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PAPER
KL-UCB-Based Policy for Budgeted Multi-Armed Bandits with
Stochastic Action Costs

Ryo WATANABE†a), Junpei KOMIYAMA††, Nonmembers, Atsuyoshi NAKAMURA†,
and Mineichi KUDO†, Members

SUMMARY We study the budgeted multi-armed bandit problem with
stochastic action costs. In this problem, a player not only receives a reward
but also pays a cost for an action of his/her choice. The goal of the player
is to maximize the cumulative reward he/she receives before the total cost
exceeds the budget. In the classical multi-armed bandit problem, a policy
called KL-UCB is known to perform well. We propose KL-UCB-SC, an
extension of this policy for the budgeted bandit problem. We prove that
KL-UCB-SC is asymptotically optimal for the case of Bernoulli costs and
rewards. To the best of our knowledge, this is the first result that shows
asymptotic optimality in the study of the budgeted bandit problem. In fact,
our regret upper bound is at least four times better than that of BTS, the
best known upper bound for the budgeted bandit problem. Moreover, an
empirical simulation we conducted shows that the performance of a tuned
variant of KL-UCB-SC is comparable to that of state-of-the-art policies
such as PD-BwK and BTS.
key words: budgeted multi-armed bandits, asymptotically optimal policy,
regret analysis

1. Introduction

Themulti-armed bandit problem is a classical problem stud-
ied by Thompson [1] and Robbins [2], which is formalized
as a problem on the following repeated game. At each round,
a player chooses one of the available actions and receives a
corresponding reward without obtaining any information on
the rewards of the other actions. The player’s goal is to max-
imize his/her cumulative (total) reward over the all rounds.
To achieve this goal, the player must balance exploration and
exploitation; that is, the player must trade-off the value of
choosing an action with currently highest average reward for
large immediate gain, with the value of choosing an action
with potentially highest average reward for large future gain.

In this Internet era, the multi-armed bandit has become
a more popular study area because many online decision
making tasks such as recommendation and online advertising
can be formalized as multi-armed bandit problems. In order
to apply to a wider range of real-world problems, many
extensions and generalizations of the problem have been
suggested. Among them, budgeted multi-armed bandits [3]
is an extension in which the player is charged for the chosen
action and can repeatedly choose actions until the total cost
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exceeds the given budget. Real-world problems that can be
formalized as this problem are online selection of a rental
ad space [3] and action decisions of battery-driven wireless
sensor devices [4]. In the former example, an action and
a cost corresponds to an ad slot and a charge of the slot,
respectively. In the latter case, an action corresponds to
sampling and data forwarding, and the cost corresponds to
the energy that is consumed for each action. Moreover,
Ding et al. considered the case of stochastic costs in this
extension [5]. In this formulation, the costs can vary among
rounds, which allows us to deal with an even broader range
of applications, such as an online bidding optimization in
sponsored search [6], [7], in which an action is a possible
price to bid for ad space in the result page of a keyword
search, and the second pricemust be paidwhen the advertiser
is the winner of the auction. In this paper, budgeted multi-
armed banditswill refer to this stochastic-cost version of the
problem.

As is the classicalmulti-armed bandits, the performance
of a policy in the budgeted multi-armed bandits is measured
by a quantity called (pseudo) regret, which is the difference
between the expected cumulative reward of the policy and
the maximum expected cumulative reward among all poli-
cies. A policy is called optimal when its regret upper bound
matches a known regret lower bound. Although several of
the proposed policies are introduced with corresponding re-
gret upper bounds, no analysis on the regret lower bound
has been shown so far. Therefore, whether these policies are
optimal or not is unknown.

The difficulty with budgeted multi-armed bandits lies
in that both the rewards and the costs are stochastic; thus,
one needs to take the uncertainty of both into consideration.
A naïve UCB-type approach is to build an upper confidence
bound by using an upper confidence bound of the reward
and a lower confidence bound of the cost. Indeed, some
policies, such as UCB-BV family [5] and PD-BwK [8], take
this approach. We argue that such a two-bound approach can
lead to a loose evaluation of the confidence bound. Instead,
if one can combine the uncertainty of the reward and the
cost into a single confidence bound, a tighter evaluation of
the uncertainty is available, which yields a policy of better
performance. Taking the above into consideration, we pro-
pose a deterministic policy KL-UCB-SC for the budgeted
multi-armed bandits based on the KL-UCB [9]–[11] policy
for classical multi-armed bandit problem. We build a natural
extension of the KL-UCB index to the budgetedmulti-armed
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bandits and show its effectiveness for the budgeted bandit
problem.

1.1 Contributions

The contributions of this paper can be summarized into the
following four aspects:

• We propose the KL-UCB-SC policy, which is a natural
extension of KL-UCB for the budgeted multi-armed
bandits.

• Let the optimal action be the action of the best reward
per cost in expectation, and let the suboptimal actions
be the others. We give an upper bound of the expected
number of selections for each suboptimal action. We
also give a lower bound in the case of Bernoulli rewards
and costs, whose leading term coefficient asymptoti-
cally coincides with that of the upper bound.

• In the variable cost setting, in which the number of
the rounds T (B) varies among runs based on the total
cost B, we propose a convenient way to convert bounds
on the number of selections in T rounds for fixed T
into a regret for the total cost B and derive a regret
upper bound of KL-UCB-SC and a regret lower bound
for the problem in the case of Bernoulli rewards and
costs. The regret upper bound holds for any reward and
cost distribution bounded in [0, 1] and is asymptotically
optimal in the case of Bernoulli rewards and costs.

• We assess the performance of the proposed policy in a
simulation and show that the performance of KL-UCB-
SC+, a tuned variant, is comparable to that of BTS [12].

2. Related Work

Most of the recent studies on multi-armed bandits in the ma-
chine learning community can be categorized into stochastic
and adversarial settings. The adversarial setting assumes no
reward distribution, and rewards can be generated by an ad-
versary who can adapt to the player’s policy [13]. Therefore,
the adversarial setting is suitable to model decision making
in multi-player games. The stochastic setting, in which the
reward on each action is assumed to belong to some stochas-
tic process, yields policies of generally better performance
when the distributions of rewards do not change very rapidly
(e.g., recommendation for quasi-static population). In this
paper, we focus on the latter setting.

The UCB (by Auer et al. [14], originally called as
UCB1), is probably the most well-known policy for the
stochastic multi-armed bandit problem. They also proved
that UCB achieves a logarithmic expected regret [14]. UCB
is not asymptotically optimal in the sense that the leading
logarithmic term is not the best. Today, several asymp-
totically optimal policies are known, such as KL-UCB
(Kullback-Leibler UCB) [9], [10], Thompson sampling and
DMED [15]. Among them, the KL-UCB policy, the original
idea ofwhich also appeared in old papers [11], [16], is closest

to the UCB in the sense that it explicitly uses the upper con-
fidence bound. Thompson sampling [1] is an old technique
based on the idea of posterior sampling, and its asymptotic
optimality is proven by [17] recently. DMED is another al-
gorithm that explicitly computes the likelihood of its action
to be optimal, and explores actions that are candidates of the
optimal.

In particular, this paper focuses on the budgeted bandit
problem. Unlike the classical bandit problem where the
action of the largest expected reward is of interest, in the
budgeted bandit problem, the action of the largest expected
reward per cost is sought. As for the budgeted multi-armed
bandits, KUBE [4], a naïve extension of the UCB, is the first
consistent policy that solves the bandit problem in the case of
constant (but action-dependent) costs. In this case, the true
optimal policy is to choose actions following to the solution
of a corresponding unbounded knapsack problem. Although
KUBE does not solve unbounded knapsack problems with
estimated mean rewards, the strong consistency (that is, its
expected regret is upper bounded subpolynomially to the
budget B) is proved. [5] extended the problem so as to allow
the action costs to be distributed. UCB-BV family [5] and
PD-BwK [8] are policies of the naïve “two-bound approach”
for this problem as described in Sect. 1. BTS [12], which
is based on Thompson sampling, is the currently best policy
for this problem. Our policy improves its regret upper bound
by a factor of four and we show that our bound is the best
possible.

