending 5 

load condition as shown in Fig. 6 is employed considering the load-independent of WFs. To capture the 1 √𝑟⁄  6 

singular behavior of crack face WFs in the crack tip neighborhood, the triangular quarter-point elements are 7 

employed for the first ring of elements around the crack tip [28]. The size of the first ring of elements is set as 8 

ls/a=0.04, which can ensure a high enough accuracy. As generally possessed for VCE technique, the amount 9 

of crack extension (Δa) is one of the key operational parameters. A 10-5 was determined as an appropriate value 10 

crack extension ratio (Δa/ls) for evaluating both Mode I and Mode II WFs accurately. 11 

 12 

 13 

 14 

 15 

 16 

 17 

Fig. 5. Geometry for the inclined shear crack 18 

 19 

 20 

 21 

Fig. 6. Finite element model of the cracked beam under pure bending load 22 
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4.2.1 Weight function for varying absolute dimensions 1 

For a unit width beam as shown in Fig. 5 under any boundary conditions and a given reference load, the 2 

maximum deflection of the beam (𝛿) can be calculated 3 

𝛿 𝜇 ∙
𝑃ℎ
𝐸𝐼

 (13) 

where 𝑃 is the applied reference load. 𝜇 is a constant which is dependent on the boundary conditions and the 4 

location of the applied load. ℎ is the span of the beam. 𝐸 and 𝐼 are the Young’s modulus and the sectional 5 

moment of inertia of the beam, respectively. For a unit width of beam, 𝐼 is given as 6 

𝐼
1 ∙ 𝑤
12

 (14) 

where 𝑤 is the depth of the beam as shown in Fig. 5. 7 

In terms of a given elastic beam under an unchanged reference load, if all the absolute values of the geometrical 8 

dimensions including ℎ, 𝑤 as well as the virtual crack extension (∆𝑎) are increased to n times, it is found that 9 

the maximum deflection (𝛿) of the beam will stay unchanged by substituting Eq. (14) into Eq. (13). Thus, for 10 

an elastic body, the displacement distributions should stay unchanged as well. Nevertheless, as the value of the 11 

geometrical crack extension (∆𝑎) is increased to n times, the partial derivation of displacement distributions 12 

with respect to the virtual crack extension, the terms 𝜕 𝑈 𝜕𝑎⁄  and 𝜕 𝑈 𝜕𝑎⁄  in Eq. (4) - (5), should 13 

be reduced to 1 𝑛⁄ . Besides, for the plane stress and strain conditions, the global stiffness matrix is dimensional 14 

independent. Substituting these terms after changing the absolute dimensions into Eq. (4) - (6), it is found that 15 

both SIF and WF components under an unchanged reference load should be reduced to 1 √𝑛⁄  with respect to 16 

the n times of dimension increase. Therefore, the WFs for any shear cracked RC beams can be easily calculated 17 

exploiting the corresponding WFs of one shear cracked RC beam with the same geometries with different 18 

absolute dimensions. 19 

 20 
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4.2.2 Weight function for varying inclination angle 1 

In order to investigate the relation between the crack inclination angle and WFs, other geometrical parameters 2 

should stay unchanged. In this section, for the oblique cracked geometry shown in Fig. 5, h=300mm, 3 

w=100mm, a/w=0.5 and φ =0.6 are employed for calculation. And, the inclined edge cracked geometries with 4 

an inclined angle in the identified range, i.e. from β=40° to β=60°, are employed for the detailed WF calculation. 5 

With respect to the (x', y') coordinates and β from 40° to 60°, Fig. 7 shows the nodal WF components along 6 

the left-hand face of the inclined edge cracked geometries in relation to the distance from the point A (Fig. 5). 7 

