

HOKKAIDO UNIVERSITY

Title	Negative effects of brown bear digging on soil nitrogen availability and production in larch plantations in northern Japan : Their potential role as an agent of bioturbation
Author(s)	Tomita, Kanji; Hiura, Tsutom
Citation	Pedobiologia, 91-92, 150807 https://doi.org/10.1016/j.pedobi.2022.150807
Issue Date	2022-06
Doc URL	http://hdl.handle.net/2115/89383
Rights	© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	TH -2022-Pedob.pdf

- 1 Title: Negative effects of brown bear digging on soil nitrogen availability and production in the larch
- 2 plantations in northern Japan: their role as an agent of bioturbation
- 3 K. Tomita, and T. Hiura

4 Author names and affiliations

- 5 Kanji Tomita, Graduate School of Environmental Science, Hokkaido University, N10 W5 Sapporo,
- 6 Hokkaido 060-0810, Japan, e-mail: ktomita38@gmail.com
- 7 Tsutom Hiura, Department of Ecosystem Studies, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku,
- 8 Tokyo, 113-8657 Japan, e-mail: hiura@g.ecc.u-tokyo.ac.jp
- 9 Corresponding author, Kanji Tomita (e-mail: <u>ktomita38@gmail.com</u>)

11 Abstract

12	Digging mammals displace a large amount of soil, thereby strongly altering soil ecosystem
13	processes such as nitrogen cycling through bioturbation. Although it is well known that bears
14	displace a large amount of soil by digging for food and denning, there is negligible empirical
15	evidence of the effects on soil properties. In the Shiretoko World Heritage site, we investigated the
16	effects of brown bear digging for cicada nymphs on soil properties, such as soil water content,
17	organic and inorganic nitrogen concentrations, and nitrogen mineralization rate that are important
18	components of soil ecosystem function and are essential for plant growth. We compared the
19	properties of soil recently dug by brown bears with undisturbed soil in larch plantations. We found
20	that brown bear digging decreased soil water content, organic matter, inorganic nitrogen
21	concentration, net mineralization rates. Our results suggest that soil digging by brown bear may
22	reduce plant growth by decreasing soil nutrient availability, thereby diminishing the net primary
23	production of the larch plantation at the study site.

24

25 Keywords: bioturbation, nitrogen mineralization, soil disturbance, Ursus arctos

26 Introduction

27	Soil bioturbation is the process of physical displacement of soil by organisms, such as plants,
28	insects, birds, and mammals (Bétard, 2021; Fleming et al., 2014; Gabet et al., 2003; Maisey et al.,
29	2021). It is an important biotic factor affecting many soil ecosystem functions (Meysman et al.,
30	2006; Platt et al., 2016). Mammals that regularly dig for food and nest building are among the most
31	extensive agents of bioturbation around the world (Coggan et al., 2018; Davidson et al., 2012;
32	Mallen-Cooper et al., 2019; Platt et al., 2016). Mammalian digging for acquiring belowground food
33	resources can directly and indirectly affect soil ecosystem processes through soil turnover and
34	consumption of soil organisms, respectively, which significantly affects soil quality (Barrios-Garcia
35 36	et al. 2014). Digging mammals displace a large amount of soil, thereby strongly altering soil ecosystem processes such as carbon dioxide emission and inorganic nitrogen production through
37	bioturbation (Barrios-Garcia and Ballari, 2012; Mallen-Cooper et al., 2019; Platt et al., 2016; Risch
38	et al., 2010). For instance, digging activity by wild boar (Sus scrofa) disturbed 27-54 % of the forest
39	floor, decreased soil nitrogen availability and increased carbon dioxide emissions in a Switzerland
40	woodland (Risch et al., 2010).

41 Previous studies on the effects of digging by mammals on soil ecosystem processes have mainly
42 focused on small mammals such as social rodents and Australian marsupials (Davidson et al., 2012;

