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1 Introduction of this Thesis

This thesis deals with reaction-diffusion systems on one-dimensional domains under

Neumann, and periodic boundary conditions. Moreover, This thesis deals with reaction-

diffusion systems on metric graphs composed of multiple half-lines (0,∞) joined at the

origin under Kirchhoff’s boundary conditions, especially H-shaped metric graphs and

metric graphs with circles. I describe constructing a new theory using the pulse interaction

theory([8], [9], [10]) for the above reaction-diffusion systems on one-dimensional domains

with various boundary conditions.

Reaction-diffusion systems have been widely used to study problems related to spa-

tiotemporal pattern formations in biological and chemical phenomena. There have been

many studies of these problems in one-dimensional space, and various solutions have been

clarified. Among them, the pulse or front-type solutions, which are localized in pulse or

front shapes, are typical in reaction-diffusion systems. Their analysis is also essential in

natural phenomena. For example, many researcher(e.g. [3], [7], [17], [22], [39]) conducted

research to a traveling pulse solution for the FitzHugh-Nagumo equation([15], [29]). As

a result, we could see how electrical signals propagate along the axon of a nerve from

the viewpoint of pulse dynamics. Another example is the Fisher-KPP equation, which

describes the density distribution of biological species([26], [33]).The Fisher-KPP equa-

tion was also studied by many researchers(e.g. [26], [33]). As a result, it is now possible

to treat the increase or decrease in the density distribution of species from the viewpoint

of front dynamics. Against this background, studies on pulse/front dynamics have been

intensively conducted, and these have been rigorously studied and rapidly developed. In

particular, the following Allen-Cahn

∂tu = ϵ2∂xxu+
1

2
u(1− u2), t > 0, x ∈ R, (1.0.1)

where 0 < ϵ≪ 1 has been studied intensively, and pioneering results on the front dynamics

of the Allen-Cahn equation have been derived ([2], [11], [14], [27]). From this result, it is

shown that if u(0, x) is close enough to tanh
(

x−l1(0)
2ϵ

)
+tanh

(
−x+l2(0)

2ϵ

)
with l1(0) ≪ l2(0),

then u(t, x) will stay near tanh
(

x−l1(t)
2ϵ

)
+tanh

(
−x+l2(t)

2ϵ

)
as long as l1(t) ≪ l2(t), and the
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motion is essentially governed by {
l̇1 = 12ϵe−

1
ϵ
h,

l̇2 = −12ϵe−
1
ϵ
h,

(1.0.2)

where h := l2(t)− l1(t). Here tanh
(
x−l1
2ϵ

)
and tanh

(−x+l1
2ϵ

)
are translation and reflection

of the stable stationary solution tanh
(

x
2ϵ

)
of (1.0.1). Thus, we see tanh

(
x−l1(t)

2ϵ

)
and

tanh
(

−x+l2(t)
2ϵ

)
are attracted to each other in time from (1.0.2). Subsequently, methods

for the analysis of the dynamics using equations of motion such as (1.0.2) were extended

to a reaction-diffusion system on R:

∂tU = D∂xxU + F (U), t > 0, x ∈ R, (1.0.3)

where U ∈ RN ,D := diag{d1, . . . , dN} and F : RN → RN is a sufficiently smooth

function. [8] has allowed us to analyze the dynamics with equations of motion for start-

ing from solution S∗(x) of (1.0.3). Here we fix r ∈ N and S∗(x) is sufficiently close to∑r
j=1 S(x− l̄j) with l̄j ≫ 1 (j = 1, . . . , r) satisfying min{l̄2− l̄1, . . . , l̄r− l̄r−1} ≫ 1, and has

r peaks (in the front case, r transition layers), where S(x) is a stable pulse (front)-type

stationary solution of (1.0.3)(we call S∗(x) in this paper r-layered pulse/front-type sta-

tionary solution). Later on, [9] extended the analysis to the pulse/front dynamics for the

reaction-diffusion systems on (0,∞) with boundary conditions, including the Neumann

and Dirichlet boundary condition. As a result, [8] and [9] have become powerful methods

for investigating pulse/front dynamics for reaction-diffusion systems.

At the same time, [8] has made pioneering works on the stability analysis to S∗(x) of

(1.0.3). Moreover, ([9]) has made pioneering works on the stability analysis to pulse/front-

type stationary solutions for reaction-diffusion systems on (0,∞) with boundary condi-

tions including the Neumann and Dirichlet boundary conditions. They have influenced

later studies on linearized eigenvalue problems and stability analysis for reaction-diffusion

systems.

In fact, by applying the results of [8] and [9], Ei-Shimatani-Wakasa([12]) have studied

the existence of S∗(x) for reaction-diffusion systems on (0, K) with the Neumann bound-

ary condition or the periodic boundary condition for K ≫ 1. Moreover, they obtained

some results for the linearized eigenvalue problems associated with the above S∗(x). As a

result, though it has been possible to obtain concrete expressions for eigenvalues and eigen-

functions for linearized eigenvalue problems associated with r-layered front-stationary

solutions only for one-dimensional scalar reaction-diffusion equations([35]-[38]), [12] has

been extended to linearized eigenvalue problems for general type of reaction-diffusion

systems. From this result, it is now possible to obtain eigenvalues that determine the
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stability for r-layered pulse/front-type stationary solutions satisfying the Neumann or pe-

riodic boundary conditions, and eigenfunctions associated with those eigenvalues can be

obtained concretely for pulse solutions such that an nerve impulse of Fitz-Hugh Nagume

system. Thus, a new theory has recently been established to investigate linearized eigen-

value problems, especially in pulse-type stationary solutions for reaction-diffusion systems.

On the other hand, many researchers have attracted much attention to the following

reaction-diffusion systems on Ω :=
⋃R

j=1Ωj in recent years, where Ωj := {xej ∈ R2 |x > 0}
(j = 1, . . . , R) for R ∈ N with R ≥ 3, and ej (j = 1, . . . , R) denote the unit directional

vectors of Ωj satisfying ei ̸= ±ej(i ≠ j). We denote the restriction of u to Ωj as

uj(x) := u(xej) for a function u on Ω. Then we consider
∂tUj = D∂xxUj + F (Uj), t > 0, x > 0 (j = 1, . . . , R),
R∑

j=1

∂xUj(t,+0) = 0,U1(t,+0) = · · · = UR(t,+0), t > 0,
(1.0.4)

where Uj(t, x) := U(t, xej) and Uj ∈ RN . Here the boundary condition of (1.0.4) at the

junction point O := (0, 0) ∈ R2 is called the Kirchhoff boundary condition.

The dynamics and stability analysis for (1.0.4) are currently being actively studied.

The problem for reaction-diffusion equations on various metric graphs including Ω has

been studied intensively in recent years because those problems have proved to be signif-

icant from the viewpoint of applications. For example, [6] considered metric graphs as a

branching channel geometry and mathematically analyzed the density of species in terms

of front dynamics for the Fisher-KPP type equations. Moreover, The results are consis-

tent with the transition of biological density in rivers, suggesting that metric graphs has

an essential role in applied mathematics. Another result, many other results on frontal

dynamics have been reported in recent years, such as frontal traveling wave solutions,

stationary solutions, and stability analysis(see e.g. [23],[24],[25]). In addition, some re-

sults have been reported recently on pulse-type stationary solutions for reaction-diffusion

systems on metric graphs(see e.g. [18], [19]). However, there are still many theoretical is-

sues to be solved for pulse dynamics, such as how pulse traveling wave solutions for neural

equations on a metric graph. Based on this situation, we have also studied pulse dynamics

for reaction-diffusion systems on Ω based on [8] and [9]. As a result, we analyzed the pulse

dynamics for the reaction-diffusion systems on Ω under some assumptions([10]). Later,

By [10], I obtain some results that the pulse/front dynamics for reaction-diffusion systems

on an H-shaped metric graph (Chapter 5) and the front dynamics for reaction-diffusion

equations on metric graphs with a circle (Chapter 6).

In this thesis, I describe pulse/front dynamics and linearized eigenvalue problems of

systems associated with reaction-diffusion systems on domains with several boundary

5



conditions by extending [8] and [9].

This doctoral dissertation consists of six chapters, excluding the acknowledgments and

references. Chapter 1 is an introduction to this doctoral thesis. Chapter 2 is the assump-

tions and Preliminaries used in all latter chapters. Chapter 3 is illustrated in linearized

eigenvalue problems for reaction-diffusion systems under the Neumann or the periodic

boundary conditions. Chapter 4 introduces the results of [10] in preparation for Chap-

ters 5 and 6. Chapter 5 is illustrated in the author’s results on the pulse dynamics for

a reaction-diffusion system on an H-shaped metric graph consisting of two connected

star-shaped regions. Chapter 6 is shown the author’s results on the front dynamics for

reaction-diffusion systems on a loop-edge-metric graph connected by a half-line and a

circle.
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2 Preliminaries

Throughout this thesis, we assume the following.

2.1 A pulse-type stationary solution

we consider one-dimensional reaction-diffusion systems:

∂tU = D∂xxU + F (U), t > 0, x ∈ R, (2.1.1)

where U ∈ RN ,D := diag{d1, . . . , dN} and F : RN → RN is a sufficiently smooth

function. As in [10], we define the right hand side of (2.1.1) by F(U ) := D∂xxU +F (U ).

Then we make the exactly the same following assumptions as in (H1)-(H3) of [10] for

(2.1.1)((7) in [10]).

(H1) 0 := t(0, . . . , 0) ∈ RN is a linearly stable equilibrium of (2.1.1)((7) in [10]). That

is, the spectrum Σ(L0) of L0 satisfies Σ(L0) ⊂ {z ∈ C ; Re(z) < −ρ0} for ρ0 > 0, where

L0 := D∂xx + F
′(0).

(H2) (2.1.1)((7) in [10]) has a linearly stable stationary pulse solution, say S(x), that

is, there exists S(x) satisfying F(S(x)) = 0,S(x) → 0 as |x| → ∞ and Σ(L) = Σ1 ∪ {0}
with a simple eigenvalue 0, where L := D∂xx + F

′(S(x)), Σ(L) is the spectrum of L and

Σ1 is a set satisfying Σ1 ⊂ {z ∈ C ; Re(z) < −ρ0}.

Remark 2.1 In this thesis, we call S(x) satisfying (H2) as a pulse-type stationary

solution.

(H3) S(x) is an even function and there exist a positive constant γ > α and a non-zero

vector a ∈ RN such that

S(x) = e−α|x|a+O(e−γ|x|) (|x| → ∞).

By (H2), (H3), we note there exists an eigenfunction Φ∗ of the adjoint operator L∗ of

L satisfying L∗Φ∗ = 0, Φ∗(x) as an odd function and Φ∗(x) is uniquely determined by the
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normalization ⟨Ux,Φ
∗⟩L2 = 1. Then we assume the next condition for Φ∗ as follows:

(A1) There exists non-zero vector a∗ ∈ RN such that Φ∗(x) → ±e−α|x|a∗ as x→ ±∞.

2.2 A front-type stationary solution

We make exactly the same following assumptions as in (H1)’-(H3)’ of [10] for (2.1.1)((7)

in [10]).

(H1)’ S± ∈ RN is a linearly stable equilibria of (2.1.1)((7) in [10]).That is, the spectrum

Σ(L±) of L± satisfy Σ(L±) ⊂ {z ∈ C ; Re(z) < −ρ0} for ρ0 > 0, where L± := D∂xx +

F ′(S±).

Remark 2.2. S± for (H1)’ satisfy S− ̸= S+.

(H2)’ (2.1.1)((7) in [10]) has a linearly stable stationary front solution, say S(x), that

is, there exists S(x) satisfying F(S(x)) = 0,S(x) → S± as x→ ±∞ and Σ(L) = Σ1∪{0}
with simple eigenvalue 0, where L := D∂xx + F

′(S(x)), Σ(L) is the spectrum of L and

Σ1 is a set satisfying Σ1 ⊂ {z ∈ C ; Re(z) < −ρ0}.

Remark 2.3. In this thesis, we call S(x) satisfying (H2)’ as a front-type stationary

solution. If S+ = S− holds, S(x) is a pulse-type stationary solution.

(H3)’ There exist positive constants γ± > α± and non-zero vectors a± ∈ RN such

that

S(x) = S± + e−α±|x|a± +O(e−γ±|x|) (x→ ±∞).

By (H2)’ and (H3)’, there exists an eigenfunction Φ∗ of the adjoint operator L∗ of L

satisfying L∗Φ∗ = 0 and Φ∗(x) is uniquely determined by the normalization ⟨Sx,Φ
∗⟩L2 =

1. Then we assume the next condition for Φ∗ as follows:

(A2) There exist non-zero vectors a∗
± ∈ RN such that Φ∗

±(x) → e−α±|x|a∗
± as x→ ±∞.
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3 Linearized eigenvalues problems

3.1 Introduction

Linearized eigenvalue problems are problems to investigate the stability of stationary

solutions for reaction-diffusion systems. Analytical methods for eigenvalues and eigenfunc-

tions have been studied intensively for a long time. Sturm-Liouville theory and the SLEP

method ([31], [32]), which were developed in the course of these studies, are still powerful

tools for linearized eigenvalue problems. However, there are still few general methods to

analyze linearized eigenvalue problems. Against this background, many researchers have

studied this problem. In the process, studies of the one-dimensional Allen-Cahn equation

with the Neumann boundary condition have been developed.{
∂tu = ϵ2∂xxu+ u(1− u2), t > 0, x ∈ (0, 1),

∂xu(t, 0) = ∂xu(t, 1) = 0,
(3.1.1)

where 0 < ϵ ≪ 1. (3.1.1) was rigorously studied by [4]. Fix r ∈ N. By many studies, we

see that there exists a stationary solution u(x; ϵ) of (3.1.1) satisfying being sufficiently

close to
∑r

j=1(−1)jtanh
(

x−zj√
2ϵ

)
(j = 1, . . . , r), where zj =

2j−1
2r

. Here r ∈ N denote the

number of a stable front-type stationary solution S(x) of (3.1.1) and u(x; ϵ) is a function of

x with a parameter ϵ. Furthermore, starting from (3.1.1), various researches for 3.1.1 was

performed(e.g. [1], [2], [14]). Thereafter, Wakasa-Yotsutani([35], [36], [37], [38]) analyzed

next linearized eigenvalue problem for u(x; ϵ):{
ϵ2∂xxφ(x) + F ′(u(x; ϵ))φ(x) + λϕ(x) = 0, x ∈ (0, 1),

∂xφ(0) = ∂xφ(1) = 0,
(3.1.2)

where 0 < ϵ ≪ 1 and F (u) = u(1 − u2) or F (u) = sinu. [35], [36], [37], [38] reported

that all eigenvalues λn (n = 0, 1, 2, 3, . . .) of (3.1.2) and eigenfunctions φn(x) associated

with λn hold the following. In 3.1, ∼ means asymptotic equivalence, and we denote

λn = λr,ϵn , φn = φr,ϵ
n in the following (1) and (2). In addtion, The following results (1) and

(2) are rigorously proved in [35], [36], [37], [38].
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(1) When f(u) = u(1− u2)

We consider u(x; ϵ) ∼
∑r

j=1(−1)ltanh
(

x−zj√
2ϵ

)
.The following(I)-(III) hold up([37], [38]).

(I) For 0 ≤ n < r, 
λr,ϵn ∼ −96 cos2

nπ

2r
exp

(
−
√
2

rϵ

)
,

φr,ϵ
n (x) ∼ sech2

(
x− zj√

2ϵ

)
cosnπzj

in a neighborhood of zj (j = 1, . . . , r) as ϵ→ 0.

(II) For r ≤ n < 2r,
λr,ϵn ∼ 3

2
− 12 cos

(n− r)π

r
exp

(
− 1√

2rϵ

)
,

φr,ϵ
n (x) ∼ 2(−1)j tanh

(
x− zj√

2ϵ

)
sech

(
x− zj√

2ϵ

)
cos(n− r)πzj

in a neighborhood of zj (j = 1, . . . , r) as ϵ→ 0.

(III) For n ≥ 2r,
λr,ϵn ∼ 2 + (n− 2r)2π2ϵ2,

φr,ϵ
n (x) ∼

(
3

2
tanh2

(
x− zj√

2ϵ

)
− 1

2

)
cos(n− 2r)πx

in a neighborhood of zj (j = 1, . . . , r) as ϵ→ 0.

(2) When f(u) = sinu

We consider u(x; ϵ) ∼
∑r

j=1(−1)j2Arcsin
{
tanh

(x−zj
ϵ

)}
(j = 1, . . . , r). The following(I)-

(II) hold up([35], [36], [37], [38]).

(I) For 0 ≤ n < r, 
λr,ϵn ∼ −16 cos2

nπ

2r
exp

(
−1

rϵ

)
,

φr,ϵ
n (x) ∼ sech

(
x− zj
ϵ

)
cosnπzj

in a neighborhood of zj (j = 1, . . . , r) as ϵ→ 0.
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(II) For n ≥ r, 
λr,ϵn ∼ 1 + (n− r)2π2ϵ2,

φr,ϵ
n (x) ∼ (−1)jtanh

(
x− zj
ϵ

)
cos(n− r)πx

in a neighborhood of zj (j = 1, . . . , r) as ϵ→ 0.

[35]-[38] are complete analyses for (3.1.2), and have been famous for fully the analyzed

example for linearized eigenvalues problems.

Among them, it is interesting that when 0 ≤ n < r, the leading terms of eigenvalues

and their eigenfunctions of (3.1.2) have the above same expressions((1)-(I) and (2)-(I)).

Both (1)-(I) and (2)-(I) suggest that at least the leading terms of eigenvalues and their

eigenfunctions of 0 ≤ n < r with linearized eigenvalue problems may be a universal

property independent of the nonlinear term in reaction-diffusion systems.

On the other hand, linearized eigenvalue problems associated with r-layered pulse sta-

tionary solutions for reaction-diffusion systems with the Neumann boundary condition

still need to be solved. But recently, Ei-Shimatani-Wakasa has considered the linearized

eigenvalue problem associated with r-layered pulse stationary solutions S∗ for reaction-

diffusion systems with the Neumann boundary condition by [8] and [9]. Moreover, they

have analyzed some results in eigenvalues and eigenfunctions([12]). Here S∗ satisfies{
0 = D∂xxS

∗ + F (S∗), x ∈ (0, K),

∂xS
∗(0) = ∂xS

∗(K) = 0

for K ≫ 1 and is sufficiently close to
∑r

j=1 S(x− l∗j ) with l
∗
j ≫ 1 (j = 1, . . . , r) satisfying

min{l∗2 − l∗1, . . . , l
∗
r − l∗r−1} ≫ 1, and S(x) is a stable pulse (front)-type stationary solution

of (2.1.1). r denotes the number of S(x).

In this chapter, I describe the formula of eigenvalues and eigenfunctions on the lin-

earized eigenvalue problem for reaction-diffusion systems with the Neumann or the peri-

odic boundary conditions ([12]). [12] indicates that the universality in the leading terms

suggested in [35]-[38] holds not only for a single equation but also for a wide range of

reaction-diffusion systems in general.
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3.2 In the case of the Neumann boundary condition

In this subsection, we deal with the following system{
∂tU = D∂xxU + F (U) (t, x) ∈ (0,∞)× (0, K),

∂xU(t,+0) = ∂xU(t,K) = 0
(3.2.3)

for K ≫ 1, where D := diag{d1, . . . , dN} and F : RN → RN is a sufficiently smooth

function.

Hereafter we use notions δ∗(l) := e−αh∗(l), δ∗+(l) := e−α+h∗(l), and h∗(l) := min{2l1, l2 −
l1, . . . , lr − lr−1, 2(K − lr)}.

3.2.1 Main results for r-layered pulse-stationary solutions

Assume (H1),(H2),(H3),(A1). By [8] and [9], we have the following theorem.

Theorem3.1([8], [9]). Suppose that there exist some sufficiently large positive con-

stants h, K0 such that K0 > hr. Moreover suppose for any K > K0, there exists

l0 = t(l01, l
0
2, . . . , l

0
r) such that 0 < l01 < · · · < l0r < K with h∗(l0) > h and the ini-

tial value U(0, x) of (3.2.3) is sufficiently close to
∑r

j=1 S(x − l0j ). Then there exists

l(t) = t(l1(t), l2(t), . . . , lr(t)) with 0 < lj(t) < K (j = 1, 2, . . . , r) such that the solution

U(t, x) of (3.2.3) satisfies

sup
x∈[0,K]

|U(t, x)−U ∗(x; l(t))| → 0 (t→ ∞)

as long as h∗(l(t)) > h, where U ∗(x; l) :=
∑r

j=1 S(x− lj) + σ
∗(x; l) and σ∗(x; l) is a C1

function with respect to l with σ∗(x; l) := t(σ∗
1(x; l), . . . , σ

∗
r(x; l)) satisfying

||σ∗(x; l)||L∞(0,K) ≤ O(δ∗(l)).

