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The spin Hall effect due to the skew scattering is studied using the Boltzmann equation in a double quan-

tum well when the inplane electric field with angular frequency ω is applied. The two wells have opposite

signs of impurity potential so that the skew-scattering spin Hall current is antiparallel and carries a pseu-

dospin, which is formed by |L⟩ and |R⟩, the ground states of the two wells. The pseudospin precession is

induced by the interwell tunneling in the strength of ℏωSAS, the energy difference between the symmetric

and antisymmetric states. It is found that the dynamics of the spin-pseudospin current, described by the

pseudospin analogue of the Bloch equation, is equivalent in form to the classical cyclotron resonance. Con-

sequently the antiparallel spin Hall current exhibits the resonance peak at ω ∼ ωSAS. Such spin-pseudospin

coupling is expected to be useful in controlling the spin polarization in many electronic systems.

1. Introduction

Spintronics1) has been continuously providing interesting quantum phenomena and poten-

tially useful engineering applications. Research has been extended to pseudospintronics,2)

which utilizes the pseudospin formed by two orbital states. A leading example is valleytron-

ics in graphene and transition metal dichalcogenides, in which the valley Hall effect has been

studied theoretically3, 4) and experimentally.5, 6) In this circumstance the interplay of spin and

pseudospin has been attracting much attention.2)

One of the simplest systems with pseudospin is a double quantum well7–14) in which the

pseudospin is formed by the ground states in left and right wells, denoted by |L⟩ and |R⟩. The

interwell tunneling gives rise to the formation of the symmetric and antisymmetric states. The

energy splitting ℏωSAS between these states can be thought of as the pseudospin splitting due

to the effective magnetic field. Thus the pseudospin precesses in the angular frequency ωSAS.

In our previous theory,15) we have studied the spin Hall effect16–24) in a double-quantum-

well system in which the spin currents due to the skew scattering25–27) in the two wells are in

opposite directions. Such antiparallel spin current is generated by introducing impurity po-
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tentials with different signs between the two layers. In a GaAs well layer, for example, Si and

Be impurities give attractive and repulsive potentials, respectively, as has been experimentally

demonstrated.28) Since the spin-orbit interaction induced by such impurity potentials creates

the coupling of spin and pseudospin, the spin current in this system carries pseudospin. Al-

though such spin-pseudospin current is also generated in the intrinsic spin Hall effect16, 17) in

a system consisting of two layers with opposite directions of the effective magnetic field,29–38)

we focus on the spin-pseudospin current due to the skew scattering because the dynamics is

much simpler in the skew scattering in that spin-up and spin-down states are not mixed.

The spin accumulation generated by the spin Hall effect in a single quantum well has been

experimentally observed39) and explained by the extrinsic mechanism,23) and recently the the-

ory and the experiment have been extended to a wide quantum well in which the ground state

and the first excited state are occupied by electrons.31, 35) However, the pseudospin dynam-

ics in the spin Hall effect in the AC electric field has not been explored theoretically and

experimentally.

In this paper we theoretically study the AC spin Hall effect due to the skew scattering in a

double quantum well in which the two wells have opposite signs of impurity potential to gen-

erate the antiparallel spin Hall current. Although we focus on the double quantum well as the

simplest system with pseudospin, the present theory can be extended to a bilayer consisting

of two atomic layers by appropriate modifications. In Sect. II, we describe the Hamiltonian of

the double-quantum-well system with use of the pseudospin operator. In Sect. III, we describe

the Boltzmann equation derived in our previous paper15) and introduce the equation for the

time evolution of pseudospin components of the distribution function. In Sect. IV, we derive

the equation of motion of the spin-pseudospin current, which is the pseudospin analogue of

the Bloch equation, and find that the dynamics of the spin-pseudospin current is the same in

form as that in the classical cyclotron resonance. We analytically obtain the dependence of

the antiparallel spin Hall conductivity on the AC frequency and the pseudospin precession

frequency. In Sect. V, we give the conclusion.