43	Fleming et al., 2014; Mallen-Cooper et al., 2019). Although larger mammals tend to displace a larger
44	volume of soil per one digging pit for food (Haussmann, 2017), there are relatively few studies on
45	the digging impacts of large mammals except for studies that focus on wild boars on soil ecosystem
46	processes (Barrios-Garcia and Ballari, 2012). The brown bear (Ursus arctos) displaces a large
47	amount of soil (Butler, 1992; Haussmann, 2017; Platt et al., 2016) because it forages on a wide
48	variety of belowground resources, such as subterranean animals and plant roots, in large quantities
49	(Butler, 1995; Mattson, 1997; Tardiff and Stanford, 1998; Tomita and Hiura, 2020). However, there
50	is only one study showing the effect of brown bear digging on soil properties (Tardiff and Stanford,
51	1998), and there are no studies from forest ecosystems where brown bears generally dig for food
52	(Munro et al., 2006; Tomita and Hiura, 2020). Tardiff and Stanford (1998) found that brown bear
53	digging for the bulbs of glacier lilies (Erythronium grandiflorum) enhanced seed production by
54	increasing soil inorganic nitrogen production in an alpine meadow of Glacier National Park, USA.
55	The effects of digging on soil properties vary among ecosystem types even within the same species
56	due to the differences in environmental conditions, such as ground solar radiation and vegetation
57	composition (Davies et al., 2019; Yurkewycz et al., 2014). Therefore, testing their digging impacts
58	on soil properties in forests are important for deepening our understandings of their ecological role
59	as agents of bioturbation.

60	In the Shiretoko World Heritage site (hereafter; SWH), Hokkaido, northern Japan, where has one
61	of the highest densities of brown bears in the world (Shimozuru et al., 2020), they have been
62	reported to dig for final instar nymphs of cicadas (Lyristes bihamatus) in the summer since 2000
63	(Fig. 1), suggesting that brown bears have caused novel bioturbation through behavioral changes
64	since 2000 (Tomita and Hiura, 2020). In this area, brown bear digging for cicadas occurred in
65	conifer plantations but not in natural mixed forests (Tomita and Hiura, 2021a). In the larch (Larix
66	kaempferi) plantations, bears dug up almost all the areas, and the area of a dug patch was often more
67	than 100 m ² (Tomita and Hiura, 2020, 2021a). Larch plantations at the study site are expected to
68	facilitate natural forest regeneration because many native saplings occur within the plantation
69	(Suzuki et al., 2021). Accordingly, we evaluated the effects of brown bear digging on the soil
70	properties to develop understanding of the contribution of bears to natural forest regeneration in the
71	larch plantations.
72	A recent meta- analysis study found that vertebrate digging significantly increased soil nitrogen
73	and decreased water run-off (Mallen-Cooper et al., 2019). Tardiff and Stanford (1998) showed a
74	positive effect of brown bear digging on nitrogen production. Hence, we hypothesized that brown
75	bear digging for cicada nymphs would increase soil water content, inorganic nitrogen availability,
76	and nitrogen mineralization rate.

77 Material and methods

78 Study site

79	The present study was conducted in the Horobetsu-Iwaobetsu area (44°09 'N, 145°02 'E;
80	altitude, 120-220 m) located in the western parts of the SWH. The soil type at the study site is low-
81	humic allophanic Andosols (<u>https://soil-inventory.dc.affrc.go.jp/</u>). This area is certified as a
82	UNESCO World Natural Heritage site, as it represents one of the richest northern temperate
83	ecosystems globally. Natural forests are typical conifer-broadleaved mixed forests dominated by
84	Sakhalin firs (Abies sachalinensis) and Mongolian oaks (Quercus crispula) (Tatewaki 1958). Natural
85	forests accounted for 82 $\%$, and plantations accounted for the remaining 18 $\%$ of the total forested
86	area at the study site. Sakhalin spruce (Picea glehnii), Japanese larch, and Sakhalin fir plantations
87	account for 13%, 4%, and 1% of the total forested area, respectively (Tomita and Hiura 2021). Soil
88	sampling was conducted in larch plantations with an understory dominated by pasture grass species
89	such as Chinese silvergrass (Miscanthus sinensis) and sweet vernalgrass (Anthoxanthum odoratum).
90	These grass species were introduced for cattle breeding during the cultivation period from 1930s to
91	1970s. Most larch and fir plantations were established in 1970s, whereas spruce plantations were
92	established in the early 1990s (Shoyama, 2008).

93 Camera traps in larch plantations found that 11 bears (two sub-adults, two solitary female adults,

94	and three females with cub(s)) and 11 bears (one adult male, one sub-adult, two solitary adult
95	females, and three females with cub(s)) dug for cicada nymphs in 2018 and 2019, respectively
96	(Tomita, 2021; Tomita and Hiura, 2020). Two cicada species Lyristes bihamatus and Yezoterpnosia
97	nigricosta, occur at the study site, but bears forage on the final instar nymphs of L. bihamatus
98	(Tomita and Hiura, 2020). The reason behind bears only digging for cicadas within conifer
99	plantations is that the density of <i>L. bihamatus</i> is several times higher in conifer plantations than in
100	natural forests (Tomita and Hiura, 2021a). Based on our field observations, brown bear digging for
101	cicada nymphs does not create pits and mounds, but rather is similar to rooting by wild boars (Fig.
102	1). This is because brown bears mainly consume final-instar cicada nymphs, which stay in surface
103	soil (~ 15 cm depth) (Tomita and Hiura, 2020). Brown bears continued digging for cicada nymphs
104	until early August, when cicada emergence was completed (Tomita, 2021).