Moreover l(t) satisfies

dl1
dt

=M0(e
−2αl1 − e−α(l2−l1)) +H∗

1 (l),

...
dlj
dt

=M0(e
−α(lj−lj−1) − e−α(lj+1−lj)) +H∗

j (l),

...
dlr
dt

=M0(e
−α(lr−lr−1) − e−2α(K−lr)) +H∗

r (l)

with |H∗
j (l)| ≤ O((δ∗(l))2) as long as h∗(l(t)) > h, where M0 := 2α⟨Da,a∗⟩.
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We define Hj(l) := M0(e
−α(lj−lj−1) − e−α(lj+1−lj)) and H(l) := t(H1(l), . . . , Hr(l)) for

l = t(l1, . . . , lr), where l0 := −l1 and lr+1 := 2K − lr. Furthermore let l̃ := t(l̃1, . . . , l̃r) be

the equilibrium point such that H(l̃) = 0 and h(l̃) > h.

l̇ =H(l) (3.2.4)

and let H ′(l̃) be the linearized matrix of H(l̃) with respect to l̃.

Corollary 3.1 ([8], [9]). For any K > K0, there exists an equilibrium of (3.2.4) l̃ =
t(l̄1, . . . , l̃r) such that Σ(H ′(l̃)) ⊂

{
z ∈ C ; |z| ≥ O(δ∗(l̄)

}
holds. Then there exists the

stationary solution S∗(x) of (3.2.3) such that

sup
x∈[0 ,K]

∣∣∣S∗(x)−U ∗(x; l̃)
∣∣∣ ≤ O(δ∗(l̃)),

where Σ(H ′(l̃)) is the set of eigenvalues for H ′(l̃).

Remark 3.1. S∗(x) stated in Corollary 3.1 is called an r-layered pulse stationary

solution.

We consider the eigenvalue problem{
LN (S∗)Φ(x) = λΦ(x), x ∈ (0, K),

∂xΦ(0) = ∂xΦ(K) = 0,
(3.2.5)

where LN (S∗) := D∂xx + F ′(S∗) on H2(0, K) with the Neumann boundary condition.

Then the following holds for (3.2.5).

Theorem3.2. Suppose there exist sufficiently large positive constantsK0 and h satisfying

K0 > hr. Then for any K > K0, there exist positive constants ρ1 and C1 such that

ρ1 ≤ C1e
−α

K
r holds and LN (S∗) has r eigenvalues λn (n = 0, 1, . . . , r − 1) in B(0 ; ρ1),

while the other spectrum λ of LN (S∗) satisfy Re{λ} < −β1 for a positive constant β1,

where B(0 ; ϵ) := {z ∈ R ; |z| ≤ ϵ, ϵ > 0}. Furthermore, excluding constant doubling, r

eigenvalues λn (n = 0, 1, . . . , r−1) of LN (S∗) and eigenfunctionsΦn(x) (n = 0, 1, . . . , r−1)

associated with λn (n = 0, 1, . . . , r − 1) satisfy

λn = −4M0αe
−αK

r cos2
(nπ
2r

)
(1 +O(e−αK

r )),

sup
x∈[0 .K]

∣∣∣∣∣Φn(x)−
r∑

j=1

(−1)j+1 cos
(nπ
K

l̄j

)
∂xS(x− l̄j)

∣∣∣∣∣ ≤ O(e−αK
r ),

where l̄j :=
(2j − 1)K

2r
(j = 1, . . . , r).
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Remark 3.2. From Theorem 3.2, we know that signs of λn (n = 0, 1, . . . , r − 1) are

determined by M0. If M0 > 0 (< 0), then λn < 0 (> 0) (n = 0, 1, . . . , r − 1). Therefore, if

M0 > 0 (< 0), we see that S∗ stated in Corollary 3.2. is stable (unstable).

3.2.2 Main results for r-layered front-stationary solutions

In this subsection, we additionary assume the following to (H2)’.

(H2)” S(x) = −S(−x). Then α+ = α−,S+ = −S−,a+ = −a− and a∗
+ = a∗

−.

We assume (H1)’ - (H3)’ and (A2). By the same arguments as for [8], [9], the following

holds.

Theorem3.3([8], [9]). Suppose that there exists some sufficiently large positive con-

stants h, K0 such that K0 > hr. Moreover suppose for any K > K0, there exists

l0 = t(l01, l
0
2, . . . , l

0
r) such that 0 < l01 < · · · < l0r < K with h∗(l0) > h and the initial

value U(0, x) of (3.2.3) is sufficiently close to
∑r

j=1 S((−1)j(x − l0j )) + S̃. Then there

exists l(t) = t(l1(t), l2(t), . . . , lr(t)) with 0 < lj(t) < K (j = 1, 2, . . . , r) such that the

solution U(t, x) of (3.2.3) satisfies

sup
x∈[0,K]

|U(t, x)−U ∗(x; l(t))| → 0 (t→ ∞)

as long as h∗(l(t)) > h, where U ∗(x; l) =
∑r

j=1 S((−1)j(x−lj))+S̃+σ∗(x; l) and σ∗(x; l)

is a C1 function with respect to l with σ∗(x; l) := t(σ∗
1(x; l), . . . , σ

∗
r(x; l)) satisfying

||σ∗(x; l)||L∞(0,K) ≤ O(δ∗+(l)).

Moreover l(t) satisfies

dl1
dt

=M+(e
−2α+l1 − e−α+(l2−l1)) +H∗

1 (l),

...
dlj
dt

=M+(e
−α+(lj−lj−1) − e−α+(lj+1−lj)) +H∗

j (l),

...
dlr
dt

=M+(e
−α+(lr−lr−1) − e−2α+(K−lr)) +H∗

r (l)

with |H∗
j (l)| ≤ O((δ∗+(l))

2) as long as h∗(l(t)) > h. Here M+ := 2α+⟨Da+,a
∗
+⟩ and

S̃ :=
S+ + (−1)rS+

2
.
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We define Hj(l) :=M+(e
−α+(lj−lj−1) − e−α+(lj+1−lj)) and H(l) := t(H1(l), . . . , Hr(l)) for

l = t(l1, . . . , lr), where l0 := −l1 and lr+1 := 2K − lr. Furthermore let l̃ := t(l̃1, . . . , l̃r) be

the equilibrium point such that H(l̃) = 0 and h(l̃) > h.

l̇ =H(l) (3.2.6)

and let H ′(l̃) be the linearized matrix of H(l̃) with respect to l̃.

Corollary 3.2 ([8],[9]). For any K > K0, there exists an equilibrium of (3.2.6) l̃ =
t(l̃1, . . . , l̃r) such that Σ(H ′(l̃)) ⊂

{
z ∈ C ; |z| ≥ O(δ∗+(l̃)

}
holds. Then there exists a

stationary solution S∗(x) of (3.2.3) such that

sup
x∈[0 ,K]

∣∣∣S∗(x)−U ∗(x; l̃)
∣∣∣ ≤ O(δ∗+(l̃)),

where Σ(H ′(l̃)) is the set of eigenvalues for H ′(l̃).

Remark 3.3. S∗(x) statedin Corollary 3.2 is called an r-layered front stationary solu-

tion.

We consider {
LN (S∗)Φ(x) = λΦ(x), x ∈ (0, K),

∂xΦ(0) = ∂xΦ(K) = 0.

Then the following holds.

Theorem3.4. Suppose there exist sufficiently large positive constantsK0 and h satisfying

K0 > hr. Then for any K > K0, there exist positive constants ρ1 and C1 such that

ρ1 ≤ C1e
−α+

K
r holds and LN (S∗) has r eigenvalues λn, (n = 0, 1, . . . , r − 1) in B(0 ; ρ1),

while the other spectrum λ of LN (S∗) satisfy Re{λ} < −β1 for a positive constant

β1,where B(0 ; ϵ) := {z ∈ R ; |z| ≤ ϵ, ϵ > 0}. Furthermore, excluding constant doubling, r

eigenvalues λn (n = 0, 1, . . . , r−1) of LN (S∗) and eigenfunctionsΦn(x) (n = 0, 1, . . . , r−1)

associated with λn (n = 0, 1, . . . , r − 1) satisfy

λn = −4M+α+e
−α+

K
r cos2

(nπ
2r

)
(1 +O(e−α+

K
r )),

sup
x∈[0 .K]

∣∣∣∣∣Φn(x)−
r∑

j=1

cos
(nπ
K

l̄j

)
∂xS(x− l̄j)

∣∣∣∣∣ ≤ O(e−α+
K
r ),

where l̄j :=
(2j − 1)K

2r
(j = 1, . . . , r).
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Remark 3.4. From Theorem 3.4, we know that signs of λn (n = 0, 1, . . . , r − 1) are

determined by M+. If M+ > 0 (< 0), then λn < 0 (> 0) (n = 0, 1, . . . , r − 1). Therefore,

if M+ > 0 (< 0), we also know that S∗ stated in Corollary 3.2. is stable (unstable).

3.2.3 The application to the Allen-Cahn-equation

Fix r = 3. Let us consider the Allen-Cahn equation{
0 = ϵ2∂xxS

∗ + F (S∗), t > 0, x ∈ (0, 1),

∂xS
∗(0) = ∂xS

∗(1) = 0,

and its linearized eigenvalue problem associated with S∗(x) stated in Corollary 3.2{
ϵ2∂xxΦ(x) + F ′(S∗(x))Φ(x) = λΦ(x), x ∈ (0, 1),

∂xΦ(0) = ∂xΦ(1) = 0,
(3.2.7)

where 0 < ϵ≪ 1 and F (u) = u(1− u2) or F (u) = sinu.

We denote by U ∼ V when sup
x∈[0,1]

|U(x; ϵ)− V (x; ϵ)| ≤ O(e−
α
ϵr ) (ϵ→ 0) in 3.2.3.

In the case of F (u) = u(1− u2).

First, we note that the Allen-Cahn equation on R has the following stable front-type

stationary solution

S(x) = tanh

(
x√
2ϵ

)
connectiong S± = ±1([13]). By exactly the same calculation as for [8], [9], we obtain

a+ = −2, α+ =

√
2

ϵ
, a∗+ = 3. Therefore, we see

M+ = 2α+

〈
Da+, a

∗
+

〉
= 2 ·

√
2

ϵ
· (−2) · (ϵ2 · 3) = −12

√
2ϵ < 0.

From the above, λn (n = 0, 1, 2) satisfy

λn ∼ 96 exp

(
−
√
2

3ϵ

)
cos2

nπ

6
(n = 0, 1, 2)
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and there exists ρ0 > 0 such that Re {λn} < −ρ0 (n = 3, 4, 5, . . .) by Theorem3.4. More-

over, eigenfunctions Φn(x) (n = 0, 1, . . . 2) associated with λn (n = 0, 1, 2) satisfy

Φ0(x) ∼
3∑

j=1

sech2

(
x− l̄j√

2ϵ

)
,

Φ1(x) ∼
3∑

j=1

cos
{
πl̄j
}
sech2

(
x− l̄j√

2ϵ

)
,

Φ2(x) ∼
3∑

j=1

cos
{
2πl̄j

}
sech2

(
x− l̄j√

2ϵ

)
,

where l̄1 =
1

6
, l̄2 =

1

2
, and l̄3 =

5

6
by Theorem3.4 (Fig 1). This result is consistent with

[37], [38].a

Figure 1: Profiles of Φ0(x),Φ1(x),Φ2(x) with the Neumann boundary conditions(the

Allen-Cahn equation).

In the case of F (u) = sinu.

First, we note that the Allen-Cahn equation on R has the following stable front-type

stationary solution.

S(x) = 2Arcsin
{
tanh

(x
ϵ

)}
(e.g.[37], [38]). By exactly the same calculation as in [12], we obtain a+ = −4, α+ =
1

ϵ
, a∗+ =

1

2
. Therefore, we see

M+ = 2α+

〈
Da+, a

∗
+

〉
= −4ϵ < 0.
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From the above, λn (n = 0, 1, 2) satisfy

λn ∼ 16 exp

(
− 1

3ϵ

)
cos2

nπ

6
(n = 0, 1, 2)

and there exists ρ0 > 0 such that Re {λn} < −ρ0 (n = 3, 4, 5, . . .) by Theorem3.4. More-

over eigenfunctions Φn(x) (n = 0, 1, 2) associated with λn (n = 0, 1, 2) satisfy

Φ0(x) ∼
3∑

j=1

sech

(
x− l̄j
ϵ

)
,

Φ1(x) ∼
3∑

j=1

cos
{
πl̄j
}
sech

(
x− l̄j
ϵ

)
,

Φ2(x) ∼
3∑

j=1

cos
{
2πl̄j

}
sech

(
x− l̄j
ϵ

)
,

where l̄1 =
1

6
, l̄2 =

1

2
, l̄3 =

5

6
by Theorem3.4. This result is also consistent with [35]-[38].

Remark 3.5. In (3.2.7) for F (u) = u(1 − u2) or F (u) = sin u, eigenvalues for n =

0, 1, . . . , r are represented by the product of the cosine functions and the exponential

functions, and eigenfunctions associated with those eigenvalues are represented by the

product of the cosine function and the hyperbolic function.

3.2.4 The application to the Gray-Scott-model

Fix r = 3. As fixing the same parameter as [8], let consider the Gray-Scott-model
0 = ∂xxS

∗
u − S∗

u(S
∗
v)

2 + ϵ2(1− S∗
u), x ∈ (0, K),

0 = ϵ2∂xxS
∗
v − ϵ1/2S∗

v + S∗
u(S

∗
v)

2,

∂xS
∗
u(0) = ∂xS

∗
u(K) = 0,

∂xS
∗
v(0) = ∂xS

∗
v(K) = 0,

and its linearized eigenvalue problem associated with S∗(x) = (S∗
u(x), S

∗
v(x)) stated in

Corollary 3.1 {
LN (S∗)Φn(x) = λnΦn(x), x ∈ (0, K),

∂xΦn(0) = ∂xΦn(K) = 0 (n = 0, 1, . . .),
(3.2.8)
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where 0 < ϵ≪ 1 and K ≫ 1.

We denote by U ∼ V when sup
x∈[0,K]

|U(x) − V (x)| ≤ O(e−αK
r ) (K → ∞) in 3.2.4. Note

that results for eigenvalues and eigenfunctions for this linearized eigenvalue problem are

entirely new.

First, we note that the Gray-Scott-model on R has the stable pulse-type solution S(x) =

(Su(x), Sv(x)) as ϵ→ 0(see [5]). By [8], we know that S(x) and Φ∗(x) satisfy

S(x) → e−ϵ|x|a+U ∗, Φ∗(x) → e−ϵ|x|a∗

as x → ±∞. Here a = t(−a, 0) and a∗ = t(−ϵ3/4a∗, 0),U ∗ := t(1, 0) by certain positive

constants a, a∗. Therefore, we also immediately see that M0 > 0 by Theorem3.2.

From the above, λn (n = 0, 1, 2) and Φn(x) (n = 0, 1, 2) of (3.2.8) satisfy

(i)λ0 ∼ −4M0ϵe
−ϵK
r , Φ0(x)∼


3∑

j=1

(−1)j+1∂xSu

(
x− l̄j

)
3∑

j=1

(−1)j+1∂xSv

(
x− l̄j

)
 .

(ii)λ1 ∼ −3M0ϵe
−ϵK
r , Φ1(x)∼


3∑

j=1

(−1)j+1 cos
{ π
K
l̄j

}
∂xSu

(
x− l̄j

)
3∑

j=1

(−1)j+1 cos
{ π
K
l̄j

}
∂xSv

(
x− l̄j

)
 .

(iii)λ2 ∼ −M0ϵe
−ϵK
r , Φ2(x)∼


3∑

j=1

(−1)j+1 cos

{
2π

K
l̄j

}
∂xSu

(
x− l̄j

)
3∑

j=1

(−1)j+1 cos

{
2π

K
l̄j

}
∂xSv

(
x− l̄j

)


by Theorem3.2. Here l̄1 =
K

6
, l̄2 =

K

2
, l̄3 =

5K

6
(Fig 2). Moreover, there exists ρ0 > 0

such that Re {λn} < −ρ0 for n ≥ 3.
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a

Figure 2: Profiles of Φn(x) := (ϕn(x), ψn(x)), n = 0, 1, 2 with the Neumann boundary

conditions (the Gray-Scott model)

3.3 In the case of the Periodic boundary condition

In this subsection, we deal with the following system
∂tU = D∂xxU + F (U) (t, x) ∈ (0,∞)× (0, K),

U(t,+0) = U(t,K),

∂xU(t,+0) = ∂xU(t,K)

(3.3.9)

for K ≫ 1, where D := diag{d1, . . . , dN} and F : RN → RN is a sufficiently smooth

function. We define h∗(l) := min{K − lr + l1, l2 − l1, . . . , lr − lr−1} and δ∗(l) := e−αh̃∗(l).

Furthermore, ∼ is defined exactly as in section 3.2.

Note that all the results in this section are new.

3.3.1 Main results for r-layered pulse-stationary solutions

Assume (H1),(H2),(H3),(A1). Then we have the following theorem by [8] and [9].
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Theorem3.5([8], [9]). Suppose that there exist sufficiently large positive constants h,K0

such that K0 > hr. Moreover suppose for any K > K0, there exists l0 =
t(l01, l

0
2, . . . , l

0
r)

such that 0 < l01 < · · · < l0r < K with h∗(l0) > h and the initial value U(0, x) of (3.3.9) is

sufficiently close to
∑r

j=1 S(x− l0j ). Then there exists l(t) = t(l1(t), l2(t), . . . , lr(t)) with

0 < lj(t) < K (j = 1, 2, . . . , r) such that the solution U(t, x) of (3.3.9) satisfies

sup
x∈[0,K]

|U(t, x)−U ∗(x; l(t))| → 0 (t→ ∞)

as long as h∗(l(t)) > h, where U ∗(x; l) =
∑r

j=1 S(x − lj) + σ
∗(x; l) and σ∗(x; l) is a C1

function with respect to l with σ∗(x; l) := t(σ∗
1(x; l), . . . , σ

∗
r(x; l)) satisfying

||σ∗(x; l)||L∞(0,K) ≤ O(δ∗(l)).

Moreover l(t) satisfies

dl1
dt

=M0(e
−α(K−lr+l1) − e−α(l2−l1)) +H∗

1 (l),

...
dlj
dt

=M0(e
−α(lj−lj−1) − e−α(lj+1−lj)) +H∗

j (l),

...
dlr
dt

=M0(e
−α(lr−lr−1) − e−α(K−lr+l1)) +H∗

r (l)

with |H∗
j (l)| ≤ O((δ∗(l))2) as long as h∗(l(t)) > h. Here M0 := 2α⟨Da,a∗⟩.

We define Hj(l) := M0(e
−α(lj−lj−1) − e−α(lj+1−lj)) and H(l) := t(H1(l), . . . , Hr(l)) for

l = t(l1, . . . , lr), where l0 := −K+ lr and lr+1 := K+ l1. Furthermore Let l̃ := t(l̃1, . . . , l̃r)

be the equilibrium point such that H(l̃) = 0 and h(l̃) > h.

l̇ =H(l) (3.3.10)

and let H ′(l̃) be the linearized matrix of H(l̃) with respect to l̃.

Corollary 3.3 ([8], [9]). For any K > K0, there exists an equilibrium of (3.3.10) l̄ =
t(l̃1, . . . , l̃r) such that Σ(H ′(l̃)) ⊂

{
z ∈ C ; |z| ≥ O(δ∗(l̃))

}
holds. Then there exists a

stationary solution S∗(x) of (3.3.9) such that

sup
x∈[0 ,K]

∣∣∣S∗(x)−U ∗(x; l̃)
∣∣∣ ≤ O(δ∗(l)),

where Σ(H ′(l̃)) is the set of eigenvalues for H ′(l̃).
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Remark 3.6.The stationary solution S∗(x) stated in Corollary 3.3 is called an r-layered

pulse stationary solution.

We consider 
LP(S

∗)Φ̃(x) = λ̃Φ̃(x), x ∈ (0, K),

Φ̃(0) = Φ̃(K),

∂xΦ̃(0) = ∂xΦ̃(K),

whereLP(S
∗) := D∂xx +F

′(S∗) on H2(0, K) with the periodic boundary condition. The

following holds.

Theorem3.6. We define r0 :=
r

2
∈ N. Suppose there exist sufficiently large positive

constants K0 and h satisfying K0 > hr. Then for any K > K0, there exist positive

constants ρ1 and C1 such that ρ1 ≤ C1e
−α

K
r holds and LP(S

∗) has r eigenvalues λ̃n, (n =

0, . . . , r − 1) in B(0 ; ρ1), while the other spectrum λ̃ of LP(S
∗) satisfy Re{λ̃} < −β1 for

a positive constant β1, where B(0 ; ϵ) := {z ∈ R ; |z| ≤ ϵ, ϵ > 0} Furthermore, excluding

constant doubling, the r eigenvalues λ̃n (n = 0, 1, . . . , r− 1) of LP(S
∗) and eigenfunctions

Φ̃n(x) (n = 0, 1, . . . , r − 1) associated wuth λ̃n (n = 0, 1, . . . , r − 1) satisfy the following

conditions.