2. Hamiltonian

Our system is a double quantum well structure with translational symmetry in the xy-

direction. We describe the electron state in the conduction band in the effective mass ap-

proximation.32, 40, 41)

Our Hamiltonian is the sum of the double-quantum-well Hamiltonian Hw and the impurity
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term V ,

H = Hw + V, (1)

where Hw consists of the term describing the in-plane motion, H∥, and that describing the

interwell transfer, H⊥,

Hw = H∥ + H⊥. (2)

H∥ is given by

H∥ =
p̂2

x + p̂2
y

2m
, (3)

where p̂ = [ p̂x, p̂y, p̂z] is the momentum operator and m is the effective mass of conduction

band. The eigenvector |k⟩ and the eigenvalue εk of H∥ satisfy

H∥ |k⟩ = εk |k⟩ , (4)

with

εk =
ℏ2k2

2m
, (5)

where k = (kx, ky) and k =
√

k2
x + k2

y . |k⟩ is the eigenvector of p̂x and p̂y,

p̂x |k⟩ = ℏkx |k⟩ , p̂y |k⟩ = ℏky |k⟩ . (6)

H⊥ is given by

H⊥ =
p̂2

z

2m
+ Vwell(z), (7)

where Vwell(z) is the potential of the double quantum well. In order to focus on the extrinsic

spin Hall effect, we neglect the spin-orbit interaction (SOI) originating from the well poten-

tial42–44) and the Dresselhaus SOI.45, 46) We express the motion in the z direction by the linear

combination of the ground states of the left and right wells, |L⟩ and |R⟩, and introduce the

pseudospin operator τ̂γ (γ = 0, 1, 2, 3),

τ̂0 = |L⟩ ⟨L| + |R⟩ ⟨R| ,

τ̂1 = |L⟩ ⟨R| + |R⟩ ⟨L| ,

τ̂2 = −i |L⟩ ⟨R| + i |R⟩ ⟨L| ,

τ̂3 = |L⟩ ⟨L| − |R⟩ ⟨R| .

(8)

Then H⊥ is expressed by

H⊥ = −
ℏωSAS

2
τ̂1, (9)
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where ℏωSAS = ∆SAS(> 0) represents the interwell coupling. In double quantum wells, the

interwell coupling strength can be controlled by varying the width of the barrier between

wells. On the other hand, when we extend the theory to a bilayer consisting of atomic layers,

the interlayer coupling strength is determined by the fixed interlayer distance. The eigenvector

|n⟩ and the eigenvalue εn of H⊥ satisfy

H⊥ |n⟩ = εn |n⟩ (n = G, E), (10)

with

εG = −
ℏωSAS

2
, εE =

ℏωSAS

2
. (11)

The symmetric state |G⟩ and the antisymmetric one |E⟩ are

|G⟩ = 1
√

2
(|L⟩ + |R⟩) , |E⟩ = 1

√
2

(|L⟩ − |R⟩) . (12)

We take eigenvectors of σ̂z as basis vectors of spin

σ̂z |σ⟩ = σ |σ⟩ (σ = ±1). (13)

Then, the eigenvector |nkσ⟩ and the eigenvalue εnk of Hw satisfy

Hw |nkσ⟩ = εnk |nkσ⟩ , (14)

with

εnk = εn + εk. (15)

The perturbation V is the sum of the impurity potential Vimp(r) with r = [x, y, z] and the

impurity-induced SOI, Hso
imp,

V = Vimp(r) + Hso
imp, (16)

Hso
imp = −

η

ℏ
σ̂ ·

(
∇Vimp × p̂

)
, (17)

where η is the effective coupling constant of the SOI for an electron in the conduction band.

We assume that Vimp(r) is the sum of the individual impurity potentials.

Vimp(r) =
N∑

i=1

ui(r − ri), (18)

where N is the total number of impurities and ri is the coordinate of the ith impurity. ui(r− ri)

is a repulsive or attractive potential depending on zi,

ui(r − ri) = uL(r − ri) < 0 for zi in L,

ui(r − ri) = uR(r − ri) > 0 for zi in R.
(19)
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When charged donor and acceptor impurities are in L and R layers, respectively, the corre-

sponding potentials, uL(r) and uR(r), are well described by the screened Coulomb potential22)

and therefore uL(r) = −uR(r) is approximately satisfied. We ignore the interlayer matrix ele-

ments of the impurity potential,

ui(r − ri) = |L⟩ ⟨L| ui(r − ri) |L⟩ ⟨L| + |R⟩ ⟨R| ui(r − ri) |R⟩ ⟨R| . (20)

This can be achieved by setting ui(r − ri) = 0 in the region where ⟨R | z⟩ × ⟨z | L⟩ is not

negligible. In this case we also have

⟨L| ui(r − ri) |L⟩ ⟨R| ui(r − ri) |R⟩ = 0. (21)

