
Highlights

Accurate Numerical Method to Solve Flux Distribution of Pois-
son’s Equation

Arata Hirokami, Samia Heshmat, Satoshi Tomioka

• Proposed DFM can solve fluxes with high accuracy.

• Proposed FastDFM makes DFM faster by reducing variables.

• DFM is slower than FDM and FVM but more accurate.

• FastDFM solves fluxes as accurately as DFM and almost as fast as
FDM and FVM.

Accurate Numerical Method to Solve Flux Distribution of
Poisson’s Equation

Arata Hirokamia,∗, Samia Heshmatb, Satoshi Tomiokac

aGraduate School of Engineering, Hokkaido University, Sapporo-shi, 060-8628, Japan
bFaculty of Engineering, Aswan University, Aswan, 81542, Egypt

cFaculty of Engineering, Hokkaido University, Sapporo-shi, 060-8628, Japan

Abstract

This paper proposes an accurate numerical method, the direct flux method
(DFM), to solve fluxes directly for Poisson’s equation. In DFM, fluxes are
the variables to be solved in the system equations, where a flux is defined
as an integral of the flux density across a certain finite-sized cross section.
The system equation of the DFM is derived from two equations: an integral
form of Poisson’s equation obtained by using Gauss’s divergence theorem
and an integral form of the rotation-free nature of any scalar field from
Stokes’ theorem. In the numerical approach, no discretization error arises
from Gauss’s divergence theorem because it is represented as a sum of fluxes.
Therefore, the discretization error is caused only by the integral form of the
rotation-free nature. From the comparison between DFM, the finite differ-
ence method (FDM), and the finite volume method (FVM), we show that
the accuracy of DFM is superior to that of FDM and FVM. However, DFM
generally requires larger computational resources than other methods be-
cause the number of equations in DFM is more than that in other methods.
To overcome this drawback, we also propose a faster algorithm than DFM,
called FastDFM, which can reduce the number of equations without chang-
ing the accuracy. Hence, the proposed FastDFM produces results with the
same accuracy as the DFM and with computation time almost the same as
that of FDM and FVM.
Keywords: flux, Poisson’s equation, Gauss’s divergence theorem, Stokes’
theorem, rotation free nature

∗Corresponding author
Email addresses: hirokami.arata.w0@elms.hokudai.ac.jp (Arata Hirokami),

samia.heshmat@aswu.edu.eg (Samia Heshmat), tom@qe.eng.hokudai.ac.jp (Satoshi
Tomioka)

Preprint submitted to Mathematics and Computers in Simulation April 10, 2021

1. Introduction

It is well known that boundary value problems are used in various fields
of science and engineering[8]. In most cases, these problems cannot be solved
analytically. Therefore, numerical methods have been studied extensively for
many years to derive accurate and fast solutions for these boundary value
problems.

The methods to solve the boundary value problems are mainly classified
into two groups. The first group of methods uses a mesh, such as the finite
difference method (FDM)[15, 21], finite volume method (FVM)[5], and fi-
nite element method (FEM)[10]. The second group that does not use the
mesh includes the boundary element method (BEM)[2, 13], the method of
fundamental solutions (MFS)[9, 6], and and spectral methods[14].

Both groups generally solve the distribution of either scalar potential
(e.g., velocity potential, electric potential), vector potential (e.g., magnetic
potential), or flux density (e.g., mass flux density, electric flux density).
These are quantities per unit volume or area, which are useful for determin-
ing the distribution of quantities in the volume or area of interest. However,
another accurate quantity called flux is sometimes required in product de-
sign. The flux is the total amount of flow crossing a particular cross-section
in unit time, such as mass/volume flow, electric current, heat flow, and mag-
netic flux. It is noted that the flux is sometimes defined as the flux density
in transport phenomena. However, in this paper, we refer to the flux density
as the value of the quantity per unit cross section and the flux as the area
integral of the flux density over the cross section.

Table 1: Examples of fluxes and flux densities
flow flux flux density
mass (kg) mass flow rate (kg/s) mass flux (kg/(m2 · s))
volume (m3) volume flow rate (m3/s) velocity (m/s)
heat (J) heat flow (J s−1) heat flux (J/(m2 · s))
electric charge (C) current (A) current density (A/m2)

electric flux (C) electric flux density (C/m2)
magnetic flux (Wb) magnetic flux density (Wb/m2)

Table 1 shows examples of fluxes and flux densities. In hydraulic en-
gineering, the flux is used to design a relation between the rotation speed
of pumps and flow rates in radial flow pumps[11] or gear pumps[12] and
valves[20]. In applications of electromagnetism, magnetic flux is important

2

because its time derivative represents the electromotive force of electric in-
duction, which is used in many products such as electrical generators, elec-
trical transformers, and induction motors[18]. Furthermore, heat flow[1] and
electric current[17] are also important in engineering.

However, there are no methods to solve fluxes directly. In the general
approach, the flux is obtained by several steps. The potential is obtained
first. Then, the flux density is obtained by taking the gradients of the
potential, and finally the flux is evaluated by taking the integral of the flux
density. In this approach, the accuracy becomes worse because an additional
error other than the error of the potential is included. It arises from the
evaluation step of flux from potentials. If the flux were evaluated directly,
these errors could be reduced. To reduce this error, this paper proposes a
new method, the direct flux method (DFM), which takes the flux itself as a
variable, and directly solves the flux without the evaluations of the potential
and the flux density.