λ̃n = −4M0αe
−αK

r sin2
(nπ
r

)
(1 +O(e−αK

r ))

and are semisimple. Furthermore, there exist eigenfunctions Φ̃n(x), Ψ̃n(x) associated with

λ̃n (n = 0, 1, . . . , r − 1) satisfy following.

(a)Whenn = 0, excluding constant doubling,

sup
x∈[0 ,K]

∣∣∣∣∣Φ̃n(x)−
r∑

j=1

∂xS(x− l̄j)

∣∣∣∣∣ ≤ O(e−αK
r ).

(b)When 1 ≤ n ≤ r0 − 1, excluding constant doubling,

sup
x∈[0 ,K]

∣∣∣∣∣Φ̃n(x)−
r∑

j=1

sin

(
2nπ

K
l̄j

)
∂xS(x− l̄j)

∣∣∣∣∣ ≤ O(e−αK
r ),

sup
x∈[0 ,K]

∣∣∣∣∣Ψ̃n(x)−
r∑

j=1

cos

(
2nπ

K
l̄j

)
∂xS(x− l̄j)

∣∣∣∣∣ ≤ O(e−αK
r ).

(c)Whenn = r0, excluding constant doubling,

sup
x∈[0 ,K]

∣∣∣∣∣Φ̃n(x)−
r∑

j=1

(−1)j+1∂xS(x− l̄j)

∣∣∣∣∣ ≤ O(e−αK
r ).
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Here l̄j :=
(2j − 1)K

2r
(j = 1, . . . , r).

Theorem3.7. We define r1 :=
r + 1

2
∈ N. Suppose there exist sufficiently large positive

constants K0 and h satisfying K0 > hr. Then for any K > K0, there exist positive

constants ρ1 and C1 such that ρ1 ≤ C1e
−α

K
r holds and LP(S

∗) has r eigenvalues λ̃n, (n =

0, . . . , r − 1) in B(0 ; ρ1), while the other spectrum λ̃ of LP(S
∗) satisfy Re{λ̃} < −β1 for

a positive constant β1,where B(0 ; ϵ) := {z ∈ R ; |z| ≤ ϵ, ϵ > 0}. Furthermore, excluding

constant doubling, the r eigenvalues λ̃n (n = 0, 1, . . . , r− 1) of LP(S
∗) and eigenfunctions

Φ̃n(x) (n = 0, 1, . . . , r − 1) associated wuth λ̃n (n = 0, 1, . . . , r − 1) satisfy the following

conditions.

λ̃n = −4M0αe
−αK

r sin2
(nπ
r

)
(1 +O(e−αK

r ))

and are semisimple. Furthermore, there exist eigenfunctions Φ̃n(x), Ψ̃n(x) associated with

λ̃n (n = 0, 1, . . . , r − 1) satisfy following.

(a)Whenn = 0, excluding constant doubling,

sup
x∈[0 ,K]

∣∣∣∣∣Φ̃n(x)−
r∑

j=1

∂xS(x− l̄j)

∣∣∣∣∣ ≤ O(e−αK
r ).

(b)When 1 ≤ n ≤ r1 − 1, excluding constant doubling,

sup
x∈[0 ,K]

∣∣∣∣∣Φ̃n(x)−
r∑

j=1

sin

(
2nπ

K
l̄j

)
∂xS(x− l̄j)

∣∣∣∣∣ ≤ O(e−αK
r ),

sup
x∈[0 ,K]

∣∣∣∣∣Ψ̃n(x)−
r∑

j=1

cos

(
2nπ

K
l̄j

)
∂xS(x− l̄j)

∣∣∣∣∣ ≤ O(e−αK
r ).

Here l̄j :=
(2j − 1)K

2r
(j = 1, . . . , r).

3.3.2 Main results for r-layered front-stationary solutions

Assume (H1)’-(H3)’ and (A2). By [8], [9], we have the following theorem.

Theorem3.8([8], [9]). Suppose that there exist sufficiently large positive constants h,K0

such that K0 > hr. Moreover suppose for any K > K0, there exists l0 =
t(l01, l

0
2, . . . , l

0
r)

such that 0 < l01 < · · · < l0r < K with h∗(l0) > h and the initial value U(0, x) of (3.3.9) is

sufficiently close to
∑r

j=1 S((−1)j(x−l0j )). Then there exists l(t) = t(l1(t), l2(t), . . . , lr(t))

with 0 < lj(t) < K (j = 1, 2, . . . , r) such that the solution U(t, x) of (3.3.9) satisfies

sup
x∈[0,K]

|U(t, x)−U ∗(x; l(t))| → 0 (t→ ∞)
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as long as h∗(l(t)) > h, where U ∗(x; l) =
∑r

j=1 S((−1)j(x− lj)) +σ
∗(x; l) and σ∗(x; l) is

a C1 function with respect to l with σ∗(x; l) := t(σ∗
1(x; l), . . . , σ

∗
r(x; l)) satisfying

||σ∗(x; l)||L∞(0,K) ≤ O(δ∗+(l)).

Moreover l(t) satisfies

dl1
dt

=M+(e
−α+(K−lr+l1) − e−α+(l2−l1)) +H∗

1 (l),

...
dlj
dt

=M+(e
−α+(lj−lj−1) − e−α+(lj+1−lj)) +H∗

j (l),

...
dlr
dt

=M+(e
−α+(lr−lr−1) − e−α+(K−lr+l1)) +H∗

r (l)

with |H∗
j (l)| ≤ O((δ∗+(l))

2) as long as h∗(l(t)) > h. Here M+ := 2α⟨Da+,a
∗
+⟩ and

S̃ :=
S+ + (−1)rS+

2

We define Hj(l) := M+(e
−α(lj−lj−1) − e−α(lj+1−lj)) and H(l) := t(H1(l), . . . , Hr(l)) for

l = t(l1, . . . , lr), where l0 := −K+ lr and lr+1 := K+ l1. Furthermore Let l̃ := t(l̃1, . . . , l̃r)

be the equilibrium point such that H(l̃) = 0 and h(l̃) > h.

l̇ =H(l) (3.3.11)

and let H ′(l̃) be the linearized matrix of H(l̃) with respect to l̃.

Corollary 3.4 ([8], [9]). Suppose for any K > K0, there exists an equilibrium of (3.3.11)

l̃ = t(l̃1, . . . , l̃r) such that Σ(H ′(l̃)) ⊂
{
z ∈ C ; |z| ≥ O(δ∗+(l̃))

}
holds. Then there exists

a stationary solution S∗(x) of (3.3.9) such that

sup
x∈[0 ,K]

∣∣∣S∗(x)−U ∗(x; l̃)
∣∣∣ ≤ O(δ∗+(l̃)),

where Σ(H ′(l̃)) is the set of eigenvalues for H ′(l̃).

Remark 3.7. Sr(x) stated in Corollary 3.4 is also called a r-layered front stationary

solution.
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In the above S∗(x), we consider
LP(S

∗)Φ̃(x) = λ̃Φ̃(x), x ∈ (0, K),

Φ̃(0) = Φ̃(K),

∂xΦ̃(0) = ∂xΦ̃(K),

The following holds.

Theorem3.9. We define r0 :=
r

2
∈ N. There exist a sufficiently large positive constants

K0 and h satisfying K0 > hr. Then for any K > K0, there exist a positive constants ρ1

and C1 such that ρ1 ≤ C1e
−α+

K
r holds and LP(S

∗) has r eigenvalues λ̃n, (n = 0, . . . , r−1)

in B(0 ; ρ1), while the other spectrum λ̃ of LP(S
∗) satisfy Re{λ̃} < −β1 for a positive

constant β1, where B(0 ; ϵ) := {z ∈ R ; |z| ≤ ϵ, ϵ > 0}. Furthermore, excluding constant

doubling, r eigenvalues λ̃n (n = 0, 1, . . . , r − 1) of LP(S
∗) and eigenfunctions Φ̃n(x) (n =

0, 1, . . . , r − 1) associated wuth λ̃n (n = 0, 1, . . . , r − 1) satisfy the following conditions.

λ̃n = −4M+α+e
−α+

K
r sin2

(nπ
r

)
(1 +O(e−α+

K
r ))

and are semisimple. Furthermore, there exist eigenfunctions Φ̃n(x), Ψ̃n(x) associated with

λ̃n, (0 ≤ n ≤ r − 1) satisfies following.

(a)Whenn = 0, excluding constant doubling,

sup
x∈[0 ,K]

∣∣∣∣∣Φ̃n(x)−
r∑

j=1

(−1)j+1∂xS(x− l̄j)

∣∣∣∣∣ ≤ O(e−α+
K
r ).

(b)When 1 ≤ n ≤ r0 − 1, excluding constant doubling,

sup
x∈[0 ,K]

∣∣∣∣∣Φ̃n(x)−
r∑

j=1

(−1)j+1 sin

(
2nπ

K
l̄j

)
∂xS(x− l̄j)

∣∣∣∣∣ ≤ O(e−α+
K
r ),

sup
x∈[0 ,K]

∣∣∣∣∣Ψ̃n(x)−
r∑

j=1

(−1)j+1 cos

(
2nπ

K
l̃j

)
∂xS(x− l̄j)

∣∣∣∣∣ ≤ O(e−α+
K
r ).

(c)Whenn = r0, excluding constant doubling,

sup
x∈[0 ,K]

∣∣∣∣∣Φ̃n(x)−
r∑

j=1

∂xS(x− l̄j)

∣∣∣∣∣ ≤ O(e−α+
K
r ).

Here l̄j :=
(2j − 1)K

2r
(j = 1, . . . , r).
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3.3.3 The application to the Allen-Cahn equation

Fix r = 4. Let us consider the Allen-Cahn equation{
0 = ϵ2∂xxS

∗ + F (S∗), t > 0, x ∈ (0, 1)

S∗(0) = S∗(1), ∂xS
∗(0) = ∂xS

∗(1)

and its linearized eigenvalue problem associated with S∗(x) stated in Corollary 3.4{
ϵ2∂xxΦ̃(x) + F ′(S∗(x))Φ̃(x) = λ̃Φ̃(x), x ∈ (0, 1),

Φ̃(0) = Φ̃(1), ∂xΦ̃(0) = ∂xΦ̃(1),
(3.3.12)

where 0 < ϵ≪ 1 and F (u) = u(1− u2) or F (u) = sinu.

“∼” is exactly the same as in subsection 3.2.3.

In case of F (u) = u− u3.

Since M+ is obtained exactly as in 3.2.3, eigenvalues of (3.3.12) satisfy

λ̃n ∼ 96exp

(
−
√
2

4ϵ

)
sin2 nπ

4
(n = 0, 1, 2, 3)

and there exists ρ0 > 0 such that Re
{
λ̃n

}
< −ρ0 (n = 4, 5, 6, . . .) by Theorem3.9.

Moreover Φ̃n (n = 0, 1, 2, 3) associated with λ̃n (n = 0, 1, 2, 3) satisfy

Φ̃0(x) ∼
4∑

j=1

(−1)j+1sech2

(
x− l̃j√

2ϵ

)
,

Φ̃1(x) ∼
4∑

j=1

(−1)j+1 sin
{
2πl̄j

}
sech2

(
x− l̄j√

2ϵ

)
,

Ψ̃1(x) ∼
4∑

j=1

(−1)j+1 cos
{
2πl̄j

}
sech2

(
x− l̄j√

2ϵ

)
,

Φ̃2(x) ∼
4∑

j=1

sech2

(
x− l̄j√

2ϵ

)
,

where l̃1 =
1

8
, l̃2 =

3

8
, l̃3 =

5

8
, l̃4 =

7

8
by Theorem3.9 (Fig 3).
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a

Figure 3: Profiles of Φ̃0(x), Φ̃1(x), Ψ̃1(x), Φ̃2(x) with the periodic boundary conditions (the

Allen-Cahn equation)

In case of F (u) = sinu.

Since M+ is obtained exactly as in 3.2.3, eigenvalues of (3.3.12) satisfies

λ̃n ∼ 16exp

(
− 1

4ϵ

)
sin2 nπ

4
(n = 0, 1, 2, 3),

and there exists ρ0 > 0 such that Re
{
λ̃n

}
< −ρ0 (n = 4, 5, 6, . . .) by Theorem3.9.

Moreover Φ̃n (n = 0, 1, 2, 3) associated with λ̃n (n = 0, 1, 2, 3) satisfy

Φ̃0(x) ∼
4∑

j=1

(−1)j+1sech

(
x− l̃j
ϵ

)
,

Φ̃1(x) ∼
4∑

j=1

(−1)j+1 sin
{
2πl̄j

}
sech

(
x− l̄j
ϵ

)
,

Ψ̃1(x) ∼
4∑

j=1

(−1)j+1 cos
{
2πl̄j

}
sech

(
x− l̄j
ϵ

)
,

Φ̃2(x) ∼
4∑

j=1

sech

(
x− l̄j
ϵ

)
,

where l̃1 =
1

8
, l̃2 =

3

8
, l̃3 =

5

8
, l̃4 =

7

8
by Theorem3.9.
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3.3.4 The application to the Gray-Scott-model

Fix r = 3. “∼” is exactly the same as in subsection 3.2.4.

As taking the same parameter as [8], let us consider the Gray-Scott-model
0 = ∂xxS̃

∗
u − S̃∗

u(S̃
∗
v)

2 + ϵ2(1− S̃∗
u), x ∈ (0, K),

0 = ϵ2∂xxS̃
∗
v − ϵ1/2S̃∗

v + S̃∗
u(S̃

∗
v)

2,

S̃∗
u(0) = S̃∗

u(K), ∂xS̃
∗
u(0) = ∂xS̃

∗
u(K),

S̃∗
v(0) = S̃∗

v(K), ∂xS̃
∗
v(0) = ∂xS̃

∗
v(K),

and its linearized eigenvalue problem associated with S∗(x) = (S̃∗
u(x), S̃

∗
v(x)) stated in

Corollary 3.3 {
LP(S

∗)Φ̃n(x) = λ̃nΦ̃n(x), x ∈ (0, K),

Φ̃(0) = Φ̃(K), ∂xΦ̃(0) = ∂xΦ̃(K) (n = 0, 1, . . .),

where 0 < ϵ≪ 1 and K ≫ 1. Since M0 is obtained exactly as in 3.2.4, there exists ρ0 > 0

such that Re
{
λ̃n

}
< −ρ0 (n = 3, 4, 5, . . .). Eigenvalues λ̃n (n = 0, 1, 2) and corresponding

eigenfunctions Φ̃n (n = 0, 1, 2) are expressed as follows by Theorem 3.7.

(i) λ̃0 ∼ 0, Φ̃0(x) ∼


3∑

j=1

∂xSu(x− l̄j)

3∑
j=1

∂xSv(x− l̄j)

 ,

(ii) λ̃1 ∼ −3M0ϵe
−ϵK
r , Φ̃1(x) ∼


3∑

j=1

sin

(
2π

K
l̄j

)
∂xSu(x− l̄j)

3∑
j=1

sin

(
2π

K
l̄j

)
∂xSv(x− l̄j)

 ,

(iii) λ̃2 ∼ −3M0ϵe
−ϵK
r , Ψ̃1(x) ∼


3∑

j=1

cos

(
2π

K
l̄j

)
∂xSu(x− l̄j)

3∑
j=1

cos

(
2π

K
l̄j

)
∂xSv(x− l̄j)

 ,

where l̄j = (2j − 1)K
2r
(j = 1, . . . , 3) (Fig 4).
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Figure 4: Profiles of Φ̃0(x), Φ̃1(x), Ψ̃1(x) with the periodic boundary conditions(the

Gray-Scott-model). Here, Φ̃n :=t (ϕn, ψn) (n = 0, 1), Ψ̃1 :=
t (ϕ∗

1, ψ
∗
1).

3.4 Proof of theorem3.2

In this section, we give the proof of Theorem3.2. For other theorems, it is the same as

in Theorem3.2. First, the following holds.

Proposition 3.1. Fix one arbitraryK > K0. Then the equilibrium point l̄ = (l̄1, . . . , l̄j, . . . , l̄r)

with 0 < l̄j < K for H̄(l) is uniquely denoted by

l̄ =



K

2r
...

(2j − 1)
K

2r
...

(2r − 1)
K

2r


.
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Furthermore, the linearized matrix H ′(̄l) is uniquely denoted by

H ′(̄l) =M0αe
−αK

r



−3 1 0

1 −2 1 0
. . . . . . . . .

. . . . . . . . .

0 1 −2 1

0 1 −3


.

Proof. It is shown immediately by direct calculation.

Proposition 3.2. Fix one arbitrary K > K0. Then eigenvalues µn (n = 0, 1, . . . , r − 1)

for H ′(̄l) satisfy

µn = −4M0αe
−αK

r cos2
(nπ
2r

)
. (3.4.13)

Furthermore, eigenvectors ϕn (n = 0, 1, . . . , r− 1) associated with µn (n = 0, 1, . . . , r− 1)

satisfy

ϕn = t
(
cos
(nπ
K
l̄1

)
, . . . , (−1)j+1 cos

(nπ
K
l̄j

)
, . . . , (−1)r+1 cos

(nπ
K
l̄r

))
(3.4.14)

excluding constant doubling. Here l̄j =
(2j − 1)K

2r
(j = 1, . . . , r).

Proof. It can be shown immediately by substituting (3.4.13), (3.4.14) into H ′(̄l)µn =

µnϕn.

Based on the above, we provide proof.

From Theorem 3.1, the solution U(t, x) of (3.2.3) may be expressed by

U(t, x) =
r∑

j=1

S(x− lj(t)) + σ
∗(x; l), (3.4.15)

where 

dl1
dt

=M0(e
−2αl1(t) − e−α(l2(t)−l1(t))) +H∗

1 (l),

...
dlj
dt

=M0(e
−α(lj(t)−lj−1(t)) − e−α(lj+1(t)−lj(t))) +H∗

j (l),

...
dlr
dt

=M0(e
−α(lr(t)−lr−1(t)) − e−2α(K−lr(t))) +H∗

r (l)

(3.4.16)
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with |H∗
j (l)| ≤ O((δ∗(l))2) as long as lj(t) ≫ 1 (j = 1, . . . N).

Let Hj(l(t)) =
dlj
dt

of (3.4.16). By (3.4.15), We know

∂tU = −
r∑

j=1

Hj(l(t))∂xS(x− lj(t)) + ∂tσ
∗(x; l(t))

holds. Since H∗
j (l) and σ

∗(l) are C1 smooth with respect to l, we can differentiate those

functions by lj. Hereafter we omit the higher order terms such as σ∗ and H∗
j for simplicity,

but we note that the following calculations are all rigorously justified by the property of

σ∗ and H∗
j .

We differentiate

W (x; l) := −
r∑

j=1

Hj(l)∂xS(x− lj)

by li (i = 1, 2, . . . , r) and substitute l̄ for Proposition 3.1 into ∂liW (x; l). We obtain

∂liW (x; l̄) = −
r∑

j=1

{
∂Hj(l̄)

∂li

}
∂xS(x− l̄j)

holds. Let the matrix V0 be

V0(x ; l) = (∂xS(x− l1), . . . , ∂xS(x− lj), . . . , ∂xS(x− lr)).

We have

(
∂l1W (x; l̄), . . . , ∂ljW (x; l̄), . . . , ∂lrW (x; l̄)

)
= −V0(x ; l̄)



∂1H1(l̄) . . . ∂iH1(l̄) . . . ∂rH1(l̄)
...

. . .
...

. . .
...

∂1Hj(l̄) . . . ∂iHj(l̄) . . . ∂rHj(l̄)
...

. . .
...

. . .
...

∂1Hr(l̄) . . . ∂iHr(l̄) . . . ∂rHr(l̄)


= −V0(x ; l̄)H

′(̄l),

where ∂iHi(l̄) :=
∂Hi(l̄)

∂li
. Moreover we have

W (x; l) =W (x; l̄) +
∂W (x; l̄)

∂l
(l− l̄) +G1(x; l; l̄) =

∂W (x; l̄)

∂l
(l− l̄) +G1(x; l; l̄),

where G1(x; l; l̄) is a function satisfying G1(x; l; l̄) = O
(∣∣l− l̄∣∣2). Thus we see
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W (x; l) =
∂W (x; l̄)

∂l
(l− l̄) +G1(x; l; l̄) = −V0(x ; l̄)H

′(̄l)(l− l̄) +G1(x; l; l̄)

and

W (x; l(t)) = −V0(x ; l̄)H
′(̄l)(l(t)− l̄) +G1(x; l(t); l̄) (3.4.17)

where l = l(t).