3. Transport equation

3.1 Assumptions

There are two mechanisms of the extrinsic spin Hall effect: skew scattering25–27) and side

jump.47–50) In this study, we consider systems with long momentum relaxation time, where

the skew scattering is dominant, and neglect the side jump. In addition, we neglect ∆SAS in

the collision term of the Boltzmann equation, that is we do not consider the combined action

of ∆SAS and Vimp. This assumption on the pseudospin splitting ∆SAS corresponds to that on the

spin splitting employed in the Dyakonov-Perel spin-relaxation theory.51) This paper51) states

that the spin splitting can be neglected in the collision integral when the spin splitting is small

in comparison with the electron energy. By neglecting ∆SAS, the unperturbed Hamiltonian

and the perturbation in calculating the collision term are H∥ and V , respectively.

Additionally, we focus on the transport phenomena, which does not depend on individual

configurations of impurities randomly distributed in the xy plane. Therefore, we take the en-

semble average52) of each term in the Boltzmann equation, which is defined, for the physical

quantity A(x1, y1, .....xN , yN), by

A ≡ 1
S

∫
S
· · · 1

S

∫
S

A(x1, y1, .....xN , yN) dx1dy1 · · · dxNdyN , (22)

where S is the in-plane area of the double quantum well. Furthermore, we make the following

assumption with respect to the matrix element of impurity potential,

⟨Lk|Vimp |Lk⟩ = ⟨Rk|Vimp |Rk⟩ = 0. (23)

3.2 Boltzmann equation

We employ the Boltzmann equation, which has been derived15) for the present double-

quantum-well system with use of the density operator ρ̂,52) and calculate the spin Hall current

in the first order of the SOI and in the first order of the electric field. In deriving the Boltz-
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mann equation,15) we have neglected spin-flip terms with σ̂x and σ̂y of Hso
imp in Eq. (17),

which give contributions of, at least, the second order in the SOI, to the spin Hall current

(as can be seen from the spin Hall current expressed by the trace of the operator [Eq. (52)]

since contributions of spin-flip terms to the trace involve, at least, two spin flips). Then we

only need diagonal-in-spin elements of the density matrix. On the other hand, we take into

account the pseudospin coherence described by off-diagonal-in-pseudospin elements of the

density matrix. In this case it is convenient to introduce an operator in pseudospin space,

ρ̂kσ = ⟨kσ| ρ̂ |kσ⟩ , (24)

which can be regarded as distribution operator in the state with wavenumber k and spin σ．

With use of the quantum Liouville equation for ρ̂, the following Boltzmann equation for the

temporal evolution of ρ̂kσ in the AC electric field with frequency ω, is obtained (see, for the

derivation, Appendix)

∂ρ̂kσ

∂t
+

F(t)
ℏ
· ∂ρ̂kσ

∂k
=

1
iℏ

[⟨kσ|Hw|kσ⟩ , ρ̂kσ
]
+ Ĉ(2) + Ĉ(3), (25)

where F(t) = (−e)Ee−iωt. E =
[
Ex, Ey, 0

]
is the in-plane electric field and e > 0 is the absolute

value of the electronic charge. The first term on the right-hand side reduces to
1
iℏ

[
H⊥, ρ̂kσ

]
and describes the precession of the pseudospin. Ĉ(2) is the collision term of the second order

in impurity potential:

Ĉ(2) =
∑

k′
W (2)

k′k

(
−ρ̂kσ + |L⟩ ρLL

k′σ ⟨L| + |R⟩ ρRR
k′σ ⟨R|

)
. (26)

Here we abbreviate matrix elements of the density matrix ⟨ℓ| ρ̂kσ |ℓ⟩ as ρℓℓkσ with ℓ = L,R. W (2)
k′k

in Ĉ(2) is the transition rate in the second order of the impurity potential, and is given by

W (2)
k′k ≡ W (2)

Lk′Lk = W (2)
Rk′Rk, (27)

with

W (2)
Lk′Lk =

2π
ℏ
| ⟨Lk′|Vimp |Lk⟩ |2δ(εk′ − εk), (28)

where we assumed the following symmetry of the ensemble average,

| ⟨Lk′|Vimp |Lk⟩ |2 = | ⟨Rk′|Vimp |Rk⟩ |2 , (29)

which is true when uL(r) = −uR(r). Even when there is a significant deviation from uL(r) =