We formulate the DFM by focusing on Poisson’s equation with Dirichlet
or Neumann boundary conditions, which are defined as

∇ · ∇u = f, (1)

where u is a scalar potential and f is a given source term. The flux density
is considered as ∇u · n, where n represents a normal unit vector of a cross
section of interest, and the flux is the area integral of the flux density. The
purpose of this paper is to introduce the DFM algorithm to solve the flux
distribution in Poisson’s equation directly and to demonstrate its validity
through a comparison of the accuracy with the FDM. However, DFM re-
quires more computational effort than the other methods, such as FDM,
as the number of variables of the fluxes in a system equation of DFM is
almost twice and thrice that of the other methods in two-dimensional (2-D)
problems and three-dimensional (3-D) problems, respectively. To accelerate
DFM, a technique called FastDFM is proposed in this paper to reduce the
number of variables.

There is a method similar to DFM, which takes the integral of flux
density, called ‘Finite Integration Technique (FIT)[19, 3]’. FIT can solve
Maxwell’s equations in the time domain, which is similar to the well-known
finite-difference time-domain (FDTD) method[16]. However, the integral
domains of FIT and DFM are different. FIT takes the line integral of the
flux density along an edge of a 3-D unit cell as a variable, whereas DFM
integrates over the cross section of the unit cell. Moreover, FIT does not
consider higher order derivatives, whereas DFM does.

3

Figure 1: Nodes, edges and cells of a grid

This paper presents the basic theory and characteristics of DFM for the
2-D Poisson’s equation. The outline of the paper is as follows. The grid
definition used in this study is described in Section 2. Section 3 presents
the mathematical theory of DFM in a square grid. Section 4 explains the
acceleration of DFM using vector potential (FastDFM). Section 5 describes
the accuracy and efficiency of DFM by comparing the results of DFM with
that of FDM. Finally, the conclusions are presented in Section 6.

2. Grid definition

In this study, we use a square grid system with spacing ∆. For simplicity,
the coordinates of a point (x, y) = (ξ∆, η∆) is denoted as [ξ, η], where the
variables in the square bracket represent that the coordinates are normalized
by ∆.

Each intersection of the grid is referred to as a node. The node at the
i-th column from the left-hand side and the j-th row from the bottom of
the grid is denoted as node [i, j]N. It should be noted that the expressions
of [i, j] and [i, j]N are distinguished by the coordinate or the node number,
although the coordinates of node [i, j]N are [i, j]. Therefore, i and j in [i, j]N
do not take values other than integer values.

Each segment between adjacent nodes along the x- or y- direction is
defined as an edge. The edge connecting nodes between [i, j]N and [i+ 1, j]N
is denoted as edge

[
i, j

]
E. Similarly, the edge between [i, j]N and [i, j + 1]N

is denoted as edge
[
i, j

]
E. The overlined symbol “ ” represents that the

coordinate of the variable with the overline is varying along the edge.

4

Each area surrounded by four edges is defined as a cell, which is denoted
by using their node number on the bottom left such as

[
i, j

]
C. Figure 1

shows a representation of the grid, where circular, triangular, and square
symbols represent nodes, edges, and cells, respectively.

The integrals along the edges and the integral over the cell are denoted
by using the following notations.∫

[i,j]E

F ds =

∫ [i+1,j]

[i,j]

F dx, (2)∫
[i,j]E

F ds =

∫ [i,j+1]

[i,j]

F dy, (3)

∫
[i,j]C

F dA =

∫ [i,j+1]

[i,j]

∫ [i+1,j]

[i,j]

F dx dy. (4)

3. Formulation of DFM

In this section, the formulation of the 2-D DFM for Poisson’s equation
(Eq.(1)) using Gauss’s divergence theorem and the rotation-free nature of
the scalar field in Stokes’ theorem is presented.

Although the flux in 3-D problems is defined as the area integral of ∇u·n,
the flux in 2-D problems is defined as a line integral as follows:

ψL =

∫
L

∇u · n ds, (5)

where L is an integral path directed in the x- or y- direction. There are two
directions of n for each direction. For simplicity, n directs to the positive
direction of 2-D Cartesian coordinates, that is, n = +ex or n = +ey. The
variables in DFM are the fluxes on the edges,

[
i, j

]
E and

[
i, j

]
E, which are

represented as

ψ[i,j]E
=

∫
[i,j]E

∇u · n ds =
∫ [i+1,j]

[i,j]

∇u · ey dx, (6a)

ψ[i,j]E
=

∫
[i,j]E

∇u · n ds =
∫ [i,j+1]

[i,j]

∇u · ex dy. (6b)

5

Figure 2: DFM’s stencil by Gauss’ equation

DFM utilizes two mathematical formulas. One is an integral form of
Poisson’s equation, which is obtained by applying the Gauss’s divergence
theorem to the 2-D Poisson’s equation.∮

∂A

∇u · n ds =
∫
A

f dA, (7)

where A is any area, and ∂A is the boundary of A. The other formula is
an integral form of rotation-free nature, which is obtained by applying the
Stokes’ theorem to the vector identity of ∇×∇u = 0.∮

C

∇u · τ ds = 0, (8)

where C is an arbitrary closed path, and τ denotes the tangential unit vector
along C.

3.1. Discretization of Gauss’s divergence theorem
When A in Eq.(7) is taken as a cell, the left-hand side of Eq.(7) is simply

discretized as follows:

ψ[i+1,j]E
+ ψ[i,j+1]E

− ψ[i,j]E
− ψ[i,j]E

=

∫
[i,j]C

f dA. (9)

Figure 2 represents the stencil of Eq.(9), where the values on the edges
are the coefficients of the flux on each edge. It should be noted that this
equation does not contain any error.

The number of equations obtained by the Gauss’s divergence theorem is
equal to the number of cells. The number of variables, ψ, is equal to the

6

number of edges, which is more than that of cells in general. Because the
number of variables is less than the number of equations, the simultaneous
equations cannot be solved.