Next, we define

S̃∗(x ; l) :=
r∑

j=1

S(x− lj).

We see

S̃∗(x ; l) = S̃∗(x ; l̄) +
∂S̃∗(x; l̄)

∂l
(l− l̄) +G2(x; l; l̄),

where G2(x; l; l̄) = O
(∣∣l− l̄∣∣2). We have

L(S̃∗(x ; l)) = L

(
S̃∗(x ; l̄) +

∂S̃∗(x; l̄)

∂l
(l− l̄) +G2(x; l; l̄)

)

= D∂xx

(
S̃∗(x ; l̄) +

∂S̃∗(x; l̄)

∂l
(l− l̄)

)
+ F (S̃∗(x ; l̄))

+ F ′(S̃∗(x ; l̄))
∂S̃∗(x; l̄)

∂l
(l− l̄) +G3(x; l; l̄)

= L(S̃∗(x; l̄))
∂S̃∗(x; l̄)

∂l
(l− l̄) +G3(x; l; l̄),

where L(U) = D∂xx+F (U), andG3(x; l; l̄) is a function satisfyingG3(x; l; l̄) = O
(∣∣l− l̄∣∣2).

Thus we obtain

L(S̃∗(x ; l(t))) = LN (S̃∗)
∂S̃∗(x; l̄)

∂l
(l(t)− l̄) +G3(x; l(t); l̄),

where l = l(t). By (3.4.17) and Ut = L(U),

−V0(x ; l̄)H
′(̄l)l(t) +G∗

1(x; l(t)) = LN (S̃∗)
∂S̃∗(x; l̄)

∂l
l(t) +G∗

3(x; l(t)) (3.4.18)

holds for 0 < x < K, where l(t) := l(t)− l̄ and G∗
i (x; l(t)) := Gi(x; l(t) + l̄; l̄) (i = 1, 3).

We consider

l(t) = l̄ + ϵeµtϕ+ o(ϵ)
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with l(0) = l̄ + ϵϕ + o(ϵ), where ϵ → 0 and µ are eigenvalues for H ′(l̄), and ϕ are

eigenvectors associated with µ. Then we can derive

−µ{V0(x ; l̄)ϕ}+ G̃ϵ
1(t, x) = −LN (S̃∗){V0(x ; l̄)ϕ}+ G̃ϵ

3(t, x)

by (3.4.18) and
∂S̃∗(x; l̄)

∂l
= −V0(x ; l̄), where G̃

ϵ
i(t, x) (i = 1, 3) is a function satisfying

|G̃ϵ
i(t, x)| = O(|ϵ|). The rest can be proved, using Proposition 3.2, [30], [34] and Proposi-

tion 4.1([30], [34]) in [8].

Instead of Proposition 3.1 and Proposition 3.2, the following two hold for periodic

boundary conditions. It is described only when r is even. We define r0 :=
r

2
.

Proposition 3.3. Fix one arbitraryK > K0. The equilibrium point l̄P = (l̄1, . . . , l̄j, . . . , l̄r)

with 0 < l̄j < K for H̄P(l) is uniquely denoted by

l̄P(ω0) =



ω0

...

ω0 + (j − 1)
K

r
...

ω0 + (r − 1)
K

r


for any ω0 ∈ [0, K], where l̄P = l̄P(ω0). Furthermore, the linearized matrix H ′

P(l̄P) is

uniquely denoted by

H ′
P(l̃P) =M0αe

−αK
r



−2 1 0 1

1 −2 1 0
. . . . . . . . .

. . . . . . . . .

0 1 −2 1

1 0 1 −2


.

Proof. By quite a similar way to Proposition 3.1, we can show Proposition 3.3.

Remark 3.8. We can take ω0 =
K

2r
without loss of generality.

Since H ′
P(l̃P) is a circulant matrix, we see that the eigenvalues {µ̃n} and the eigenvec-

tors {ϕ̃n} for H ′
P(l̃P) hold by the following(see e.g. [16]).
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Proposition 3.4. Fix one arbitrary K > K0. Then eigenvalues µ̃n (n = 0, 1, . . . , r − 1)

for H ′
P (̄lP) satisfy

µ̃n = −4M0αe
−αK

r sin2
(nπ
r

)
and are semisimple. Moreover eigenvectors ϕ̃n assosiated with µ̃n (0 ≤ n ≤ r− 1) are the

following.

(a) If n = 0, µ̃0 = 0 is a simple eigenvalue and the eigenvector ϕ̃0 satisfy

ϕ̃0 = (1, 1, . . . , 1)

holds.

(b) If 1 ≤ n ≤ r0 − 1, µ̃n has a degree of overlap 2 and eigenvectors ϕ̃n satisfy

ϕ̃n = t

(
sin

(
2nπ

K
l̃1

)
, . . . , sin

(
2nπ

K
l̃j

)
, . . . , sin

(
2nπ

K
l̃r

))
,

ψ̃n = t

(
cos

(
2nπ

K
l̃1

)
, . . . , cos

(
2nπ

K
l̃j

)
, . . . , cos

(
2nπ

K
l̃r

))
except for the constant doubling.

(c) If n = r0, µ̃r0 is a simple eigenvalue and the eigenvector ϕ̃N0 satisfy

ϕ̃r0 = (1,−1, . . . , 1,−1)

except for the constant doubling. Here l̄j =
(2j − 1)K

2r
(j = 1, . . . , r).

If r is odd, remove (c) above for r0 :=
r + 1

2
. We can prove the rest by the quite similar

way to 3.4.

3.5 Concluding remarks

This chapter treats the linearized eigenvalue problem associated with r-layered pulse/front

stationary solutions for reaction-diffusion systems with the Neumann or periodic boundary

conditions. Moreover, it is found that the eigenvalues and eigenfunctions for 0 ≤ n ≤ r−1

can be expressed in trigonometric functions. These eigenvalues and eigenfunctions for

0 ≤ n ≤ r − 1 are obtained in a form that fully contains the results of [35]-[38]. From

now on, we will work on future issues, including the following:

(i) Linearized eigenvalue problem for the case where the front type stationary solution

S(x) is not an odd function respecting to x .
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(ii) Find the specific solution representation of the eigenvalues and eigenfunctions for

n ≥ r.

For (i), the analysis method is already known and will be studied in the future. For

(ii), the approach method needs to be better understood. So this is a significant issue to

be addressed in the future.
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4 Existing results and the proof of

“The dynamics of pulse solutions

for reaction diffusion systems on a

star shaped metric graph with the

Kirchhoff’s boundary condition”

4.1 Introduction

This chapter is only a preparation to introduce existing results and their proofs from

[10] for Capters 5 and 6.

Exactly as in [10], we express (1.0.4) as

∂tU = ∆ΩU + F (U) (4.1.1)

on Ω with the Kirchhoff’s boundary condition. Here Ω =
⋃R

j=1Ωj (Fig 5) for R ∈ N with

R ≥ 3 and Ωj = {xej ∈ R2 |x > 0}, and ∆Ω :=
∂2

∂x2
+

∂2

∂y2
for x = (x, y) ∈ Ω. The same

way as [10], Let us call Ω a star shaped metric graph.

Interesting results have been reported for the problem of (4.1.1). For example, [25]

consider

∂tuj = ∂xxuj +uj(1−uj)
(
uj −

1

2

)
,−∞ < t <∞, xe0 ∈ Ω0, xe1 ∈ Ω1, xe2 ∈ Ω2 (4.1.2)

with the Kirchhoff’s boundary condition, where Ω0 := {xe0 ∈ R2 |x < 0} and e0 is

the unit directional vectors of Ω0. The above equations considered on R have a front-

type stationary solution S(x) =
1

1 + exp(1/
√
2)
, and have no front-type traveling wave

solution. However, [25] led to the result that (4.1.2) has no stationary solution, and

there exists a front traveling wave. [25] was extended to a more general scalar reaction-

diffusion equation without a traveling wave solution. It has become important in studying

36



traveling wave and stationary solutions for reaction-diffusion equations on metric graphs.

Later on, [23] and [24] developed problems for scalar reaction-diffusion equations with

traveling wave solutions on a metric graph composed of multiple semi-infinite intervals.

At that time, many results for front traveling wave solutions were also reported by [23]

and [24].

On the other hand, the problem for reaction-diffusion equations on metric graphs has

also produced exciting results in terms of applications. For example, [6] considered a

metric graph composed of multiple semi-infinite intervals to be a channel geometry. They

performed a mathematical analysis for Fisher-KPP-type equations on this graph. Their

results are consistent with the transition of organism density in natural rivers, suggesting

that this graph is also a crucial application domain. In addition, [6] also has many im-

portant mathematical results for reaction-diffusion equations on metric graphs composed

of multiple semi-infinite intervals.

From this point of view, numerical and mathematical analyses have been vigorously

conducted for problems for reaction-diffusion systems on metric graphs in recent years(e.g.

[18], [19], [20], [28]). However, until now, there have been no theoretical results for pulse-

traveling wave solutions or pulse dynamics for reaction-diffusion systems on Ω, and this is

one of the significant challenges. Analyzing these systems on metric graphs is a significant

problem from pure and applied mathematical viewpoints. Against this background, we

have considered pulse/front dynamics for general reaction-diffusion systems on Ω using [8]

and [9]. As a result, we obtained some results for the pulse dynamics to reaction-diffusion

systems on Ω([10]). In this chapter, we introduce existing results([10]) for the pulse

dynamics to reaction-diffusion systems on Ω and their proofs from [10] in preparation for

Chapters 5 and 6.

Figure 5: The star shaped metric graph in the case of R = 6
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4.2 Existing results

In this section, I quote the exact same wording as in [10]. (B):∼.(B) means that ∼ is

quoted from B. We make the same assumptions as in Section 2 and define the following

exactly the same as [10].

([10]): We denote L2
+ := {L2(R+)}N with the L2-norm by || · ||L2

+
and the inner product

L2
+ by ⟨U ,V ⟩L2

+
:=

∫ +∞

0

⟨U(x),V (x)⟩dx for U ,V ∈ L2
+. H

2
+, L

∞
+ are similarly defined

by H2
+ := {H2(R+)}N and L∞

+ := {L∞(R+)}N .
For Ω = ∪R

j=1Ωj with Ωj = {xej ∈ R2;x > 0}, we define {L2(Ω)}N by all U(x) ∈
RN (x ∈ Ω) satisfying Uj ∈ L2

+ for Uj(x) = U(xej) together with the inner product

⟨U ,V ⟩L2(Ω) :=
R∑

j=1

∫ +∞

0

⟨Uj(x),Vj(x)⟩dx for U ,V ∈ {L2(Ω)}N , where Uj(x) = U(xej)

and Vj(x) = V (xej). {H2(Ω)}N and {L∞(Ω)}N are similarly defined by {H2(Ω)}N :=

{U ∈ {L2(Ω)}N ; Uj ∈ H2
+ (j = 1, . . . , R),Uj(x) = U(xej)} and

{L∞(Ω)}N := {U ;Uj ∈ L∞
+ (j = 1, . . . , R),Uj(x) = U(xej)}.([10])

4.2.1 The existing result of “Motion of pulse solutions”

We also assume the same assumptions (H1) - (H3) and (A1), but we make the following

modifications exactly the same as [10].

([10]): (H1) means the followings: Let wj(x;λ)(j = 1, 2, . . . , 2N) be the fundamental

functions of the ODE

(λ− L0)u = 0, x ∈ R. (4.2.3)

Then wj(x;λ) ∈ CN for λ ∈ C with Re(λ) > −ρ are the forms of

wj(x;λ) = e±µj(λ)xbj(x;λ),

for vector valued polynomials bj(x;λ) ∈ CN of x and Re(µj(λ)) > 0 with the nor-

malization |bj(0;λ)| = 1. We assume 0 < Re(µ1(λ)) ≤ · · · ≤ Re(µN(λ)) and put

wj(x;λ) := e−µj(λ)xbj(x;λ) for j = 1, . . . , N and wj(x;λ) = eµj(λ)xbj(x;λ) for j =

N + 1, . . . 2N . Here, we note that bj(x;λ) = bj+N(x;λ) hold for j = 1, . . . , N and that

{bj(x;λ)}Nj=1 are linearly independent for any x ≥ 0 and Re(λ) > −ρ0. In particular, we

put αj := µj(0),aj(x) := bj(x; 0) and mj(x) := wj(x; 0) = e±αjxaj(x).

Related to (H3), we assume
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(H4) m1(x) = e−αxa that is, α1 = α > 0 and a1(x) = a ∈ RN . Moreover, α <

Re(αj) (j = 2, . . . , N) holds.([10])

Moreover, we consider the following settings and situations exactly the same as [10].

([10]): Quite similarly for L∗
0 := D∂xx +

tF ′(0), the adjoint system

(λ− L∗
0)u = 0, x ∈ R (4.2.4)

of (4.2.3)((9) in [10]) has the same properties as follows: Let w∗
j (x;λ), (j = 1, 2, . . . , 2N)

be the fundamental functions of the ODE (4.2.4)((10) in [10]). Then, w∗
j (x;λ) ∈ CN for

λ ∈ C with Re(λ) > −ρ0 are the forms of

w∗
j (x;λ) = e±µj(λ)xb∗j(x;λ)

for vector valued polynomials b∗j(x;λ) ∈ CN of x and Re(µj(λ)) > 0 with the nor-

malization |b∗j(0;λ)| = 1.We note that 0 < Re(µ1(λ)) ≤ · · · ≤ Re(µN(λ)) hold and

we put w∗
j (x;λ) := e−µj(λ)xb∗j(x;λ) for j = 1, . . . , N and w∗

j (x;λ) := eµj(λ)xb∗j(x;λ)

for j = N + 1, . . . 2N . b∗j(x;λ) = b∗j+N(x;λ), j = 1, . . . , N hold for j = 1, . . . , N and

{b∗j(x;λ)}Nj=1 are linearly independent for any x ≥ 0 and Re(λ) > −ρ0. In particular, we

put a∗
j(x) := b

∗
j(x; 0) and m

∗
j(x) := w

∗
j (x; 0) = e±αjxa∗

j(x) with noting αj = µj(0).

Related (H3) and (H4), there exists a∗ ∈ RN such that m∗
1(x) = e−αxa∗, that is

α1 = α1 = α > 0 and a∗
1(x) = a

∗ ∈ RN .([10])

Quite similar to [10], we define l := t(l1, . . . , lr), Hj(l) :=M0e
−αlj

[
2

R

r∑
i=1

e−αli − e−αlj

]
and H(l) := t(H1(l), . . . , Hr(l)), where M0 := 2α⟨Da,a∗⟩. We denote max{l1, . . . , lr}
and min{l1, . . . , lr} by max l and min l, respectively. Moreover, by quite a similar to [10],

we also define

S(x; l) :=

{
S(x− lj),x = xej ∈ Ωj (j = 1, . . . , r),

0, x = xej ∈ Ωj (j = r + 1, . . . , R),

where r be a positive integer with 1 ≤ r ≤ R and fix it arbitrarily.

Theorem4.1([10], Theorem 2.2). Assume (H1)-(H4). Then there exists l∗ ≫ 1 such

that for the initial date U (0,x) sufficiently close to S(x; l0) for min l0 > l∗ in {H2(Ω)}N ,
the solution U(t,x) of (4.1.1)((3) in [10]) satisfies

||U(t, ·)− S(·; l(t))||L∞(Ω) ≤ O(e−αl∗)
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as long as min l(t) > l∗. Moreover, there exists H̃j(l) such that H̃j(l) = Hj(l) +

e−αljO(e−γminl) and each lj(t) satisfies

dlj
dt

= H̃j(l) (j = 1, . . . , r)

as long as min l(t) > l∗ for γ > α.

4.2.2 The existing result of “Motion of front solutions”

We consider the motion of front solutions for (2.1.1). We also assume the same assump-

tions (H1)’ - (H3)’ and (A2), but we make the following modifications exactly the same

as [10].

([10]): (H1)’ means the followings: Let w±
j (x;λ)(j = 1, 2, . . . , 2N) be the fundamental

functions of the ODE

(L± − λ)u = 0, x ∈ R.

Then w±
j (x;λ) ∈ CN for λ ∈ C with Re(λ) > −ρ are the forms of

w±
j (x;λ) = w±

j (x;λ)e
±µ±

j (λ)xb±j (λ),

for polynomials w±
j (x;λ) of x,vector b±j (λ) ∈ CNand Re(µ±

j (λ)) > 0 with the nor-

malization w±
j (0;λ) = 1. We assume 0 < Re(µ±

1 (λ)) ≤ · · · ≤ Re(µ±
N(λ)) and put

w±
j (x;λ) := w±

j (x;λ)e
−µ±

j (λ)xb±j (λ) for j = 1, . . . , N and w±
j (x;λ) = w±

j (x;λ)e
µ±
j (λ)xb±j (λ)

for j = N +1, . . . 2N . In particular, we put α±
j := µ±

j (0),m
±
j (x) := w±

j (x; 0),a
±
j := b±j (0)

and m±
j (x) := w

±
j (x; 0) = m±

j (x)e
±α±

j (λ)xa±
j (x).

Related to (H3)’, we assume:

(H4)’ m±
1 (x) = e−α±xa±, that is, m±

1 (x) = 1, α±
1 = α± > 0 and a±

1 = a± ∈ RN .([10])

Moreover, we consider the following settings and situations exactly the same as [10].

Quite similar to [10], l := t(l1, . . . , lr), H
±
j (l) := M±e

−α±lj

[
2

R

r∑
i=1

e−α±li − e−α±lj

]
and

H±(l) :=
t(H±

1 (l), . . . , H
±
r (l)), whereM± := ±2α±⟨Da±,a

∗
±⟩. We denote max{l1, . . . , lr}

and min{l1, . . . , lr} by max l and min l, respectively. Moreover, by quite a similar to [10],

we also define

S(x; l) :=

{
S(x− lj), x = xej ∈ Ωj (j = 1, . . . , r),

S−, x = xej ∈ Ωj (j = r + 1, . . . , R).
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Theorem4.2([10] Theorem2.3). Assume (H1)’-(H4)’. Then there exists l∗ ≫ 1 such

that for the initial date U (0,x) sufficiently close to S(x; l0) for min l0 > l∗ in {H2(Ω)}N ,
the solution U(t,x) of (4.1.1)((3) in [10]) satisfies

||U(t, ·)− S(·; l(t))||L∞(Ω) ≤ O(e−α−l∗)

as long as min l(t) > l∗. Moreover, there exists H̃−
j (l) such that H̃−

j (l) = H−
j (l) +

e−α−ljO(e−γmin l) and each lj(t) satisfies

dlj
dt

= H̃−
j (l) (j = 1, . . . , r)

as long as min l(t) > l∗ for γ > α−.

4.3 The proof of Theorem4.1

For self-completeness and in Chapters 5 and 6, I quote the proof of Theorem 4.1([10],

Theorem 2.2) into this section. Theorem4.2 ([10] Theorem2.3) can be shown the quite a

similar way to the proof of Theorem 4.1 ([10], Theorem 2.2) (see [10]). In 4.3, U and Uj

is identical to U and Uj (j = 1, . . . , r), respectively. S is identical to S of (H2).

Hereafter, I quote the same wording as “Proof of Theorem 2.2” in [10].

It suffices to show the proof of Theorem 4.1 ([10], Theorem2.2) only in the case of r < R.

For fixed l = t(l1, . . . , lr), we define the function G(x; l) on Ω satisfying

0 = D∂2xGj + F
′(0)Gj,

r∑
j=1

{∂xS(−lj) + ∂xGj(0)}+
R∑

j=r+1

∂xGj(0) = 0,

S(−l1) +G1(0) = · · · = S(−lr) +Gr(0) = Gr+1(0) = · · · = GR(0),

Gj(+∞) = 0,

, (4.3.5)

where Gj(x) = Gj(x; l) := G(xej; l) (j = 1, . . . , R). Since mk(x) (k = 1, . . . , 2N) are the

fundamental functions of the ODE

0 = D∂2xm+ F ′(0)m, x ∈ R

and mk(+∞) = 0 hold for k = 1, . . . , N,G(x) with G(+∞) = 0 is expressed by a

linear combination of mk(x) (k = 1, . . . , N), that is, Gj(x; l) =
N∑
k=1

cjkmk(x) and hence

Gj(x; l) = cj1(l)e
−αxa + O(e−γx) holds for γ > α by (H4). Hereafter, we use the same

symbol γ as a positive constant larger than α.
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Lemma4.1 ([10], Lemma4.1). The coefficients {cjk(l)} of Gj(x; l) are given by

cj1(l) = Cj(l) :=
2

R

r∑
k=1

e−αlk − e−αlj , 1 ≤ j ≤ r,

cj1(l) = Cj(l) :=
2

R

r∑
k=1

e−αlk , r + 1 ≤ j ≤ R,

cjk(l) = O(e−γ1 min l) 1 ≤ j ≤ R, 2 ≤ k ≤ N

(4.3.6)

as min l→ +∞ for γ1 > α.

