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Abstract 30 

Single-leg landings with or without subsequent jumping are frequently used to evaluate landing 31 

biomechanics. The purpose of this study was to investigate the effects of subsequent jumping 32 

on the external knee abduction moment and trunk and hip biomechanics during single-leg 33 

landing. Thirty young-adult female participants performed a single-leg drop vertical jumping 34 

(SDVJ; landing with subsequent jumping) and single-leg drop landing (SDL; landing without 35 

subsequent jumping). Trunk, hip and knee biomechanics were evaluated using a three-36 

dimensional motion analysis system. The peak knee abduction moment was significantly larger 37 

during SDVJ than during SDL (SDVJ 0.08 ± 0.10 Nm·kg–1·m–1, SDL 0.05 ± 0.10 Nm·kg–1·m–38 

1, p = .002). The trunk lateral tilt and rotation angles toward the support-leg side and external 39 

hip abduction moment were significantly larger during SDVJ than during SDL (p < .05). The 40 

difference in the peak hip abduction moment between SDVJ and SDL predicted the difference 41 

in the peak knee abduction moment (p = .003, R2 = .252). Landing tasks with subsequent 42 

jumping would have advantages for evaluating trunk and hip control as well as knee abduction 43 

moment. In particular, evaluating hip abduction moment may be important because of its 44 

association with the knee abduction moment. 45 
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Introduction 51 

An anterior cruciate ligament (ACL) injury is a serious athletic injury that requires surgical 52 

reconstruction and extensive rehabilitation1,2. The majority of ACL injuries occur in noncontact 53 

situations, such as jump-landing or cutting maneuvers3,4. Cadaveric landing simulation studies 54 

have shown that the knee abduction moment contributes to ACL injuries5–7. A large knee 55 

abduction moment during landing is found to be a predictor of ACL injuries in female athletes8. 56 

Therefore, the knee abduction moment during landing has been considered a biomechanical 57 

risk factor for ACL injuries and should be reduced to prevent ACL injuries. Furthermore, female 58 

athletes demonstrate a larger knee abduction moment during landing than male athletes9 and 59 

are more likely to have ACL injuries than male athletes10. Therefore, the knee abduction 60 

moment during landing tasks should be evaluated and reduced to minimize the risk of ACL 61 

injuries, especially in female athletes. 62 

Double-/single-leg drop landing and drop vertical jumping are common landing tasks 63 

used to evaluate the knee abduction moment8,11–14. The presence or absence of a subsequent 64 

jump after landing leads to differences between the two landing tasks. A subsequent jump after 65 

landing is common in jump-landing sports, such as basketball, and has been shown to increase 66 

the knee abduction moment during double-leg landing14,15. On the other hand, another study 67 

reported no difference in the knee abduction moment between double-leg drop vertical jumping 68 

and double-leg drop landing16. The aforementioned studies investigated double-leg landings14–69 

16; however, ACL injuries frequently occur during single-leg landing4,17. Only one study by 70 

Hovey et al.13 reported that the subsequent jump did not increase the knee abduction moment 71 

during single-leg landing in 11 female and 14 male athletes. However, because the effects of a 72 

subsequent jump on knee biomechanics differ between males and females during double-leg 73 

landing14, such effects during single-leg landing tasks should be investigated separately for 74 

male and female participants, especially as females have a greater risk of ACL injury. Hovey’s 75 



 

 
 

study included 11 female athletes, and this sample size did not allow a medium effect size (less 76 

than dz of 0.94) with a power of 0.80 and an alpha of 0.05. Further studies are needed to clarify 77 

the effect of subsequent jumping in females. 78 

Trunk and hip biomechanics in the frontal and transverse planes have been considered to 79 

influence the knee abduction moment. Trunk lateral tilt and rotation toward the support-leg side 80 

are associated with the knee abduction moment during athletic movements11,18–25. In addition, 81 

trunk lateral tilt toward the support-leg side has been observed in ACL injuries in females26–29. 82 