To address this problem, other equations based on the rotation-free na-
ture of the scalar field in Stokes’ theorem, Eq.(8), are added; their details
are shown in the next subsection.

3.2. Discretization of Stokes’ theorem
Let the closed path C of Eq.(8) be a rectangular path C[i,j]N

centered on
nodes, [i, j]N as described below.

C[i,j]N
: C

{1}
[i,j]N

−→ C
{2}
[i,j]N

−→ C
{3}
[i,j]N

−→ C
{4}
[i,j]N

,

C
{1}
[i,j]N

: [i+ ξ, j − η] −→ [i+ ξ, j + η] ,

C
{2}
[i,j]N

: [i+ ξ, j + η] −→ [i− ξ, j + η] ,

C
{3}
[i,j]N

: [i− ξ, j + η] −→ [i− ξ, j − η] ,

C
{4}
[i,j]N

: [i− ξ, j − η] −→ [i+ ξ, j − η] .

If ξ and η are between 0 and 1, this path is across the four edges connected to
the node [i, j]N. In the Stokes’ theorem, as shown in Eq.(8), the tangential
component of ∇u is integrated along the path C[i,j]N

, the direction of which
is normal to the edges, where each direction is the same as that of the flux.
However, it crosses the edge at a point on the edge, and it is not integrated
along the edges. Therefore, the integral shown in Eq.(8) does not include
the flux. To express the fluxes, we apply a double integral with respect to
ξ and η in Eq.(8) so that the integrals of the normal components of ∇u of
the edges are included.∫ 1

0

∫ 1

0

∮
C[i,j]N

∇u · τ ds dξ dη = 0. (10)

The left-hand side of Eq.(10) is divided into the sum of four terms.∫ 1

0

∫ 1

0

∮
C[i,j]N

∇u · τ ds dξ dη =
4∑

k=1

∫ 1

0

∫ 1

0

∫
C

{k}
[i,j]N

∇u · τ ds dξ dη =
4∑

k=1

Ψ
{k}
[i,j]N

.

(11)

7

When k = 1, the equation can be written as

Ψ
{1}
[i,j]N

=

∫ 1

0

∫ 1

0

∫
C

{1}
[i,j]N

∇u · τ ds dξ dη

=

∫ 1

0

∫ 1

0

∫ (j+η)∆

(j−η)∆

∂u

∂y

∣∣∣∣
x=(i+ξ)∆

dy dξ dη

=

∫ 1

0

∫ 1

0

∫ j+η

j−η

∂u

∂ŷ

∣∣∣∣
x̂=i+ξ

dŷ dξ dη, (12)

where x̂ = x/∆ and ŷ = y/∆. By exchanging the order of integration, it
can be rewritten as follows.

Ψ
{1}
[i,j]N

=

∫ j+1

j−1

∫ 1

0

(1− |ŷ − j|) ∂u
∂ŷ

∣∣∣∣
x̂=i+ξ

dξdŷ

=

∫ j+1

j−1

(1− |ŷ − j|)
∫ 1

0

∂u

∂ŷ

∣∣∣∣
x̂=i+ξ

dξdŷ, (13)

Here, we introduce the following functions, Xj and Yi, the dimensions of
which are the same as those of fluxes.

Yi(ŷ) =

∫ 1

0

∂u

∂ŷ

∣∣∣∣
x̂=i+ξ

dξ, (14a)

Xj(x̂) =

∫ 1

0

∂u

∂x̂

∣∣∣∣
ŷ=j+η

dη. (14b)

When ŷ or x̂ is an integer, these functions show the flux on the edge, for
example, Yi(j) = ψ[i,j]E

and Xj(i) = ψ[i,j]E
. By substituting Eq.(14a) to the

internal integral on the right-hand side of Eq.(13), and by replacing ŷ+ j to
ŷ, Eq.(13) is reduced to

Ψ
{1}
[i,j]N

=

∫ 1

−1

(1− |ŷ|)Yi(ŷ + j)dŷ. (15a)

Similarly, when k = 2, 3, 4, the following equations are obtained.

Ψ
{2}
[i,j]N

=

∫ −1

1

(1− |x̂|)Xj(x̂+ i)dx̂, (15b)

Ψ
{3}
[i,j]N

=

∫ −1

1

(1− |ŷ|)Yi−1(ŷ + j)dŷ, (15c)

Ψ
{4}
[i,j]N

=

∫ 1

−1

(1− |x̂|)Xj−1(x̂+ i)dx̂. (15d)

8

If these integrals are expressed by Yi(j) and Xj(i), they can be represented
by the fluxes.

To evaluate the integral in Eq.(15a), let us consider the Taylor series
expansion around j.

Yi(ŷ + j) =
∞∑
l=0

1

l!

dlYi
dŷl

∣∣∣∣
ŷ=j

ŷl. (16)

Substituting this equation into Eq.(15a), we obtain

Ψ
{1}
[i,j]N

=

∞∑
l=0

2

(2l + 2)!

d2lYi
dŷ2l

∣∣∣∣
ŷ=j

=

∞∑
l=0

2∆2l

(2l + 2)!

d2lYi
dy2l

∣∣∣∣
y=j∆

. (17)

In this evaluation, the odd order terms of ŷ in Eq.(16) are canceled because
1− |ŷ| in Eq.(15a) is an even function, and a chain rule of the derivative is
applied in the translation from the second equation to the last equation so
that the derivative becomes independent of ∆.

When we truncate the terms with l ≥ 1 on the right-hand side of Eq.(17),
Ψ

{1}
[i,j]N

is approximated to ψ[i,j]E , the error order of which is ∆2.