For a given inclined angle β, it is found that hIx' and hIIx' stay almost constant while hIy' and hIIy' decrease linearly 8 

to even below zero in a certain range adjacent to point F once the concerned point passes the altitude of the 9 

crack tip in the vertical upward direction. In terms of the WFs for different inclined angle, it is found that the 10 

absolute values of hIx' and hIIx' decrease almost linearly with respect to the increasing inclined angle as shown 11 

in Fig. 8. In terms of hIy' and hIIy', as these two WF components exhibit an approximately linear correlation 12 

with respect to the distance away from point A as observed in Fig. 7, it might be fitted well employing a 13 

function as 14 

𝑓 𝑡 𝑘 𝑡 𝑘  (15) 

where t is the distance away from point A. k1 and k2 are the slope and vertical intercept of the fitted equations, 15 

respectively. For all the selected inclined angles, both k1 and k2 for hIy' and hIIy' are shown as black continuous 16 

curves in Fig. 9 and 10, respectively. After these fittings, one couple of k1 and k2 can represent the distribution 17 

one WF component along the left-hand face, which means that a deriving of the variations of hIy' and hIIy' with 18 

changing inclined angle is transformed into a deriving of the relations between k1 and k2 and the inclined angle. 19 

Besides, as an approximate linear relation is observed between the two fitting coefficients, i.e. k1 and k2, and 20 

the inclined angle (see. Fig. 7), if they are available for two different inclined angles, the values of k1 and k2 of 21 

any other inclined angles among or outside of the range enclosed by the two angles may be obtainable 22 



15 
 

employing either linear interpolation or extrapolation, respectively. Using k1 and k2 for 40° and 60° and 1 

conducting linear interpolation, the k1 and k2 for the other inclined angles are calculated as shown with isolated 2 

triangle points in Fig. 9 and 10, where a very high accuracy is achieved in all cases. Therefore, it may be 3 

concluded that for any inclined angles, both hIx', hIIx' and hIy', hIIy' along the left-hand face can be determined 4 

using the corresponding results from two inclined angles. 5 

 6 
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Fig. 7. Weight function variations with changing crack inclined angle for left-hand face 8 
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Fig. 8. Constant values of hIx' and hIIx' with respect to distance from point A on left-hand face for different 3 

crack inclined angles 4 
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Fig. 9. Linear interpolation of k1 and k2 for hIy' along left-hand face for different inclined angles 8 
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Fig. 10. Linear interpolation of k1 and k2 for hIIy' along left-hand face for different inclined angles 3 

 4 

Theoretically, all the orderly trends exhibited in the curves can be understood as follows. As shown in Fig. 11, 5 

for a 2-D crack geometry subjected to any arbitrary loading condition combining both Mode I and Mode II 6 

fracture components, the stress state of any point around the crack tip can be related to Mode I and Mode II 7 

SIFs by a matrix of constants which can be simply expressed as 8 

𝜎
𝜎
𝜎

1

√2𝜋𝑟

𝑐𝑜𝑠 𝜃 2⁄ 1 𝑠𝑖𝑛 𝜃 2⁄ 𝑠𝑖𝑛 3𝜃 2⁄ 𝑠𝑖𝑛 𝜃 2⁄ 2 𝑐𝑜𝑠 𝜃 2⁄ 𝑐𝑜𝑠 3𝜃 2⁄
𝑐𝑜𝑠 𝜃 2⁄ 1 𝑠𝑖𝑛 𝜃 2⁄ 𝑠𝑖𝑛 3𝜃 2⁄ 𝑠𝑖𝑛 𝜃 2⁄ 𝑐𝑜𝑠 𝜃 2⁄ 𝑐𝑜𝑠 3𝜃 2⁄
𝑠𝑖𝑛 𝜃 2⁄ 𝑐𝑜𝑠 𝜃 2⁄ 𝑐𝑜𝑠 3𝜃 2⁄ 𝑐𝑜𝑠 𝜃 2⁄ 1 𝑠𝑖𝑛 𝜃 2⁄ 𝑠𝑖𝑛 3𝜃 2⁄

∙
𝐾
𝐾  

(16) 

where 𝑟 and 𝜃 are the coordinates of the concerned location as shown in Fig. 11. For a given location, the 9 

second term on the right part of Eq. (16) should be a matrix of constants. According to the WF concept, the 10 