105 Soil sampling

In September 2018, we found the highest frequency of brown bear digging for cicada nymphs in larch plantations (Tomita and Hiura, 2021a). Based on this finding, we chose 14 independent larch plantations as soil sampling points in October 2018 (Fig.2) when brown bear digging had ended about two months ago. To maintain independence among the sampling points, each point was spaced at least 100 m apart. At each sampling point, surface soil (0-10 cm) was collected from both dug and

111	adjacent undisturbed soil using a 100-ml soil core sampler. To make up the paired-sample design, we
112	collected undisturbed soil that was completely covered by pasture grass without any presence of
113	overturned soil and apart 1 m from dug areas. To ensure that the undisturbed soil was not dug by
114	brown bears, we also observed the accumulation of larch litter in the undisturbed soil. The dug soil
115	were exposed to bare soil without a litter layer owing to soil disturbance in the sampling year. The
116	collected soil was sieved a 2 mm to remove roots and coarse gravel, and mixed well for
117	homogenization. The soil was kept at 6 °C prior to chemical analysis and laboratory incubation.
118	Evaluation of soil properties

119	Soil moisture was measured by drying the soil at 105 °C for 24 h. For total nitrogen and carbon
120	concentrations, approximately 20 mg of dry soil was analyzed using a CN analyzer (NC- 900;
121	Sumitomo, Osaka, Japan). For inorganic nitrogen availability, 6 g of fresh soil was weighed into
122	plastic bottles and extracted with 27.5 mL 1 M KCl with shaking for 1 h. By using an auto-analyzer
123	(AACS-4, BL-TEC, Inc., Japan), ammonium and nitrate nitrogen was analyzed by indophenol blue
124	absorptiometry and naphthyl ethylenediamine dihydrochloride spectrophotometry, respectively. The
125	total concentration of nitrogen in nitrate and ammonium was regarded as the total nitrogen
126	availability.

127	For net nitrogen mineralization rate, 6 g of fresh soil adjusted to 60 % of water-holding capacity
128	(field capacity) was placed in a 50 mL glass vials and incubated at 25 °C for 30 days. The net
129	mineralization rate was determined from the difference in the total inorganic nitrogen concentration
130	(ammonia + nitrate-nitrogen concentration) before and after incubation. The nitrification rate was
131	determined from the difference in nitrate nitrogen concentration before and after incubation. The
132	units for both rates were converted to 1 kg of dry soil per day. After checking the normal distribution
133	of the data using the Shapiro-Wilk test, we conducted Welch's t-test. The data that did not have a
134	normal distribution and was fitted to a normal distribution by log10-transformation followed by
135	analysis using t-test. All statistical analyses were conducted using R version 3.5.1 (R Core Team,
136	2018).

Results

138	Soil water content, organic nitrogen and carbon contents, carbon nitrogen ratio, ammonium
139	nitrogen concentration, and net mineralization rates in dug soil were significantly lower than those in
140	undisturbed soil ($P < 0.05$, Table S1, Figs. 1a, c, d, f, h, and i). Nitrate nitrogen concentration and,
141	nitrification rate in the dug soil was not significantly lower than that in undisturbed soil (nitrate
142	nitrogen [$P = 0.379$, Fig. 1g], nitrification rate [$P=0.342$, Fig. 1j]. Carbon nitrogen ratio was
143	marginally significantly higher in dug soil than in undisturbed soil (Fig.1e, $P = 0.079$) Bulk density
144	in dug areas was significantly higher than that in undisturbed areas (Fig.1b, $P < 0.01$). Percentage
145	differences in soil properties between dug and undisturbed soil are shown in Table S1.