Ψ
{1}
[i,j]N

= ψ[i,j]E
+O(∆2). (18)

In the case where the terms with l ≥ 2 are truncated, the terms with the
second-order derivative emerge. When the second-order derivative is ex-
pressed by a second-order central difference, Ψ{1}

[i,j]N
, the 4th order accuracy

is represented by the fluxes on the three neighboring edges as follows.

Ψ
{1}
[i,j]N

=
1

12

(
ψ[i,j−1]E

+ 10ψ[i,j]E
+ ψ[i,j+1]E

)
+O(∆4). (19)

In the cases where k = 2, 3, 4, the discretization can be similarly obtained.
However, the sign of each term is different from Eq.(18) or (19) because the
range of the integral is different between Eq.(15a)-(15d). Therefore, after
substituting Ψ

{k}
[i,j]N

in Eq.(10), the number of terms on the left-hand side of
Eq.(10) in the 2nd and 4th order accuracies are 4 and 12, respectively.

Figure 3 shows the stencils in Eq.(18) and (19). The sum of the factors
shown in Figure 3 is identical to zero in each case.

It should be noted that the above formula requires that the higher-order
terms that include higher-order derivatives of u are negligibly small. If there
are singular points in the cells, special treatments are required.

9

2nd accuracy 4th accuracy

Figure 3: DFM’s stencil by Stokes’ equation

3.3. Boundary conditions
In this section, we formulate the Neumann and the Dirichlet boundary

conditions in the DFM. For simplicity, the calculation area is a rectangle,
where

[
i, 0

]
E are the edges on the bottom of the boundary and

[
0, j

]
E are

the edges on the left boundary.
The Neumann boundary condition is given as follows.

∇u · n = g1, (20)

where n is the unit normal vector to the boundaries of the calculation do-
main, and g1 is a known function defined on the boundary. This equation
is formulated by integrating over the edges on the boundaries; for example,
at the bottom of the boundary

ψ[i,0]E
=

∫
[i,0]E

g1 dx. (21)

In the DFM, the Neumann boundary condition can be formulated without
any error.

The Dirichlet boundary condition is more complicated than the Neu-
mann boundary condition. It is given by

u = g2, (22)

where g2 is a known function defined on the boundaries.
First, we describe the case where g2 = 0. The line integral value of the

gradient ∇u along any path D is expressed as follows:∫
D
∇u · τds = u(P)− u(Q), (23)

10

where P and Q are the start and end points of any path D, respectively.
For each node [i, 0]N at the bottom of the boundary, the path D is set as
described here.

D[i,0]N
: D

{1}
[i,0]N

−→ D
{2}
[i,0]N

−→ D
{3}
[i,0]N

,

D
{1}
[i,0]N

: [i+ ξ, 0] −→ [i+ ξ, η] ,

D
{2}
[i,0]N

: [i+ ξ, η] −→ [i− ξ, η] ,

D
{3}
[i,0]N

: [i− ξ, η] −→ [i− ξ, 0] .

If g2 = 0, the following equation holds from Eq.(22).∫
D[i,0]N

∇u · τds =
3∑

k=1

∫
D

{k}
[i,0]N

∇u · τds = 0. (24)

Similar to Eq.(10), this equation is integrated with respect to ξ and η as
follows.

3∑
k=1

∫ 1

0

∫ 1

0

∫
D

{k}
[i,0]N

∇u · τdsdξdη =

3∑
k=1

Ψ
{k}
[i,0]N

= 0. (25)

Following the same process as in Eq.(10)-(15d), {Ψ{k}
[i,0]N

|k = 1, 2, 3} is re-
spectively calculated.

Ψ
{1}
[i,0]N

=

∫ 1

0
(1− ŷ)Yi(ŷ)dŷ, (26a)

Ψ
{2}
[i,0]N

=

∫ −1

1
(1− |x̂|)Xi(x̂+ i)dx̂, (26b)

Ψ
{3}
[i,0]N

=

∫ 0

1
(1− ŷ)Yi−1(ŷ)dŷ. (26c)

Moreover, using the Taylor expansion, Eq.(26b) can be discretized as Eq.(18)
or Eq.(19). Equation (26a) can be discretized with 2nd-order and 4th-order
accuracy as in the following equation.

Ψ
{1}
[i,0]N

=
1

6
(2ψ[i,0]E

+ ψ[i,1]E
) +O(∆2), (27)

Ψ
{1}
[i,0]N

=
1

360
(97ψ[i,0]E

+ 114ψ[i,1]E
− 39ψ[i,2]E

+ 8ψ[i,3]E
) +O(∆4). (28)

11

The discretized Eq.(26c) has the same form, except the signs of all the terms
are inverted.

When the node is a corner such as [0, 0]N, it is necessary to define the
path as follows.

D[0,0]N
: D

{1}
[i,0]N

−→ D
{2}
[i,0]N

,

D
{1}
[0,0]N

: [ξ, 0] −→ [ξ, η] ,

D
{2}
[0,0]N

: [ξ, η] −→ [0, η] .