Furthermore, the hip adduction angle and abduction moment are positively associated with the 83 

knee abduction moment during drop vertical jumping and cutting tasks21,24. Therefore, the 84 

importance of controlling trunk and hip biomechanics in the frontal and transverse planes to 85 

decrease the knee abduction moment has been emphasized for ACL injury prevention11,30,31. 86 

While a previous study reported a trend, although not statistically significant, for the hip 87 

abduction moment to increase with a subsequent jump following single-leg landing13, no study 88 

has investigated the effect of subsequent jumping on trunk lateral tilt and rotation motions in 89 

the frontal and transverse planes. 90 

Trunk and hip biomechanics are associated with the knee abduction moment during 91 

landings11,18–25. The effects of subsequent jumping after landing on the knee abduction moment 92 

and on trunk and hip biomechanics during single-leg landing tasks in females are unclear. It is 93 

possible that the change in the knee abduction moment caused by subsequent jumping is 94 

associated with changes in trunk and hip biomechanics. Understanding the relationships 95 

between the change in the knee abduction moment and those in other biomechanics caused by 96 

a subsequent jump may be helpful for clinicians to reduce the knee abduction moment during 97 

a single-leg drop vertical jump. Therefore, the primary purpose of the present study was to 98 

investigate the effect of subsequent jumping on the knee abduction moment and on trunk and 99 

hip biomechanics during single-leg landing tasks in female participants. The secondary purpose 100 



 

 
 

was to identify the kinetic and kinematic factors associated with the change in the knee 101 

abduction moment due to subsequent jumping. The hypotheses were that a subsequent jump 102 

would increase the knee abduction moment, trunk lateral tilt and trunk rotation angles and that 103 

the change in the knee abduction moment caused by a subsequent jump would be associated 104 

with those in the trunk and hip biomechanics. 105 

 106 

Methods 107 

Participants: Thirty female participants (mean ± SD: age 21.7 ± 1.7 years; height 159.5 108 

± 5.7 cm; weight 52.5 ± 5.0 kg) volunteered for this study. A priori power analyses in a pilot 109 

study with 9 participants showed that 17 participants were necessary to achieve a statistical 110 

power (1 - β) of 0.8 with an alpha level (α) of .05 and an effect size (dz) of .74 in a paired t test 111 

for the knee abduction moment. In addition, a priori power analyses in the pilot study showed 112 

that 25 participants were necessary to achieve a statistical power (1 - β) of 0.8 with an alpha 113 

level (α) of .05 and a coefficient of determination of .26 in a univariate linear regression using 114 

the difference in the knee abduction moment between the single-leg drop vertical jumping and 115 

single-leg drop landing as a dependent variable and that in the hip abduction moment as an 116 

independent variable. The exclusion criteria included a history of musculoskeletal injuries in 117 

the previous 6 months, as well as surgeries or fractures in the lower extremities or trunk. All 118 

participants had previous experience with regular sports activities (11 tennis, 9 track and field, 119 

4 volleyball, 3 badminton, 2 each basketball, handball, sepak takraw, softball, table tennis, 120 

karate and ballet, and 1 each soccer, kendo and kickboxing). Some participants had previous 121 

experience with multiple sports activities. The dominant leg (the side used for kicking a ball), 122 

which was the right leg in all participants, was tested and analyzed. Informed consent was 123 

obtained from all participants prior to participation in the study. This research was approved by 124 

the Institutional Review Board of the Faculty of Health Sciences, Hokkaido University 125 



 

 
 

(approval number: 16-97). 126 

Procedures: The participants warmed up on a stationary bicycle for 5 minutes. Then, 127 

the marker coordinate data from each participant were collected during a static standing trial 128 

to create each participant’s model during data processing. After the static standing trial data 129 

were collected, the participants performed single-leg landing tasks with or without a 130 

subsequent jump in a random order. All participants were barefoot to exclude the effects of 131 

shoes on lower extremity kinematics and kinetics32. Single-leg drop landing (SDL) was used 132 

as the landing task without a subsequent jump (Figure 1a). The participants stood on a 30-133 

cm-high box on their dominant leg, then jumped just enough to clear the box before dropping 134 

and landing on their dominant leg and landed with their dominant leg on a force plate in the 135 