−uR(r), Eq. (29) can be satisfied by adjusting the difference in impurity number between L

and R layers. Owing to the assumptions, Eqs. (20) and (21), the impurity scattering occurs

within the same layer, that is L → L and R → R. Since the unperturbed Hamiltonian is H∥
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and the perturbation is V in calculating the collision term, the eigenvalue of H∥, εk, and the

corresponding eigenvector |Lk⟩ appear in Eq. (28). Ĉ(3) in Eq. (25) is the collision term of the

third order in impurity potential:

Ĉ(3) =
∑

k′

(
|L⟩Wσ(3)ss

LkLk′ ρ
LL
k′σ ⟨L| + |R⟩W

σ(3)ss
RkRk′ρ

RR
k′σ ⟨R|

)
. (30)

Wσ(3)ss
LkLk′ and Wσ(3)ss

RkRk′ in Ĉ(3) represent the skew scattering in the lowest order of the impurity

potential and of the SOI, and are given by

Wσ(3)ss
ℓkℓk′ = first-order-in-η terms of Wσ(3)

ℓkℓk′ (31)

and

Wσ(3)
ℓk′ℓk =

2π
ℏ

∑
k′′

[
(ℓkk′k′′kσ)
εk − εk′′ + iδ

+ c.c.
]
δ(εk′ − εk),

(ℓkk′k′′kσ) = ⟨ℓkσ|V |ℓk′σ⟩ ⟨ℓk′σ|V |ℓk′′σ⟩ ⟨ℓk′′σ|V |ℓkσ⟩ ,
(32)

with

⟨ℓk′σ|V |ℓkσ⟩ ≡
[
1 − iησ

(
k′xky − k′ykx

)]
⟨ℓk′|Vimp |ℓk⟩ , (33)

(This expression of ⟨ℓk′σ|V |ℓkσ⟩ shows that the second-order transition rate proportional

to | ⟨ℓk′σ|V |ℓkσ⟩ |2 has no dependence on σ and therefore does not produce spin-dependent

transport). Here we introduce an operator in pseudospin space representing the skew scatter-

ing:

Ŵσ(3)ss
kk′ = |L⟩W

σ(3)ss
LkLk′ ⟨L| + |R⟩W

σ(3)ss
RkRk′ ⟨R|

= Wσ(3)ss
0kk′ τ̂0 +Wσ(3)ss

3kk′ τ̂3,
(34)

which has τ̂0 (symmetric) and τ̂3 (antisymmetric) components with strengths given by

Wσ(3)ss
0kk′ =

1
2

(
Wσ(3)ss

LkLk′ +Wσ(3)ss
RkRk′

)
, Wσ(3)ss

3kk′ =
1
2

(
Wσ(3)ss

LkLk′ −Wσ(3)ss
RkRk′

)
. (35)

Because the sign of the impurity potential is opposite between L and R layers, the third-

order transition rates Wσ(3)ss
LkLk′ and Wσ(3)ss

RkRk′ are opposite in sign. In the case of uL(r) = −uR(r),

Wσ(3)ss
LkLk′ = −Wσ(3)ss

RkRk′ and then the τ̂0 component Wσ(3)ss
0kk′ is absent.

Here, we find it convenient to decompose the distribution operator ρ̂kσ into the linear

combination of pseudospin operator τ̂γ,53–55)

ρ̂kσ =
1
2

3∑
γ=0

τγkστ̂γ, (36)
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where τγkσ, twice the γ component of ρ̂kσ, is given by

τγkσ = trτ
[
ρ̂kστ̂γ

]
≡

∑
ℓ

〈
ℓ
∣∣∣ ρ̂kστ̂γ

∣∣∣ ℓ〉 . (37)

By virtue of this decomposition, all the terms of the Boltzmann equation Eq. (25) are ex-

pressed in a linear combination of τ̂γ. In particular the skew scattering term is written as

Ĉ(3) =
∑

k′

(
|L⟩ ⟨L| Ŵσ(3)ss

kk′ ρ̂k′σ |L⟩ ⟨L| + |R⟩ ⟨R| Ŵσ(3)ss
kk′ ρ̂k′σ |R⟩ ⟨R|

)
=

∑
k′

1
2

[(
Wσ(3)ss

0kk′ τ0k′σ +Wσ(3)ss
3kk′ τ3k′σ

)
τ̂0 +

(
Wσ(3)ss

0kk′ τ3k′σ +Wσ(3)ss
3kk′ τ0k′σ

)
τ̂3

]
.