Discussion

148	Contrary to our hypothesis, brown bear digging negatively affected soil water and nitrogen
149	availability in the larch plantations. To our knowledge, this is the first study showing the effects of
150	digging on soil properties in forest ecosystems, where bear digging normally occurs (Munro et al.
151	2006). Given that soil water and nitrogen availability are positively correlated with net primary
152	production in temperate forests (Pastor et al., 1984; Tateno et al., 2004), brown bear digging may
153	decrease net primary production in the larch plantation of the study site through changes at soil
154	nutrient dynamics.
155	Interestingly, in contrast with our results, Tardiff and Stanford (1998) found that brown bear
156	digging increased soil inorganic nitrogen availability in an alpine meadow. A possible reason for this
157	is the differences in the light environment on the surface ground between meadows and forests. In
158	open habitat with strong ground solar radiation, such as meadows and grasslands, digging by
159	mammals increases soil albedo due to the exposure of the darker mineral soil by the removal of
160	plants and litter, thereby increasing soil temperature (Canals et al., 2003; Yurkewycz et al., 2014).
161	Given that soil temperature positively affects the nitrogen mineralization rate (Guntiñas et al., 2012;
162	Knoepp and Swank, 2002), the positive effect of digging on inorganic nitrogen production in open
163	habitats would be yielded by an increase in soil temperature by digging (Tardiff and Stanford, 1998). 11

164	As digging does not affect soil temperature in forests with weak ground solar radiation (Barrios-
165	Garcia et al., 2014; Risch et al., 2010), the positive effects of digging on soil inorganic nitrogen
166	would be subtle in forests. Rather, soil mixing by digging is one of the possible mechanisms for the
167	reduction in organic nitrogen content and thereby inorganic nitrogen concentration (Kurek et al.,
168	2014; Wirthner et al., 2012), because it is usually the highest in the surface organic layer (Persson
169	and Wirén, 1995). This is supported by the result that the net mineralization rate of the dug soil was
170	lower than that of the undisturbed soil, even under the same water and temperature conditions (Fig.
171	3i). Brown bear digging would also negatively affect inorganic nitrogen production through
172	reduction in soil water contents (Fig. 3a). These implies that brown bear digging for cicadas might
173	negatively affect soil inorganic nitrogen by not only altering the soil water availability as well as the
174	mixture of organic and mineral soil.
175	Digging can increase inorganic nitrogen availability through the removal of plant root (Canals et
176	al., 2003). However, our results did not support this mechanism, even though the dug soil was
177	removed understory cover by brown bear digging. This suggests that the negative effect of soil
178	mixing obscures the positive effect of root removal. Note that this difference may be due to
179	methodological differences between this study and that of Tardiff and Stanford (1998), who
180	evaluated the net mineralization rate by field nitrogen incubation using resin bags. Although bears 12

181	could enhance soil nitrogen availability by depositing dung and urine when digging for cicada
182	nymphs (Tardiff and Stanford, 1998), our results suggest that their excrement seems to have a weak
183	effect on soil nitrogen, or that the negative effect of digging exceeded its effects.
184	While digging by pocket gophers (Thomomys bottae) can accelerate the soil nitrification rate
185	through promoting soil aeration during the gopher activity season (Canals et al., 2003), our results
186	showed that nitrification rate of the dug soil did not significantly differ from that of undisturbed soil.
187	The positive effect of digging on nitrate nitrogen through soil aeration may be weak because our soil
188	sampling was conducted in October, approximately 2 months after the bear diggings occurred, by
189	which time the soil is likely to have been redistributed (e.g., by rainfall) among the pores created by
190	the initial digging event. The reduction in soil water content through digging may be caused by litter
191	removal because the litter layer can prevent water evaporation from the surface soil (Sayer, 2006).
192	Their digging may also decrease soil water content by exposing the soil to the air, thereby facilitating
193	the direct evaporation of soil water (Bueno et al., 2013). The consumption of cicada nymphs may be
194	a possible mechanism for the negative effects of brown bear digging on soil water and nitrogen,
195	given that the nymphs can release a large amount of water and nitrogen from tree roots into the soil
196	through xylem feeding activity (Hunter, 2016).

197	Although the ecosystem roles of brown bears are well known (García-Rodríguez et al., 2021;
198	Helfield and Naiman, 2006), little attention has been paid to their ecosystem role as digging
199	mammals (Tardiff and Stanford, 1998). Deepening the understanding of the ecological roles of
200	wildlife is important for justifying conservation and management policy making (Somaweera et al.,
201	2020). We hope that this study provides ecological insights for their conservation and management
202	by evaluating the role of bears as agents of bioturbation in a landscape composed of natural forests
203	and plantations. However, we should carefully consider whether our finding are applicable to other
204	ecosystem types, because the direction and magnitude of digging impacts vary with local and
205	regional environmental conditions, even in the same species (Yurkewycz et al., 2014).
206	Our previous study suggested that brown bears have caused novel bioturbation since 2000 when
207	they started digging for cicada nymphs (Tomita and Hiura, 2020). This study speculated an
208	ecological consequence of this emerging behavior, in which their digging negatively affected soil
209	water and nitrogen availability in larch plantations. Given that brown bear digging for cicada
210	nymphs occurred extensively in the larch plantations (Tomita and Hiura, 2021b, 2021a), their
211	digging may have strongly affected tree growth and regeneration in the plantations. Since xylem
212	feeding by cicada nymphs can negatively affect tree growth occasionally (Karban, 1980), there may
213	be both negative and positive effects on brown bear digging for cicadas via soil disturbance and 14