SDL task11,33,34. Participants were asked to hold the landing posture for a minimum of 3 136 

seconds. Single-leg drop vertical jumping (SDVJ) was used as the landing task with a 137 

subsequent jump11,12 (Figure 1b). The participants performed the SDVJ task in a similar 138 

manner to the SDL task; however, they were asked to jump with their dominant leg as high 139 

and fast as possible immediately after landing. During the two landing tasks, the participants 140 

were asked to look forward and to keep their hands at ear level to avoid marker occlusion11. 141 

The participants were allowed to perform practice trials until they became familiar with each 142 

landing task. Data for three successful trials for each SDL and SDVJ were collected after 143 

practice trials11,12,33,34. The participants were allowed to rest after each trial, as needed. Failed 144 

trials were defined as those in which the nondominant leg touched the ground or the 145 

participant lost her balance during the test and were excluded from the analysis. The means 146 

of three trials for both the SDL and SDVJ tasks were used in the statistical analyses. 147 

Data collection: The marker coordinate data were collected with Cortex 5.0.1 (Motion 148 

Analysis Corporation, Santa Rosa, CA, USA) and seven high-speed cameras (Hawk cameras; 149 

Motion Analysis Corporation). The ground reaction force data were synchronously collected 150 



 

 
 

with a force plate (Type 9286, Kistler AG, Winterthur, Switzerland). The sampling rates were 151 

set to 200 Hz for the marker coordinate data and 1,000 Hz for the force plate data. A total of 41 152 

retroreflective markers were placed on the thigh and shank of the dominant leg, the 7th cervical 153 

and 10th thoracic spinous process, the sacrum and both iliac crests, the acromions, the 154 

anterosuperior iliac spines, the greater trochanters, the medial and lateral femoral condyles, the 155 

medial and lateral malleoli, the heels and the second and fifth metatarsal heads. 156 

Data analysis: The marker coordinate data and ground reaction force data were low-pass 157 

filtered using a zero-lag fourth-order Butterworth filter. The marker coordinate data were low-158 

pass filtered at 12 Hz15,33, while the ground reaction force was low-pass filtered at 50 Hz to 159 

evaluate the impulsive knee abduction moment immediately after initial contact35. The trunk, 160 

hip and knee angles and external moments were calculated in Visual3D software (version 6, C-161 

Motion Inc., Germantown, MD, USA) using joint coordinate systems and inverse dynamics. 162 

The hip and knee angles were calculated with the Cardan X-Y-Z sequence (i.e., 163 

flexion/extension, abd-/adduction and internal/external rotation). Positive values indicated 164 

knee flexion, abduction and internal rotation as well as hip flexion, adduction and internal 165 

rotation. The trunk angles were calculated as the thorax segment angles in the global coordinate 166 

system. For the trunk angles, the rotation sequence was changed to Z-Y-X (i.e., axial rotation, 167 

lateral tilt and anterior/posterior tilt)36. Positive values indicated trunk lateral tilt and rotation 168 

toward the support-leg side. The segment anthropometric properties used to determine the 169 

external moments were based on a previous report37. The external joint moment was the torque 170 

caused by an external load. The external knee abduction moment would be resisted by the 171 

internal knee adduction moment38. Positive external moments indicated knee and hip flexion, 172 

abduction and internal rotation. In addition, the vertical ground reaction force was calculated 173 

considering the possible association with the knee abduction moment24. All angles measured 174 

during the static standing trial were set to 0°. The angle and moment data were extracted from 175 



 