3. Problem Settings

The budgeted multi-armed bandits [5] is described as a one-
player game in which a player repeatedly chooses one of K
actions until he/she uses up a given budget. At each round t =
1, 2, . . . , a player chooses an action I (t) ∈ [K] := {1, . . . , K },
and then he/she pays a cost CI (t) (t) ∈ [0, 1] and receives
a reward XI (t) (t) ∈ [0, 1]. The rewards Xi (1), Xi (2), . . .
and costs Ci (1),Ci (2), . . . of an action i are i.i.d. random
variables and are drawn from corresponding distributions
with means µi and τi . The realizations Xi (t) and Ci (t) of
unchosen actions i , I (t) are not revealed to the player.
We assume that µi, τi ∈ (0, 1). Let τmin and τmax denote
min{τi | i ∈ [K]} and max{τi | i ∈ [K]}, respectively. Let
ct =

∑t
s=1 CI (s) (s) be the total cost. The player immediately

stops choosing actions at the round when the total cost ct
exceeds the budget B. The game is summarized in the form
of the pseudo-code in Algorithm 1.

Let us study the player’s policy for choosing ac-
tion I (t) based on the information obtained so far{(

I (s), XI (s) (s),CI (s) (s)
)
| s < t

}
. We evaluate policy π

by using regret, which is defined in the following. Let
T (B) = min{t | ct > B} be the round when the player
stops choosing actions. The cumulative reward of the player
who follows policy π is

Gπ (B) =
T (B)−1∑
t=1

XI (t) (t).
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Algorithm 1 Budgeted Multi-Armed Bandits [5]
1: t ← 1
2: c0 ← 0
3: while ct−1 ≤ B do
4: Choose an action I (t) ∈ [K].
5: A costCI (t ) (t) is revealed.
6: ct ← ct−1 +CI (t ) (t)
7: if ct ≤ B then
8: Receive reward XI (t ) (t).
9: t ← t + 1.
10: end if
11: end while

Let π∗ = arg maxπ E[Gπ (B)] be the best policy, then the
performance of a policy π is measured by the pseudo regret

R
π

(B) = E[Gπ∗ (B)] − E[Gπ (B)].

An exact evaluation of R
π

(B) can be quite hard because in
some cases choosing an action of the best reward per cost
may be suboptimal.

Instead of regret for not taking the best policy π∗, we
can consider regret for not choosing the best action in terms
of the reward per cost. The optimal action i∗ is defined as

i∗ = arg max
i∈[K]

µi
τi
,

and we will abbreviate µi∗ and τi∗ as µ∗ and τ∗ in what
follows. We assume that the optimal action is unique for
simplicity. Accordingly, the regret per unit cost for choosing
suboptimal action i is considered to be

∆i =
µ∗

τ∗
−
µi
τi
.

Let Ni (t) =
∑t−1

s=1 I{I (s) = i} denote the number of rounds
action i is chosen before round t, where I{·} is the indicator
function. We define the following quantity

R̃π (B) =
∑

i : ∆i>0
τi∆i E[Ni (T (B))].

While this quantity is not identical to the pseudo regret, the
following theorem shows that it only differs by a constant
from the pseudo regret†. Thus we again define this amount
as the regret. Throughout this paper, our interest will be in
this regret.

Theorem 1 (Lemma 2 by [12]). For any policy π of the
budgeted multi-armed bandits with budget B, we have

���R
π

(B) − R̃π (B)��� ≤ 2
µ∗

τ∗
. (1)

The regret can be minimized by a policy that minimizes
†Note that, Lemma 2 by Xia et al. [12] shows only one side (i.e.,

regret upper bound) of the absolute value. However, their lemma
essentially depends on the fact that the total budget used by any
policy lies in (B − 1, B], and it is easy to use this fact to obtain a
regret lower bound.

E[Ni (t)] for suboptimal actions i , i∗ and t ≥ 1. In the
analysis, we first bound E[Ni (t)], then convert it into a regret
bound.

4. Policy KL-UCB-SC

In this section, we propose the policy KL-UCB-SC (KL-
UCB for Stochastic Cost multi-armed bandits). Like other
UCBpolicies, KL-UCB-SC calculates an indexUi (t) of each
actions i and chooses the action that maximizes the index.
Namely,

I (t) = arg max
i∈[K]

Ui (t) (2)

where ties are broken in an arbitrary way. In the following,
we define Ui (t) that takes the uncertainty of the rewards and
the costs into consideration. Let

µ̂i,n =
1
n

∑
s : Ni (s)<n

I (s)=i

Xi (s)

and

τ̂i,n =
1
n

∑
s : Ni (s)<n

I (s)=i

Ci (s).

Furthermore, we define the confidence region Φ(x, y, δ) ⊂
[0, 1]2 around point (x, y) as

Φ(x, y, δ) = {(µ, τ) | dKL(x, µ) + dKL(y, τ) ≤ δ} ,

where

dKL(p, q) = p ln
(

p
q

)
+ (1 − p) ln

(
1 − p
1 − q

)
is the Kullback-Leibler divergence (KL divergence) of the
Bernoulli distribution of mean q from the Bernoulli distri-
bution of mean p††. Let φ(x, y, δ) denote the maximum
value of µ/τ among points (µ, τ) ∈ Φ(x, y, δ):

φ(x, y, δ) = max{µ/τ | (µ, τ) ∈ Φ(x, y, δ)},

Intuitively, φ(x, y, δ) represents the point (µ, τ) of max-
imum µ/τ in the two dimensional region where (µ, τ)
is within δ from (x, y) in terms of the pseudo-distance
d((x, y), (µ, τ)) = dKL(x, µ) + dKL(y, τ). The index Ui (t)
of an action i at round t is defined as

Ui (t) =



φ

(
µ̂i,Ni (t), τ̂i,Ni (t),

ln(t)
Ni (t)

)
(Ni (t) > 0)

∞ (otherwise).

The advantages of the index Ui (t) are that (i) the confi-
dence bound derived from the KL divergence using Cramer-
Chernoff inequality (Lemma 4) is tighter than the one de-
rived fromquadratic divergence usingHoeffding’s inequality
††We define 0 ln(0/q) = limε→+0 ε ln(ε/q) = 0 for any q and

p ln(p/0) = limε→+0 p ln(p/ε ) = ∞ for any p > 0.
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(Fact 3), as is understood from Pinsker’s inequality (Fact 2).
Moreover, (ii) Ui (t) incorporates the uncertainties of the re-
ward and the cost into a single formula: the probability that
both the empirical reward and the empirical cost deviate from
the true mean reward and cost is intuitively small, and thus
Ui (t) is defined by using the sum of the two divergences.

Note that the calculation of Ui (t) is a convex optimiza-
tion of two variables, which can be performed by modern
optimization solvers such as CVXOPT (http://cvxopt.org/).

5. Analytical Results

In this section, we analyze the KL-UCB-SC policy. Let

Di = min
a>0

(
dKL(µi, aµ∗) + dKL(τi, aτ∗)

)
.

This quantity characterizes how easy it is to identify action i
from the optimal one.

In the context of standard multi-armed bandit problem,
Lai and Robbins [16] showed that a strongly consistent algo-
rithm must choose action i until the number of draws Ni (t)
satisfies ln t ' Ni (t)dKL( µ̂i, µ∗). Note that the quantity
Ni (t)dKL( µ̂i, µ∗) can be considered as the negative loga-
rithmic likelihood that the parameter of arm i is µ∗, and
thus the strong consistency requires that the parameter of
action i is not as good as the one of the optimal with sig-
nificance level 1/t. In our case, each action i has two pa-
rameters µi, τi , and Di measures the difference between ac-
tion i and an action with its expected reward aµ∗ and cost
aτ∗. Since aµ∗/aτ∗ = µ∗/τ∗, if action i had parameters
aµ∗, aτ∗, it was as good as the optimal. Choosing action
i until ln t ' Ni (t) (mina>0 (dKL( µ̂i, aµ∗) + dKL(τ̂i, aτ∗)))
checks that the true parameters of arm i is unlikely to be
aµ∗, aτ∗ for any a > 0, and thus its expected reward per
cost does not exceed µ∗/τ∗. In this sense, Di is the essential
quantity for the budgeted bandit problem.

In Sect. 5.1, we derive an upper bound on the expected
number E[Ni (T )] of choices of suboptimal action i. In
Sect. 5.2, we introduce the notion of a strongly consistent
policy and derive a lower bound of E[Ni (T )] for Bernoulli
rewards and costs for any strongly consistent policy. On
the basis of these two bounds, in Sect. 5.3, we show that (i)
the regret of KL-UCB-SC for Bernoulli rewards and costs is
asymptotically optimal, and (ii) its regret for any bounded re-
wards and costs is upper bounded by the optimal regret bound
for the Bernoulli ones with the same expected rewards and
expected costs.