This is also calculated as follows:
2∑

k=1

∫
D

{k}
[0,0]N

∇u · τds = Ψ
{k}
[0,0]N

= 0, (29)

where,

Ψ
{1}
[0,0]N

=

∫ 1

0
(1− ŷ)Yi(ŷ)dŷ, (30a)

Ψ
{2}
[0,0]N

=

∫ 0

1
(1− x̂)Xi(x̂)dx̂. (30b)

Using Eq.(27) or Eq.(28), these equations can be discretized.
When g2 ̸= 0, the right-hand side of Eq.(24) is∫

D[i,0]N

∇u · τds =
3∑

k=1

∫
D

{k}
[i,0]N

∇u · τds = u[i+ξ,0] − u[i−ξ,0]. (31)

Because the right-hand side is defined as the boundary conditions g2, by
integrating it with respect to ξ and η, we obtain∫ 1

0

∫ 1

0
(u[i+ξ,0] − u[i−ξ,0])dξdη =

∫ 1

0
(u[i+ξ,0] − u[i−ξ,0])dξ

=

∫
[i,0]E

g2 dx−
∫
[i−1,0]E

g2 dx, (32)

where the edges to the integral are connecting to the node [i, 0]N. In the
case of the corner node, we can obtain the same relation, but the indices of
edges are different. Therefore, Eq.(25) for both cases can be rewritten as
follows:

Nk∑
k=1

Ψ
{k}
[i,j]N

= g2,[i,j]E+
− g2,[i,j]E−

, (33)

12

where Nk is 3 for the flat boundary and 2 for the corner, and the two edges
connected to the boundary node [i, j]N are denoted by [i, j]E− and [i, j]E+
in the counterclockwise order.

3.4. Relationship between number of equations and number of variables
Euler’s theorem of planar graphs shows that

v − e+ f = 1, (34)

where v, e, and f are the numbers of vertices, edges, and faces, respectively,
in an arbitrary plane graph. In the 2-D DFM grid, the vertices, edges, and
faces correspond to the nodes, edges, and cells, respectively.

The equations obtained from Gauss’s divergence theorem are formulated
for each cell, and those from Stokes’ theorem are formulated for each node.
The fluxes that are the variables to be solved are defined on the edges. Re-
garding the boundary condition, Eq.(21) can be formulated for each edge
on the boundary for the Neumann boundary condition, and Eq.(33) can be
formulated for each node on the boundary for the Dirichlet boundary con-
dition. However, the number of expressions is the same in both cases as the
number of nodes on the boundary and the number of edges on the boundary
are the same. Therefore, the number of unknown variables, V , is reduced
to V = e − Nbe, where Nbe represents the number of the boundary edges.
At the nodes on the boundary, the equations based on Stokes’ theorem can-
not be obtained because the equation requires undefined fluxes outside the
boundary. As a result, the number of equations based on Stokes’ theorem,
ES, is reduced to ES = v −Nbn, where Nbn is the number of nodes on the
boundary. In contrast, the number of equations based on Gauss’s divergence
theorem, EG, is not reduced, that is, EG = f . Moreover, as the boundary
is a closed path, the numbers of nodes and edges are the same, that is,
Nbn = Nbe. By eliminating v, e, f , Nbn, and Nbe from these equations,
Eq.(34) can be rewritten as

EG + ES − 1 = V. (35)

For example, for the 3 × 3 grid shown in Figure 1, EG = 9, ES = 4, and
V = 12.

Eq.(35) indicates that there is a redundant equation in the set of DFM
equations. When all boundaries are the Neumann boundary conditions, one
equation derived from Gauss’s equation Eq.(9) needs to be removed; other-
wise, when the Dirichlet boundary conditions are contained, one equation
derived from Stokes’ equation Eq.(10) needs to be removed.

13

4. Acceleration of DFM

DFM handles unknown variables on edges, while FDM, FEM, and FVM
handle unknowns on nodes or cells. Therefore, because the number of edges
is about twice the number of nodes or cells in 2-D problems, DFM consumes
more computational time than the other methods. To reduce the number of
unknowns, we propose a method, FastDFM, in which the flux on the edge
is represented by variables on the nodes.

Helmholtz’s theorem states that any vector field F in 3-D space can be
resolved into the sum of a rotation-free vector field, ∇u, and a divergence-
free vector field, ∇× v; namely,

F = ∇u+∇× v, (36)

Here, we consider that u satisfies Poisson’s equation shown in Eq.(1). Sub-
stituting ∇u obtained from Eq.(36) to (7), we obtain the following equation.∮

∂A
∇u · n ds =

∮
∂A

(F −∇× v) · n ds =
∫
A
f dA. (37)

The second term in the second equation vanishes because this term is a
result of an integral of ∇ · ∇ × v which is identical to 0, that is,∮

∂A
∇× v · n ds = 0. (38)

However, this integral is useful for representing the flux using nodal vari-
ables. When the area A is a unit cell, the closed path is divided into four
edges as follows: ∮

∂A
∇× v · n ds =

4∑
k=1

∫
∂A{k}

∇× v · n ds, (39)

where {∂A{k}|k = 1, 2, 3, 4} are the four edges surrounding A. Here, we
define an indefinite integral of ∇× v · n as

χ =

∫
∇× v · n ds. (40)

By using χ, the definite integral along each edge is represented by nodal
values as follows: ∫

∂A{k}
∇× v · n ds = χ{k,2} − χ{k,1}, (41)

14

where the superscripts of χ, {k, 1}, and {k, 2} are the beginning and end
points of ∂A{k}, respectively. In contrast to ∇×v ·n, the discretized integral
of F · n is defined as ψ∗ as follows.

ψ∗
∂A{k} ≡

∫
∂A{k}

F · n ds, (42)

is defined as a value related to the edge. From the relation between the sec-
ond and last equations of Eq.(37), we can obtain the following requirement
for ψ∗ by using Eq.(38).

4∑
k=1

ψ∗
∂A{k} =

∫
A
f dA. (43)

By using these definitions, the integral along the edge, ∂A{k}, is rewritten
as

ψ∂A{k} = ψ∗
∂A{k} +

(
χ{k,2} − χ{k,1}

)
. (44)

This equation shows that the flux on a certain edge is divided into two terms:
1) ψ∗ defined on the edge and 2) the difference in the nodal potentials of
χ. Even when ψ∗ is a particular solution that satisfies Eq.(9) but does not
satisfy Eq.(10) and the boundary conditions, the true flux, ψ, is fixed by
tuning χ such that ψ satisfies Eq.(10) and the boundary conditions.