WFs at a point on a cracked geometry are equivalent to the SIFs in values if a unit concentrated load is applied 11 

at the point. Hence, the hIx', hIIx' and hIy', hIIy' at a point on the left-hand face can be obtained if a unit load is 12 

applied at the point along the x' and y' axes, respectively. In the scale of elastic mechanics, it is easily 13 

imaginable that the stresses of any point around the crack-tip may stay constant if a unit applied load along the 14 

x' axis moves from point A to F (see. Fig. 5) owing to the unchanged force lever with respect to the crack tip. 15 
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Similarly, the stresses of any point around the crack-tip should decrease linearly if a unit applied load along 1 

the y' axis moves from point A to F. These trends should be and are exhibited in the corresponding WF curves 2 

as shown in Fig. 7. And, due to a decrease of force lever with an anti-clockwise rotation of crack face as shown 3 

in Fig. 8, the absolute values of hIx' and hIIx' decrease with an increasing of the inclined angle. The reason why 4 

negative values are observed in hIy' and hIIy' can be explained as follows. For a point load applied on the left-5 

hand face along y' axis, it has two effects on the crack beam cross section. One is tension which leads to crack 6 

opening and the upper crack face sliding along the positive direction of x'. Another one is rotation which has 7 

the same effects as those of tension when the point load is below the crack tip. If the point load passes the crack 8 

tip, the effects of the rotation turn to the opposite direction, i.e. crack closing and the upper face sliding along 9 

the negative direction of x'. As the opposite effects of rotation increase as the loading point approaches to the 10 

point F, they may surpass the effects of tension and, consequently, negative values are observed in hIy' and hIIy' 11 

in certain ranges adjacent to point F. This theoretical interpretation procedure can be traced for the 12 

understanding of the orderliness exhibited in other WFs in this study as well. 13 

 14 

 15 

 16 

 17 

 18 

 19 

Fig. 11. Elastic stress field at crack-tip 20 

 21 

As loads are generally applied on the top face of an RC beam, WFs on the top face are presented in this study 22 

as well. Referencing to Fig. 5, these WFs are given in a coordinate set-up that the point E which is the closest 23 

y 

x 

σxx 

σyy 

σxy 

r 

θ 
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point away from the crack tip on the top face is regarded as the origin and the direction from F to D is defined 1 

as the positive direction. Plots of hIx', hIIx' and hIy', hIIy' for loads along the top face for cracked geometries with 2 

the selected inclined angles are shown in Fig. 12. In hIx' and hIIx', a continuous decreasing from maximum to 3 

almost zero in the region from F to E is observed, whereas hIy' and hIIy' stay at a certain plateau in most of the 4 

same region and drop dramatically to almost zero just adjacent E. Due to an increasing content of local 5 

disturbing in the stresses around the crack tip as the applied load approaching the crack tip, a local fluctuation 6 

is observed in all curves within a small region adjacent to the point E. After the concerned point passes the 7 

disturbed region in the F-D direction, both hIx', hIIx' and hIy', hIIy' remain almost zero in the remaining region. 8 

As a further step, the relation between WF and inclined angles should be deduced. Taking the hIx' for example, 9 

firstly, for any given inclined angle, the distribution of hIx' along the top face can be obtained by connecting 10 

the obtained corresponding nodal WFs for the VCE technique in FEM. The obtained distributions of the hIx' 11 

for the selected 5 inclined angles are shown with solid curves in Fig. 13(a). From Fig. 12 and 13(a), it is found 12 

that for the points with a same distance away for the origin point E the hIx' varies almost linearly with respect 13 

to the inclined angle. Thus, with the obtained distributions of hIx' along the top face for any two inclined angles, 14 

e.g., 40° and 60°, the distribution of hIx' for any other inclined angles among or outside of the range enclosed 15 

by the two angles may be obtainable employing either interpolation or extrapolation, respectively. Based on 16 

the linear interpolation, the hIx' for the other three inclined angles are calculated and shown using isolated points 17 

in Fig. 13(a) together with the corresponding WF from VCE directly. It is found that the WFs from both 18 