To overview these results briefly, the technical part of
the proofs are left to the appendices.

5.1 Upper Bound on the Number of Choices of Suboptimal
Actions

In this section, we prove an upper bound on the expected
number E[Ni (T )] of selections of action i in the first T −
1 rounds for any i , i∗ and T ≥ 1. When suboptimal
action i is chosen, either of the following two events occurs:

underestimation of the optimal action or overestimation of
the suboptimal actions i. Lemma 1 and 2 bound these two
events respectively.

The first bound is about the former event. For suffi-
ciently small ε > 0, let µ∗(ε ) = µ∗ − ε and τ∗(ε ) = τ∗ + ε .
Because the optimal action is expected to be chosen fre-
quently, it is unlikely that the index of the optimal action is
below µ∗(ε )/τ∗(ε )(< µ∗/τ∗).

Lemma 1. Let ε > 0 be sufficiently small. Then, the follow-
ing equality holds:

T∑
t=K+1

Pr
{

Ui∗ (t) <
µ∗(ε )
τ∗(ε )

}
= O(ε−6). (3)

Proof. See Appendix B. �

The second bound is on the overestimation of the sub-
optimal action i , i∗.

Lemma 2. Let ε > 0 be sufficiently small. Then, the follow-
ing equality holds for any suboptimal action i , i∗:

T∑
t=K+1

Pr
{

I (t) = i,Ui∗ (t) ≥
µ∗(ε )
τ∗(ε )

}
=

1 +O(ε )
Di

ln(T ) + O(ε−2). (4)

Proof. See Appendix C. �

By using these lemmas, we upper-bound the number of
the selection of suboptimal action i.

Theorem 2. Let the policy π be KL-UCB-SC. For any sub-
optimal action i , i∗ and T ≥ 1, sufficiently small ε ,

E[Ni (T )] =
(1 +O(ε )) ln(T )

Di
+O(ε−6)

holds.

Proof. Ni (T ) can be decomposed into the following terms:

Ni (T ) ≤ 1 +
T−1∑

t=K+1
I

{
Ui∗ (t) <

µ∗(ε )
τ∗(ε )

}

+

T−1∑
t=K+1

I

{
I (t) = i,Ui∗ (t) ≥

µ∗(ε )
τ∗(ε )

}
. (5)

Then, the proof is immediately completed by taking the ex-
pectation and using Lemma 1 (for bounding the second term)
and Lemma 2 (for bounding the third term). �

Although this theorem is very close to the regret bound
that we want to derive, it does not immediately derive the
upper bound of expected regret as a function of budget B
because in the budgeted bandit problem the number of round
T (B) varies among runs. In Sect. 5.3, we will revisit this
theorem to derive the regret bound.

http://cvxopt.org/
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5.2 Lower Bound on the Number of Choices of Suboptimal
Actions

Following a similar discussion to the one in [16], we first
introduce the notion of strong consistency. Then, we derive
a lower bound for the number of choices that all strongly
consistent policies must have.

Definition 1 (Strong consistency). A policy is strongly con-
sistent if, for any suboptimal action i, a > 0 and any distri-
butions,

lim
T→∞

E[Ni (T )]
Ta

→ 0.

Theorem 3. Let the rewards and costs be drawn from
Bernoulli distributions with parameters {µi, τi }i∈[K]. For
any strongly consistent policy, any suboptimal action i, and
any ε > 0, E[Ni (T )] is lower-bounded as:

E[Ni (T )] = (1 − o(1))
ln(T )

Di
.

Proof. See Appendix D. �

Similar to the upper bound, this lower bound on the
number of choices does not immediately derive a regret lower
bound as a function of the budget B. In Sect. 5.3, we convert
these bounds on E[Ni (T )] into regret bounds.

5.3 Regret Bounds

It is not still straightforward to bound the regret by using
bounds ofE[Ni (T )] for a givenT becauseT (B) varies among
runs. The following lemma, which implicitly bounds T (B),
relates the regret and E[Ni (T )] for some fixed T .

Lemma 3. For any policy π, we have

R̃π (B) ≤
∑

i : ∆i>0
τi∆i *

,
E

[
Ni

(⌊
2K B
τmin

⌋)]
+

K2

2τ2
min

+
-

+o(1)

(6)

and

R̃π (B) ≥
∑

i : ∆i>0
τi∆i E

[
Ni

(⌊
B

2Kτmax

⌋
+ 1

)]
− o(1),

(7)

where o(1)s are considered as functions of B.

Proof. See Appendix E. �

Lemma 3 enables us to convert the results of Theorem 2
and Theorem 3 into statements on the regret as functions of
the budget B. Compared with the analysis by Xia et al. [12],
that always takes the budget into consideration, Lemma 3
makes the analysis much easier.

Theorem 4. Let π be the KL-UCB-SC. Then the regret is

upper-bounded as:

R̃π (B) =
∑

i : ∆i>0

τi∆i ln(B)
Di

+ o(ln(B)).

Proof. The following holds by Theorem 2 with ε =
(ln(B))−1/7 for sufficiently large B and Lemma 3.

R̃π (B)

≤
∑

i : ∆i>0
τi∆i

*.
,
(1 +O(ε ))

ln
(

2KB
τmin

)
Di

+O(ε−6)

+
K2

2τ2
min

+
-
+ o(1)

=
∑

i : ∆i>0
τi∆i (1 +O(ε ))

ln(B) + ln
(

2K
τmin

)
Di

+O(ε−6)

*.
,
by O(ε−6) +

K2

2τ2
min

∑
i : ∆i>0

τi∆i + o(1) = O(ε−6)+/
-

=
∑

i : ∆i>0

τi∆i ln(B)
Di

+ o(ln(B)).

(
by O(ε ) ln(B) = O(ε−6) = O

(
(ln(B))6/7

)
= o(ln(B))

)
�

Theorem 5. Let the rewards and costs be drawn from
Bernoulli distributions with parameters {µi, τi }i∈[K]. For
any strongly consistent policy π, the regret is lower-bounded
as:

R̃π (B) =
∑

i : ∆i>0

τi∆i ln(B)
Di

− o(ln(B)).

Proof. Similar to the proof of Theorem 4, using Theorem 3
and Lemma 3, we find that

R̃π (B) ≥
∑

i : ∆i>0

(1 − o(1))τi∆i
Di

ln
(

B
2Kτmax

)
− o(1)

=
∑

i : ∆i>0

(1 − o(1))τi∆i
Di

(ln(B) − ln (2Kτmax))

−o(1)

=
∑

i : ∆i>0

τi∆i ln(B)
Di

− o(ln(B))

�

These two theorems immediately give us the following
optimality of the KL-UCB-SC:

Corollary 1. On budgeted bandits with stochastic costs, if
all reward/cost distributions are Bernoulli, KL-UCB-SC is
asymptotically optimal. That is, the coefficient of the loga-
rithmic factor of regret as a function of budget B cannot be
improved.
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5.4 Comparison with Other Policies

For a budgeted multi-armed bandits with stochastic costs,
a number of policies, such as UCB-BV1 [5] and BTS [12]
have been proposed. The same as we did, the upper bounds
of expected regret on their policies have been proved.

Remark 1. For the budgeted multi-armed bandits, the lead-
ing terms in the known upper bound of expected regret are:

BTS [12] ∑
i : ∆i>0

2
(
µ∗

τ∗
+ 1

)2 ln(B)
τi∆i

.

UCB-BV1 [5] (λ = τmin)∑
i : ∆i>0

(
2 + 2/τmin + ∆i

τmin

)2
τi ln(B)
∆i

,

derived from their intermediate result

E[Ni (T (B))] =
(

2 + 2/τmin + ∆i
∆iτmin

)2
ln(T (B))+O(1)

and Eq. (6).

These bounds and the bound we derived for KL-UCB-
SC are not naturally comparable. In order to make them
comparable, we give the upper bound of the upper bound
written in terms of ∆i .

Lemma 4.

Di ≥
2(τ∗)2

(µ∗)2 + (τ∗)2 τ
2
i ∆

2
i .