214 trophic cascade by reducing cicada density, respectively. This hypothesis is worth testing in the 215 future study for examining ecological consequences when simultaneously occurring trophic and non-216 trophic effects of apex predators. 217 A recent study showed that many native tree saplings established in larch plantations at the study 218 site, and thus proposed their potential role on the establishment of naturally regenerating forests 219 (Suzuki et al., 2021). Brown bears may hinder natural forest regeneration in larch plantations by 220 overturning seedlings and limiting water and nitrogen uptake by these saplings. Additionally, brown 221 bears may also affect forest regeneration in plantations in other ways we did not address in this 222 study. For example, bears may disperse seeds of wild cherry, which is an important summer food for 223 bears (Koike et al., 2008), into the plantation if they deposit scats containing the seeds while digging 224 for cicada nymphs. Further investigation of their roles on tree growth and establishment through 225 limiting soil nutrient availability and cicada density is required to develop the understanding of their 226 contribution to natural forest regeneration in the plantations.

227 Acknowledgements

228 We thank members of Shiretoko Nature Foundation for providing information on the study site

and Drs. K. Makoto and S. Niwa for advising measurements of soil properties. We also thank three

anonymous reviewers for their very helpful comments on the manuscript.

References 231

246

232	Barrios-Garcia, M.N., Ballari, S.A., 2012. Impact of wild boar (Sus scrofa) in its introduced and
233	native range: a review. Biol Invasions 14, 2283–2300. https://doi.org/10.1007/s10530-012-
234	0229-6
235	Barrios-Garcia, M.N., Classen, A.T., Simberloff, D., 2014. Disparate responses of above- and
236	belowground properties to soil disturbance by an invasive mammal. Ecosphere 5, art44.
237	https://doi.org/10.1890/ES13-00290.1
238	Bétard, F., 2021. Insects as zoogeomorphic agents: an extended review. Earth Surf Process
239	Landf 46, 89–109. https://doi.org/10.1002/esp.4944
240	Bueno, C.G., Azorín, J., Gómez-García, D., Alados, C.L., Badía, D., 2013. Occurrence and
241	intensity of wild boar disturbances, effects on the physical and chemical soil properties of
242	alpine grasslands. Plant Soil 373, 243–256. https://doi.org/10.1007/s11104-013-1784-z
243	Butler, D.R., 1995. Zoogeomorphology: Animals as Geomorphic Agents. Cambridge University
244	Press.
245	Butler, D.R., 1992. The grizzly bear as an erosional agent in mountainous terrain. Zeitschrift für
246	Geomorphologie 36, 179–189.

247	Canals, R.M., Herman, D.J., Firestone, M.K., 2003. How Disturbance by Fossorial Mammals
248	Alters N Cycling in a California Annual Grassland. Ecology 84, 875–881.
249	https://doi.org/10.1890/0012-9658(2003)084[0875:HDBFMA]2.0.CO;2
250	Coggan, N.V., Hayward, M.W., Gibb, H., 2018. A global database and "state of the field"
251	review of research into ecosystem engineering by land animals. J Anim Ecol 87, 974–994.
252	https://doi.org/10.1111/1365-2656.12819
253	Davidson, A.D., Detling, J.K., Brown, J.H., 2012. Ecological roles and conservation challenges
254	of social, burrowing, herbivorous mammals in the world's grasslands. Front Ecol Environ
255	10, 477–486. https://doi.org/10.1890/110054
256	Davies, G.T.O., Kirkpatrick, J.B., Cameron, E.Z., Carver, S., Johnson, C.N., 2019. Ecosystem
257	engineering by digging mammals: effects on soil fertility and condition in Tasmanian
258	temperate woodland. R Soc Open Sci 6, 180621. https://doi.org/10.1098/rsos.180621
259	Fleming, P.A., Anderson, H., Prendergast, A.S., Bretz, M.R., Valentine, L.E., Hardy, G.E.StJ.,
260	2014. Is the loss of Australian digging mammals contributing to a deterioration in
261	ecosystem function? Mamm Rev 44, 94-108. https://doi.org/10.1111/mam.12014
262	Gabet, E.J., Reichman, O.J., Seabloom, E.W., 2003. The Effects of Bioturbation on Soil
263	Processes and Sediment Transport. Annu Rev Earth Planet Sci 31, 249–273.
264	https://doi.org/10.1146/annurev.earth.31.100901.141314