In other words, the fluxes ψ[i,j]E , ψ[i,j]E are replaced as follows.

ψ[i,j]E
= χ[i+1,j]N

− χ[i,j]N
+ ψ∗

[i,j]E
, (45a)

ψ[i,j]E
= χ[i,j]N

− χ[i,j+1]N
+ ψ∗

[i,j]E
, (45b)

where χ[i,j]N
is χ at the node [i, j]N, and ψ∗

[i,j]E
and ψ∗

[i,j]E
are ψ∗ on

the edge
[
i, j

]
E and

[
i, j

]
E. Then, Eq.(45a) and Eq.(45b) are substituted

for Eq.(18) or Eq.(19) derived from the rotation-free nature. For example,
2nd-order accuracy:

χ[i+1,j]N
+ χ[i,j+1]N

+ χ[i−1,j]N
+ χ[i,j−1]N

− 4χ[i,j]N

= −(ψ∗
[i,j]E

− ψ∗
[i,j]E

− ψ∗
[i−1,j]E

+ ψ∗
[i,j−1]E

). (46)

The number of equations is the total number of nodes, except those on the
boundary. The 4th-order accuracy equation can be formulated in the same
manner.

15

In addition, Eq.(45a) and Eq.(45b) are substituted for the boundary
condition, that is Eq.(21), Eq.(27), or Eq.(28). The number of equations is
the same as the number of nodes on the boundary. After summing them up,
the number of equations is the same as the number of nodes. Thereby, if ψ∗

were determined as known values, χ is obtained by solving the simultaneous
equations.

The remainder of this section describes the method used to determine
the particular solution of ψ∗. By using the notation of the cell and the edges
shown in section 2, Eq.(43) can be rewritten as follows.

ψ∗
[i,j+1]E

+ ψ∗
[i+1,j]E

− ψ∗
[i,j]E

− ψ∗
[i,j]E

= Q[i,j]C
, (47)

Q[i,j]C
=

∫
[i,j]C

f dA, (48)

where Q[i,j]C
is a known value because f is given. The system equation to

determine ψ∗ is composed of Eq.(47) for all cells. The number of variables,
ψ∗, is more than the number of equations since the number of edges is almost
twice that of the cells. This means that this problem is an underdetermined
problem, and the solution cannot be determined uniquely. However, we
require only one particular solution in the solutions that satisfy the system
equation shown in Eq.(47). To determine the particular solution, we do
not need to solve simultaneous equations. The solution can be obtained by
a bucket relay scheme of sources in which the sources on the cells in the
domain are moved to the edges on the boundary. In this scheme, the flux is
evaluated as the accumulation of relayed sources. The algorithm where the
edge of the boundary is a certain edge is as follows.

1. Set ψ∗ on all edges to 0.
2. Evaluate Q for all cells and set an unprocessed mark to the cells.
3. Set an arbitrary edge as a goal edge.
4. Select a start cell from the population of the unprocessed cells.
5. Draw an arbitrary arrow from the start cell to the goal edge so that

the arrow crosses the edges.
6. Add Q of the start cell to ψ∗ on the edges crossing the arrow.
7. Repeat step 4 to step 6 until all cells are processed.

Figure 4 exhibits this algorithm for a simple example.

16

(a) (b)

(Q1) (Q2)

(Q3) (Q4)

00

0

0

00

0 0

00

0 0 Q1 (Q2)

(Q3) (Q4)

Q10

0

Q1

Q1
0

0 0

00

0 0

(c) (d)

Q1 Q2

(Q3) (Q4)

Q1 +Q20

0

Q1

Q1 +Q2
0

0 0

00

0 0 Q1 Q2

Q3 Q4

Q1 +Q20

Q3

Q1

Q1 +Q2 +Q3 +Q4

0

0 0

00

0 0

Figure 4: Algorithm to determine a particular flux distribution, ψ∗, on the edges. The
thick line is set as the goal edge, and Qk in the cell is the area integral of f over the k-th
cell. The parenthesis of Qk means that the k-th cell is not processed. The underlined
value on the edge is the current value of ψ∗. (a) Initial state. (b) The case where the
starting cell is the cell with Q1. The source value of Q1 is added to ψ∗

[i,j]E
on the edges

that cross the arrow from the starting cell to the goal edge. By this process, the cell of
Q1 satisfies Gauss’s divergence theorem. (c) The case where the starting cell is the cell
with Q2. (d) After all the cells are processed.

17

5. Numerical experiments

To validate of the proposed DFM and FastDFM, the numerical error
and computational time of the 4th-order DFM and FastDFM were com-
pared with those of the compact 4th-order FDM[15] and 4th-order FVM of
Mehrstellen discretization[4].

To estimate the error of the flux, the following normalized root mean
square errors (RMSEs), ε̂, were evaluated.

ε̂ =

√√√√√∑
e∈E

(
ψe − ψ̃e

)2

∑
e∈E ψ̃

2
e

, (49)

where E is a set of all edges contained in the grid, and ψe and ψ̃e are the
numerical and exact solutions of the flux on the edge e, respectively.

In the computation by FDM, a flux on an edge was evaluated through
two steps: (1) the potentials at nodes were evaluated by FDM, and (2) the
edge flux was obtained by the following 4th-order accuracy equation. This
can be derived by the Taylor expansion[4].