Proof. Di can be expressed as

Di = min
a
{dKL(µi, aµ∗) + dKL(τi, aτ∗)}

≥ min
a
{2(aµ∗ − µi)2 + 2(aτ∗ − τi)2}

=
2(µiτ∗ − µ∗τi)2

(µ∗)2 + (τ∗)2 =
2(∆iτiτ∗)2

(µ∗)2 + (τ∗)2 ,

where the inequality holds by Pinsker’s inequality and the
right hand side of the second last equality is the square of
the distance from a point (µi, τi) to a line x = (µ∗/τ∗) y in
the x-y plane. �

This lemma makes clear the relation of our result with
the previously known ones: the upper bound of the regret for
KL-UCB-SC proved in Theorem 4 can be loosened to the
one in the following corollary.

Corollary 2. Let π be the KL-UCB-SC. Then the regret is
upper-bounded as:

R̃π (B) =
∑

i : ∆i>0

1
2

*
,

(
µ∗

τ∗

)2
+ 1+

-

ln(B)
τi∆i

+ o(ln(B)) (8)

for any bounded distribution.

Remark 2. By comparing bound (8)with those in Remark 1,
the regret bound improves at least by a factor of four on the
best known one (proved for BTS [12]). Although this fact
does not conclude that these previously-proposed policies
are not asymptotically optimal even if the reward/cost distri-
butions are Bernoulli (in other words, they have worse regret
than KL-UCB-SC), it implies that our analysis is essentially
tighter than the existing ones.

6. Experiments

6.1 Policies

We compared the following six policies in our experiments:
KL-UCB-SC, KL-UCB-SC+, BTS [12], PD-BwK [8],
UCB-BV1 [5] and EF-KUBE. KL-UCB-SC+ is a version
of KL-UCB-SC that uses ln(t/Ni (t)) instead of ln(t), which
is inspired by the KL-UCB+ policy for the classical multi-
armed bandits [18]. The introduction of the denominator
Ni (t) does not change the asymptotic property because for
any suboptimal action i, Ni (t) = O(ln t) holds almost surely
and thus ln(t/Ni (t)) is still O(ln t), while it generally im-
proves a finite-time performance [9], [18]. BTS is an ex-
tension of Thompson sampling that draws reward and cost
parameters from Beta distributions at each round and greed-
ily chooses the estimated optimal action based on the drawn
parameters. Note that BTS corresponds to the posterior sam-
pling if and only if rewards and costs are Bernoulli. Differ-
ent from BTS, the last three policies also belong to the UCB
family and choose action i with the highest index, where the
indices of action i at round t in the individual policies are
defined as follows:
PD-BwK

[
µ̂i,Ni (t) +

(√
Crad µ̂i,Ni (t)/Ni (t) + Crad/Ni (t)

)]
≤1[

τ̂i,Ni (t) −
(√

Crad τ̂i,Ni (t)/Ni (t) + Crad/Ni (t)
)]
≥0

UCB-BV1
µ̂i,Ni (t)

τ̂i,Ni (t)
+

(1 + 1/λ)
√

ln(t)/Ni (t)[
λ −
√

ln(t)/Ni (t)
]
≥0

EF-KUBE

1
τ̂i,Ni (t)

*.
,
µ̂i,Ni (t) +

√
ln(t)

2Ni (t)
+/
-

where [x]≥θ = max{x, θ}, [x]≤θ = min{x, θ}. The pa-
rameters of PD-BwK and UCB-BV1 are set to Crad =
0.25 ln(K B) and λ = τmin respectively†. Note that EF-
KUBE (Empirical Fractional KUBE) is a modification of
†To guarantee the regret upper bound shown in [8], set-

ting Crad = Θ(ln(K B)) is necessary for PD-BwK and Crad =
0.25 ln(K B) is the setting used in the comparison experiment in
[12]. Setting λ = τmin is optimal for UCB-BV1 in terms of the
regret upper bound shown in [5].
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Table 1 Reward and cost distributions of five actions.
(a) Scenario M: Medium mean re-
ward and cost.

i Xi (t) Ci (t)
µi
τi

1 B(0.5) B(0.5) 1
2 B(0.4) B(0.4) 1
3 B(0.6) B(0.6) 1
4 B(0.4) B(0.6) 0.6̇
5 B(0.6) B(0.4) 1.5

(b) Scenario LR: Low mean reward.

i Xi (t) Ci (t)
µi
τi

1 B(0.02) B(0.4) 0.05
2 B(0.03) B(0.4) 0.075
3 B(0.04) B(0.8) 0.05
4 B(0.06) B(0.8) 0.075
5 B(0.08) B(0.8) 0.1

(c) Scenario H: High mean reward
and cost.

i Xi (t) Ci (t)
µi
τi

1 B(0.9) B(0.9) 1.0
2 B(0.9) B(0.9) 1.0
3 B(0.9) B(0.9) 1.0
4 B(0.9) B(0.9) 1.0
5 B(0.9) B(0.8) 1.125

(d) Scenario FR: Fixed reward.

i Xi (t) Ci (t)
µi
τi

1 B(1) B(0.4) 2.5
2 B(1) B(0.4) 2.5
3 B(1) B(0.4) 2.5
4 B(1) B(0.4) 2.5
5 B(1) B(0.3) 3.3̇

fractional KUBE [4]; the original fractional KUBE uses
time-invariant costs τi instead of τ̂i,Ni (t) .

6.2 Synthetic Dataset

First we simulate a 5-armed bandit game for four scenarios.
Budget B is set to 10000 = 104. We use Bernoulli distri-
butions B(µ) of mean µ. The rewards and costs of the five
actions are generated according to the distributions shown in
Table 1. The reward and cost means of actions in Scenario
M are selected from the three values 0.4, 0.5, 0.6 around the
center of the range [0, 1]. The reward means of Scenario LR
are low for all the actions, which is typical when the number
of clicks is used as the cumulative reward in the applications
to recommendation and advertising. In this case, estimation
of reward means are difficult because non-zero rewards can
be rarely obtained in Bernoulli distribution. Scenario H and
FR are special cases. All the reward and cost means are very
high in Scenario H, and all the rewards are fixed while all
the cost means are medium in Scenario FR. In the both sce-
nario, reward and cost means are the same for all the actions
except cost mean for action 5. The optimal action i∗ is 5 in
all scenarios.

Table 2 shows the empirical regret averaged over 1000
runs for B = 104. The empirical regret R̂(B) is calculated as

R̂(B) =
∑

i : ∆i>0
τi∆iNi (T (B)).

Figure 1 shows the increase of the empirical regret (y-axis)
against the budget (x-axis) for the six policies.

KL-UCB-SC+ and BTS stably perform well. They per-
form third best at worst for the four scenarios. (See Table 2.)
Compared with BTS, KL-UCB-SC+ performs slightly better
in Scenario LR and H, slightly worse in Scenario M, and as
well in Scenario FR.

Note that Thompson sampling and KL-UCB for the
classical bandit problem are both asymptotically optimal.
Although BTS has not been analyzed in depth yet, taking

Table 2 Averaged empirical regrets for B = 104 (The tiny parenthesized
numbers are ranks in ascending order.)

Scenario M LR H FR
KL-UCB-SC 182.82 (5) 89.63 (4) 105.47 (3) 469.92 (5)

KL-UCB-SC+ 116.48 (3) 50.73 (2) 67.93 (1) 283.29 (3)

BTS 112.21 (2) 55.83 (3) 72.34 (2) 281.53 (2)

PD-BwK 152.02 (4) 48.36 (1) 263.02 (5) 200.84 (1)

UCB-BV1 2498.65 (6) 268.21 (6) 691.57 (6) 3230.75 (6)

EF-KUBE 82.43 (1) 180.31 (5) 127.32 (4) 360.21 (4)

Table 3 Average computation time per decision of each policy on sce-
nario LR.

Policy Time (µs)
KL-UCB-SC 19 741.1
KL-UCB-SC+ 21 473.8
BTS 14.5
PD-BwK 4.2
UCB-BV1 2.3
EF-KUBE 2.6

the fact that BTS performs very close to KL-UCB-SC+, it
is possible that BTS is also asymptotically optimal in the
budgeted bandits.

PD-BwK performs best in Scenario LR and FR but
poorly performs in Scenario H. PD-BwK has parameter
Crad on which its performance depend. Parameter Crad =
0.25 ln K B, which is used in our experiments, are considered
to be good for Scenario LR and FR, and bad for Scenario H.
Parameter tuning may improve its performance for Scenario
H, but such a troublesome task is one of the demerits of
PD-BwK.