265	García-Rodríguez, A., Albrecht, J., Szczutkowska, S., Valido, A., Farwig, N., Selva, N., 2021.
266	The role of the brown bear Ursus arctos as a legitimate megafaunal seed disperser. Sci Rep
267	11, 1282. https://doi.org/10.1038/s41598-020-80440-9
268	Guntiñas, M.E., Leirós, M.C., Trasar-Cepeda, C., Gil-Sotres, F., 2012. Effects of moisture and
269	temperature on net soil nitrogen mineralization: A laboratory study. Eur J Soil Biol 48, 73-
270	80. https://doi.org/10.1016/j.ejsobi.2011.07.015
271	Haussmann, N.S., 2017. Soil movement by burrowing mammals: A review comparing
272	excavation size and rate to body mass of excavators. Prog Phys Geogr 41, 29–45.
273	https://doi.org/10.1177/0309133316662569
274	Helfield, J.M., Naiman, R.J., 2006. Keystone Interactions: Salmon and Bear in Riparian Forests
275	of Alaska. Ecosystems 9, 167–180. https://doi.org/10.1007/s10021-004-0063-5
276	Hunter, M.D., 2016. The Phytochemical Landscape: Linking Trophic Interactions and Nutrient
277	Dynamics, The Phytochemical Landscape. Princeton University Press.
278	https://doi.org/10.1515/9781400881208
279	Karban, R., 1980. Periodical cicada nymphs impose periodical oak tree wood accumulation.
280	Nature 287, 326–327. https://doi.org/10.1038/287326a0
281	Knoepp, J.D., Swank, W.T., 2002. Using soil temperature and moisture to predict forest soil
282	nitrogen mineralization. Biol Fertil Soils 36, 177–182. https://doi.org/10.1007/s00374-002-
283	0536-7

284	Koike, S., Kasai, S., Yamazaki, K., Furubayashi, K., 2008. Fruit phenology of Prunus						
285	jamasakura and the feeding habit of the Asiatic black bear as a seed disperser. Ecol Res 23,						
286	385–392. https://doi.org/10.1007/s11284-007-0399-3						
287	Kurek, P., Kapusta, P., Holeksa, J., 2014. Burrowing by badgers (Meles meles) and foxes						
288	(Vulpes vulpes) changes soil conditions and vegetation in a European temperate forest.						
289	Ecol Res 29, 1–11. https://doi.org/10.1007/s11284-013-1094-1						
290	Maisey, A.C., Haslem, A., Leonard, S.W.J., Bennett, A.F., 2021. Foraging by an avian						
291	ecosystem engineer extensively modifies the litter and soil layer in forest ecosystems. Ecol						
292	Appl 31, e02219. https://doi.org/10.1002/eap.2219						
293	Mallen-Cooper, M., Nakagawa, S., Eldridge, D.J., 2019. Global meta-analysis of soil-disturbing						
294	vertebrates reveals strong effects on ecosystem patterns and processes. Glob Ecol						
295	Biogeogr 28, 661–679. https://doi.org/10.1111/geb.12877						
296	Mattson, D.J., 1997. Selection of Microsites by Grizzly Bears to Excavate Biscuitroots. J						
297	Mamm 78, 228–238. https://doi.org/10.2307/1382656						
298	Meysman, F.J.R., Middelburg, J.J., Heip, C.H.R., 2006. Bioturbation: a fresh look at Darwin's						
299	last idea. Trends Ecol Evol 21, 688–695. https://doi.org/10.1016/j.tree.2006.08.002						
300	Munro, R.H.M., Nielsen, S.E., Price, M.H., Stenhouse, G.B., Boyce, M.S., 2006. Seasonal and						
301	diel patterns of grizzly bear diet and activity in west-central Alberta. J Mamm 87, 1112-						
302	1121. https://doi.org/10.1644/05-MAMM-A-410R3.1						