(38)

Then we obtain the following equations for τγkσ

∂τ0kσ

∂t
+

F(t)
ℏ
· ∂τ0kσ

∂k

=
∑

k′

[
W (2)

k′k (−τ0kσ + τ0k′σ) +Wσ(3)ss
0kk′ τ0k′σ +Wσ(3)ss

3kk′ τ3k′σ

]
, (39)

∂τ1kσ

∂t
+

F(t)
ℏ
· ∂τ1kσ

∂k
= −

∑
k′

W (2)
k′kτ1kσ, (40)

∂τ2kσ

∂t
+

F(t)
ℏ
· ∂τ2kσ

∂k
= ωSASτ3kσ −

∑
k′

W (2)
k′kτ2kσ, (41)

∂τ3kσ

∂t
+

F(t)
ℏ
· ∂τ3kσ

∂k
= −ωSASτ2kσ

+
∑

k′

[
W (2)

k′k (−τ3kσ + τ3k′σ) +Wσ(3)ss
0kk′ τ3k′σ +Wσ(3)ss

3kk′ τ0k′σ

]
. (42)

4. AC response of spin-pseudospin current

4.1 Assumptions and calculation procedure

In equilibrium, τγkσ reduces to τ(0)
γkσ = trτ

[
ρ̂(0)

kστ̂γ
]

where ρ̂(0) = f0(Hw) with f0(ε) the Fermi-

Dirac distribution function. The equation for τ(1)
γkσ, the component in the first order of E, is

obtained from Eqs. (39) - (42) by replacing τγkσ in the force term with τ(0)
γkσ and τγkσ in other

terms with τ(1)
γkσ. We evaluate k′ summations of the collision terms in Eqs. (39) and (42) using

the known form of the first-order solution,

τ(1)
γkσ = bγkσ · k, (43)

where bγkσ does not depend on the direction of k.

Here we assume, for simplicity, the short-range impurity potential, in which W (2)
k′k also

does not depend on directions of k′ and k. Then
∑

k′
W (2)

k′kτ
(1)
γk′σ vanishes in Eqs. (39) and (42).

In such short-range impurity potential, the momentum relaxation time τp is equal to the life
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time:

τ−1
p =

∑
k′

W (2)
k′k. (44)

On the other hand, skew scattering terms in Eqs. (39) and (42) become, in the first order of

E, ∑
k′

Wσ(3)ss
γkk′ τ

(1)
γ′k′σ =

∑
k′

Wσ(3)ss
γkk′ bγ′kσ · k′, (45)

and k′ = k cos ϕ+ (ez× k) sin ϕ where ϕ is the angle of k′ relative to that of k and ez is the unit

vector in the z direction. Since Wσ(3)ss
γkk′ is an odd function of ϕ, skew scattering terms reduce

to ∑
k′

Wσ(3)ss
γkk′ τ

(1)
γ′k′σ = −στ

−1
γssbγ′kσ · (ez × k). (46)

Here the skew scattering time corresponding to the γ component Wσ(3)ss
γkk′ is defined by

τ−1
γss =

∑
k′

W↑(3)ss
γk′k sin ϕ, (γ = 0, 3), (47)

and Wσ(3)ss
γkk′ = σW↑(3)ss

γkk′ and Wσ(3)ss
γkk′ = −Wσ(3)ss

γk′k are used.

With use of τp and τγss, coupled equations for τ(1)
γkσ = bγkσ ·k (γ = 0, 2, 3) become

F(t)
ℏ
·
∂τ(0)

0kσ

∂k
= (iω − τ−1

p )τ(1)
0kσ − σ(τ−1

0ssb0kσ + τ
−1
3ssb3kσ) · (ez × k), (48)

0 = ωSASτ
(1)
3kσ + (iω − τ−1

p )τ(1)
2kσ, (49)

0 = −ωSASτ
(1)
2kσ + (iω − τ−1

p )τ(1)
3kσ − σ(τ−1

0ssb3kσ + τ
−1
3ssb0kσ) · (ez × k). (50)

Here we used
∂τ(1)
γkσ

∂t
= −iωτ(1)

γkσ. Since τ(0)
2kσ = τ

(0)
3kσ = 0, the force term is absent in γ = 2, 3

components. In this paper we evaluate the spin current in the first order of the SOI and of E.