 
 

the landing phase, which was defined as the time between the initial contact and the maximum 176 

knee flexion during both landing tasks. The first landing was analyzed in the SDVJ task. The 177 

initial contact was defined as when the vertical ground reaction force first exceeded 10 N39. 178 

Peak values of the trunk lateral tilt and rotation; hip flexion, adduction and internal rotation; 179 

and knee flexion, abduction and internal rotation angles were calculated during the landing 180 

phase. The peak knee and hip flexion, abduction and internal rotation moments and peak 181 

vertical ground reaction force during the landing phase were computed. 182 

Statistical analysis: The normality of all values was evaluated using a Shapiro‒Wilk test. 183 

A paired t test or Wilcoxon signed-rank test was used to investigate the influence of subsequent 184 

jumping on the kinematic and kinetic data depending on normality. Univariate regression 185 

analysis was performed using the differences in trunk, hip, and knee biomechanics and the 186 

vertical ground reaction force between the SDVJ and SDL tasks as independent variables and 187 

the difference in the peak knee abduction moment as a dependent variable. The statistical 188 

analyses were performed using IBM SPSS Statistics, version 26 (IBM, Armonk, NY, USA). 189 

The level of significance was set to p < .05. In addition, effect sizes were calculated for each 190 

pairwise comparison with Cohen’s dz using G*Power 3.1.9.2 (Institute of Experimental 191 

Psychology, Hein-rich Heine University, Dusseldorf, Germany). The effect sizes were 192 

interpreted as follows: dz ≥ .80 indicated a large effect, .50 ≤ dz < .80 indicated a medium effect, 193 

and .20 ≤ dz < .50 indicated a small effect40. 194 

 195 

Results 196 

The peak knee abduction moment was significantly larger during SDVJ than during SDL, 197 

with a large effect size (p = .002, dz = .624) (Table 1). In addition, participants exhibited 198 

significantly larger peak knee and hip flexion and peak hip abduction moments during SDVJ 199 

than during SDL (p < .001, dz = .819; p = .001, dz = .642; p = .008, dz = .517, respectively) 200 



 

 
 

(Table 1). There was no other difference in the knee or hip joint moments or the peak vertical 201 

ground reaction force. 202 

In the kinematic analyses, the peak trunk lateral tilt and rotation angles toward the 203 

support-leg side were significantly larger during SDVJ than during SDL (p < .001, dz = .743; 204 

p = .031, dz = .413, respectively) (Table 2). Moreover, the peak knee and hip internal rotation 205 

angles were significantly larger during SDVJ than during SDL (p = .005, dz = .553; p = .027, 206 

dz = .460, respectively) (Table 2). There was no other difference in the trunk, hip and knee 207 

kinematics. 208 

 Univariate regression analysis showed that the difference in the peak knee abduction 209 

moment between SDVJ and SDL was predicted by the difference in the peak hip abduction 210 

moment (p = .003, R2 = .252) (Figure 2). The standard regression coefficient (β) was .527. 211 

There were no other significant predictors for the difference in the peak knee abduction moment 212 

between SDVJ and SDL. 213 

 214 

Discussion 215 

This study revealed that the peak knee and hip abduction moments, the peak trunk lateral 216 

tilt and rotation angles toward the support-leg side were significantly larger during SDVJ than 217 

during SDL and that the increase in the peak knee abduction moment caused by subsequent 218 

jumping was significantly associated with the increase in the peak hip abduction moment. 219 

These findings supported the a priori hypotheses. 220 

In the present study, the peak knee abduction moment was significantly larger during 221 

SDVJ than during SDL, which is consistent with a previous study on double-leg DVJ and 222 

DL14,15. On the other hand, a previous study of a single-leg landing task did not find a significant 223 

difference in the knee abduction moment between SDVJ and SDL, although the knee abduction 224 

moment during SDVJ was larger than that during SDL13. This previous study included 14 male 225 



 