Proof. Since S(x− l) has the asymptotic profile as l → +∞, S(x− l) → eα(x−l)a together

with ∂xS(x− l) → αeα(x−l)a, S(−l) = e−αla+O(e−γl) and ∂xS(−l) → αeα(x−l)a+O(e−γl)

hold for γ > α. Then substituting these profiles and Gj(0; l) = cj1(l)a+ bj, ∂xGj(0; l) =

−αcj1(l)a+b′j with bj =
N∑
k=2

cjkmk(0) and b
′
j =

N∑
k=2

cjk∂xmk(0) into the Kirchhoff bound-

ary condition of (4.3.5)((25) in [10]), we have

r∑
j=1

{αe−αlj − αcj1(l)}a−
R∑

j=r+1

αcj1(l)a+
R∑

j=1

{O(e−γlj) + b′j}+
R∑

j=r+1

b′j = 0,

e−αl1a+ c11(l)a+O(e−γl1) + b1 = · · · = e−αlra+ cr1(l)a+O(e−γlr) + br

= cr+1,1(l)a+ br+1 = · · · = cR,1(l)a+ bR.

(4.3.7)

Since {Cj(l)} defined (4.3.6)((26) in [10]) satisfy
r∑

j=1

{e−αlj − Cj(l)} −
R∑

j=r+1

Cj(l) = 0,

e−αl1 + C1(l) = · · · = e−αlr + Cr(l) = Cr+1(l) = · · · = CR(l),

(4.3.7)((27) in [10]) becomes by taking cj1(l) = Cj(l),
r∑

j=1

{O(e−γlj) + b′j}+
R∑

j=r+1

b′j = 0,

O(e−γl1) + b1 = · · · = O(e−γlr) + br = br+1 = · · · = bR.
(4.3.8)

(4.3.8)((28) in [10]) means that bj and b
′
j can be taken in O(e−γmin l) for γ > α and also

cjk(l) = O(e−γ1 min l) (1 ≤ j ≤ R, 2 ≤ k ≤ N) for some γ1 > α.

Thus we can get the function G(x; l) satisfying (4.3.5)((25) in [10]) and Gj(x; l) =

Cj(l)e
−αxa+O(e−γ1(x+min l)) for γ1 > α.
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We express the solution U(t,x) of (4.1.1)((3) in [10]) by U(t,x) = S(x; l) + G(x; l) +

V (t,x). Then, the equation (1.0.4)((2) in [10]) or (4.1.1)((3) in [10]) becomes the equation

of V
∂t{S(· − lj) +Gj + Vj} = L(lj)Vj + L(lj)Gj +Kj(l, Vj)(j = 1, . . . , r),

∂t{Gj + Vj} = L0Vj + L0Gj +Kj(l, Vj)(j = r + 1, . . . , R),
R∑

j=1

∂xVj(t,+0) = 0, V1(t,+0) = · · · = VR(t,+0),

(4.3.9)

where Vj(t, x) := V (t, xej), Gj(x) = Gj(x; l) := G(xej; l), L(l) := D∂2x + F ′(S(x −
l)), L0 := D∂2x + F

′(0). Kj(l, Vj)(j = 1, . . . , R) are functions satisfying |Kj(l, Vj)(x)| ≤
O(|Gj(x, l)|2 + |Vj(t, x)|2). Here we define the operators for U ∈ {H2(Ω)}N as follows:

{L(l)U}(xej) :=

{
{L(lj)Uj}(x) (j = 1, . . . , r),

{L0Uj}(x) (j = r + 1, . . . , R)

with the Kirchhoff boundary condition
R∑

j=1

∂xUj(+0) = 0, U1(+0) = . . . = UR(+0) and

{L0U}(xej) := {L0Uj}(x) (j = 1, . . . , R)

with
R∑

j=1

∂xUj(+0) = 0, U1(+0) = · · · = UR(+0),where Uj(x) := U(xej).

Lemma ([10], Lemma 4.2). The spectral set
∑

(L0) satisfies
∑

(L0) ⊂ {λ ∈ C; Re(λ) <
−γ2} for γ2 > 0.

Proof. Let us consider the equation(L0 − λ)U = f for arbitrarily given f ∈ {L2(Ω)}N

and λ with Re(λ) > −ρ0. Here define maps LD, LN :{L2(R+)}N → {L2(R)}N

LD[h](x) :=

{
h(x), x > 0,

−h(−x), x < 0,
LN [h](x) :=

{
h(x), x > 0,

h(−x), x < 0

for h ∈ {L2(R+)}.
For f ∈ {L2(Ω)}N ,fj(x) = f(xej) (j = 1, . . . , R) belong to {L2(R+)}N and hence

we can put WD
j (λ) = (λ − L0)

−1LD[fj],W
N
j (λ) = (λ − L0)

−1LN [fj] ∈ {H2(R)}N for

Re(λ) > −ρ0 by the assumption (H1). Since (λ − L0)(W
D
j − WN

j ) = 0 on R+ and

WD
j (x;λ)−WN

j (x;λ) → 0 as x→ +∞,WD
j −WN

j is expressed by the linear combination
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of the fundamental functions asWD
j (x;λ)−WN

j (x;λ) =
N∑
k=1

ak(λ)wk(x;λ) for some ak(λ).

In general, all of U in the forms of U(x) = WN(x;λ) +
N∑
k=1

ak(x;λ)wk(x;λ) satisfies

(λ− L0)U = f on R+.

Let B0(λ) be the Dirichlet-Neumann map of (λ − L0) on R+ defined by ∂xm(0) =

B0(λ)m(0) for the function m(x) satisfying (λ − L0)m = 0 on R+ and m(+∞) =

0. In fact, it is defined as the linear map B0(λ) :
N∑
k=1

akbk(0;λ) →
N∑
k=1

ak{∂xbk(0;λ) −

µk(λ)bk(0;λ)}. Now we define the function U(x) = U0[f ](x) on Ω by

U(xej) = Uj(x) := WN
j (x;λ) +mj(x;m

∗ −WN
j (0;λ)),

where m∗ :=
1

R

R∑
k=1

WN
k (0;λ) and m(x;m0) is the function on R+ satisfying

{
(λ− L0)m = 0, x ∈ R+,

m(0) =m0,m(+∞) = 0

for given m0 ∈ RN , which is determined uniquely. We will show that U(x) satisfies the

Kirchhoff boundary condition as follows:

First, we note that Uj(0) = WN
j (0;λ) + (m∗ −WN

j (0;λ)) =m∗ holds for j = 1, . . . , R.

Next, since

∂xUj(0) = ∂xW
N
j (0;λ) + ∂xmj(0;m

∗ −WN
j (0;λ))

= 0+B0(λ)mj(0;m
∗ −WN

j (0;λ))

= B0(λ)(m
∗ −WN

j (0;λ))

holds, we see
R∑

j=1

∂xUj(0) = B0(λ){Rm∗ −
R∑

j=1

WN
j (0;λ)} = 0.

Thus, the resolvent (λ− L0)
−1 exists for Re(λ) > −ρ0, which is given by (λ− L0)

−1f =

U0[f ].

Lemma ([10], Lemma4.3). The spectral set
∑

(L(l)) consists of Σ(L(l)) = Σ0(l)∪Σ1(l)

for sufficiently large min l, where Σ0(l) ⊂ {λ ∈ C; |λ| < −γ3e−θ0αmin l} and Σ1(l) ⊂ {λ ∈
C; Re(λ) < −γ4} for positive constants γ3, γ4 and 0 < θ0 < 1
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Proof. Define the linear map B(x; l) on Ω by

B(xej; l) = Bj(x; lj) :=

{
F ′(S(x− lj))− F ′(0), j = 1, . . . , r,

O, j = r + 1, . . . , R,

where O denotes the zero matrix. Note that |Bj(x; lj)| ≤ O(e−α|x−lj |) and L(l) = L0 +

B(·, l) hold. Fixing l̄ > 0 sufficiently large and taking min l > l, we put xk = xk(l) :=
k
5
min l and intervals I1 := (x2, x3), I2 := (x1, x4) on each Ωj. Let {χk(x)} be the smooth

cut-off functions satisfying 0 ≤ χk(x) ≤ 1,

χ1(x) =

{
1, x ≤ x2,

0, x ≥ x3,
χ2(x) =

{
0, x ≤ x2,

1, x ≥ x3,
χ1(x) + χ2(x) = 1

and

χ3(x) =

{
1, x ∈ I1,

0, x /∈ I2.

Hereafter in this section, we consider the equation (λ− L(l))U = f for f ∈ {L2(Ω)}N

and λ ∈ Σ2(l; θ), where Σ2(l; θ) := {λ ∈ C; |λ| ≥ γ3e
−θαmin l, Re(λ) ≥ −ρ1} for 0 < θ < 1

and 0 < ρ1 < ρ0. Then we can define the operator D(λ) on Ω by

{D(λ)f}(xej) :=

{
χ1(x){(λ− L0)

−1f}(xej) + χ2(x){(λ− L(lj))
−1LN [fj]}(x), j = 1, . . . , r,

{(λ− L0)
−1f}(xej), j = r + 1, . . . , R

for λ ∈ Σ2(l; θ), where fj(x) = f(xej). We represent the restriction of D(λ) on Ωj

by {Dj(λ)f}(x) := {D(λ)f}(xej). Here we note that ||(λ − L0)
−1|| ≤ γ and ||(λ −

D(λ))−1|| ≤ γ′

|λ|
for Re(λ) > −ρ1, where γ and γ′ are positive constants independent of

λ ∈ Σ2(l; θ),f ∈ {L2(Ω)}N and l with min l > l̄. The same notations γ, γ′ and additional

γ′′, . . . are used again below as general positive constants independent of them.

First, we note that for x > x3, {(λ − L(lj))Dj(λ)f}(x) = fj(x) (j = 1, . . . , r) and

{(λ− L0)Dj(λ)f}(x) = fj(x) (j = r + 1, . . . , R) hold, which means

{(λ− L(l))D(λ)f}(xej) = fj(x) (x > x3). (4.3.10)

For 0 < x < x2, {Dj(λ)f}(x) = {(λ−L0)
−1f}(xej) holds. Hence we see for j = 1, . . . , r,

{(λ− L(lj))Dj(λ)f}(x) = {(λ− L0 −Bj(lj))[{(λ− L0)
−1f}(·ej)](x)

= fj(x)−Bj(x; lj){(λ− L0)
−1f}(xej)

= fj(x) + {O(e−
3
5
αmin l)f}(xej)
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because of |Bj(x; lj)| ≤ O(e−α|x−lj |) ≤ O(e−α|x2−lj |) ≤ O(e−
3
5
αmin l) for 0 < x < x2 =

2
5
min l and for j = r + 1, . . . , R,

{(λ− L0)Dj(λ)f}(x) = {(λ− L0)[{(λ− L0)
−1f}(·ej)](x)

= fj(x).

Thus, we have

{(λ− L(l))D(λ)f}(xej) = fj(x) + (Λ1(l)f)(xej)(0 < x < x2), (4.3.11)

where {Λ1(l)f}(xej) := χ1(x)Bj(x; lj){(λ − L0)
−1f}(xej) is an bounded operator on

{L2(Ω)}N satisfying ||Λ1(l)|| ≤ O(e−
3
5
αmin l).

Finally, we give the estimation for x2 < x < x3. Let Uj(x) = {(λ − L0)
−1f}(xej) and

Vj(x) = {(λ− L(lj))
−1LN [fj]}(x). Then we see

{(λ− L0)Vj}(x) = {(λ− L(lj) +Bj(·; lj))Vj}(x)
= LN [fj](x) +Bj(x; lj){(λ− L(lj))

−1LN [fj]}(x)
= fj(x) +Bj(x; lj){(λ− L(lj))

−1LN [fj]}(x)

for x2 < x < x3. By the multiplication of χ3(x), we can assume that the above equation

holds for any x > 0, that is,

{(λ− L0)Vj}(x) = fj(x) + χ3(x)Bj(x; lj)(λ− L(lj))
−1LN [fj](x) (4.3.12)

on R+. Since |χ3(x)Bj(x; lj)| ≤ O(e−α(lj−x3)) ≤ O(e−
2
5
αmin l) holds for x > 0, we have

||χj,3Bj(·; lj){(λ− L(lj))
−1LN [fj]}||L2

+
≤ γ′e−

2
5
αmin l

|λ|
||fj||L2

+

≤ γ′e
−α

(
2
5
min l−θmin l

)
γ3

||fj||L2
+
≤ γe

−α
(
2
5
−θ

)
min l||fj||L2

+

for λ ∈ Σ2(l; θ), where γ
′ and γ are positive constants.

Let Wj(x) = Wj[fj](x) := (λ − L0)
−1LN [gj](x) with gj(x) := χ3(x)Bj(x; lj){(λ −

L(lj))
−1LN [fj]}(x). Then ||Wj[fj]||H2(R+) ≤ γ′e

−α
(
2
5
−θ

)
min l||fj||L2

+
holds for γ′ > 0

together with Vj − Uj − Wj ∈ {L2(R+)}N and (λ − L0)(Vj − Uj − Wj) = 0. Hence

Vj(x)− Uj(x)−Wj(x) is represented by fundamental functions {wj} in the form of

Vj(x)− Uj(x)−Wj(x) =
N∑
j=1

aje
−µj(λ)xbj(x;λ).
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Since ||Vj − Uj −Wj||L∞(R+) ≤ γ||Vj − Uj −Wj||H2(R+) ≤ γ′||f ||L2(Ω) hold for γ > 0 and

γ′ > 0 and also Re(µj(λ)) > ρ′ for a positive constant ρ′ by (H1), we have ||Vj − Uj −
Wj||H2(I1) ≤ γ′′e−ρ′x2||f ||L2(Ω) = γ′′e−

2
5
ρ′ min l||f ||L2(Ω) for γ

′′ > 0. Then we see

{Dj(λ)f}(x) = χ1(x)Uj(x) + χ2(x)Vj(x)

= {χ1(x) + χ2(x)}Uj(x) + χ2(x){Vj(x)− Uj(x)}

= Uj(x) + W̃j(x),

where W̃j(x) := χ2(x){Vj(x)− Uj(x)}. W̃j(x) is estimated on I1 as

||W̃j||H2(I1) ≤ ||χ2(Vj − Uj −Wj)||H2(I1) + ||χ2Wj||H2(I1)

≤ γ′′e−
2
5
ρ′ min l||f ||L2(Ω) + γ′e

−α
(
2
5
−θ

)
min l||fj||L2

+

≤ γ′′′e−ρ′′ min l||fj||L2(Ω)

for γ′′′ > 0 and ρ′′ > 0 by taking 0 < θ < 2
5
. Therefore, it follows on I1 that

{(λ− L(lj))Dj(λ)f}(x) = {(λ− L(lj))(Uj + W̃j)}(x)

= {(λ− L0)Uj}(x) +Bj(x; lj)Uj(x) + {(λ− L(lj))W̃j}(x)

= fj(x) + {B̃j(λ)f}(x)

for j = 1, . . . , r, where {B̃j(λ)f}(x) := Bj(x; lj)Uj(x) + {(λ− L(lj))W̃j}(x) with

||B̃j(λ)f ||L2(I1) ≤ O(e−
2
5
αmin l + e−ρ′′ min l)||f ||L2(Ω) ≤ O(e−γmin l)||f ||L2(Ω)

for a positive constant γ.

On the other hand, (λ− L0)Dj(λ)f = fj is clear for j = r + 1, . . . , R. Thus, we have

{(λ− L(l))D(λ)f}(xej) = fj(x) + {Λ2(λ)f}(xej) (x2 < x < x3) (4.3.13)

with ||Λ2(λ)f ||L2(I1) ≤ γ′e−γmin l||f ||L2(Ω) for a positive constant γ′.

(4.3.10)((30) in [10]), (4.3.11)((31) in [10]) and (4.3.13)((33) in [10]) lead the equation

for the operator L(l) on {L2(Ω)}N

(λ− L(l))D(λ)f = f + Λ3(λ)f

with ||Λ3(λ)f ||L2(Ω) ≤ γ′e−γmin l||f ||L2(Ω) for a positive constant γ and γ′.Taking l̃ suffi-

ciently large, we see that Id+ Λ3(λ) is invertible for min l > l̃ and hence

(λ− L(l))D(λ)(Id+ Λ3(λ))
−1f = f

holds, which implies that the resolvent (λ−L(l))−1 exists for λ ∈ Σ2(l; θ0) with 0 < θ0 <
2
5
.
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Remark (Remark 4.4 in [10]). From the proof, the resolvent (λ− L(l))−1 is given

by (λ− L(l))−1 = D(λ)(Id+ Λ3(λ))
−1 and the estimate ||(λ− L(l))−1|| ≤ γ

(
1 +

1

|λ|

)
is obtained.

Let X := {L2(Ω)}N and Qp(l), Rp(l) be projections on X corresponding to the spectral

sets Σ0(l) and Σ1(l) of the operator L(l), respectively. We also denote the projections

on {L2(R)}N corresponding to spectral sets {0} and Σ1 of L by Qp and Rp, respectively,

according to (H2). Then we note that the projectionQp is given byQpU = ⟨U,Φ∗⟩L2(R)∂xS

for U ∈ {L2(R)}N by (H2) and (H3). Similarly, we give a projection Q+
p (l) on L2

+ =

{L2(R+)}N by {Q+
p (l)U}(x) := ⟨U,Φ∗(·; l)⟩L2

+
∂xS(x − l) for U ∈ L2

+, where we define

Φ∗(x; l) :=
1

⟨∂xS(· − l),Φ∗(· − l)⟩L2
+

Φ∗(x− l) so as to satisfy the normalization of ⟨∂xS(·−

l),Φ∗(·; l)⟩L2
+
= 1.

Here, we note that the resolvent (λ− L(l))−1 is given by (λ− L(l))−1 = D(λ) + Λ4(λ)

with ||Λ4(λ)||X ≤ γe−γ′ min l for λ ∈ Σ2(l; θ0) from the proof of Lemma ([10], Lemma4.3),

where γ andγ′ are certain positive constants. Then by taking the Dunford integral around

Σ0(l), we have

{Qp(l)U}(xej) =

{
χ2(x){Qp(lj)LN [Uj]}(x) + {Λ5(l)U}(xej), j = 1, . . . , r,

{Λ5(l)U}(xej), j = r + 1, . . . , R

for U ∈ X, where Uj(x) := U(xej) and Λ5(l) is a bounded operator onX with ||Λ5(l)||X ≤
O(e−γ5 min l) for a positive constant γ5. Hence putting

{Q̃p(l)U}(xej) :=

{
{Q+

p (lj)Uj}(x), j = 1, . . . , r,

0, j = r + 1, . . . , R

for U ∈ X, we see that ||Qp(l) − Q̃p(l)||X ≤ O(e−γ5 min l) ≪ 1 holds for sufficiently large

min l, which implies that the spaces Ẽ(l) := Q̃p(l)X and E(l) := Qp(l)X are homeo-

morphic and that there exist {λ1(l), . . . , λr(l)} ⊂ C, {Φ1(l), . . . ,Φr(l)} ⊂ X satisfying

|λj(l)| ≤ γ3e
−θ0αmin l and

Φj(l)(xek) =

{
χ2(x)∂xS(x− lk) +O(e−γ5 min l) = ∂xS(x− lk) +O(e−γ5 min l), k = j,

O(e−γ5 min l), k ̸= j

such that Σ0(l) = {λ1(l), . . . , λr(l)} and E(l) = span{Φ1(l), . . . ,Φr(l)}.
The adjoint operator L∗(l) also has the same properties as L(l), specifically, Σ0(l) ⊂
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Σ(L∗(l)) and there exist {Φ∗
1(l), . . . ,Φ

∗
r(l)} ⊂ X satisfying

Φ∗
j(l)(xek) =

{
Φ∗(x− lk) +O(e−γ5 min l), k = j,

O(e−γ5 min l), k ̸= j

such that the corresponding eigenspace, say E∗(l) to the spectral set Σ0(l) is given by

E∗(l) = span{Φ∗
1(l), . . . ,Φ

∗
r(l)}. Let E⊥(l) := Rp(l)X. We note that E⊥(l) is expressed

as E⊥(l) = {V ∈ X; ⟨V,Φ∗(l)⟩X = 0 (j = 1, . . . , r)}.

Lemma ([10], Lemma 4.5). {Φ1(l), . . . ,Φr(l)} and {Φ∗
1(l), . . . ,Φ

∗
r(l)} can be taken as

Φj(l)(xek) =


∂xS(x− lj) + α

(
2

R
− 1

)
e−αlje−αxa+ e−αljO(e−γ7 min l + e−γ6x), k = j,

2α

R
e−αlje−αxa+ e−αljO(e−γ7 min l + e−γ6x), k ̸= j.