Therefore in Eqs. (48) and (50) we evaluate bγ′kσ in the zeroth order of the SOI and in the

first order of E. The above equations in this order give

b0kσ =
ℏF

m(τ−1
p − iω)

−∂τ(0)
0kσ

∂εk

 , b3kσ = 0. (51)

Obtained equations for τ(1)
γkσ are employed to derive equations for the spin-pseudospin current

in the next subsection.
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4.2 Equation of motion of the spin-pseudospin current

Here, we introduce the spin-pseudospin current carrying the z component of spin and the γ

component of pseudospin in the direction µ = x, y, which is given by

jsγ
µ ≡

1
2S

tr
[
ρ̂σ̂zτ̂γ

p̂µ
m

]
=

1
2S

∑
kσ

τγkσσ
ℏkµ
m
. (52)

In this study, we calculate the jsγ
y in the first order of the electric field E = [Ex, 0, 0] and of the

SOI in the region where kBT ≪ εF and ℏωSAS ≪ εF with εF the Fermi energy. By performing

the integration with respect to k in Eq. (52) of each term in Eqs. (48) - (50), we obtain the

equation of motion of the spin-pseudospin current

d js0
y (t)

dt
= −τ−1

p js0
y (t) + τ−1

p

σSH
0

1 − iωτp
Exe−iωt, (53)

d js2
y (t)

dt
= ωSAS js3

y (t) − τ−1
p js2

y (t), (54)

d js3
y (t)

dt
= −ωSAS js2

y (t) − τ−1
p js3

y (t) + τ−1
p

σSH
3

1 − iωτp
Exe−iωt. (55)

Here σSH
γ is the spin Hall conductivity when the DC electric field is applied in a single layer

with the skew scattering time τγss,

σSH
γ = −

2Neeτ2
p

mτγss
, (56)

where Ne is the electron density per spin in the single layer, and τp and τγss in these equations

are to be evaluated at εF.

Equations (54) and (55) are the pseudospin analogue of the Bloch equation, which is

originally written for spin. In these equations ωSAS is the precession frequency of pseudospin,

τ−1
p is the relaxation rate due to collisions, and the last term in the right-hand side of Eq. (55)

generates the spin Hall current. When we take into account the dephasing of pseudospin

with the dephasing time τps as in our previous paper,15) τ−1
p in Eqs. (54) and (55) becomes

τ−1
p + τ

−1
ps . Here, we find that the dynamics represented by Eqs. (54) and (55) is equivalent

to the cyclotron resonance with the correspondence of js2
y (t) and js3

y (t) to the velocity of the

electron, ωSAS to the cyclotron frequency, and the generation term to the force due to AC

electric field. In Eqs. (54) and (55) the pseudospin precession around “axis 1” corresponding

to the cyclotron motion is induced by the antisymmetric component of skew scattering, τ−1
3ss,

which we introduce by placing impurity potentials of opposite signs in L and R layers.

On the other hand, Eq. (53) shows that the symmetric component of skew scattering, τ−1
0ss,

gives the symmetric component of spin Hall current js0
y in which spin currents flow parallel

10/18



Jpn. J. Appl. Phys. REGULAR PAPER

Fig. 1. The dependence on the ωτp of θ, the argument of σs3
yx(ω) .

in L and R layers and no pseudospin precession is induced.

4.3 The spin-pseudospin Hall conductivity

We define the spin-pseudospin Hall conductivity by jsγ
y (t) = σsγ

yx(ω)Exe−iωt. We focus on the

γ = 3 component, since its observation in the experiment is easier than that of γ = 2. Eqs.

(54) and (55) lead to

σs3
yx(ω) =

1(
1 − iωτp

)2
+ ω2

SASτ
2
p

σSH
3 . (57)

First, we consider the decoupled-well case of ωSAS = 0, in which σs3
yx(ω) =

(
1 − iωτp

)−2
σSH

3 .