 
 

and 11 female participants, whereas this study included only female participants. Female 226 

athletes have a larger knee abduction moment, normalized for body weight and height, during 227 

landing than male athletes9. The present study was able to detect the difference in the knee 228 

abduction moment between the two landing tasks because a sufficient sample size of only 229 

female participants were included. Since the effects of a subsequent jump on knee 230 

biomechanics differed between males and females during double-leg landing tasks14, future 231 

studies should investigate sex differences in the effects of a subsequent jump following a single-232 

leg landing on the knee abduction moment, taking sample size into account. Furthermore, while 233 

the participants in the present study had previous experience with regular sports activities 234 

regardless of jumping and landing activities, those in the previous study13 seemed to be 235 

recreational athletes participating in jumping and landing sports activities at the time of the 236 

study. The difference in participants’ characteristics between studies may lead to different result 237 

in knee abduction moment between the studies. 238 

The difference in the peak knee abduction moment during SDVJ and SDL was 239 

significantly predicted by the difference in the peak hip abduction moment. In addition, the 240 

peak knee and hip abduction moments were larger during SDVJ than during SDL. These results 241 

suggest that the increase in the knee abduction moment caused by a subsequent jump is 242 

associated with the increase in the hip abduction moment and support previous studies on lateral 243 

reactive jumping and cutting tasks21,25. Pertinently, the external hip abduction moment is 244 

balanced by the internal hip adductor torque. An increase in the trunk lateral tilt toward the 245 

support-leg side can generate an external load on the knee abduction moment via the reactive 246 

hip adductor torque as a result of the increase in the hip abduction moment41. The peak trunk 247 

lateral tilt angle during the SDVJ task was also significantly larger than that during the SDL 248 

task in the present study, which may have contributed to the increase in the hip abduction 249 

moment. However, a causal relationship among these variables cannot be established based on 250 



 

 
 

the present study. 251 

Although the difference in the peak hip abduction moment during SDVJ and SDL 252 

explained 25% of the variance in the difference in the peak knee abduction moment, the 253 

remaining 75% was not explained. Knee abduction moment is associated with lower gluteus 254 

medius force during landing24. In addition, gluteus medius and minimus and soleus muscle 255 

force can resist the knee abduction moment42. Moreover, large knee abduction moment during 256 

single-leg landing is associated with large adductor longus to gluteus medius activity ratio43. 257 

Muscle force and activity analysis may be required for better prediction, as net moment analysis 258 

does not provide individual muscle force or activity. 259 

To the best of our knowledge, the present study is the first to show larger peak trunk 260 

lateral tilt and rotation angles toward the support-leg side during SDVJ than during SDL. The 261 

increase in the trunk lateral tilt and rotation angle toward the support-leg side may be needed 262 

to position the center of mass closer to the support-leg or to balance the body in preparation for 263 

the subsequent jump at maximum height. On the other hand, trunk lateral tilt and rotation 264 

toward the support-side leg side are reported as signs of weak hip abduction and extension 265 

strength44, and the increase in those motions during SDVJ may be a response to the large 266 

demand on hip abduction muscle strength to prepare for subsequent jumping45. Although a large 267 

trunk lateral tilt and rotation toward the support-leg side are typically associated with a larger 268 

knee abduction moment during landing and side cutting tasks11,19–23, linear relationships 269 

between the difference in the peak knee abduction moment caused by subsequent jumping and 270 

the differences in the trunk lateral tilt and rotation angles were not detected. Trunk lateral tilt 271 

toward the support-leg side is also a biomechanical feature in ACL injury situations determined 272 

by video analysis studies26–29. Single-leg landing tasks with a subsequent jump, such as SDVJ, 273 

are similar to ACL injury situations and can be used to evaluate frontal plane trunk control. On 274 

the other hand, although trunk rotation away from the support-leg side is observed in ACL 275 



 