ψ[i,j]E
=

1

12

(
u[i− 1

2
,j+ 1

2]
− u[i− 1

2
,j− 1

2]
+ u[i+ 3

2
,j+ 1

2]
− u[i+ 3

2
,j− 1

2]

)
+

10

12

(
u[i+ 1

2
,j+ 1

2]
− u[i+ 1

2
,j− 1

2]

)
− ∆2

24

∫
[i,j]E

∂f

∂y
dx+O(∆4), (50a)

ψ[i,j]E
=

1

12

(
u[i+ 1

2
,j− 1

2]
− u[i− 1

2
,j− 1

2]
+ u[i+ 1

2
,j+ 3

2]
− u[i− 1

2
,j+ 3

2]

)
+

10

12

(
u[i+ 1

2
,j+ 1

2]
− u[i− 1

2
,j+ 1

2]

)
− ∆2

24

∫
[i,j]E

∂f

∂x
dy +O(∆4). (50b)

As FVM discretizes the fluxes into potentials u by Eq.(50a) and Eq.(50b),
for formulating simultaneous equations, the fluxes can be obtained with
minimum error by resubstituting the obtained u into Eq.(50a) and Eq.(50b).

For solving the simultaneous equations, we used the method of LU de-
composition with full pivot by Eigen (version 3.3.7)[7], which is an open
source software for linear algebra written in C++. The calculation time
was measured using a PC with an Intel Core i7-7700K CPU @ 4.20 GHz
and 64.0 GB RAM.

18

(a) (b)

50 60 70 80 90 100

number of partitions N

10−7

10−6

10−5

10−4

n
or

m
al

iz
ed

R
M

S
E

of
fl

u
xe

s
ε̂

ε̂ = 40N −4

ε̂ = 295N −4

ε̂ = 185N −4

DFM

FastDFM

FDM

FVM

50 60 70 80 90 100

number of partitions N

103

104

105

106

107

ca
lc

u
la

ti
on

ti
m

e
(m

s)

tim
e = 3.0

× 10
−6N

6

tim
e = 4.0

× 10
−7N

6

DFM

FastDFM

FDM

FVM

Figure 5: Comparison of the performance of DFM, FastDFM, FDM, and FVM in terms
of (a) normalized RMSE and (b) calculation time in Problem 1.

5.1. Problem 1: Neumann boundary condition
The source term of Poisson’s equation was set as a trigonometric function

as follows,

∇ · ∇u = cos kxx cos kyy in Ω, (51)

where Ω denotes the computational domain and x, y ∈ [−1, 1]. The bound-
ary condition was given as the following Neumann boundary condition.

∇u · n = 0 on ∂Ω, (52)

where ∂Ω is the boundary of Ω. When kx = mxπ and ky = myπ (mx and
my are integers), the exact solutions ũ of these problems are as follows:

ũ = − 1

k2x + k2y
cos kxx cos kyy. (53)

When the calculation domain is divided into N × N square grids, the
exact flux, ψ̃, at each edge is given as

ψ̃[i,j]E
=
ky
kx

1

k2x + k2y
[sin kxx sin kyy]

[i+1,j]
[i,j] , (54a)

ψ̃[i,j]E
=
kx
ky

1

k2x + k2y
[sin kxx sin kyy]

[i,j+1]
[i,j] . (54b)

We took the parameter as (kx, ky) = (2π, π) for fair comparisons, as
the error of DFM happens to be zero when kx = ky. Figure 5 shows the

19

normalized RMSE and calculation time of DFM, FastDFM, FDM, and FVM.
Figure 5 (a) shows that the DFM error is approximately one-seventh of the
error of FDM and approximately two-ninth of that of the FVM. The errors
of DFM and FastDFM are the same. The dependence of errors on N in all
methods is proportional to N−4, which is reasonable because the size of the
edges, ∆, is proportional to the reciprocal of N , and the accuracy of the
methods has O(∆4). From Figure 5 (b), we can see that the calculation
time of FastDFM is similar to that of FDM and FVM, and it is almost
one-eighth that of DFM. Further, we can see that the computational time
for all methods exhibits N6-dependency. The reduction rate of FastDFM
and the N6-dependency can be explained by the same reason. Most of the
computational time is required for solving the simultaneous equations, where
we employed the solver based on the LU decomposition scheme. In the LU
decomposition, the computational time is proportional to the cube of the
number of variables. As the number of variables of DFM is almost twice that
of FastDFM, DFM requires eight times the computational time of FastDFM.
Similarly, as the numbers of variables in all methods are proportional to N2,
the computational cost is proportional to N6.

5.2. Problem 2: Dirichlet boundary condition
Next, we compare the performance of the problems of the Dirichlet

boundary condition. If the source term is a trigonometric function as in
Problem 1, the accuracy of FVM becomes 5th-order accuracy, because the
4th-order error term is zero. As this problem does not have generality, we
set the following exact solution:

ũ = (a− cosh kxx)(b− cosh kyy), (55)

where a, b, kx, and ky are constants.
This ũ becomes zero, when

a− cosh kxx = 0 or b− cosh kyy = 0. (56)

When the computational domain, Ω, is set to x, y ∈ [−1, 1], and the
boundary conditions are set as

u = 0 on ∂Ω, (57)

the boundary condition can be satisfied by the following relationships.

a = cosh kx, (58a)
b = cosh ky. (58b)

20

(a) (b)

50 60 70 80 90 100

number of partitions N

10−9

10−8

10−7

10−6

n
or

m
al

iz
ed

R
M

S
E

of
fl

u
xe

s
ε̂

ε̂ = 0.3N −4

ε̂ = 3.0N −4

DFM

FastDFM

FDM

FVM

50 60 70 80 90 100

number of partitions N

103

104

105

106

107

ca
lc

u
la

ti
on

ti
m

e
(m

s)

tim
e = 3.0

× 10
−6N

6

tim
e = 4.0

× 10
−7N

6

DFM

FastDFM

FDM

FVM

Figure 6: Comparison of the performance of DFM, FastDFM, FDM, and FVM in terms
of (a) normalized RMSE and (b) calculation time in Problem 2.