approaches can match with each other very well. Actually, the discrepancy for any point in the whole region 19 

remains less than 1%. 20 

As the other three WF components, i.e. hIIx', hIy' and hIIy', exhibit a relation with the inclined angle similar to 21 

the hIx' as shown in Fig. 12, one may be able to calculate the distributions of these three components for any 22 

inclined angles with the corresponding distributions of two inclined angles based on either the interpolation or 23 
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extrapolation. Following the same procedure implemented on hIx', the hIy' of 3 inclined angles are obtained and 1 

shown in Fig. 13(b) with isolated points, where an excellent match is observed between the hIy' from the VCE 2 

technique.   Therefore, it may be concluded that if the WF components, i.e. hIx' hIIx' and hIy', hIIy', along the top 3 

face for two inclined angles are available, all the WFs for any other inclined angles can be by a linear 4 

interpolation or extrapolation of the corresponding WFs of the two available angles with a high accuracy.  5 
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Fig. 12. Weight function variations with changing crack inclined angle for top face 8 

 9 

 10 



21 
 

-200 -150 -100 -50 0 50 100 150 200
-0.5

0.0

0.5

1.0

1.5

2.0
Interpolation

h I
x'
 (

m
m

-0
.5
)

Distance from point E (mm)

 40°
 45°          45°
 50°          50°    
 55°          55°    
 60°                  

From VCE

-200 -150 -100 -50 0 50 100 150 200
-0.30

-0.15

0.00

0.15

0.30
Interpolation

h I
y'
 (

m
m

-0
.5
)

Distance from point E (mm)

 40°
 45°          45°
 50°          50°    
 55°          55°    
 60°                  

From VCE

 1 

(a) Linear interpolation of hIx'                                       (b) Linear interpolation of hIy' 2 

Fig. 13. Linear interpolation of hIx' and hIy' along the top face for different inclined angles 3 

 4 

In an RC beam, any oblique shear crack is bridged by a series of stresses acting on the crack faces due to the 5 

existence of the concrete aggregates and reinforcement. Thus, a derivation of the relation between crack face 6 

WFs and the inclined angle are of great significances for calculating the crack tip SIFs as well as the COD 7 

profiles based on fracture mechanics. Considering that the stresses acting on crack faces are usually 8 

decomposed into bridging stress normal to crack faces and shearing stress tangent to crack faces, all of the 9 

crack face WF components named as hIx, hIIx, hIy, and hIIy are given and investigated in the (x, y) coordinate 10 

system as shown in Fig. 5 to be more convenient to use. Fig. 14 and Fig. 15 show the distributions of hIx, hIIx, 11 

hIy, and hIIy along the upper and lower crack faces for the inclined shear crack geometries with β=40°, 45°, 50°, 12 

55° and 60°, where a 1 √𝑟⁄  singular behavior of crack face WFs in crack tip neighborhood are observed in the 13 

primary WF components, i.e. hIIx and hIy. Since the absolute values of WFs for the upper and lower crack face 14 

show similar characteristics with respect to a variation of inclined, their relations with the inclined angle are 15 

analyzed together. Under the (x, y) coordinate system, it is found that the WFs either stay almost unchanged or 16 

change almost linearly with respect to the inclined angle. Hence, similar to the WF components along the top 17 

face and left-hand face (see. Fig. 5), the distributions of crack face WFs for any inclined angles may be 18 
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obtainable exploiting the corresponding WFs of two given inclined angles also based on the linear interpolation 1 

or extrapolation method. Taking the hIx and hIy (one secondary and one primary WF components) for example 2 

and using the hIx and hIy of inclined anlges 40° and 60° from VCE, the distributions of them for inclined angles 3 

45°, 50°and 55° are calculated and shown together with the results from VCE directly in Fig. 16. It is found 4 

that the WFs from both approaches can match with each other very well. Actually, a less than 1% of error is 5 

achieved for any point in the whole investigated region. Therefore, it may be concluded that if the distributions 6 

of the WF components hIx, hIIx, and hIy, hIIy along crack faces for two inclined angles are available, the WFs for 7 

any other inclined angles can be calculated accurately through interpolating or extrapolating the corresponding 8 