 
 

injury situations26,28,29, large trunk rotation toward the support-leg side is associated with larger 276 

knee abduction moments19,21. Thus, further research is needed to investigate the relationship 277 

between ACL injury and large trunk rotation toward the support-leg side during single-leg 278 

landing tasks with a subsequent jump. 279 

The present study did not find a difference in the knee abduction angle between the SDVJ 280 

and SDL tasks. This result contradicts prior research, which found that the knee abduction angle 281 

is larger during landing with a subsequent jump than during landing without a subsequent 282 

jump13,14. In this study, the peak knee and hip internal rotation angles and flexion moments 283 

were significantly larger during SDVJ than during SDL. A previous study reported that larger 284 

knee and hip internal rotation angle excursions and smaller knee abduction moment were 285 

associated with smaller peak knee abduction angles 46. In addition, a larger knee flexion moment 286 

is associated with a larger quadriceps force34, and quadriceps contraction could be used to resist 287 

knee valgus moments47. Moreover, the hip flexion moment (internal hip extension moment) is 288 

important for modified landing stiffness and is required for soft-landing strategies that are 289 

associated with a small knee abduction angle48,49. These findings suggest that the increase in 290 

the knee and hip internal rotation angles and flexion moments and in the knee abduction 291 

moment caused by a subsequent jump might be attributed to no change in the knee abduction 292 

angle caused by a subsequent jump. 293 

The present study did not find a difference in the vertical ground reaction force between 294 

the two landing tasks. The peak vertical ground reaction forces were comparable between the 295 

first and second landings during a double-leg drop vertical jump15, in which the mid-flight 296 

maximum height of center of mass was equivalent between the two landings in a previous study. 297 

On the other hand, the peak vertical reaction force during SDVJ was smaller than that during 298 

SDL despite the same landing height between the two landings13. Additionally, the vertical 299 

ground reaction force during the landing phase is not correlated with jumping height in the drop 300 



 

 
 

vertical jump task50. The peak vertical ground reaction force is usually observed within 63.5 301 

ms after initial contact during single-leg landing34 and is not associated with subsequent 302 

jumping after landing. 303 

The present study had some limitations. First, this study included only female 304 

participants. Previous studies have reported sex differences in the effects of subsequent jumps 305 

on knee biomechanics13,14. Therefore, future studies should investigate sex differences in the 306 

effects of subsequent jumps after single-leg landings on knee biomechanics while considering 307 

sample size. Second, only single-leg landings were examined. The kinematic and kinetic factors 308 

associated with an increase in the knee abduction moment caused by subsequent jumps during 309 

single-leg landings may differ from those associated with double-leg landings. Third, this study 310 

included participants of different levels and types of previous sports activities. The level and 311 

type of sports activities may affect biomechanics during landing51,52. Fourth, participants were 312 

asked to keep their hands at ear level during the two landing tasks. Therefore, the effects of the 313 

subsequent jump on the landing biomechanics may be different in actual sports situations. Fifth, 314 

multiple statistical tests were conducted without alpha adjustment in this study. Previous studies 315 

used similar statistical comparisons of lower extremity kinetics and kinematics with a similar 316 

study design53,54. However, we should acknowledge that test repetition increases the probability 317 

of a studywise type I error rate. Finally, causal relationships among the knee, hip and trunk 318 

biomechanics could not be established based on the associations in this study. The effects of 319 

intervention on the knee abduction moment should be investigated based on the findings in the 320 

present study. 321 

The present study showed that a subsequent jump after a single-leg landing led to a 322 

significant increase in the knee abduction moment. Moreover, subsequent jumping after a 323 

single-leg landing significantly increased the trunk lateral tilt and rotation angles toward the 324 

support-leg side and hip abduction moment. The knee abduction moment and trunk lateral tilt 325 



 

 
 

angle toward the support-leg side were predictive factors of ACL injuries8,55. A qualitative 326 

assessment tool of single-leg loading included trunk lateral tilt as one of the checklists56. Thus, 327 

clinicians should use the SDVJ task to evaluate the knee abduction moment, the trunk lateral 328 

tilt and rotation angle. Landing instructions focused on the pelvic and trunk lateral tilt are 329 

effective in reducing the trunk lateral tilt and knee abduction moment during SDVJ11. 330 