(4.3.14)

and

Φ∗
j(l)(xek) =


Φ∗(x− lj)− α

(
2

R
− 1

)
e−αlje−αxa∗ + e−αljO(e−γ7 min l + e−γ6x), k = j,

−2α

R
e−αlje−αxa∗ + e−αljO(e−γ7 min l + e−γ6x), k ̸= j.

(4.3.15)

for γ6 > α and γ7 > 0. Here we denoted remainders by O(e−γ7 min l + e−γ6x) when

the remainders are expressed as e−γ7 min lΦ̃(x) + e−γ6xΨ̃(x) for some Φ̃, Ψ̃ ∈ {L2(Ω)}N ∪
{L∞(Ω)}N .

Proof. We only show (4.3.14) ((34) in [10]). Define Φj(x) by

Φjk(x) := Φj(xek) =

{
∂xS(x− lj), k = j,

0, k ̸= j

and ψj(x) by 

L0ψjk = 0, x > 0,

{∂2xS(−lj) + ∂xψjj(0)}+
R∑

k ̸=j

∂xψjk(0) = 0,

∂xS(−lj) + ψjj(0) = ψjk(0) (k ̸= j),

ψjk(∞) = 0,
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where ψjk(x) := ψj(xek). Then by the quite similar way to the proof of Lemma4.1 ([10],

Lemma4.1),

ψjj(x) = α(
2

R
− 1)e−αlje−αxa+O(e−(αx+γ′

6lj) + e−(γ′
6x+αlj))

= α(
2

R
− 1)e−αlje−αxa+ e−αlje−αxO(e−γ′

7lj + e−γ′
7x), j = k,

ψjk(x) =
2α

R
e−αlje−αxa+O(e−(αx+γ′

6lj) + e−(γ′
6x+αlj))

=
2α

R
e−αlje−αxa+ e−αlje−αxO(e−γ′

7lj + e−γ′
7x), k ̸= j,

hold for γ′6 > α and γ′7 > 0. Hence for j = 1, . . . , r, we see

{L(l)(Φj + ψj)}(xek) =


{L(lk)(∂xS(· − jj) + ψjj)}(x) = {L(lj)ψjj}(x), k = j,

{L(lj)ψjk}(x), k = 1, . . . , r, k ̸= j,

{L0ψjk}(x) = 0, k = r + 1, . . . , R

and therefore

{L(lk)ψjk}(x) ={L0ψjk}(x) +Bk(x; lk)ψjk(x) = 0+O(e−α|x−lk| · e−αlje−αx),

||L(lk)ψjk||L2
+
≤ O(e−αlje−αlk

√
lk + 1)

hold, where Bk(x; lk) = B(xek; l) = F ′(S(x − lk)) − F ′(0) in Lemma ([10], Lemma4.3).

Thus, we have ||L(l)(Φj + ψj)||X ≤ O(e−αlje−γ8 min l) for γ8 > 0, which means that

||Rp(l)(Φj + ψj)||L∞(Ω) ≤ O(e−αlje−γ8 min l) and that we can take

Φj(l) = Φj + ψj +O(e−αlje−γ8 min l)(j = 1, . . . , r),

that is, for j = 1, . . . , r,

Φj(l)(xek) =


∂xS(x− lj) + α(

2

R
− 1)e−αlje−αxa+ e−αljO(e−γ8 min l + e−γ′

6x), k = j,

2α

R
e−αlje−αxa+ e−αljO(e−γ8 min l + e−γ′

6x), k ̸= j.

Quite similarly, we have

Φ∗
j(l) = Φ∗

j + ψ∗
j +O(e−αlje−γ8 min l) (j = 1, . . . , r),

where Φ∗
j(x) is the function of

Φ∗
jk(x) := Φ∗

j(xek) =

{
Φ∗(x− lj), k = j,

0, k ̸= j
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and ψ∗
j (x) by 

L∗
0ψ

∗
jk = 0, x > 0,

{∂xΦ∗(−lj) + ∂xψ
∗
jj(0)}+

R∑
k ̸=j

∂xψ
∗
jk(0) = 0,

Φ∗(−lj) + ψ∗
jj(0) = ψ∗

jk(0) (k ̸= j),

ψ∗
jk(+∞) = 0,

where ψ∗
jk(x) := ψ∗

j (xek). They are calculated as

Φj(l)(xek) =


Φ(x− lj)− α(

2

R
− 1)e−αlje−αxa∗ + e−αljO(e−γ8 min l + e−γ′

6x), k = j,

−2α

R
e−αlje−αxa∗ + e−αljO(e−γ8 min l + e−γ′

6x), k ̸= j

for j = 1, . . . , r.

Thus, the proof is completed.

Consider the solution U(t,x) of (1.0.4)((2) in [10]) or (4.1.1)((3) in [10]). Decomposing

the solution U(t,x) by U(t,x) = S(x; l(t)) + G(x; l(t)) + V(t,x) with V(t) ∈ E⊥(l(t)),

we see (4.1.1)((3) in [10]) becomes (4.3.9)((29) in [10]), that is,

∂t{S(·; l(t)) +G(·; l(t)) + V(t, ·)} = L(l){G(·; l(t)) + V(t, ·)}+K(l(t),V(t, ·)), (4.3.16)

where K(l,V) are functions satisfying Kj(l,V) = Kj(l,Vj) on Ωj and |Kj(l,Vj)(x)| ≤
O(|Vj(t, x)|2 + |Gj(x; l)|2) (j = 1, . . . , R) as in (4.3.9)((29) in [10]) for Vj = Vj(t, x) :=

V(t, xej). Fixing l∗ := (l∗, . . . , l∗) ∈ Rr for sufficiently large l∗ ≫ 1, we define the map

Π(l) : E⊥(l∗) → E⊥(l) by Π(l)W := V (1) for W ∈ E⊥(l∗), where V (τ) is the solution of
dV

dτ
= −

r∑
j,k=1

(lj − l∗)⟨V, ∂ljΦ∗
k(θ(τ))⟩XΦk(θ(τ)),

V (0) = W,

where θ(τ) := (1−τ)l∗+τ l. Then Π(l) is a homeomorphism from E⊥(l∗) to E⊥(l), which

was proved in Lemma4.1 of [8]([5] in [10]). Transforming V(t, ·) = Π(l(t))W(t, ·), we see

(4.3.16)((36) in [10]) is

⟨l̇, ∂l{S(·; l) +G(·; l)}+ ∂lΠ(l)W⟩+Π(l)∂tW = L(l){G(·; l) + Π(l)W}+K(l,Π(l)W),

(4.3.17)

or equivalently {
l̇ = H(l,W),

∂tW = A(l)W + J(l,W)
(4.3.18)
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by operating the projections Qp(l) and Rp(l) on (4.3.17)((37) in [10]), where A(l) :=

Π−1(l)L(l)Π(l) and

J(l,W) = Π−1(l)Rp(l){L(l)G(l) +K(l,Π(l)W)− ⟨H(l,W), ∂l{S(·; l) +G(·; l)}⟩}.

Here ⟨·, ·⟩means the usual inner product of vectors in Rr. We also note that ⟨l̇, ∂lΠ(l)W⟩ ∈
E(l) from the definition of Π(l) and hence Rp(l)⟨l̇, ∂lΠ(l)W⟩ = 0 holds.

H(l,W) is obtained by taking the inner product of (4.3.17)((37) in [10]) with Φ∗
j(l) in

X, which is

⟨⟨l̇, ∂l{S(·; l) +G(·; l)}+ ∂lΠ(l)W⟩,Φ∗
j(l)⟩X = ⟨{L(l)G(·; l) +K(l,Π(l)W)},Φ∗

j(l)⟩X .
(4.3.19)

Since

⟨⟨l̇, ∂lS(·; l)⟩,Φ∗
j(l)⟩X =

r∑
k=1

l̇k⟨∂lkS(·; l),Φ∗
j(l)⟩X

= −
r∑

k=1

l̇k⟨S(· − lk),Φ
∗
j(l)(·ek)⟩L2

+

= −l̇j{1 +O(e−γ5 min l)} −
r∑

k ̸=j

l̇kO(e
−γ5 min l)

holds, the matrix

B(l,W) = {ajk}1≤j,k≤r := {⟨∂lk{S(·; l) +G(·; l) + Π(l)W},Φ∗
j(l)⟩X}1≤j,k≤r

is invertible for a sufficiently small W . Since (4.3.19)((39) in [10]) is equivalently written

as

B(l,W)l̇ = b(l,W),

where

b(l,W) :=

⟨L(l)G(·; l) +K(l,Π(l)W),Φ∗
1(l)⟩X

...

⟨L(l)G(·; l) +K(l,Π(l)W),Φ∗
r(l)⟩X


H(l,W) in (4.3.18)((38) in [10]) is given byH(l,W) := B−1(l,W)b(l,W). LetH(l,W) =
t(H1(l,W), . . . ,Hr(l,W)) and b(l,W) = t(b1(l,W), . . . , br(l,W)).

Lemma ([10], Lemma 4.6). There exists γ9 > α such that

Hj(l,W) = {M0Cj(l) +O(e−γ9 min l)}e−αlj + e−αljO(||G(·; l)||2L∞(Ω) + ||W||2L∞(Ω))

holds for min l ≥ l∗ and a sufficiently small W .
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Proof. We express Φ∗
j(l) by Φ∗

j(l) = Φ∗
j +ψ∗

j + η∗j (j = 1, . . . , r) according to Lemma ([10],

Lemma4.5), where Φ∗
jand ψ

∗
j were already defined in Lemma ([10], Lemma4.5) and η∗j are

functions satisfying ||η∗j ||L∞(Ω) ≤ O(e−αlje−γ8 min l). By L∗(l) = L∗
0 +

tB(·; l) for B(x; l)

in Lemma ([10], Lemma4.3) and Φ∗(x− l) → −e−α|x−l|a∗ = −e−α(x−l)a∗ as l → +∞, we

have

⟨L(l)G(·, l),Φ∗
j(l)⟩X =

r∑
k=1

⟨L(lk)Gk(·, l),Φ∗
j(l)(·ek)⟩L2

+
+

R∑
k=r+1

⟨L0Gk(·, l),Φ∗
j(l)(·ek)⟩L2

+

= ⟨L(lj)Gj(·, l),Φ∗
j(l)(·ej)⟩L2

+
+

r∑
k ̸=j

⟨L(lj)Gk(·, l),Φ∗
j(l)(·ek)⟩L2

+
+ 0

= ⟨L(lj)Gj(·, l),Φ∗
jj + ψ∗

jj)⟩L2
+
+ ⟨(L0 +Bj(·, lj))Gj(·, l), η∗jj)⟩L2

+

+
r∑

k ̸=j

⟨{L0 +Bk(·, lk)}Gk(·; l),0+ ψ∗
jk + η∗jk⟩L2

+

= ⟨L(lj)Gj(·, l),Φ∗
jj + ψ∗

jj⟩L2
+

+ ⟨Bj(·; lj)Gj(·, l), η∗jj⟩L2
+
+

r∑
k ̸=j

⟨Bk(·, lk)Gk(·; l), ψ∗
jk + η∗jk⟩L2

+
.

Since we have

⟨L(lj)Gj(·, l),Φ∗
jj + ψ∗

jj⟩L2
+

= [⟨D∂xGj(x; l),Φ
∗
jj(x) + ψ∗

jj(x)⟩]+∞
0 − [⟨DGk(x; l), ∂x{Φ∗

jj(x) + ψ∗
jj(x)}⟩]+∞

0

+ ⟨Gj(·, l), L∗(lj)(Φ
∗
jj + ψ∗

jj)⟩L2
+

= αCj(l) · {−e−αlj − α

(
2

R
− 1

)
e−αlj}⟨Da,a∗⟩

+ Cj(l) · {−αe−αlj + α2

(
2

R
− 1

)
e−αlj}⟨Da,a∗⟩+O(e−αlje−γ′ min l)

+ ⟨Gj(·; l), L∗(lj)Φ
∗
jj⟩L2

+
+ ⟨Gj(·; l), (L∗

0 +
tBj(·; lj)ψ∗

jj⟩L2
+

= −2α⟨Da,a∗⟩Cj(l)e
−αlj +O(e−αlje−γ′ min l) + ⟨Gj(·; l), tBj(·; lj)ψ∗

jj⟩L2
+
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it follows that

⟨L(l)Gj(·, l),Φ∗
jj(l)⟩X

= −2α⟨Da,a∗⟩Cj(l)e
−αlj +O(e−αlje−γ′ min l) +

r∑
k=1

⟨Bk(·; lk)Gk(·; lj), ψ∗
jk + η∗jk⟩L2

+

= −2α⟨Da,a∗⟩Cj(l)e
−αlj +O(e−αlje−γ′ min l)

+
r∑

k=1

∫ +∞

0

O(e−α|x−lk|e−αmin le−αx(e−αlje−αx + e−αlje−γ8 min l))dx

= −2α⟨Da,a∗⟩Cj(l)e
−αlj +O(e−αlje−γ′ min l)

+ e−αlje−αmin l

r∑
k=1

∫ ∞

0

O(e−α|x−lk|e−αx(e−αx + e−γ8 min l))dx

= −2α⟨Da,a∗⟩Cj(l)e
−αlj +O(e−αlje−γ′ min l) + (e−αlje−αmin l

r∑
k=1

O(e−αlk + e−γ8 min le−αlk lk)

= −2α⟨Da,a∗⟩Cj(l)e
−αlj +O(e−αlje−γ′′ min l)

= {−M0Cj(l) +O(e−γ′′ min l)}e−αlj

for γ′, γ′′ > α.

The remainder of the proof of obvious from Lemma ([10], Lemma4.5).

Now, we denote by Xω for 0 < ω < 1 the fractional powered space of X by A(l∗) with

the embedding to {L∞(Ω)}N . We define

δ(l) :=

{
e−αmin l (min l ≥ l∗),

e−αl∗ (min l < l∗),
δ(l; l′) :=

{
e−αmin{l,l′} (min{l, l′} ≥ l∗),

e−αl∗ (min{l, l′} < l∗)

and

W̃ (D1,D2) := {W ∈ C(Rr;E⊥(l∗) ∩Xω);

||W(l)||ω ≤ D1δ(l), ||W(l)−W(l′)||ω ≤ D2δ(l, l
′)|l− l′|}.

Here we note to extend the region {min l ≥ l∗} of l to the whole space Rr such that all

estimates above hold by using an appropriate cut-off function such as ||G(·; l)||L∞(Ω) ≤
O(δ(l)) holds for l ∈ Rr. As the result, we assume that for l ∈ Rr and W ∈ W̃ (D1, D2),

the result in Lemma (Lemma 4.6 in [10]) and

||J(l,W)||X ≤ O(||G(l)||L∞(Ω) + ||G(l)||L∞(Ω)||W||L∞(Ω) + ||W||2L∞(Ω) + |H(l,W)|),

|Hj(l,W)−Hj(l
′,W ′)| ≤ O(δ(lj, l

′
j) · δ(l, l′)){|l− l′|+ ||W −W ′||L∞(Ω)},

||J(l,W)− J(l′,W ′)||X ≤ O(δ(l, l′)){|l− l′|+ ||W −W ′||L∞(Ω)}
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hold. Then we see

||J(l,W)||X ≤ O(δ(l) + (D1 +D2
1)δ

2(l))

for W ∈ W̃ (D1, D2).Remainders are quite a similar way to [8]([5] in [10]) and we can

construct a function σ∗ ∈ W̃ (D1, D2) for appropriate D1 and D2 such that M∗ :=

{(l, σ∗(l)); l ∈ Rr} is an attractive invariant manifold of (4.3.18)((38) in [10]). It means

that the function

U(t) = S(l(t)) +G(l(t)) + Π(l(t))σ∗(l(t))

with the solution 
dl

dt
= H(l, σ∗(l)),

l(0) = l0 ∈ Rr

is a solution of (4.1.1)((2) in [10]), (1.0.4)((3) in [10]). Lemma ([10], Lemma4.6) leads

Hj(l, σ
∗(l)) =M0Cj(l)e

−αlj + e−αlj(e−γ10 min l) = Hj(l) + e−αlj(e−γ10 min l)

for γ10 > α. Thus the proof Theorem4.1 ([10], Theorem2.2) is completed by taking

H̃(l) = H(l, σ∗(l)) for H̃(l) := t(H̃1(l), . . . , H̃r(l)).
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5 The pulse dynamics for

reaction-diffusion systems on an

H-shaped metric graph

5.1 Introduction

Exactly as in Chapter 4, we define e0 := (1, 0) ∈ R2 and ek, ẽk, k ∈ N are the unit

direction vectors of Ωk satisfying e0 ̸= ±ek, e0 ̸= ±ẽk and ei ̸= ±ej(i ̸= j), ẽi ̸= ±ẽj(i ̸=
j). Let an metric graph Ω be a graph satisfying

Ω := Ω0 ∪
mL⋃
j=1

ΩL
j ∪

mR⋃
i=1

ΩR
i

for mL,mR ∈ N with mR,mL ≥ 2, where Ω0 := {xe0 ∈ R2 | 0 < x < K}, ΩL
j := {xej ∈

R2 (j = 1, . . . ,mL) |x > 0} and ΩR
i := {xẽi+Ke0 ∈ R2 (i = 1, . . . ,mR) |x > 0}. Moreover

we denote the restriction of u to Ω0 as u0(x) := u(xe0), u to ΩL
j as uj(x) := u(xej), and

u to ΩR
i as ũi(x) := u(xẽi +Ke0) for a function u on Ω. In this section, we consider the

following reaction-diffusion systems on Ω

∂tU0 = D∂xxU0 + F (U0), t > 0, 0 < x < K,

∂tUj = D∂xxUj + F (Uj), t > 0, x > 0 (j = 1, . . . ,mL),

∂tŨi = D∂xxŨi + F (Ũi), t > 0, x > 0 (i = 1, . . . ,mR),

∂xU0(t,+0) +

mL∑
j=1

∂xUj(t,+0) = 0,U0(t,+0) = Uj(t,+0) (j = 1, . . . ,mL),

∂xU0(t,K) =

mR∑
i=1

∂xŨi(t,+0),U0(t,K) = Ũi(t,+0) (i = 1, . . . ,mR)

(5.1.1)

for K ≫ 1, where F : RN → RN is a sufficiently smooth function. Here U(t,x) ∈ RN is a

vector valued function of t and x ∈ Ω, and U0(t, x) := U(t, xe0) and Uj(t, x) := U(t, xej)

and Ũi(t, x) := U(t, xẽi+Ke0). We call boundary conditions of (5.1.1) at junction points

O := (0, 0) and K := (K, 0) “Kirchhoff’s boundary condition” in this thesis.
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From now on, we will also express (5.1.1) as

∂tU = D∆ΩU + F (U) (5.1.2)

on Ω with the Kirchhoff’s boundary condition.

We call Ω ∪ {O} ∪ {K} “H-shaped metric graph”(Fig 6) in this thesis. An H-shaped

metric graph connects each vertex of the two star-shaped metric graphs by a line segment

and is an extended domain of the star-shaped metric graph. If K = 0, the domain is the

same as that of the star-shaped metric graph. Such a graph connected the origin of mul-

tiple star-shaped metric graphs by line segments is more important from the application

viewpoint than star-shaped metric graphs. In nature, channel geometries and nerve fibers

are branching geometries formed by connecting the origin points of multiple star-shaped

metric graphs with line segments. Such geometries are often seen in nature. However,

analyzing reaction-diffusion systems in such a region is difficult because the shape is more

complicated than star-shaped metric graphs. As a first step to considering the problem in

such a domain, the issue of reaction-diffusion systems on H-shaped metric graphs, which

are relatively easy to handle, has been studied in recent years. In particular, [21] obtains a

pioneering result for a scalar reaction-diffusion equation on H-shaped metric graphs. [21]

has been reported on the behavior of front-progressive and front-type stationary solutions.

Moreover, this result tells us that the length K of the line segment connecting the origin

points is closely related to the existence of front-type stationary solutions and front-type

traveling wave solutions. On the other hand, as mentioned in chapter 4, there is no result

for the pulse dynamics for reaction-diffusion systems on H-shaped metric graphs. How-

ever, If K ≫ 1 holds, we can directly apply the theory of [10] to (5.1.2). As a result, I

have obtained some results. I report some results in this chapter.

Figure 6: The H-shaped metric graph in the case of mL = 2,mR = 2.
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5.2 Main results of the dynamics on an H-shaped

metric graph

In this section, The assumptions and notation are the same as in chapter 4. More-

over we denote L2
K := {L2(0, K)}N for K > 0. The inner product L2

K by ⟨U, V ⟩L2
K

:=∫ K

0

⟨U(x),V (x)⟩dx for U ,V ∈ L2
K . H

2
K , L

∞
K are similarly defined by H2

K := {H2(0, K)}N

and L∞
K := {L∞(0, K)}N .