Although the system of ωSAS = 0 represents an ideal case of the infinite separation between

wells,σs3
yx(ω) in this case is useful in extracting effects ofωSAS inσs3

yx(ω) of coupled wells. The

argument of σs3
yx(ω), θ, represents the delay of the response to the AC electric field. As shown

in Fig 1, θ approaches π in theω→ ∞ limit. This is in contrast with the electrical conductivity

σxx(ω) ∝
(
1 − iωτp

)−1
the argument of which never exceeds π2 . As ωSAS is increased, the

larger value of ω is necessary to reach a fixed value of θ, say θ = π2 . This is because the spin-

pseudospin conductivity is determined by the relative strength between ω, ωSAS, and τ−1
p . We

note that the real part of the spin-pseudospin Hall conductivity σs3
yx(ω) is negative when θ > π2 ,

without violating the non-negative entropy production.

Figure 2 shows the dependence on the ωτp of the absolute value of the spin-pseudospin

Hall conductivity σs3
yx(ω) divided by σSH

3 . In the case of ωSAS = 0, the absolute value of the

spin-pseudospin Hall conductivity shows the Lorentzian decay with the increase of ωτp. On

the other hand, in the case of ωSASτp > 1, a peak appears at ωτp =
√
ω2

SASτ
2
p − 1 and the

value at the peak is
(
2ωSASτp

)−1
. This is the consequence of the resonance at ω ∼ ωSAS which
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Fig. 2. The dependence on the ωτp of the absolute value of σs3
yx(ω) normalized by σSH

3 .

manifests itself in the spin-pseudospin current.

5. Conclusion

We have theoretically studied the AC response of the spin Hall current generated by the

skew scattering in a double-quantum-well structure in which the two wells have opposite

sign of the impurity potential so as to generate the antiparallel spin Hall current. We have

shown that the dynamics of the pseudospin components of the spin Hall current is described

by the pseudospin analogue of the Bloch equation, which consists of the precession term

proportional to the interwell tunneling strength ℏωSAS, the damping term proportional to the

scattering strength τ−1
p , and the term generating the antiparallel spin Hall current. We have

found that the derived equation has the same form as that describing the classical cyclotron

resonance. The analytical solution for the antiparallel spin Hall conductivity shows that the

absolute value as a function of the AC frequency exhibits the resonance peak when ωSAS >

τ−1
p , while the argument approaches π with increasing the frequency.

These findings demonstrate that the spin current can be strongly modified by changing the

AC frequency in the presence of the pseudospin degree of freedom which is coupled to the AC

electric field and to the spin. In a variety of electronic systems with pseudospin, the effective

magnetic field acts on the pseudospin and induces the pseudospin precession. Varying the

AC frequency in the vicinity of the frequency of this precession may significantly change

the spin current, as demonstrated in Fig. 2 for double-quantum-well systems, and is therefore

expected to be useful for the electrical control of spin. In particular, in a bilayer having a fixed

nonzero value of ωSAS such as that consisting of atomic layers, changing the AC frequency
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will be an effective method in controlling the spin current.
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Appendix: Derivation of the Boltzmann equation

The second term on the left-hand side of Eq. (25) expresses the temporal evolution of ρ̂kσ

by the electric field, which is given by the derivative of ρ̂kσ with respect to k according to

Ref. 56. To derive terms on the right-hand side of Eq. (25), we start with
dρ̂
dt
=

1
iℏ

[H, ρ̂], (A·1)

with H = Hw + V . Here we treat Hw and V as the unperturbed Hamiltonian and the perturba-

tion, respectively and employ the interaction representation:

ρ̂I(t) = U†(t)ρ̂(t)U(t), VI(t) = U†(t)V(t)U(t), (A·2)

with

U(t) = exp
(

1
iℏ

Hwt
)
. (A·3)

Then we obtain, from Eq. (A·1),
dρ̂I

dt
=

1
iℏ

[VI , ρ̂I]. (A·4)

We turn on the interaction V at time t0 and perform the integration of both sides of Eq. (A·4)

from t0 to t, which leads to ρ̂I(t) = ρ̂I(t0) + (iℏ)−1
∫ t

t0
dt′[VI(t′), ρ̂I(t′)]. Substituting this ex-

pression into Eq. (A·4) repeatedly, we obtain, up to the third order in V ,
dρ̂I

dt
= J1(t) + J2(t) + J3(t), (A·5)

with

J1(t) =
1
iℏ

[VI(t), ρ̂I(t0)],

J2(t) =
1

(iℏ)2

∫ t

t0
dt′[VI(t), [VI(t′), ρ̂I(t0)]],

J3(t) =
1

(iℏ)3

∫ t

t0
dt′

∫ t′

t0
dt′′[VI(t), [VI(t′), [VI(t′′), ρ̂I(t0)]]].