WFs for the two inclined angles. 9 
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Fig. 14. Weight function variations with changing crack inclined angle for upper crack face 12 
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Fig. 15. Weight function variations with changing crack inclined angle for lower crack face 2 
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(a) Linear interpolation of hIx                                       (b) Linear interpolation of hIy 5 

Fig. 16. Linear interpolation of hIx and hIy along the upper crack face for different inclined angles 6 

 7 

4.2.3 Weight function for varying crack initiation location 8 

In this section, the relations between crack initiation location and WFs are investigated from analyzing the 9 

inclined cracked geometry (Fig. 5) with fixed geometrical dimensions (h=300mm and w=100mm), crack length 10 
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(a/w=0.5), and inclined angle (β=45°), but varying crack initiation locations. As shown in Fig. 4(b), the 1 

initiation location (φ) for most RC beams with different geometries and material properties ranges from 0.4 to 2 

0.6. Therefore, the oblique edge crack geometries with inclined angles in this range are employed for the 3 

detailed WF calculation. With respect to the (x', y') coordinates, Fig. 17 shows the WFs along the left-hand 4 

face for the inclined edge crack geometries with φ=0.4, 0.45, 0.5, 0.55 and 0.6 in relation to the distance away 5 

from the point A in Fig. 5. It is found that for a given crack initiation location the WF components, hIx' and hIIx', 6 

stay constant in the entire left-hand face, whereas the WF components, hIy' and hIIy', vary linearly with respect 7 

to the distance away from the point A. In addition, the values of the constant hIx' and hIIx' for the employed crack 8 

initiation locations are shown in Fig. 18(a) and Fig. 18(b), respectively, where a linear relation is observed in 9 

both curves. In terms of the hIy' and hIIy', almost no effect is observed due to a variation of the crack initiation 10 

location (φ). Actually, all these observed characteristics can be understood following Eq. (16) as well. 11 

Therefore, one may demonstrate that the WFs for shear cracked geometries with any crack initiation locations 12 

can be calculated accurately through interpolating or extrapolating the corresponding WFs for the two crack 13 

initiation locations. 14 

 15 
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Fig. 17. Weight function variations with changing crack initiate location for left-hand face 3 
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(a) hIx'                                                                   (b) hIIx' 6 

Fig. 18. Constant values of hIx' and hIIx' with respect to distance from Point A on left-hand face  7 

for different crack initiate locations 8 
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With respect to the (x', y') coordinate system and the (x, y) coordinate system, the WF components along the 1 

top face and the crack faces including the upper and lower ones are shown in Fig. 19, Fig. 20, and Fig. 21, 2 

respectively. As the WF distributions along the top face are given with respect to the point E which is the 3 

closest point from the crack tip as shown in Fig. 5, no observable change due to a variation of the crack 4 

initiation location is exhibited in Fig. 19. In terms of the crack faces, due to the fixed inclined angle and crack 5 

length, except for the hIx on both upper and lower crack faces, all the other WF components remain almost 6 

unchanged with respect to the variation of the crack initiation location as shown in Fig. 20 and Fig. 21. Even 7 

for hIx on both upper and lower crack faces, their variations are pretty small in the selected wide range for φ, 8 

i.e. from 0.4 to 0.6. Besides, as the hIx is the secondary WF component for the Mode I fracture, the absolute 9 

values of it are much smaller than the absolute values of the corresponding primary WF component for the 10 

Mode I fracture, i.e. hIy. This means that, for applications, these minor influences of crack initiation location 11 

on hIx may be negligible. Therefore, for the inclined crack geometries with any φ, the WF components along 12 

the top face, upper and lower crack faces for the geometry with a given φ can be exploited without any 13 

modification. 14 

 15 
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Fig. 19. Weight function variations with changing crack initiate location for top face 2 
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Fig. 20. Weight function variations with changing crack initiate locations for upper crack face 5 
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Fig. 21. Weight function variations with changing crack initiate locations for lower crack face 2 