We use notion h(l;K) := {l,K−l} and h(l;K) := minh(l;K) and h(l;K) := maxh(l;K)

in this section.

5.2.1 The motion of a single pulse solution on an H-shaped met-

ric graph.

We define

S(x, l0) :=


S(x− l0),x = xe0 ∈ Ω0,

0, x = xej ∈ ΩL
j (j = 1, . . . ,mL),

0, x = xẽi +Ke0 ∈ ΩR
i (i = 1, . . . ,mR)

for mL,mR ∈ N satisfying mL ≥ 2 and mR ≥ 2. Fix arbitrarily one positive integer

mL ≥ 2 and mR ≥ 2. Then the following holds.

Theorem5.1. Suppose there exist sufficiently large positive constants K0, l
∗ such that

l∗ < h(l∗;K0) ≤ h(l∗;K0) < 2h(l∗;K0). Moreover suppose for any K > K0, there exists a

positive constant l0 such that l∗ < h(l0;K) ≤ h(l0;K) < 2h(l0;K) and the initial value

U(0,x) is sufficiently close to S(x; l0). Then there exists 0 < l0(t) < K such that the

solution U(t,x) of (5.1.2) satisfies
||U0(t, ·)− S(x− l0(t))||L∞

K
≤ O(e−αh(l0(t);K)),

||Uj(t, ·)||L∞
+
≤ O(e−αh(l0(t);K)) (j = 1, . . . ,mL),

||Ũi(t, ·)||L∞
+
≤ O(e−αh(l0(t);K)) (i = 1, . . . ,mR)

as long as l∗ < h(l0(t);K) ≤ h(l0(t);K) < 2h(l0(t);K). Moreover l0(t) satisfies

dl0
dt

= −M0

(
mL − 1

mL + 1
e−2αl0 − mR − 1

mR + 1
e−2α(K−l0)

)
+ (e−αl0 + e−α(K−l0))O(e−γ′h(l0;K))

as long as l∗ < h(l0(t);K) ≤ h(l0(t);K) < 2h(l0(t);K) for a positive constant γ′ > α,

where M0 := 2α⟨Da,a∗⟩.

58



Remark 5.1. If mL + 1 = R and mR = 1, the leading term in Theorem 5.1 is l̇0 =

−M0
R− 2

R
e−2αl0 . This is consistent with Theorem4.1 ([10], Theorem2.2) for R ≥ 3 and

r = 1.

We define HK(l0) := −M0

(
mL − 1

mL + 1
e−2αl0 − mR − 1

mR + 1
e−2α(K−l0)

)
, let l̄ > 0 be an equi-

librium satisfying HK(l̄) = 0 and l∗ < minh(l̄;K) ≤ maxh(l̄;K) < 2minh(l̄;K). Then

the following corollary 5.1 for Theorem5.1 holds.

Corollary 5.1. There exists K > K0 such that an equilibrium of HK(l) satisfying the

above, say l̄, l̄ =
K

2
+

1

2α
log

√
m∗. Then ifM0 < 0 (> 0), there exists the stable(unstable)

stationary solution U ∗(x) of (5.1.2) such that
||U ∗

0 − S(· − l̄)||L∞
K
≤ O(e−αh(l̄;K)),

||U ∗
j ||L∞

+
≤ O(e−αh(l̄;K)) (j = 1, . . . ,mL),

||Ũ ∗
i ||L∞

+
≤ O(e−αh(l̄;K)) (i = 1, . . . ,mR),

where m∗ :=
(mR + 1)(mL − 1)

(mR − 1)(mL + 1)
.

When mL,mR ∈ N satisfy mL ≥ 2 and mR ≥ 2, the following holds for m∗.

Proposition 5.1. a

(1) If mL = mR holds, m∗ = 1 holds.

(2) If mL > mR holds, m∗ > 1 holds.

(3) If mL < mR holds, 0 < m∗ < 1 holds.

Proof. I only prove (2). Since 2mL > 2mR holds,

mLmR +mL −mR − 1 > mLmR +mR −mL − 1

holds. Thus, we see

(mR + 1)(mL − 1) > (mR − 1)(mL + 1). (5.2.3)

(5.2.3) means m∗ > 1 holds.
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5.2.2 The motion of a single front solution on an H-shaped met-

ric graph

We define

S(x, l0) :=


S(x− l0), x = xe0 ∈ Ω0,

S−, x = xej ∈ ΩL
j (j = 1, . . . ,mL),

S+, x = xẽi +Ke0 ∈ ΩR
i (i = 1, . . . ,mR)

for mL,mR ∈ N satisfying mL ≥ 2 and mR ≥ 2. Fix arbitrarily one positive integer

mL ≥ 2 and mR ≥ 2. Then the following holds from [8] and [10].

Theorem5.2. Suppose that there exist sufficiently large positive constants K0, l
∗ such

that l∗ < h(l∗;K0) ≤ h(l∗;K0) < 2h(l∗;K0). Moreover suppose for any K > K0, there

exists a positive constant l0 such that if l∗ < h(l0;K) ≤ h(l0;K) < 2h(l0;K) and the

initial value U (0,x) is sufficiently close to S(x; l0). Then there exists 0 < l0(t) < K such

that the solution U(t,x) of (5.1.2) satisfies
||U0(t, ·)− S(x− l0(t))||L∞

K
≤ O(e−γh(l0(t);K)),

||Uj(t, ·)− S−||L∞
+
≤ O(e−γh(l0(t);K)) (j = 1, . . . ,mL),

||Ũi(t, ·)− S+||L∞
+
≤ O(e−γh(l0(t);K)) (i = 1, . . . ,mR)

as long as l∗ < h(l0(t);K) ≤ h(l0(t);K) < 2h(l0(t);K) for γ := min{α−, α+}. Moreover

l0(t) satisfies

dl0
dt

=

(
−M−

mL − 1

mL + 1
e−2α−l0 +M+

mR − 1

mR + 1
e−2α+(K−l0)

)
+(e−α−l0+e−α+(K−l0))O(e−γ′h(l0;K))

as long as l∗ < h(l0(t);K) ≤ h(l0(t);K) < 2h(l0(t);K) for γ′ > max{α−, α+}, where
M± := ±2α±⟨Da±,a

∗
±⟩.

Remark 5.2. If mL + 1 = R and mR = 1, the leading term in Theorem 5.1 is l̇0 =

−M−
R− 2

R
e−2αl0 . This is consistent with Theorem4.2 ([10], Theorem2.3) for R ≥ 3 and

r = 1.

We define HK(l0) := −M−
mL − 1

mL + 1
e−2α−l0 +M+

mR − 1

mR + 1
e−2α+(K−l0). Let l̄ > 0 be an

equilibrium satisfying H(l̄) = 0 and l∗ < minh(l̄;K) ≤ maxh(l̄;K) < 2minh(l̄;K).

Moreover we assume α+ = α−,a+ = −a− and a∗
+ = a∗

−.
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Corollary 5.2. There exists K > K0 such that an equilibrium of HK(l) satisfying the

above, say l̄, l̄ =
K

2
+

1

2α
log

√
m∗. If M− < 0 (> 0), there exists the stable(unstable)

stationary solution U ∗(x) of (5.1.2) such that
||U ∗

0 (t, ·)− S(x− l∗)||L∞
K
≤ O(e−αh(l̄;K)),

||U ∗
j (t, ·)− S−||L∞

+
≤ O(e−αh(l̄;K)) (j = 1, . . . ,mL),

||Ũ ∗
i (t, ·)− S+||L∞

+
≤ O(e−αh(l̄;K)) (i = 1, . . . ,mR),

where m∗ :=
(mR + 1)(mL − 1)

(mR − 1)(mL + 1)
and α := α±.

Proposition 5.1 also holds for m∗.

5.3 Applications to reaction-diffusion systems on an

H-shaped metric graph

5.3.1 The dynamics of a single front solution for the Allen-Cahn

equation

We consider a single front solution of the Allen-Cahn equation on the following H-shaped

metric graph

∂tu = ∆Ωu+
1

2
u(1− u2), t > 0, x ∈ Ω. (5.3.4)

We note the above Allen-Cahn equation on R has a stable standing front solution S(x) =

tanh
(x
2

)
([13]). Since S(x) is an odd function for x and M− < 0, (5.3.4) has a stable

front-type stationary solution stated in Collorary 5.2. Here S− = −1, S+ = 1, α± = 1,

and M± = −12.

(a)The case ofmL = 2,mR = 2: The dynamics of a front solution is essentially governed

by
dl0
dt

= 4(e−2l0 − e−2(K−l0)).

Thus, we see that l̇0 > 0 for 0 < l0(0) <
K

2
or l̇0 < 0 for

K

2
< l0(0) < K(Fig 7).
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Figure 7(provided by Mr.Ken.Mitsuzono): Behavior of the front solution on the H-shaped

graph when K = 10. (A) represents the zero point l0(t) of the front solution on Ω0. (B)

represents the time evolution of l0(t) when l0(0) >
K

2
. (C) represents the time evolution

of l0(t) when l0(0) <
K

2
. From (B) and (C), we see that l0(∞) =

K

2
.

(b)The case ofmL = 2,mR = 3: The dynamics of a front solution is essentially governed

by
dl0
dt

= 2(2e−2l0 − 3e−2(K−l0)).

Thus, we see that l̇0 > 0 for 0 < l0(0) <
K

2
+

1

2
log

√
2

3
or l̇0 < 0 for

K

2
+

1

2
log

√
2

3
<

l0(0) < K. We note
K

2
+

1

2
log

√
2

3
<
K

2
.

(c)The case ofmL = 3,mR = 2: The dynamics of a front solution is essentially governed

by
dl0
dt

= 2(3e−2l0 − 2e−2(K−l0)).

Thus, we see that l̇0 > 0 for 0 < l0(0) <
K

2
+

1

2
log

√
3

2
or l̇0 < 0 for

K

2
+

1

2
log

√
3

2
<

l0(0) < K. We note
K

2
+

1

2
log

√
3

2
>
K

2
.
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5.3.2 The dynamics of a single pulse solution for the Gray-Scott-

model

As taking the same parameter as [8], we consider a single pulse solution of the Gray-

Scott-model on the following H-shaped metric graph{
∂tu = ∆Ωu− uv2 + ϵ2(1− u), t ∈ (0,∞),x ∈ Ω,

∂tv = ϵ2∆Ωv − ϵ1/2v + uv2,
(5.3.5)

where 0 < ϵ ≪ 1. As in chapter 3, the Gray-Scott model on R has a stable symmetric

pulse-type stationary solution S(x)([5]) and M0 > 0 holds([8]). (5.3.5) has an unstable

pulse-type stationary solution stated in Collorary 5.1.

(a)The case ofmL = 2,mR = 2: The dynamics of a pulse solution is essentially governed

by
dl0
dt

= −M0

3
(e−2αl0 − e−2α(K−l0)).

Thus, the behavior is opposite to that of the Allen-Cahn equation.That is, l̇0 < 0 for

0 < l0(0) <
K

2
or l̇0 > 0 for

K

2
< l0(0) < K.

(b)The case ofmL = 2,mR = 3: The dynamics of a front solution is essentially governed

by
dl0
dt

= −M0

(
1

3
e−2αl0 − 1

2
e−2α(K−l0)

)
.

Thus, we see that l̇0 < 0 for 0 < l0(0) <
K

2
+

1

2α
log

√
2

3
or l̇0 > 0 for

K

2
+

1

2α
log

√
2

3
<

l0(0) < K. We note
K

2
+

1

2α
log

√
2

3
<
K

2
.

(c)The case ofmL = 3,mR = 2: The dynamics of a front solution is essentially governed

by
dl0
dt

= −M0

(
1

2
e−2αl0 − 1

3
e−2α(K−l0)

)
.

Thus, we see that l̇0 < 0 for 0 < l0(0) <
K

2
+

1

2α
log

√
3

2
or l̇0 > 0 for

K

2
+

1

2α
log

√
3

2
<

l0(0) < K. We note
K

2
+

1

2α
log

√
3

2
>
K

2
.
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5.4 Proof of Theorem 5.1

Proof. Hereafter we denote l := l0. Fix one each of l and K satisfying 1 ≪ minh(l;K) ≤
maxh(l;K) < 2minh(l;K). We define the function G(x; l;K) on Ω satisfying

0 = D∂xxG
L
p + F ′(0)GL

p (p = 0, . . . ,mL),

∂xS(−l) + ∂xG
L
0 (0) +

mL∑
j=1

∂xG
L
j (0) = 0,

S(−l) +GL
0 (0) = G

L
j (0) (1 ≤ j ≤ mL),

GL
0 (K) = 0,

GL
j (+∞) = 0 (1 ≤ j ≤ mL),



0 = D∂xxG
R
q + F ′(0)GR

q (q = 0, . . . ,mR),

∂xS(K − l) + ∂xG
R
0 (K) =

mR∑
i=1

∂xG
R
i (0),

S(K − l) +GR
0 (K) = GR

i (0) (1 ≤ i ≤ mR),

GR
0 (+0) = 0,

GR
i (+∞) = 0 (1 ≤ i ≤ mR),

(5.4.6)

where G0(x) = GL
0 (x; l;K) + GR

0 (x; l;K) := G(xe0; l;K),GL
j (x) = GL

j (x; l;K) :=

G(xej; l;K) (j = 1, . . . ,mL),G
R
i (x) = G

R
i (x; l;K) := G(xei; l;K) (i = 1, . . . ,mR). Since

mk(x) (k = 1, . . . , 2N) are the fundamental functions of the ODE

0 = D∂xxmk(x) + F
′(0)mk(x),

GL
0 (x; l;K),GL

j (x; l;K),GR
0 (x; l;K),GR

i (x; l;K) is expresses that

GL
0 (x; l;K) = cL01(l;K)(e−αx − eα(x−2K))a+ bL0 (x), 0 < x < K,

GL
j (x; l;K) = cLj1(l;K)e−αxa+ bLj (x), x > 0,

GR
0 (x; l;K) = cR01(l;K)(e−αx − eαx)a+ bR0 (x), 0 < x < K,

GR
i (x; l;K) = cRi1(l;K)e−αxa+ bRi (x), x > 0

by GL
0 (K) = 0,GL

j (+∞) = 0 (j = 1, . . . ,mL),G
R
0 (0) = 0,GR

i (+∞) = 0 (i = 1, . . . ,mR)

for γ > α. Here bL0 (x) :=
2N∑
k=2

k ̸=N+1

cL0kmk(x) with
2N∑
k=2

k ̸=N+1

cL0kmk(K) = 0. bR0 (x) :=
2N∑
k=2

k ̸=N+1

cR0kmk(x)

with
2N∑
k=2

k ̸=N+1

cR0kmk(0) = 0. bLj (x) :=
N∑
k=2

cLjkmk(x), and b
R
i (x) :=

N∑
k=2

cRikmk(x). Then we

have

Lemma5.1. The coefficients {cLpk(l)} ofGL
p (x) (p = 0, 1, . . . ,mL), and {cRqk(l)} ofGL

q (x) (q =
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0, 1, . . . ,mR) are given by

cL01(l;K) = CL
0 (l;K) := − (mL − 1)e−αl

(mL + 1)− (mL − 1)e−2αK
,

cLj1(l;K) = CL
j (l;K) :=

2e−αl

(mL + 1)− (mL − 1)e−2αK
(1 ≤ j ≤ mL),

cR01(l;K) = CR
0 (l;K) :=

(mR − 1)e−α(2K−l)

(mR + 1)− (mR − 1)e−2αK
,

cRi1(l;K) = CL
i (l;K) :=

2e−α(K−l)

(mR + 1)− (mR − 1)e−2αK
(1 ≤ i ≤ mR),

cL0k(l;K) = O(e−γ1l) (2 ≤ k ≤ N),

cL0k(l;K) = O(e−γ1(2K+l)) (N + 2 ≤ k ≤ 2N),

cLjk(l;K) = O(e−γ1l) (1 ≤ j ≤ mL, 2 ≤ k ≤ N),

cR0k(l;K) = O(e−γ2(2K−l)) (k ≠ 1, k ̸= N + 1)

cRik(l;K) = O(e−γ2(K−l)) (1 ≤ i ≤ mR, 2 ≤ k ≤ N),

(5.4.7)

as minh(l;K) → +∞ for γ1 > α, γ2 > α.

Proof. I prove Lemma5.1 by the quite similar way to Lemma 4.1 ([10], Lemma 4.1). Since

S(x − l) has the asymptotic profile as minh(l;K) → +∞, S(x − l) → eα(x−l)a together

with ∂xS(x−l) → αeα(x−l)a in a neighborhood of x = 0 and S(x−l) → e−α(x−l)a together

with ∂xS(x − l) → −αe−α(x−l)a in a neighborhood of x = K. Thus S(−l) → e−αla +

O(e−γl), ∂xS(−l) → αe−αla + O(e−γl), S(K − l) → e−α(K−l)a + O(e−γ(K−l)), ∂xS(K −
l) → −αe−α(K−l)a + O(e−γ(K−l)) for some γ > α. Then substituting these profiles and

GL
0 (x; l;K), ∂xG

L
0 (x; l;K),GL

j (x; l;K), ∂xG
L
j (x; l;K),GR

0 (x; l;K), ∂xG
R
0 (x; l;K),

GR
i (x; l;K), ∂xG

R
i (x; l) into the Kirchhoff boundary condition of (5.4.6), we have

{αe−αl − αcL01(l;K)(1 + e−2αK)}a+O(e−γl) + ∂xb
L
0 (0)−

(
mL∑
j=1

{αcLj1(l;K)a− ∂xb
L
j (0)}

)
= 0,

{e−αl + cL01(l;K)(1− e−2αK)}a+O(e−γl) + bL0 (0) = cLj1(l;K)a+ bLj (0),

−α{e−α(K−l) + cR01(l;K)(e−αK + eαK)}a+O(e−γ(K−l)) + ∂xb
R
0 (K)

= −

(
mR∑
i=1

{αcRi1(l;K)a− ∂xb
R
i (0)}

)
,

{e−α(K−l) + cR01(l;K)(e−αK − eαK)}a+O(e−γ(K−l)) + bR0 (K) = cRi1(l;K)a+ bRi (0).

(5.4.8)
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Since CL
p (l), C

R
q (l) defined (5.4.7) satisfy

e−αl − CL
0 (l;K)(1 + e−2αK) =

mL∑
j=1

CL
j (l;K),

e−αl + CL
0 (l;K)(1− e−2αK) = CL

j (l;K),

e−α(K−l) + CR
0 (l;K)(e−αK + eαK) =

mR∑
i=1

CR
i (l;K),

e−α(K−l) + CR
0 (l;K)(e−αK − eαK) = CR

i (l;K),

we have 

O(e−γl) + ∂xb
L
0 (0) +

mL∑
j=1

∂xb
L
j (0) = 0,

O(e−γl) + bL0 (0) = b
L
j (0),

O(e−γ(K−l)) + ∂xb
R
0 (K) =

mR∑
i=1

∂xb
R
i (0),

O(e−γ(K−l)) + bR0 (K) = bRi (0).

(5.4.9)

(5.4.9) means that bL0 (0) and ∂xb
L
0 (0) can be taken in O(e−γl) , bLj (0) and ∂xb

L
j (0) can be

taken in O(e−γl) (2 ≤ k ≤ N) for γ > α. That is, we can also take cLpk(l) = O(e−γ1l) (0 ≤
p ≤ mL, 2 ≤ k ≤ N) and cL0k(l) = O(e−γ1(2K+l)) (N + 2 ≤ k ≤ 2N) for γ1 > α by

bLj (K) = 0. Furthermore, (5.4.9) also means that bR0 (K) and ∂xb
R
0 (K) can be taken in

O(e−γ′(K−l)), bRi (0) and ∂xb
R
i (0) can be taken in O(e−γ′(K−l)) (2 ≤ k ≤ N) for γ′ > α.

That is, we can also take cRik(l) = O(e−γ2(K−l)) (1 ≤ i ≤ mR, 2 ≤ k ≤ N) and cR0k(l) =

O(e−γ2(2K−l)) (k ̸= 1, k ̸= N + 1) for γ2 > α by bR0 (0) = 0.