(A·6)

Here we employ a widely-used approximation, ρ̂I(t0) ≈ ρ̂I(t), which is valid when the varia-

tion of ρ̂I(t) is small within the collision time. Substituting ρ̂I(t) = U†(t)ρ̂(t)U(t) [Eq. (A·2)]

into Eq. (A·5) leads to the equation describing the temporal evolution of ρ̂(t) up to the third

order in V ,
dρ̂
dt
=

1
iℏ

[Hw, ρ̂] + J̃1(t) + J̃2(t) + J̃3(t), (A·7)

with

J̃n(t) = U(t)Jn(t)U†(t), (n = 1, 2, 3). (A·8)
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Diagonal-in-kσ components of [Hw, ρ̂] in Eq. (A·7) gives
[⟨kσ|Hw|kσ⟩ , ρ̂kσ

]
(=

[
H⊥, ρ̂kσ

]
)

in Eq. (25), which describes the pseudospin precession, while those of J̃2(t) and J̃3(t) give

Ĉ(2) and Ĉ(3), respectively, in Eq. (25). With use of Eq. (33),
〈
kσ

∣∣∣ J̃n(t)
∣∣∣ kσ

〉
is expressed by

products of ⟨ℓk′|Vimp |ℓk⟩. The average of such products over inplane impurity configurations

is calculated, using Eqs. (22), (23), and (21), to be〈
ℓk′

∣∣∣Vimp

∣∣∣ ℓk〉 = 0, (A·9)

〈
ℓ′k′′

∣∣∣Vimp

∣∣∣ ℓ′k′〉 〈
ℓk′

∣∣∣Vimp

∣∣∣ ℓk〉 ∝ δℓ′ℓδk′′k, (A·10)

and 〈
ℓ′′k′′′

∣∣∣Vimp

∣∣∣ ℓ′′k′′〉 〈
ℓ′k′′

∣∣∣Vimp

∣∣∣ ℓ′k′〉 〈
ℓk′

∣∣∣Vimp

∣∣∣ ℓk〉 ∝ δℓ′′ℓδℓ′ℓδk′′′k. (A·11)

In calculating
〈
kσ

∣∣∣ J̃n(t)
∣∣∣ kσ

〉
, we neglect the pseudospin precession given by ωSAS and re-

place Hw in U(t) with H∥ as explained in Sect. 3.1. Then the integration with respect to time

in Eq. (A·6) leads to the conservation of the inplane kinetic energy εk.

15/18



Jpn. J. Appl. Phys. REGULAR PAPER

References
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40) P. Noziéres and C. Lewiner, J. Phys. (Paris) 34, 901 (1973).

41) R. Lassnig, Phys. Rev. B 31, 8076 (1985).

42) F. J. Ohkawa and Y. Uemura, J. Phys. Soc. Jpn. 37, 1325 (1974).

43) Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).

44) Y. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).

45) G. Dresselhaus, Phys. Rev. 100, 580 (1955).

46) M. I. Dyakonov and V. Y. Kachorovskii, Sov. Phys. Semicond. 20, 110 (1986).

47) L. Berger, Phys. Rev. B 2, 4559 (1970).

48) L. Berger, Phys. Rev. B 5, 1862 (1972).

49) S. K. Lyo and T. Holstein, Phys. Rev. Lett. 29, 423 (1972).

50) D. Culcer, E. M. Hankiewicz, G. Vignale, and R. Winkler, Phys. Rev. B 81, 125332

(2010).

51) M. I. Dyakonov and V. I. Perel, Sov. Phys. Solid State 13, 3023 (1972).

52) W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).

53) E. L. Ivchenko, Sov. Phys. Solid State 15, 1048 (1973).

17/18



Jpn. J. Appl. Phys. REGULAR PAPER

54) M. M. Glazov and E. Ivchenko, J. Supercond. 16, 735 (2003).

55) E. G. Mishchenko and B. I. Halperin, Phys. Rev. B 68, 045317 (2003).

56) M. I. Dyakonov and A. V. Khaetskii, Sov. Phys. JETP 59, 1072 (1984).

18/18