EF-KUBE performs best in Scenario M but its perfor-
mance is not good for the other scenarios. In EF-KUBE, its
index does not consider how much confidence the estimated
cost mean has, and uses the estimated cost mean directly.
As a result, in the case of over-estimation of the cost mean,
it takes many rounds to recover its estimation. In Scenario
FR, the regret increasing rate of EF-KUBE is high, which is
caused by a small fraction of runs in which over-estimation
of the cost mean of the best action occurs.

UCB-BV1 performed worst for all the scenarios.
In addition, the average computation time per decision

of each policy on scenario LR is shown in Table 3. By
our current implemantetion of KL-UCB-SC(+) using convex
optimization, it takes about 0.004 s to calculate the index of
one action, which is, unfortunately, more than 1000 times
slower compared to other policies.

6.3 Real-World Dataset

In order to show effectiveness for real-world applications, we
also conducted simulations of real-time bidding advertising
based on real-world dataset provided by iPinYou [19]. In
real-time bidding advertising, every time when a user visits
a website containing an ad space, an auction for the ad space
is held in real time. In the auction, advertisers bid their prices
by the bidding rules (policies) that they set in advance, and
one of them wins and pays the second bidding price instead
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Fig. 1 Increase of empirical regret averaged over 1000 independent runs. A base-10 log scale is used
for the x-axis. In Scenario M and FR, the curve for BTS is overwritten by the curve for KL-UCB-SC+
because their differences are within ±6.0 and ±4.0, respectively, for all the budgets.

of his/her bidding price for the impression of his/her ad on
the site at that time. The second bidding price cannot be
controlled by the winner, so the impression cost can be seen
as a randomvariable. In our experimental setting, we assume
that every user belongs to one of K categories and the visiting
user’s category is revealed to the advertisers in the auction.
The player in our simulation is one of the advertisers who
wins the auctions for visits of users of a target category
only. The player is assumed to be able to win any auction
by bidding a price enough to win. So, the player repeats
to decide a target user category, bid at the auction for the
next visit of a user of the target category, win the auction,
pay the cost of the impression, and receive an information
whether the displayed ad is clicked or not. In this setting, we
simulated a budgeted bandit problem in which a player tries
to maximize the number of clicks given a fixed amount of
budget by targeting users via their categories.

As the distributions of reward Xi (t) and cost Ci (t) for
user category i and the player’s tth win of the auctions, we
used Bernoulli distribution B(µi) and lognormal distribu-
tion† Λ(νi, σ2

i ), respectively, where Xi (t) = 1 or 0 means
that the player’s ad is clicked or not by the user of category i
for the tth impression of the player’s ad, and Ci (t) is the tth
impression cost.

†Weused lognormal distribution as a cost distribution following
a literature by Ostrovsky and Schwartz [20].

We set the number of user categories to 20 and all
the distribution parameters µi, νi, σ2

i (i = 1, . . . , 20) are es-
timated from the training dataset of the second season of
iPin You global RTB bidding algorithm competition. Using
the impression log, we selected the top-twenty most fre-
quently appeared sets of user profile ids†† as actions (user
categories). Reward mean µi of each action i was set to
the empirical click-through-rate (i.e, probability of click) of
the corresponding user category (the set of user profile ids),
which was calculated from the impression and click logs.
The click-through-rate of actions are in 1–6.2 percent†††.
The cost distribution parameters νi and σ2

i of each action i
are also set to the empirical mean and variance of the loga-
rithmic paying price of the impression for the corresponding
user category, where paying prices are provided by the im-
pression log. The mean costs of the actions are in 60–102.
(See Table A· 1 for the parameters that we used in our simu-
lations.)

Given this, we set B = 1000000 = 106 in this dataset.
The policies compared are the same as the ones of the pre-
††Several profile ids are assigned to one user according to his/her

demographic and geographic information, long-term interest and
in-market purchase perspectives.
†††Because the click-through-rates of display advertisements are

usually very small, we multiplied 100 to each of them, and thus
each selection of an action approximately simulates a hundred im-
pressions.
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Fig. 2 Increase of empirical regret on real-world dataset averaged over
100 independent runs.

vious simulations.
The result averaged over 100 runs is summarized in

Fig. 2. In this experiment, KL-UCB-SC+ also performed
the best which is followed by BTS.

7. Conclusion and Future Work

We proposed a policy named KL-UCB-SC for budgeted
multi-armed bandits with stochastic action costs. We de-
rived a regret upper bound for it that holds for any bounded
rewards and costs. The regret bound is optimal in the case
that the rewards and costs are drawn from Bernoulli distribu-
tions, which is, to the best of our knowledge, the first result
that addresses optimality in budgeted multi-armed bandits.
Furthermore, we demonstrated that the performance of KL-
UCB-SC+, which is a variant of KL-UCB-SC, is comparable
to that of the state-of-the-art policies in numerical experi-
ments.

In order to calculate the index of KL-UCB-SC, we had
to solve a convex optimization problem, which takes more
time than existing policies. An efficient way to compute the
index would be an interesting future work.
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Appendix A: Important Inequalities

The following four inequalities are important inequalities to
prove our bounds.

Fact 1 (Markov’s inequality). For any random variable X
with a non-negative support and a > 0,

E[X] ≥ a · Pr{X ≥ a}

holds.

Fact 2 (Pinsker’s inequality). For all p, q ∈ [0, 1], the fol-
lowing inequality holds:

dKL(p, q) ≥ 2(p − q)2.

Fact 3 (Hoeffding’s inequality [21]). Let µ̂n = 1
n

∑n
i=1 Xi ,
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where X1, . . . , Xn are i.i.d. random variables taking values
in [0, 1]. Let µ be the their common mean. Then, for any
a ≥ 0,

Pr{ µ̂n ≥ µ + a} ≤ e−2na2

and

Pr{ µ̂n ≤ µ − a} ≤ e−2na2
.

Fact 4 (Cramer-Chernoff inequality for bounded random
variables.). Let µ̂n = 1

n

∑n
i=1 Xi , where X1, . . . , Xn are i.i.d.

random variables taking values in [0, 1]. Let µ be the their
common mean. Then, for any x > µ,

Pr{ µ̂n ≥ µ + a} ≤ e−ndKL (µ+a,µ), (A· 1)

and for any x < µ,

Pr{ µ̂n ≤ µ − a} ≤ e−ndKL (µ−a,µ) . (A· 2)

Proof. By Eq. (2.2.12) and (2.2.13) in [22], for any x > µ,

Pr{ µ̂n ≥ x} ≤ e−nΛ
∗ (x),

and for any x < µ,

Pr{ µ̂n ≤ x} ≤ e−nΛ
∗ (x),

where Λ(λ) = lnE[eλXi ] and

Λ
∗(x) = sup

λ∈R
{λx − Λ(λ)}.

By Lemma 9 in [9], E[eλX ] ≤ 1 − µ + eλ holds for any
λ ∈ R, and the proof is completed by using the convexity of
Λ∗(λ). �

Appendix B: Proof of Lemma 1

We bound
∑T

t=K+1 Pr
{
Ui∗ (t) ≤

µ∗ (ε )
τ∗ (ε )

}
by the sum of three

probability summations, and further bound each of them.
We first prove Lemma 5, which bounds each of the three
probability summations. Then, we prove Lemma 1 using
Lemma 5. The next two propositions are necessary for the
proof of Lemma 5. Note that function f defined in Proposi-
tion 1 is used in the proof of Lemma 5.

Proposition 1 ([15]). Let f (µ, µ1) = (µ−µ1)2/(2µ(1−µ1)).
Then,

dKL(µ2, µ) − dKL(µ2, µ1) ≥ f (µ, µ1) > 0 (A· 3)

holds for any 0 < µ2 ≤ µ1 < µ < 1 and

dKL(τ2, τ) − dKL(τ2, τ1) ≥ f (τ1, τ) > 0 (A· 4)

holds for any 0 < τ < τ1 ≤ τ2 < 1.

Proof. The proof of Eq. (A· 3) is in the original paper [15].
Equation (A· 4) can be proved in the same way. �

Proposition 2. For any a > 0, the following inequality
holds:

∞∑
k=1

kme−ak ≤




m!ea

am+1 (m ∈ N)

1
a

(m = 0).