 3 

4.2.4 Weight function for varying shear span to beam depth ratio 4 

The relations between the shear span to beam depth ratio (ω) and WFs are investigated and summarized in this 5 

section by fixing the beam depth (w=100mm), crack length (a/w=0.5), inclined angle (β=45°), and crack 6 

initiation location (φ =0.6). As it was reported that a critical shear which leads to the failure of an RC beam 7 

occurs only in a beam with a shear span to beam depth ratio range from 2.0 to 8.0 [27, 38]. Thus, this study 8 

employs three shear span/beam depth ratios, i.e. 2.5, 5.0 and 7.5, which is considered to be wide enough.  9 

With respect to the (x', y') coordinates, Fig. 22 shows the WFs along the left-hand face for the inclined crack 10 

geometries with ω=2.5, 5.0, and 7.5 in relation to the distance away from the point A in Fig. 5. Similar to the 11 

previous sections, a constant hIx' and hIIx' and a linearly varying hIy' and hIIy' are observed for each shear 12 

span/beam depth ratio. Moreover, the constant values of hIx' and hIIx' to ω relations are provided in Fig. 23, 13 

where a linear correlation is exhibited. Thus, in terms of the WF components of the left-hand face, it may be 14 
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stated that one can obtain them of any shear span/beam depth ratios with high accuracy based on interpolation 1 

or extrapolation method if they are available for two different shear span/beam depth ratios. 2 

 3 
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Fig. 22. Weight function variations with changing shear span ratios for the left-hand face 5 
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(a) hIx'                                                                   (b) hIIx' 8 

Fig. 23. Constant values of hIx' and hIIx' with respect to distance from Point A on left-hand face  9 

for different shear span ratios 10 
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 1 

With respect to the (x', y') and (x, y) coordinate systems, the distributions of WFs along the top face and crack 2 

faces (see. Fig. 5) are shown in Fig. 24 as well as Fig. 25-26, respectively, for the employed shear span/beam 3 

depth ratios. In terms of the WFs along the top face, it is found that the WF distribution of one larger value of 4 

ω behaves like an extension of corresponding WF distribution of another ω with a smaller value along both 5 

directions away from the point E (see. Fig. 5). As for WF distributions along the upper and lower crack faces 6 

as shown in Fig. 25 and Fig. 26, almost no difference is observed among the employed shear span/beam depth 7 

ratios. Therefore, if a set of WF distributions of these three components is available for one shear span/beam 8 

depth ratio, the WF distributions for the inclined cracked geometries with any ω can be easily calculated. 9 
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Fig. 24. Weight function variations with changing shear span ratios for top face 12 
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Fig. 25. Weight function variations with changing shear span ratios for upper crack face 2 
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Fig. 26. Weight function variations with changing shear span ratios for lower crack face 5 
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5 WEIGHT FUNCTIONS FOR SHEAR CRACKS WITH ANY GEOMETRY 1 

5.1 Summary of the relation between weight functions and geometrical properties 2 

According the obtained relations between the geometrical properties which determine a shear cracked beam 3 

and the WFs along the boundaries generally subjected to loads in the previous sections, it is found that, due to 4 

a variation of one geometrical property, the WFs along all the boundaries can be easily calculated if the 5 

corresponding WFs of cracked geometries with one or two different values of the varying property are given. 6 

To facilitate application, Table 1 summaries the number of cases where the cracked geometries have one 7 

different property and the WFs should be available to obtain the WFs of geometries with any values of the 8 

property. Besides, the corresponding calculation method is provided in Table 1 as well.  9 

 10 

Table 1 Summary of number of cases should be given for all possible geometric variations, general load 11 

applied boundaries and WFs 12 

Geometric variation Boundaries 
No. of cases should be given 

hIx or hIx' hIIx or hIIx' hIy or hIy' hIIy or hIIy' 

Absolute 
size 

Left-hand face 
One case 

Multiplying 1/√n  
(n is multiples for absolute size) 