Furthermore, the change in the peak hip abduction moment caused by a subsequent jump 331 

predicted the change in the peak knee abduction moment in this study. Therefore, controlling 332 

the hip abduction moment (internal hip adductor torque) may be important for decreasing the 333 

knee abduction moment during single-leg landings followed by a subsequent jump. These 334 

findings suggest that landing tasks with a subsequent jump, such as SDVJ, would be more 335 

advantageous for evaluating the knee abduction moment, trunk lateral tilt and rotation angles 336 

and hip abduction moment than landing tasks without subsequent jumping. 337 

 338 
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Table 1. Comparison of the peak knee and hip joint moments and the peak vertical ground 520 
reaction force between SDVJ and SDL. 521 
  SDVJ SDL p value dz 
Peak moment, Nm·kg–1·m–1        

Hip flexion  2.16 (0.48)  1.91 (0.53) .001 .642 
Hip abduction  0.14 (0.12)  0.09 (0.15) .008 .517 
Hip internal rotationa  0.04 (0.06)  0.05 (0.06) .213 .202 
Knee flexion  2.02 (0.31)  1.81 (0.24) < .001 .819 
Knee abductiona  0.08 (0.10)  0.05 (0.10) .002 .624 
Knee internal rotationa  0.13 (0.08)  0.13 (0.07) .349 .137 

     
Peak vertical ground reaction force, 
N/kg 40.1 (4.7) 40.6 (5.0) .563 .107 

SDVJ: single-leg drop vertical jumping, SDL: single-leg drop landing. 522 
The data are presented as the mean (SD). 523 
Knee and hip moments are calculated as external joint moments. 524 
anon-parametric data. 525 
  526 



 

 
 

Table 2. Comparison of the peak knee, hip and trunk kinematics between SDVJ and SDL. 527 
  SDVJ SDL p value dz 
Peak angle, degree     

Trunk lateral tilt 5.7 (3.2) 4.3 (2.6) < .001 .743 
Trunk rotation 4.9 (3.8) 3.6 (4.3) .031 .413 
Hip flexion 34.5 (6.4) 36.3 (6.3) .053 .369 
Hip adduction 9.4 (4.2) 9.1 (3.6) .596 .098 
Hip internal rotationa 7.4 (5.6) 6.3 (4.7) .027 .460 
Knee flexion 59.2 (6.6) 59.2 (7.1) .940 .014 
Knee abduction 0.3 (4.2) -0.2 (3.2) .143 .275 
Knee internal rotation 7.8 (5.3) 6.8 (5.9) .001 .553 

SDVJ: single-leg drop vertical jumping, SDL: single-leg drop landing. 528 
The data are presented as the mean (SD). 529 
Bold font indicates a significant difference (p < .05). 530 
Positive angles indicated trunk lateral tilt and rotation toward the support-leg side. 531 
anon-parametric data. 532 
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Figure Captions 534 

Figure 1. Landing tasks with and without a subsequent jump. Single-leg drop landing (SDL): 535 

the participants stood on a 30-cm-high box on their dominant leg, then jumped just enough to 536 

clear the box before dropping and landing on their dominant leg and landed on a force plate (a). 537 

Single-leg drop vertical jumping (SDVJ): the participants stood on a 30-cm-high box on their 538 

dominant leg, then jumped just enough to clear the box before dropping and landing on their 539 

dominant leg, landed on a force plate, and executed a maximum single-leg vertical jump 540 

immediately after landing (b). 541 

 542 

Figure 2. Scatter plot of the association of the between-task difference in the peak knee 543 

abduction moment with the between-task difference in the peak hip abduction moment. The 544 

between-task difference was determined by subtracting the SDL value from the SDVJ value. 545 

Knee and hip abduction moments are calculated as external joint moments. 546 