For this solution, Poisson’s equation is

∇ · ∇u = −k2x(b− cosh kyy) cosh kxx− k2y(a− cosh kxx) cosh kyy in Ω.

(59)

Figure 6 shows the normalized RMSE and calculation time of DFM,
FastDFM, FDM, and FVM, when kx = cosh−1(2) and ky = cosh−1(3) in
Eq.(59), where cosh−1(·) is the inverse hyperbolic cosine function. This
figure shows that DFM is approximately 10 times more accurate than FDM
and FVM, and FastDFM has almost the same speed as the other methods.

From these comparisons, the evaluation of flux by FastDFM is more
accurate than that by FDM and FVM without increase in calculation time.

6. Conclusion

We proposed the DFM to compute accurate flux values, directly. A sys-
tem equation of DFM is formulated based on two mathematical formulas:
Gauss’s divergence theorem and Stokes’ theorem. No errors are included
in the equations based on Gauss’s divergence theorem. However, the equa-
tions based on Stokes’ theorem include truncation errors of the Taylor series
expansion. In this paper, the 2nd- and 4th-order formulations of DFM are
presented. The numerical result of DFM with 4th-order accuracy shows
a reasonable error trend. Furthermore, the error of the flux calculated by
DFM is smaller than that obtained by FDM and FVM. In terms of com-
putational time, DFM is slower than FDM and FVM because the number

21

of variables of DFM is almost twice that of FDM and FVM in 2-D prob-
lems. To reduce the computational time, we also developed a method called
FastDFM in which the flux on the edge is represented by a sum of the ficti-
tious flux on the edge and the fictitious potentials on the nodes located at
the ends of the edge. Because the fictitious flux is determined with a small
computational cost, most of the computational time is exhausted to solve
the fictitious potential on the nodes. In this scheme, the number of variables
is the same as that of the FDM and FVM. From the numerical results, we
can show that the calculation time of FastDFM is similar to that of FDM
and FVM. Furthermore, the accuracy of FastDFM is the same as that of
DFM. Therefore, for the purpose of evaluating flux, FastDFM is superior to
FDM and FVM.

Acknowledgments

This research was partially supported by JSPS KAKENHI grant number
18K04158.

References

[1] A. Bejan, A.D. Kraus, Heat transfer handbook, volume 1, John Wiley
& Sons, New Jersey, 2003.

[2] C.A. Brebbia, S. Walker, Boundary element techniques in engineering,
Elsevier, Amsterdam, 2016.

[3] M. Clemens, T. Weiland, Discrete electromagnetism with the finite in-
tegration technique, Progress In Electromagnetics Research 32 (2001)
65–87.

[4] L. Collatz, The numerical treatment of differential equations, vol-
ume 60, Springer Science & Business Media, Berlin, 2012.

[5] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, Handb.
Numer. Anal. 7 (2000) 713–1018.

[6] G. Fairweather, A. Karageorghis, The method of fundamental solutions
for elliptic boundary value problems, Adv. Comput. Math. 9 (1998) 69–
95.

[7] B.J. Gaël Guennebaud, et al., Eigen v3, http://eigen.tuxfamily.org,
2010.

22

[8] F.D. Gakhov, Boundary Value Problems, Elsevier, Amsterdam, 2014.

[9] M.A. Golberg, The method of fundamental solutions for Poisson’s equa-
tion, Eng. Anal. Bound. Elem. 16 (1995) 205–213.

[10] J.M. Jin, The finite element method in electromagnetics, John Wiley
& Sons, New Jersey, 2015.

[11] J. Liu, Z. Li, L. Wang, L. Jiao, Numerical simulation of the transient
flow in a radial flow pump during stopping period, J. Fluids Engrg. 133
(2011).

[12] M. Rundo, Models for flow rate simulation in gear pumps: a review,
Energies 10 (2017) 1261.

[13] S. Sauter, C. Schwab, Boundary Element Methods, Springer Series in
Computational Mathematics, Springer Berlin Heidelberg, Heidelberg,
2010.

[14] J. Shen, T. Tang, L.L. Wang, Spectral methods: algorithms, analy-
sis and applications, volume 41, Springer Science and Business Media,
Heidelberg, 2011.

[15] W. Spotz, High-order compact finite difference schemes for computa-
tional mechanics, Ph.D. thesis, Faculty of the Graduate School of the
University of Texas at Austin in Partial Fulfillment of the requirements
for the degree of Doctor of philosophy, 1995.

[16] D.M. Sullivan, Electromagnetic simulation using the FDTD method,
John Wiley & Sons, New Jersey, 2013.

[17] C. Wadhwa, Electrical power systems, New Ageing International, New
Delhi, Delhi, 2006.

[18] B.M. Weedy, B.J. Cory, N. Jenkins, J.B. Ekanayake, G. Strbac, Electric
power systems, John Wiley & Sons, New Jersey, 2012.

[19] T. Weiland, Eine methode zur lösung der Maxwellschen gleichungen
für sechskomponentige felder auf diskreter basis (German), Electronics
and Communication, AEÜ 31 (1977) 116–120.

[20] Q. Yang, Z. Zhang, M. Liu, J. Hu, Numerical simulation of fluid flow
inside the valve, Procedia Engrn. 23 (2011) 543–550.

23

[21] M.U. Zapata, R.I. Balam, High-order implicit finite difference schemes
for the two-dimensional Poisson equation, Appl. Math. Comput. 309
(2017) 222–244.

24