Top face 
Upper crack face 
Lower crack face 

Inclined angle 
(β) 

Left-hand face 
Two cases 

Linear interpolation or extrapolation 
Top face 

Upper crack face 
Lower crack face 

Crack initiate location 
(φ) 

Left-hand face Two cases 
Linear interpolation or extrapolation 

One case 
Exploit directly Top face 

Upper crack face One case 
Exploit directly Lower crack face 

Shear span/beam depth 
(ω) 

Left-hand face 
Two cases 

Linear interpolation or extrapolation 
One case 

Exploit directly 

Top face 
One case 

Extension or clip 
Upper crack face One case 

Exploit directly Lower crack face 
 13 

 14 
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5.2 Method of calculating weight function with any geometry 1 

From Table 1, it is found that, in terms of the variation of one geometrical property except for the absolute 2 

size, the WFs for any values of the property can be obtained by either exploiting a given set of WFs or linearly 3 

interpolating/extrapolating two given sets of WFs. To be unified, the linear interpolation or extrapolation 4 

method may be used for every property and all WF components. As a result, one can calculate the WFs of a 5 

shear cracked beam with an arbitrary geometry, where the beam depth, shear span, inclined angle, crack initiate 6 

location (see. Fig. 5) are assumed and named as 𝑤 , 𝜔 , 𝛽 , 𝜑  with a superscript “a” indicating “arbitrary”, 7 

as follows. Step 1: calculating the WFs of any shear cracked geometries with varying 𝜔, 𝛽 and 𝜑, but fixed 8 

absolute size, in other words, fixed beam depth (𝑤=100 mm). For a beam with a 100 mm of beam depth, the 9 

linear relation between the WFs and the geometrical properties can be expressed mathematically as 10 

𝜕𝑊𝐹 100,𝜔,𝛽,𝜑
𝜕 𝜔

𝜇  
(17a) 

𝜕𝑊𝐹 100,𝜔,𝛽,𝜑
𝜕 𝛽

𝜇  
(17b) 

𝜕𝑊𝐹 100,𝜔,𝛽,𝜑
𝜕 𝜑

𝜇  
(17c) 

where 𝑊𝐹 100,𝜔,𝛽,𝜑  is the weight function of the beam depth equaling 100 mm. 𝜇 , 𝜇 , and 𝜇  are 11 

constants and also the slope of the relations between the WFs to the shear span/beam depth ratio, inclined angle, 12 

and crack initiation location. Through solving the partial derivative equations (Eq. (17)), one can obtain the 13 

𝑊𝐹 100,𝜔,𝛽,𝜑  as follows 14 

𝑊𝐹 100,𝜔,𝛽,𝜑 𝜇 ∙ 𝜔 𝜇 ∙ 𝛽 𝜇 ∙ 𝜑 𝐶 (18) 

where 𝐶 is a constant, which may be determined if the WF for one set of 𝜔, 𝛽, and 𝜑 is available. In fact, any 15 

shear cracked geometry among the calculated ones in this study can be the set, and the corresponding WF can 16 

be employed. Besides, a linear combination is used in Eq. (18) because the equation is derived from solving 17 

the partial differential equation and the weight function is a concept in the scope of linear elastic fracture 18 
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mechanics. As the WF acts as a reference, it is named as 𝑊𝐹 100,𝜔 ,𝛽 ,𝜑 . Substituting it into Eq. (18), 1 

one can obtain the constant 𝐶, and the Eq. (18) is transferred into the following one 2 

𝑊𝐹 100,𝜔,𝛽,𝜑 𝜇 ∙ 𝜔 𝜔 𝜔 𝜇 ∙ 𝛽 𝛽 𝜇 ∙ 𝜑 𝜑 𝑊𝐹 100,𝜔 ,𝛽 ,𝜑  (19) 

where 𝜔 , 𝛽 , and 𝜑  are the geometrical properties of the reference case. 3 

In terms of the 𝜇 , 𝜇 , and 𝜇 , they can be calculated using the WFs of any two different shear span/beam depth 4 

ratio, inclined angles, and crack initiation locations, respectively, as follows 5 