We defineG0(x; l;K) := GL
0 (x; l;K)+GR

0 (x; l;K). We express the solutionU0(t, x),Uj(t, x)

(j = 1, . . . ,mL),Ui(t, x) (i = 1, . . . ,mR) of (5.1.1) by U0(t, x) = S(x− l) +G0(x; l;K) +

V0(t, x),Uj(t, x) = GL
j (x; l;K) + Vj(t, x), Ũi(t, x) = GR

i (x; l;K) + Ṽi(t, x). Then the

equation (5.1.1) become the equation of V0,Vj, Ṽi

∂t{S(· − l) +G0 + V0} = L(l)V0 + L(l)G0 +Z0(l,V0),

∂t{GL
j + Vj} = L0Vj + L0G

L
j +Zj(l,Vj),

∂t{GR
i + Ṽi} = L0Ṽi + L0G

R
i + Z̃i(l, Ṽi),

∂xV0(t,+0) +

mL∑
j=1

∂xVj(t,+0) = 0,V0(t,+0) = Vj(t,+0) (j = 1, . . . ,mL),

∂xV0(t,K) =

mR∑
i=1

∂xṼi(t,+0),V0(t,K) = Ṽi(t,+0) (i = 1, . . . ,mR),
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where L(l) := D∂xx + F ′(S(x − l)), L0 := D∂xx + F ′(0). Z0(l,V0),Zj(l,Vj) (j =

1, . . . ,mL), Z̃i(l, Ṽi) (i = 1, . . . ,mR) are functions satisfying |Z0(l,V0)| ≤ O(|G0(x, l;K)|2+
|V0(t, x)|2), |Zj(l,Vj)| ≤ O(|GL

j (x; l;K)|2 + |Vj(t, x)|2), |Z̃i(l, Vi)| ≤ O(|GR
i (x; l;K)|2 +

|Ṽi(t, x)|2). The rest can be proved in quite a similar way as Theorem4.1([10], Theorem

2.2).

5.5 Proof of Corollary 5.1

Proof. I prove Corollary 5.1 by quite a similar way to ”Proof of corollary 1” in [9]. We

define hK(l) := h(l;K). Hereafter we denote l := l0.

Assume M0 < 0. Moreover, we define

H0(l;K) := −M0

(
mL − 1

mL + 1
e−2αl − mR − 1

mR + 1
e−2α(K−l)

)
.

Then, we see

dH0

dl
(l;K) = 2αM0

(
mL − 1

mL + 1
e−2αl +

mR − 1

mR + 1
e−2α(K−l)

)
< 0. (5.5.10)

for mL, mR ∈N with mL,mR ≥ 2.

By quite a similar way to ”Proof of corollary 1” in [9], we have

dl

dt
= H0(l;K) +H1(l;K),

where H1(l;K) is a function satisfying

H1(l;K) = O(e−(α+γ)minhK(l)), (5.5.11)

|H1(l;K)−H1(l
′;K)| ≤ O{[e−(α+γ′)minhK(l) + e−(α+γ′)minhK(l′)]|l − l′|}, (5.5.12)

for γ > α, γ′ > α. Let l̄ be the sufficiently large positive constant satisfying H0(l̄;K) = 0

and
dH0

dl
(l̄;K) := −β < 0 with l∗ < minh(l̄;K) ≤ maxh(l̄;K) < 2minh(l̄;K) for a

positive constant β. Then,

β = 2α|M0|
(
mL − 1

mL + 1
e−2αl̄ +

mR − 1

mR + 1
e−2α(K−l̄)

)
> 0 (5.5.13)

by (5.5.10).

We define HK(l) := H0(l;K) + H1(l;K). In exactly the same way as in ”Proof of

corollary 1” in [9], we suffices to show the existence of an equilibrium l̃ of HK(l) sat-

isfying l̃ := l̄(1 + O(e−γ1 minhK(l̄))) for γ1 > 0 and HK(l) is monotone decreasing in the

neighborhood of l̃.
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By substituting l̃ = l̄ + p into HK(l̄ + p) = 0 for |p| ≪ 1, we have 0 = −βp + O(p2) +

H1(l̄ + p;K) and

p =
1

β
H1(l̄ + p;K) +O(p2). (5.5.14)

Since H1(l̄ + p;K) = O(e−(α+γ)minhK(l̄)) and β = O(e−2αminhK(l̄)) hold by (5.5.11) and

(5.5.13), 1
β
H1(l̄ + p;K) = O(e−γ2 minhK(l̄)) holds for γ2 > 0, which means to become

sufficiently small by taking minhK(l̄) > l∗ sufficiently large. Then it is easy to see the

right-hand side of (5.5.14) is the contraction in the set W := {|p| ≤ ρe−γ2 minhK(l̄)} for an

appropriate ρ > 0. Thus the fixed value, say p∗ = O(e−γ2 minhK(l̄)), gives the equilibrium

l̃ = l̄ + p∗ of HK(l).

In the neighborhood of l̃, HK(l) is represented by

HK(l̃ + p) = −βp+O(p2 + (p∗)2) +H1(l̄ + p∗ + p;K)− βp∗.

Thus we see

HK(l̃ + p)−HK(l̃ + p′) = {−β +O(|p|+ |p′|+ e−(α+γ′)minhK(l))}(p− p′)

by (5.5.12). γ′ > α means HK(l̃+p) is monotone decreasing for sufficiently small p and p′.

It is easy to see that l̄ = K
2
+ log

√
m∗

2α
satisfies the above l̄ forK > max{K0,

3| log
√
m∗|

α
, | log

√
m∗|

α
+

2l∗}.
Other cases are shown in precisely the same way.

5.6 Concluding remarks

This chapter dealt with the following special situation:

1) Just one pulse (or front) lies only Ω0.

2) Diffusion matrices on Ω0, Ω
L
j (j = 1, . . . ,mL), Ω

R
i (i = 1, . . . ,mR) are all same.

As for 1), the results in this chapter can be extended to the pulse dynamics under

the situation where at most one pulse is placed on each Ω0,Ω
L
j (j = 1, . . . ,mL),Ω

R
i (i =

1, . . . ,mR) by [10].

As For 2), this can be extended to the following problem with different diffusion matrices
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D on each Ω

∂tU0 = D0∂xxU0 + F (U0), t > 0, x > 0, U0 ∈ RN ,

∂tUj = Dj∂xxUj + F (Uj), t > 0, x > 0, Uj ∈ RN (j = 1, . . . ,mL),

∂tŨi = D̃i∂xxŨi + F (Ũi), t > 0, x > 0, Ũi ∈ RN (i = 1, . . . ,mR),

D0∂xU0(t,+0) +

mL∑
j=1

Dj∂xj
Uj(t,+0) = 0,

U0(t,+0) = Uj(t,+0) (j = 1, . . . ,mL),

D0∂xU0(t,K) =

mR∑
i=1

D̃i∂xŨi(t,+0),

U0(t,K) = Ũi(t,+0) (i = 1, . . . ,mR).

We plan to consider it based on [10] in the future.
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6 The front dynamics for

reaction-duffusion equations on a

loop-edge-metric graph

6.1 Introduction

Various problems for reaction-diffusion equations on RN has been studied for a long

time and is still being studied intensively. However, they are more difficult to analyze

than the problems on R. In such a situation, Methods of attributing∂tu = ∆u+ F (u), t > 0,x ∈ Ωϵ,
∂

∂ν
u = 0, x ∈ ∂Ωϵ

for 0 < ϵ≪ 1, where Ωϵ := {(x, y) ∈ R2; 0 < x < K, 0 < y < ϵw(x)} to∂tu =
1

w(x)
∂x{w(x)∂xu}+ F (u), t > 0, 0 < x < K,

∂xu(t,+0) = ∂xu(t,K) = 0

as ϵ→ 0 is still one of the most powerful methods (see e.g. [40]). Here ∆ :=
∂2

∂x2
+
∂2

∂y2
and

ν is the outward unit normal vector for ∂Ωϵ. Moreover, both F : R → R and w : R → R
are a smooth function.

Remark 6.1.When w(x) is constant, by the above limit equation(e.g. [41]), we see{
∂tu = ∂xxu+ F (u), t > 0, 0 < x < K,

∂xu(t,+0) = ∂xu(t,K) = 0.

Later, [40] was extended by Prof. Yanagida, and [41] reported the following results on

the stability of stationary solutions of the reaction-diffusion equation on graphs containing
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metric graphs with circles. Moreover, [41] are famous results on the stability of stationary

solutions for reaction-diffusion equations on graphs containing metric graphs with circles.

On the other hand, because analysis for pulse dynamics and front dynamics on metric

graphs with circles is complicated, the result is almost nonexistent. Therefore, as a first

step, in this chapter, I report a result obtained for front dynamics in reaction-diffusion

equations on the following metric graphs Ω(Fig 8) resembling Type 3 in [41].

Ω := Ω1 ∪ Ω2 ∪ {O}, where Ω1 := {(x, 0) ∈ R2 ;x > 0} and

Ω2 :=

{
r2

(
cos

x

r2
− 1, sin

x

r2

)
∈ R2 ; 0 < x < K

}
,

where K := 2πr2 with r2 > 0 is the radius of the circle. Furthermore, We denote the re-

striction of v to Ω1 as v1(x) := v((x, 0)), and v to Ω2 as v2(x) := v

(
r2

(
cos

x

r2
− 1, sin

x

r2

))
for a function v on Ω. Then we consider

∂tu1 = ∂xxu1 + F (u1), t > 0, x > 0,

∂tu2 = ∂xxu2 + F (u2), t > 0, 0 < x < K,

w1
∂u1
∂x

(t,+0) + w2
∂u2
∂x

(t,+0) = w2
∂u2
∂x

(t,K),

u1(t,+0) = u2(t,+0) = u2(t,K)

(6.1.1)

forK > 0, wj > 0 (j = 1, 2), where F : R → R is a sufficiently smooth function. Moreover,

u(t,x) ∈ R is a scalar valued function of t and x ∈ Ω, and u1(t, x) := u(t, (x, 0)) and

u2(t, x) := u

(
t, r2

(
cos

x

r2
− 1, sin

x

r2

))
. Note that boundary conditions in (6.1.1) are

the same as part of those in [41], and as ϵ→ 0, wj gives a width of a thin tubular domain

by ϵwj (see e.g. [40], [41]). We call Ω a loop-edge-metric graph in this chapter. I report

front dynamics for (6.1.1) in this chapter.
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a

Figure 8: A loop-edge-metric graph.

6.2 The result of the front dynamics on a loop-edge-

metric graph

This section assumes (H1)’-(H4)’, (A2) and the assumptions and notation are precisely

the same as in chapter 4 and chapter 5. Furthermore, the following proposition holds

immediately from [8].

Proposition 6.1( [8]). If L = L∗ holds, M− < 0 holds, where M− := −2α−⟨Da−,a
∗
−⟩.

We consider (6.1.1) based on the above. In this section, we discuss the front dynamics

results for the scalar reaction-diffusion equation in (6.1.1).

Theorem6.1. Fix arbitrarily one w1 > 0, w2 > 0, K > 0. Suppose there exists l∗ ≫ 1

such that the initial date u1(0, x) sufficiently close to S(x − l0) and u2(0, x) to S− for

l0 > l∗. Then the solution uj(t, x) (j = 1, 2) of (6.1.1) satisfies

||u1(t, ·)− S(· − l(t))||L∞
+
≤ O(e−α−l),

||u2(t, ·)− S−||L∞
K
≤ O(e−α−l)

as long as l(t) > l∗. Moreover l(t) satisfies

dl

dt
=M−

e−2α−l[(w1 − 2w2) + (w1 + 2w2)e
−α−K ]

(w1 + 2w2) + (w1 − 2w2)e−α−K
+ e−α−lO(e−γl)

as long as l(t) > l∗ for γ > α−.
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We define H−(l) :=M−
e−2α−l[(w1 − 2w2) + (w1 + 2w2)e

−α−K ]

(w1 + 2w2) + (w1 − 2w2)e−α−K
and

J :=
{
(w1, w2, K) ∈ R3 ; (w1 − 2w2) + (w1 + 2w2)e

−α−K ̸= 0, 0 < w1 < 2w2, K > 0
}
.

Then by Proposition 6.1( [8]), we can immediately see that the following.

Proposition 6.2. If (w1, w2, K) ∈ J , The following (1)-(3) hold. a

(1) If w1 ≥ 2w2 holds, H−(l) < 0 holds for K > 0.

(2) If w1 < 2w2 and 0 < K <
1

α−
log

(
2w2 + w1

2w2 − w1

)
hold, H−(l) < 0 holds.

(3) If w1 < 2w2 and K >
1

α−
log

(
2w2 + w1

2w2 − w1

)
hold, H−(l) > 0 holds.

Remark 6.2.Proposition 6.2 means if (1) or (2) hold,
dl

dt
< 0 holds, while if (3) holds,

dl

dt
> 0 holds.

6.3 Applications to the Allen-Cahn equation

We consider 

∂tu1 = ∂xxu1 +
1

2
u(1− u2), t > 0, x > 0,

∂tu2 = ∂xxu2 +
1

2
u(1− u2), t > 0, 0 < x < K,

w1
∂u1
∂x

(t,+0) + w2
∂u2
∂x

(t,+0) = w2
∂u2
∂x

(t,K),

u1(t,+0) = u2(t,+0) = u2(t,K)

for K > 0. Exactly as in chapters 5, we treat S(x) = tanh
(x
2

)
, where S± = ±1, α± =

1,M± = −12([13]). Then the dynamics is essentially given by

dl

dt
= H−(l) =

−12e−2l[(w1 − 2w2) + (w1 + 2w2)e
−K ]

(w1 + 2w2) + (w1 − 2w2)e−K
.

(I) The case of w1 ≥ 2w2.

(I-a)When w1 : w2 = 2 : 1, we see that l(t) comes close to O by (1) of Proposition 6.2.

(I-b)When w1 : w2 = 3 : 1, we see that l(t) comes close to O by (1) of Proposition 6.2.

(II) The case of w1 < 2w2.
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(II-a)When w1 : w2 = 1 : 2 and K < log
5

3
, we see that l(t) comes close to O by (2) of

Proposition 6.2.

(II-b)When w1 : w2 = 1 : 2 and K > log
5

3
, we see that l(t) goes apart from O by (3) of

Proposition 6.2.

The above results show that the dynamics for the front solution are affected by w1 and

w2 and K.

6.4 Proof of Theorem 6.1

Proof. Fix one each of l ≫ 1 and D = 1. We define the function G−(x; l) on Ω satisfying

0 = D∂xxG
−
1 + F ′(S−)G

−
1 , x > 0,

0 = D∂xxG
−
2 + F ′(S−)G

−
2 , 0 < x < K,

w1(∂xS(−l) + ∂xG
−
1 (0)) = w2(∂xG

−
2 (K)− ∂xG

−
2 (0)),

S(−l) +G−
1 (0) = S− +G−

2 (0) = S− +G−
2 (K),

G−
1 (+∞) = 0,

(6.4.2)

where G−
j (x; l) := G−(x; l),x ∈ Ωj (j = 1, 2). Let m−

j,1(x) and m
−
j,2(x) (j = 1, 2) be the

fundamental functions of the ODE

0 = D∂xxm
−
j,1(x) + F ′(S−)m

−
j,2(x).

Then G−
1 (x; l) is expresses that

G−
1 (x; l) = c−1 (l)e

−α−xa−

by (H4)’ and G−
1 (∞) = 0. Moreover, since S− +G−

2 (0) = S− +G−
2 (K) holds, G−

2 (x; l) is

expresses that

G−
2 (x; l) = c−2 (l)m

−
2,1(x) + c̃−2 (l)m

−
2,2(x) = c−2 (l)e

−α−xa− + c−2 (l)e
α−(x−K)a−

by (H4)’.

Lemma6.1. The coefficients c−j (j = 1, 2) of G−
j (x; l) (j = 1, 2) are given by

c−1 (l) = C−
1 (l) :=

[(w1 − 2w2) + (w1 + 2w2)e
−α−K ]e−α−l

(w1 + 2w2) + (w1 − 2w2)e−α−K
, (6.4.3)

c−2 = C−
2 (l) :=

2w1e
−α−l

(w1 + 2w2) + (w1 − 2w2)e−α−K
(6.4.4)

as l → +∞.
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Proof. I prove Lemma 6.1 by quite a similar way to the proof of Lemma 4.1([10], Lemma4.1)

in Chapter 4. Since S(x− l) has the asymptotic profile as l → ∞, S(x− l) → eα−(x−l)a−
together with ∂xS(x− l) → α−e

α−(x−l)a− in a neighborhood of x = 0. Then substituting

these profiles and G−
j (0; l), ∂xG

−
j (0; l) (j = 1, 2) into the Kirchhoff boundary condition of

(6.4.2), we have{
w1α−(e

−α−l − c−1 (l))a− = 2w2α−c
−
2 (l)(1− e−α−K)a−,

S− + e−α−la− + c−1 (l)a− = S− + c−2 (l)(1 + e−α−K)a−.
(6.4.5)

Moreover C−
1 (l), C

−
2 (l) defined (6.4.3), (6.4.4) satisfy{

w1e
−α−l − w1C

−
1 (l) = 2w2C

−
2 (l)(1− e−α−K),

e−α−l + C−
1 (l) = C−

2 (l)(1 + e−α−K).

Thus (6.4.5) holds by taking c−1 (l) = C−
1 (l), c

−
2 (l) = C−

2 (l).

We put G1(x; l) := G−
1 (x; l), G2(x; l) := G−

2 (x; l). We express the solution uj(t, x) (j =

1, 2) of (6.1.1) by u1(t, x) = S(x− l)+G1(x; l)+V1(t, x), u2(t, x) = S−+G2(x; l)+V2(t, x).

Then the equation (6.1.1) become the equation of Vj
∂t{S(· − l) +G1 + V1} = L(l)V1 + L(l)G1 + Z1(l, V1),

∂t{G2 + V2} = L−V2 + L−G2 + Z2(l, V2),

w1∂xV1(t,+0) + w2∂xV2(t,+0) = w2∂xV2(t,K),

V1(t,+0) = V2(t,+0) = V2(t,K),

where L(l) := D∂xx + F ′(S(x − l)), L− = D∂xx + F ′(S−), and Zj(l, Vj) (j = 1, 2) are

functions satisfying |Zj(l, Vj)| ≤ O(|Gj(x; l)|2 + |Vj(t, x)|2).
The rest can be proved in quite a similar way to Theorem4.1([10], Theorem 2.2) in

Chapter 4.

6.5 Concluding remarks

In this chapter, I discussed the front dynamics for the scalar reaction-diffusion equa-

tion(6.1.1). In recently, we have studied front dynamics for the following two types of

problems:
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(1)(Type 3 in [41])

Ω := Ω1∪Ω2∪{O}∪{K1} and Ω1 := {(x, 0) ∈ R2; 0 < x < K1}, whereK1 := (K1, 0) ∈ R2

and

Ω2(r2) :=

{
r2

(
cos

x

r2
− 1, sin

x

r2

)
∈ R2; 0 < x < K2

}
and K2 := 2πr2, r2 is the radius of the circle. Then we consider

∂tuj = ∂xxuj + F (uj), t > 0, 0 < x < Kj (j = 1, 2),

w1
∂u1
∂x

(t,+0) + w2
∂u2
∂x

= w2
∂u2
∂x

(t,K2),

u1(t,+0) = u2(t,+0) = u2(t,K2),
∂u1
∂x

(t,K1) = 0

for K1 ≫ 1, K2 > 0, wj > 0 (j = 1, 2), and F : R → R is a sufficiently smooth function.

(2)(Type 5 in [41])

Let Ω := Ω1 ∪ Ω2 ∪ Ω3 ∪ {O} ∪ {K1} be the finite metric graph, where Ω1 and Ω2 are

exactly the same as (1). Moreover

Ω3(r3) :=

{(
−r3

(
cos

x

r3
− 1

)
+K1, r3 sin

x

r3

)
∈ R2; 0 < x < K3

}
,

where K3 := 2πr3, r3 is the radius of the circle. Furthermore, exactly as in (1), we denote

u3(t, x) := u

(
t,

(
−r3

(
cos

x

r3
− 1

)
+K1, r3 sin

x

r3

))
, t > 0,x ∈ Ω3. Then we consider


∂tuj = ∂xxuj + F (uj), t > 0, 0 < x < Kj (j = 1, 2, 3),

w1
∂u1
∂x

(t,+0) + w2
∂u2
∂x

(t,+0) = w2
∂u2
∂x

(t,K2), u1(t,+0) = u2(t,+0) = u2(t,K2),

w3
∂u3
∂x

(t,+0) = w1
∂u1
∂x

(t,K1) + w3
∂u3
∂x

(t,K3), u3(t,+0) = u1(t,K1) = u3(t,K3)

for K1 ≫ 1, K2 > 0, K3 > 0, wj > 0 (j = 1, 2, 3), and F : R → R is a sufficiently smooth

function.

We note that both (1)(Type 3 in [41]) and (2)(Type 5 in [41]) are domains dealt with

in [41]. To develop front dynamics on (1)(Type 2 in [41]) and (2)(Type 5 in [41]), we have

analyzed the above two problems using the method of [10] currently. We will continue

to study the above two issues. In addtion, we will also analyze pulse/front dynamics on

Type 3, Type 4 and Type 5 in [41] for reaction diffusion systems in the future.
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