Proof. Since kmeak ≤ (x + 1)me−ax holds for all k − 1 ≤
x ≤ k,

∞∑
k=1

kme−ak ≤
∫ ∞

0
(x + 1)me−axdx

≤
ea

a

∫ ∞

a

( z
a

)m
e−zdz

(by substitution z = a(x + 1))

≤




eaΓ(m + 1)
am+1 (m ∈ N)

1
a

(m = 0).

�

Now we prove Lemma 5.

Lemma 5. Let ε > 0 be sufficiently small. Let Fµ
n (x) =

Pr{ µ̂i∗,n ≤ x} and Fτn (y) = Pr{τ̂i∗,n ≥ y }. Then, the
following equations hold.

∞∑
n=1

∫ µ∗ (ε )

x=0
exp

(
ndKL

(
x, µ∗(ε )

))
dFµ

n (x) = O(ε−4),

∞∑
n=1

∫ τ∗ (ε )

y=1
exp

(
ndKL

(
y, τ∗(ε )

))
dFτn (y) = O(ε−4),

∞∑
n=1

(∫ µ∗ (ε )

x=0
exp

(
ndKL

(
x, µ∗(ε )

))
dFµ

n (x)

·

∫ τ∗ (ε )

y=1
exp

(
ndKL

(
y, τ∗(ε )

))
dFτn (y)

)
= O(ε−6).

Proof. We first derive the second equation. By using inte-
gration by parts, we obtain∫ τ∗ (ε )

y=1
exp

(
ndKL

(
y, τ∗(ε )

))
dFτn (y)

=
[
exp

(
ndKL

(
y, τ∗(ε )

))
Fτn (y)

]τ∗ (ε )
y=1

+

∫ τ∗ (ε )

y=1
−

d exp (ndKL (y, τ∗(ε )))
dy

Fτn (y)dy.

The first term can be bounded as[
exp

(
ndKL

(
y, τ∗(ε )

))
Fτn (y)

]τ∗ (ε )
y=1

= Fτn (τ ∗ (ε )) − exp
(
ndKL

(
1, τ∗(ε )

))
Fτn (1)

≤ Fτn (τ∗(ε )) = Pr{τ̂i∗,n ≥ τ∗ + ε }
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≤ exp(−ndKL(τ∗(ε ), τ∗))

by using Cramer-Chernoff inequality (Fact 4). The second
term is bounded as follows:∫ τ∗ (ε )

y=1
−

d exp (ndKL (y, τ∗(ε )))
dy

Fτn (y)dy

=

∫ 1

y=τ∗ (ε )
n
(
ln

(
y

τ∗(ε )

)
− ln

(
1 − y

1 − τ∗(ε )

))
· exp

(
ndKL

(
y, τ∗(ε )

))
Fτn (y)dy

≤

∫ 1

y=τ∗ (ε )
n
(
ln

(
y

τ∗(ε )

)
− ln

(
1 − y

1 − τ∗(ε )

))
· exp

(
ndKL

(
y, τ∗(ε )

)
− ndKL

(
y, τ∗

))
dy

(by Cramer-Chernoff inequality (Fact 4))

≤

∫ 1

y=τ∗ (ε )
n
(
ln

(
y

τ∗(ε )

)
− ln

(
1 − y

1 − τ∗(ε )

))
· exp

(
−n f

(
τ∗(ε ), τ∗

))
dy

(by Proposition 1)

= n ln
(

1
τ∗(ε )

)
exp(−n f (τ∗(ε ), τ∗)).

Thus, we obtain

∞∑
n=1

∫ τ∗ (ε )

y=1
exp

(
ndKL

(
y, τ∗(ε )

))
dFτn (y)

≤

∞∑
n=1

(
exp(−ndKL(τ∗(ε ), τ∗))

+ ln
(

1
τ∗(ε )

)
n exp(−n f (τ∗(ε ), τ∗))

)
≤

1
dKL(τ∗(ε ), τ∗)︸             ︷︷             ︸

O(ε−2) (by Pinsker’s inequality)

+ ln
(

1
τ∗(ε )

)
exp( f (τ∗(ε ), τ∗))

f 2(τ∗(ε ), τ∗)︸                                 ︷︷                                 ︸
O(ε−4) (by the definition of f )

(by Proposition 2 for m = 0 and 1)

= O(ε−4).

Using the same argument yields

∞∑
n=1

∫ µ∗ (ε )

x=0
exp

(
ndKL

(
x, µ∗(ε )

))
dFµ

n (x) = O(ε−4).

Similarly, we have

∞∑
n=1

∫ µ∗ (ε )

x=0
exp

(
ndKL

(
x, µ∗(ε )

))
dFµ

n (x)

·

∫ τ∗ (ε )

y=1
exp

(
ndKL

(
y, τ∗(ε )

))
dFτn (y)

≤

∞∑
n=1

(
exp(−ndKL(µ∗(ε ), µ∗))

+ ln
(

1
1 − µ∗(ε )

)
n exp(−n f (µ∗, µ∗(ε )))

)
·

(
exp(−ndKL(τ∗(ε ), τ∗))

+ ln
(

1
τ∗(ε )

)
n exp(−n f (τ∗(ε ), τ∗))

)
≤

1
dKL(µ∗(ε ), µ∗) + dKL(τ∗(ε ), τ∗)

+ ln
(

1
τ∗(ε )

)
exp (dKL(µ∗(ε ), µ∗) + f (τ∗(ε ), τ∗))

(dKL(µ∗(ε ), µ∗) + f (τ∗(ε ), τ∗))2

+ ln
(

1
1 − µ∗(ε )

)
·

exp (dKL(τ∗(ε ), τ∗) + f (µ∗, µ∗(ε )))

(dKL(τ∗(ε ), τ∗) + f (µ∗, µ∗(ε )))2

+ 2 ln
(

1
1 − µ∗(ε )

)
ln

(
1

τ∗(ε )

)
·

exp ( f (µ∗, µ∗(ε )) + f (τ∗(ε ), τ∗))

( f (µ∗, µ∗(ε ) + f (τ∗(ε ), τ∗))3

(by Proposition 2 for m = 0, 1 and 2)

= O(ε−6).
(by Pinsker’s inequality and the definition of f )

�

By using Lemma 5, Lemma 1 can be proved as follows.

Proof of Lemma 1. We have,

E


T∑
t=K+1

I

{
Ui∗ (t) <

µ∗(ε )
τ∗(ε )

}

=

T∑
t=K+1

Pr
{

Ui∗ (t) <
µ∗(ε )
τ∗(ε )

}

≤

T∑
t=K+1

Pr
{

Ui∗ (t) <
µ∗(ε )
τ∗(ε )

, µ̂i∗,Ni∗ (t) > µ∗(ε )
}

+

T∑
t=K+1

Pr
{

Ui∗ (t) <
µ∗(ε )
τ∗(ε )

, τ̂i∗,Ni∗ (t) < τ∗(ε )
}

+

T∑
t=K+1

Pr
{

Ui∗ (t) <
µ∗(ε )
τ∗(ε )

,

µ̂i∗,Ni∗ (t) < µ∗(ε ), τ̂i∗,Ni∗ (t) ≥ τ
∗(ε )

}
.