𝜇
𝑊𝐹 100,𝜔 ,𝛽,𝜑 𝑊𝐹 100,𝜔 ,𝛽,𝜑

𝜔 𝜔
 

(20a) 

𝜇
𝑊𝐹 100,𝜔,𝛽 ,𝜑 𝑊𝐹 100,𝜔,𝛽 ,𝜑

𝛽 𝛽
 

(20b) 

𝜇
𝑊𝐹 100,𝜔,𝛽,𝜑 𝑊𝐹 100,𝜔,𝛽,𝜑

𝜑 𝜑
 

(20c) 

where 𝑊𝐹 100,𝜔 ,𝛽,𝜑  and 𝑊𝐹 100,𝜔 ,𝛽,𝜑  are the WFs for two different shear span/beam depth ratios, 6 

𝜔  and 𝜔 , respectively. 𝑊𝐹 100,𝜔,𝛽 ,𝜑  and 𝑊𝐹 100,𝜔,𝛽 ,𝜑  are the WFs for two different inclined 7 

angles, 𝛽  and 𝛽 , respectively. 𝑊𝐹 100,𝜔,𝛽,𝜑  and 𝑊𝐹 100,𝜔,𝛽,𝜑  are the WFs for two different 8 

crack initiation locations, 𝜑  and 𝜑 , respectively. All these WFs are calculated and provided in the section 4. 9 

Step 2: calculate the WFs for any shear cracked geometries. Based on a theoretical deviation in the section 10 

4.2.1, a relation between the WFs and the absolute size is obtained and given in Table 1. As the absolute size 11 

of two geometries which have the same 𝜔, 𝛽, and 𝜑 can be represented by the absolute value of any one 12 

dimension including the beam depth (𝑤=100 mm), the WFs of the aimed cracked beam with an arbitrary 13 

geometry (𝑊𝐹 𝑤,𝜔,𝛽,𝜑 ) can be calculated using the 𝑊𝐹 100,𝜔,𝛽,𝜑  from Step 1 as:  14 

𝑊𝐹 𝑤,𝜔,𝛽,𝜑
𝑊𝐹 100,𝜔,𝛽,𝜑

𝑤 100⁄
 

(21) 

and then substituting the values of 𝑤  𝜔 , 𝛽 , 𝜑  into Eq. (21).  15 

 16 
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6 CONCLUSIONS 1 

This paper proposes a WF calculating method for shear cracked RC beams with any geometrical properties 2 

through investigating the laws inherently contained in the corresponding nodal WFs obtained from a VCE 3 

technique in FEM. The proposed method makes the fracture mechanics based analytical studies on shearing 4 

behaviors and strength of RC beams possible. The main conclusions are: 5 

(1) As a critical shear crack determines the behavior of shear critical RC beams, the critical shear crack 6 

geometries for a large set of RC beams were predicted. It was found that the crack inclined angle and crack 7 

initiation location for most RC beams fall in ranges {40°, 60°} and {0.4, 0.6}, respectively. 8 

(2) The variations of WFs for shear cracked RC beams with respect to any geometrical property, which 9 

determines the beams including the absolute size, crack inclined angle, crack initiation location and shear 10 

span/beam depth ratio, can be evaluated accurately using the corresponding WFs of crack geometries with only 11 

one or two different values of this property based on a linear interpolating/extrapolation method. 12 

(3) Exploiting the WFs provided in this study and following a linear interpolating/extrapolation method, an 13 

equation of calculating the WFs for shear cracked RC beams with any geometrical properties was derived for 14 

all of boundaries generally subjected to external loads. Due to the relatively simple format of the equation, it 15 

may be stated that the developed method is friendly to engineering applications. 16 

(4) As the WF has a load independent characteristic, the applications of the proposed WF calculation method 17 

may be extended to shear cracked beams made of other materials, such as FRC and ECC, or reinforced with 18 

other members, such as FRP tendons, if the nonlinearities contained in the crack bridging elements can be 19 

represented by a bridging stress to crack width relation separately. 20 
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