303	Pastor, J., Aber, J.D., McClaugherty, C.A., Melillo, J.M., 1984. Aboveground Production and N
304	and P Cycling Along a Nitrogen Mineralization Gradient on Blackhawk Island, Wisconsin.
305	Ecology 65, 256–268. https://doi.org/10.2307/1939478
306	Persson, T., Wirén, A., 1995. Nitrogen mineralization and potential nitrification at different
307	depths in acid forest soils. Plant Soil 168/169, 55-65.
308	Platt, B.F., Kolb, D.J., Kunhardt, C.G., Milo, S.P., New, L.G., 2016. Burrowing Through the
309	Literature: The Impact of Soil-Disturbing Vertebrates on Physical and Chemical Properties
310	of Soil. Soil Sci 181, 175–191. https://doi.org/10.1097/SS.000000000000150
311	R Core Team, 2018. R: A language and environment for statistical computing.
312	Risch, A.C., Wirthner, S., Busse, M.D., Page-Dumroese, D.S., Schütz, M., 2010. Grubbing by
313	wild boars (Sus scrofa L.) and its impact on hardwood forest soil carbon dioxide emissions
314	in Switzerland. Oecologia 164, 773–784. https://doi.org/10.1007/s00442-010-1665-6
315	Sayer, E.J., 2006. Using experimental manipulation to assess the roles of leaf litter in the
316	functioning of forest ecosystems. Biol Rev 81, 1-31.
317	https://doi.org/10.1017/S1464793105006846
318	Shimozuru, M., Shirane, Y., Jimbo, M., Yamanaka, M., Nakanishi, M., Ishinazaka, T., Kasai, S.,
319	Nose, T., Fujimoto, Y., Tsuruga, H., Mano, T., Tsubota, T., 2020. Male reproductive input,

320 breeding tenure, and turnover in high-density brown bear (Ursus arctos yesoensis)

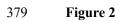
populations on the Shiretoko Peninsula, Hokkaido, Japan. Can. J. Zool. 98, 175–185.

- 322 https://doi.org/10.1139/cjz-2019-0061
- Shoyama, K., 2008. Reforestation of abandoned pasture on Hokkaido, northern Japan: effect of
 plantations on the recovery of conifer-broadleaved mixed forest. Landscape Ecol Eng 4,
 11–23. https://doi.org/10.1007/s11355-008-0034-7
- 1 6
- 326 Somaweera, R., Nifong, J., Rosenblatt, A., Brien, M.L., Combrink, X., Elsey, R.M., Grigg, G.,
- 327 Magnusson, W.E., Mazzotti, F.J., Pearcy, A., Platt, S.G., Shirley, M.H., Tellez, M., van der
- 328 Ploeg, J., Webb, G., Whitaker, R., Webber, B.L., 2020. The ecological importance of
- 329 crocodylians: towards evidence-based justification for their conservation. Biol Rev 95,
- 330 936–959. https://doi.org/10.1111/brv.12594
- 331 Suzuki, K.F., Kobayashi, Y., Seidl, R., Senf, C., Tatsumi, S., Koide, D., Azuma, W.A., Higa, M.,
- 332 Koyanagi, T.F., Qian, S., Kusano, Y., Matsubayashi, R., Mori, A.S., 2021. The potential
- role of an alien tree species in supporting forest restoration: Lessons from Shiretoko
- 334 National Park, Japan. For Ecol Manag 493, 119253.
- 335 https://doi.org/10.1016/j.foreco.2021.119253
- 336 Tardiff, S.E., Stanford, J.A., 1998. Grizzly Bear Digging: Effects on Subalpine Meadow Plants
- in Relation to Mineral Nitrogen Availability. Ecology 79, 2219–2228.
- 338 https://doi.org/10.1890/0012-9658(1998)079[2219:GBDEOS]2.0.CO;2