The first summation is bounded by

T∑
t=1

Pr
{

Ui∗ (t) <
µ∗(ε )
τ∗(ε )

, µ̂i∗,Ni∗ (t) > µ∗(ε )
}
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≤ Pr
T∑
t=1

{
dKL

(
τ̂i∗,Ni∗ (t), τ

∗(ε )
)
>

ln(t)
Ni∗ (t)

,

τ̂i∗,Ni∗ (t) ≥ τ
∗(ε )

}
(
because

µ̂i∗,Ni∗ (t)

τ̂i∗,Ni∗ (t)
≤ Ui∗ (t) <

µ∗(ε )
τ∗(ε )

⇒ τ̂i∗,Ni∗ (t) ≥ τ
∗(ε )

and Ui∗ (t) <
µ∗(ε )
τ∗(ε )

<
µ̂i∗,Ni∗ (t)

τ∗(ε )
⇒ ( µ̂i∗,Ni∗ (t), τ

∗(ε ))

< Φ

(
µ̂i∗,Ni∗ (t), τ̂i∗,Ni∗ (t),

ln(t)
Ni∗ (t)

))
≤

T∑
t=1

t∑
n=1

Pr{t < exp
(
ndKL

(
τ̂i∗,n, τ

∗(ε )
))
,

τ̂i∗,n ≥ τ
∗(ε ), Ni∗ (t) = n}

=

T∑
n=1
E

[ T∑
t=n

I{t < exp
(
ndKL

(
τ̂i∗,n, τ

∗(ε )
))
,

Ni∗ (t) = n} · I
{
τ̂i∗,n ≥ τ

∗(ε )
}]

≤

T∑
n=1
E
[
exp

(
ndKL

(
τ̂i∗,n, τ

∗(ε )
))
· I

{
τ̂i∗,n ≥ τ

∗(ε )
}]

=

T∑
n=1

∫ τ∗ (ε )

y=1
exp

(
ndKL

(
y, τ∗(ε )

))
dFτn (y)

= O(ε−4),

where the last equality is by Lemma 5. In the same manner,
we upper-bound the second summation as

T∑
t=1

Pr
{

Ui∗ (t) <
µ∗(ε )
τ∗(ε )

, τ̂i∗,Ni∗ (t) < τ∗(ε )
}
= O(ε−4)

and the third summation as

T∑
t=1

Pr
{

Ui∗ (t) <
µ∗(ε )
τ∗(ε )

,

µ̂i∗,Ni∗ (t) ≤ µ∗(ε ), τ̂i∗,Ni∗ (t) ≥ τ
∗(ε )

}
≤

T∑
t=1

Pr
{

dKL( µ̂i∗,Ni∗ (t), µ
∗(ε ))

+ dKL(τ̂i∗,Ni∗ (t), τ
∗(ε )) >

ln(t)
Ni∗ (t)

,

µ̂i∗,Ni∗ (t) ≤ µ∗(ε ), τ̂i∗,Ni∗ (t) ≥ τ
∗(ε )

}
(
because Ui∗ (t) <

µ∗(ε )
τ∗(ε )

⇒ µ∗(ε ), τ∗(ε )) < Φ
(
µ̂i∗,Ni∗ (t), τ̂i∗,Ni∗ (t),

ln(t)
Ni∗ (t)

))

≤

T∑
t=1

t∑
n=1

Pr
{

t < exp(ndKL( µ̂i∗,n, µ∗(ε ))

+ ndKL(τ̂i∗,n, τ∗(ε ))),

Ni∗ (t) = n, µ̂i∗,n ≤ µ∗(ε ), τ̂i∗,n ≥ τ∗(ε )
}

=

T∑
n=1
E

[ T∑
t=n

I{t < exp
(
ndKL( µ̂i∗,n, µ∗(ε ))

+ ndKL(τ̂i∗,n, τ∗(ε ))), Ni∗ (t) = n}

· I{ µ̂i∗,n ≤ µ∗(ε ), τ̂i∗,n ≥ τ∗(ε )}
]

≤

T∑
n=1
E

[
exp(ndKL( µ̂i∗,n, µ∗(ε )) · I{ µ̂i∗,n ≤ µ∗(ε )}

· exp(ndKL(τ̂i∗,n, τ∗(ε )) · I{τ̂i∗,n ≥ τ∗(ε )}
]

=

T∑
n=1

∫ µ∗ (ε )

x=0
exp

(
ndKL

(
x, µ∗(ε )

))
dFµ

n (x)

·

∫ τ∗ (ε )

y=1
exp

(
ndKL

(
y, τ∗(ε )

))
dFτn (y)

= O(ε−6),

where the last inequality is by Lemma 5.
In summary, we obtain

T∑
t=K+1

Pr
{

Ui∗ (t) <
µ∗(ε )
τ∗(ε )

}
= O(ε−6).

�

Appendix C: Proof of Lemma 2

We bound
∑T

t=K+1 Pr
{
I (t) = i,Ui (t) ≥

µ∗ (ε )
τ∗ (ε )

}
by some large

number N̄i (ε ) plus 1/ε2. Lemma 6 states that, if N̄i (ε ) is
defined appropriately, it is bounded by 1+O(ε )

Di
ln(T ).

Lemma 6. Let ε > 0 be sufficiently small and

N̄i (ε ) = min
{

n : φ
(
µi + ε, τi − ε,

ln(T )
n

)
<
µ∗(ε )
τ∗(ε )

}
for any suboptimal action i , i∗. Then N̄i (ε ) is bounded as:

N̄i (ε ) =
1 +O(ε )

Di
ln(T ) + 1. (A· 5)

Proof. Since φ
(
µi + ε, τi − ε,

ln(T )
n

)
<

µ∗ (ε )
τ∗ (ε ) is equivalent

to (aµ∗(ε ), aτ∗(ε )) < Φ
(
µi + ε, τi − ε,

ln(T )
n

)
for all a > 0,

N̄i (ε ) is expressed as

N̄i (ε ) = min
{

n : min
a>0

(
dKL

(
µi + ε, aµ∗(ε )

)
+ dKL

(
τi − ε, aτ∗(ε )

))
>

ln(T )
n

}
.
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Because a that minimizes dKL (µi + ε, aµ∗(ε ))
+dKL (τi − ε, aτ∗(ε )) lies† in an interval

A =
[
µi + ε

µ∗(ε )
,
τi − ε

τ∗(ε )

]
,

there exists a constant hi that satisfies††

dKL
(
µi + ε, a(µ∗ − ε )

)
≥ dKL(µi, aµ∗) − hiε

and

dKL
(
τi − ε, a(τ∗ + ε )

)
≥ dKL(τi, aτ∗) − hiε

for any appropriate a and sufficiently small ε . Thus,

N̄i (ε )

≤ min
{

n : min
a

(
dKL(µi, aµ∗) + dKL(τi, aτ∗)

)
− 2hiε >

ln(T )
n

}
≤

ln(T )
Di − 2hiε

+ 1 =
ln(T )

Di

1
1 − 2hiεD−1

i

+ 1

≤
1 + 4hiεD−1

i

Di
ln(T ) + 1

holds by using the fact that (1 − x)−1 ≤ (1 + 2x) for x ∈
[0, 1/2]. �

Now we prove Lemma 2 using Lemma 6.

Proof of Lemma 2. Since I (t) = i , i∗ implies Ui∗ (t) ≤
Ui (t), we have

T∑
t=K+1

I

{
I (t) = i,Ui∗ (t) ≥

µ∗(ε )
τ∗(ε )

}

≤

T∑
t=K+1

I

{
I (t) = i,Ui (t) ≥

µ∗(ε )
τ∗(ε )

}

=

T∑
t=K+1

t∑
n=1
I

{
Ni (t) = n, I (t) = i,

φ

(
µ̂i,n, τ̂i,n,

ln(t)
n

)
≥
µ∗(ε )
τ∗(ε )

}
†Let fα,β (a) = dKL(α, βa). Then, fα,β (a) is decreasing

for a < α
β and increasing for a > α

β . Using this fact, we
can know that fµi+ε,µ∗ (ε ) (a) + fτi−ε,τ∗ (ε ) (a) is decreasing for
a <

µi+ε
µ∗ (ε ) and increasing for a > τi−ε

τ∗ (ε ) , which means a that
minimizes fµi+ε,µ∗ (ε ) (a) + fτi−ε,τ∗ (ε ) (a) lies in the interval A.
Note that µi+εµ∗ (ε ) <

τi−ε
τ∗ (ε ) holds for sufficiently small ε > 0 because

µi+ε
τi−ε

<
µ∗ (ε )
τ∗ (ε ) holds for sufficiently small ε > 0 by the oprtimality

of (µ∗, τ∗).
††Let g1(ε, a) = dKL

(
µi + ε, aµ∗(ε )

)
, g2(ε, a) =

dKL
(
τi − ε, aτ∗(ε )

)
. Then,

hi = sup
a∈A,ε ≤ε0

max
{
∂g1(ε, a)

∂ε
,
∂g2(ε, a)

∂ε

}
,

which is bounded for sufficiently small ε0 > 0, is enough for all
ε ≤ ε0.

≤

T∑
n=1

T∑
t=n

I

{
Ni (t) = n, I (t) = i,

φ

(
µ̂i,n, τ̂i,n,

ln(T )
n

)
≥
µ∗(ε )
τ∗(ε )

}
≤

T∑
n=1
I

{
φ

(
µ̂i,n, τ̂i,n,

ln(T )
n

)
≥
µ∗(ε )
τ∗(ε )

}
({Ni (t) = n, I (t) = i} occurs at most once).