339	Tateno, R., Hishi, T., Takeda, H., 2004. Above- and belowground biomass and net primary
340	production in a cool-temperate deciduous forest in relation to topographical changes in soil
341	nitrogen. For Ecol Manag 193, 297–306. https://doi.org/10.1016/j.foreco.2003.11.011
342	Tomita, K., 2021. Camera traps reveal interspecific differences in the diel and seasonal
343	patterns of cicada nymph predation. Sci Nat 108, 52. https://doi.org/10.1007/s00114-021-
344	01762-w
345	Tomita, K., Hiura, T., 2021a. Reforestation provides a foraging habitat for brown bears (Ursus
346	arctos) by increasing cicada Lyristes bihamatus density in the Shiretoko World Heritage
347	site. Can J Zool 99, 205–212. https://doi.org/10.1139/cjz-2020-0222
348	Tomita, K., Hiura, T., 2021b. Disentangling the direct and indirect effects of canopy and
349	understory vegetation on the foraging habitat selection of the brown bear Ursus arctos.
350	Wildl Biol 2021, wlb.00886. https://doi.org/10.2981/wlb.00886
351	Tomita, K., Hiura, T., 2020. Brown bear digging for cicada nymphs: a novel interaction in a
352	forest ecosystem. Ecology 101, e02899. https://doi.org/10.1002/ecy.2899
353	Wirthner, S., Schütz, M., Page-Dumroese, D.S., Busse, M.D., Kirchner, J.W., Risch, A.C., 2012.
354	Do changes in soil properties after rooting by wild boars (Sus scrofa) affect understory
355	vegetation in Swiss hardwood forests? Can J For Res 42, 585–592.
356	https://doi.org/10.1139/x2012-013

357	Yurkewycz, R.P., Bishop, J.G., Crisafulli, C.M., Harrison, J.A., Gill, R.A., 2014. Gopher
358	mounds decrease nutrient cycling rates and increase adjacent vegetation in volcanic
359	primary succession. Oecologia 176, 1135–1150. https://doi.org/10.1007/s00442-014-3075-
360	7

362 Figure legend


363	Figure 1 (a	a) Trace of brown	bear digging fo	or cicada nvm	ohs within a larch	plantation. This	picture

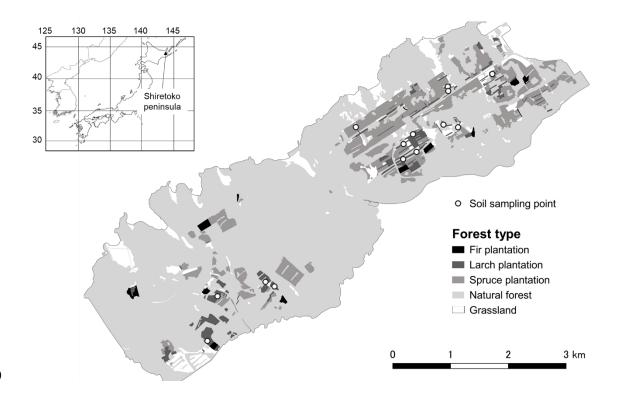

- 364 shows the representative soil sampling point. We collected the disturbed and undisturbed soil
- 365 samples within and without the dug area, respectively. (b) A bear scat containing the fragments of
- 366 cicada nymphs (c) A female brown bear with two cubs dig for cicada nymphs in a larch plantation.
- 367 Photo credit: (a) and (c) Shiretoko Nature Foundation, (b) Kanji Tomita
- 368 Figure 2 Location of the soil sampling points superimposed on a vegetation map of the study site.
- 369 This vegetation map is reprinted from Tomita and Hiura (2021a) and created by Shiretoko Nature
- Foundation (unpublished information). This figure was created using QGIS 3.14.0.
- 371 Figure 3 Comparisons of soil water content (a), bulk density (b), total carbon (c), total nitrogen (d),
- 372 C:N ratio (e), ammonium nitrogen (f), nitrate nitrogen (g), total inorganic nitrogen (h), net
- 373 mineralization rate (i), and nitrification rate (j) between dug (Grey color) and undisturbed (Black
- 374 color) soil. *P*-values in each boxplot were the results of analysis of variance.

Figure 1

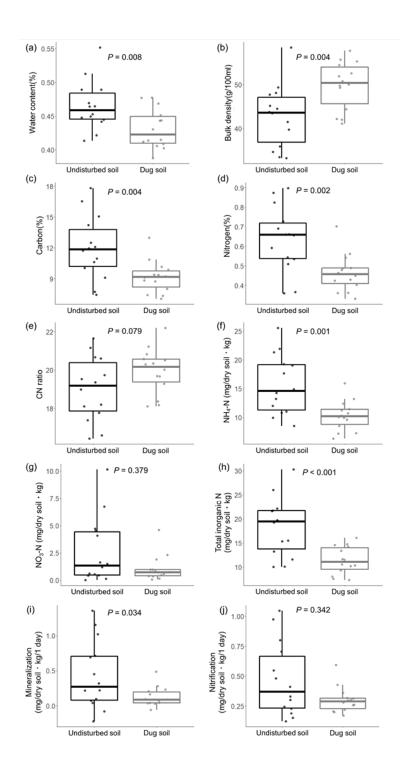


Figure 3