(A· 6)

Moreover, (A· 6) is transformed as:

T∑
n=1
I

{
φ

(
µ̂i,n, τ̂i,n,

ln(T )
n

)
≥
µ∗(ε )
τ∗(ε )

}
(A· 7)

≤ N̄i (ε ) − 1

+

T∑
n=N̄i (ε )

I

{
φ

(
µ̂i,n, τ̂i,n,

ln(T )
n

)
≥
µ∗(ε )
τ∗(ε )

}
≤ N̄i (ε ) − 1

+

∞∑
n=N̄i (ε )

(I{ µ̂i,n ≥ µi + ε } + I{τ̂i,n ≤ τi − ε }),

(A· 8)

where the last transformation is derived by using the fact that
{ µ̂i,n < µi + ε, τ̂i,n > τi − ε, n ≥ N̄i (ε )} implies

φ

(
µ̂i,n, τ̂i,n,

ln(T )
n

)
≤ φ

(
µi + ε, τi − ε,

ln(T )
n

)
<
µ∗(ε )
τ∗(ε )

.

Taking the expectation of (A· 8) yields

E


T∑
t=K+1

I

{
I (t) = i,Ui∗ (t) ≥

µ∗(ε )
τ∗(ε )

}

≤ N̄i (ε ) − 1 + E
[ ∞∑
n=N̄i (ε )

(I{ µ̂i,n ≥ µi + ε }

+ I{τ̂i,n ≤ τi − ε })
]

≤ N̄i (ε ) − 1 + 2
∞∑
n=1

exp(−2nε2)

≤ N̄i (ε ) − 1 + 2
∫ ∞

0
exp(−2ε2x)dx

≤ N̄i (ε ) − 1 +
1
ε2 ,

where we used Hoeffding’s inequality (Fact 3). Using
Lemma 6 completes the proof. �

Appendix D: Proof of Theorem 3

The following lemma is used in the proof of Theorem 3.
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Lemma 7 (Maximal law of large numbers [23]). Let X1, . . .
be i.i.d. random variables with positive mean. if 1

n

∑n
t=1 Xt

converges to µ almost surely as n → ∞, then

1
n

max
s≤n

s∑
t=1

Xt

also converges to µ almost surely as n → ∞.

Proof of Theorem 3. For any suboptimal action i and small
positive constant ε > 0, there exist distribution parameters
µ′i and τ

′
i such that µ

′
i ≥ µi , τ′i < τi ,

µ′i
τ′i

>
µ∗

τ∗
>
µi
τi
,

and

dKL(µi, µ′i) + dKL(τi, τ′i )
≤ (1 + ε ) min

a>0

(
dKL(µi, aµ∗) + dKL(τi, aτ∗)

)
= (1 + ε )Di . (A· 9)

In the following, we consider a modified bandit problem
such that the parameters of action i is not (τi, µi) but (τ′i , µ

′
i).

Note that, unlike the original bandit problem, in the modified
bandit problem the optimal action is not action i∗ but action
i.

Let pX (x) and pC (x) be the probability density func-
tions (PDFs) of Bernoulli distributions B(µi) and B(τi)
respectively. Moreover, let qX (x) and qC (x) be the PDFs of
B(µ′i) and B(τ′i ) respectively.

For the sequence of random variables {(Xi,s,Ci,s)}T
s=1,

where {Xi,s } and {Ci,s } are the i.i.d. samples from B(µi)
from B(τi) respectively, define the empirical log-likelihood
ratio function

ELLR(n)

= ln
(

pX (Xi,1) · · · pX (Xi,n) · pC (Ci,1) · · · pC (Ci,n)
qX (Xi,1) · · · qX (Xi,n) · qC (Ci,1) · · · qC (Ci,n)

)
=

n∑
s=1

(
ln

pX (Xi,s)
qX (Xi,s)

+ ln
pC (Ci,s)
qC (Ci,s)

)
Note that

E

[
ln

pX (Xi,s)
qX (Xi,s)

+ ln
pC (Ci,s)
qC (Ci,s)

]

= dKL(µi, µ′i) + dKL(τi, τ′i )

holds.
Let Pr′ and E′ be the probability and expectation with

respect to the modified bandit problem. For any event ET ,

Pr′{ET } = E
[
I{ET } exp (−ELLR(Ni (T )))

]
(A· 10)

holds.
Define two events

AT = {Ni (T ) ≤ S(T )}

and

BT =
{
ELLR(Ni (T )) ≤ (1 − ε ′) ln(t)

}
where ε ′ ∈ (0, ε ) and

S(T ) =
(1 − ε ) ln(T )

dKL(µi, µ′i) + dKL(τi, τ′i )
.

In the following, we first derive Pr{AT } = o(1) and then a
lower-bound of E[Ni (T )].

By using Eq. (A· 10) and the definition of AT and BT ,
we have

Pr′{AT , BT } = E[I{AT , BT } exp(−ELLR(Ni (T )))]
≥ E[I{AT , BT } exp(−(1 − ε ′) ln(T ))]

= Pr{AT , BT }T−(1−ε ′) .

Then,

Pr{AT , BT } ≤ T1−ε ′Pr′{AT , BT }

≤ T1−ε ′Pr′{Ni (T ) ≤ S(T )}

= T1−ε ′Pr′{T − Ni (T ) ≥ T − S(T )}.

By using the Markov’s inequality (Fact 1), we obtain

Pr{AT , BT } ≤ T1−ε ′ E
′[T − Ni (T )]
T − S(T )

.

On the modified bandit problem, the optimal action is
not i∗ but i. Therefore, the strong consistency of the policy
requires E′[T − Ni (T )] = E′[

∑
j,i Nj (T )] = o(Ta) for any

a > 0. By using this we obtain

Pr{AT , BT } = o(1). (A· 11)

Moreover, let B̄T be the complement event of BT . We
have

Pr{AT , B̄T }

= Pr
{
Ni (T ) ≤ S(T ),ELLR(Ni (T )) > (1 − ε ′) ln(T )

}
≤ Pr

{
max
s≤S(T )

ELLR(s) > (1 − ε ′) ln(T )
}

= Pr
{

1
S(T )

max
s≤S(T )

ELLR(s)

>
1 − ε ′

1 − ε
(dKL(µi, µ′i) + dKL(τi, τ′i ))

}
Using Lemma 7, and the expectation of ELLR(s),

lim
T→∞

1
S(T )

max
s≤S(T )

ELLR(s)

→ dKL(µi, µ′i) + dKL(τi, τ′i ) a.s.

and, using the fact that (1 − ε ′)/(1 − ε ) > 1, we obtain

Pr{AT , B̄T } = o(1). (A· 12)

By (A· 11) and (A· 12), we have
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Pr{AT } = Pr{AT , BT } + Pr{AT , B̄T } = o(1). (A· 13)

Finally, E[Ni (T )] is lower-bounded as:

E[Ni (T )]
≥ S(T ) · Pr{Ni (T ) ≥ S(T )}

(by Markov’s inequality (Fact 1))
= S(T )(1 − Pr{AT })

=
(1 − ε ) ln(T )

dKL(µi, µ′i) + dKL(τi, τ′i )
(1 − o(1)) (by (A· 13))

≥
1 − ε
1 + ε

(1 − o(1))
ln(T )

Di
(by (A· 9))

≥ (1 − o(1))
ln(T )

Di
,

where the last inequality holds by choosing sufficiently small
ε > 0 that converges to 0 when T → ∞. �

Appendix E: Proof of Lemma 3

Proof of Lemma 3. Let Ci,s denote the cost Ci (t) for the
player’s s-th choice of action i. We first derive Ineq. (6).
For T = 1, 2, · · · , let z = τminT

BK . Then, we have

Pr{T (B) ≥ T } = Pr
{

T (B) ≥
zBK
τmin

}

≤ Pr




⋃
i∈[K]




⌈
zB
τmin

⌉∑
s=1

Ci,s ≤ B





(

because Ni

(
zBK
τmin

)
≥

⌈
zB
τmin

⌉
and

Ni (zBK/τmin)∑
s=1

Ci,s ≤ B for some i
)

≤

K∑
i=1

Pr




⌈
zB
τmin

⌉∑
s=1

Ci,s ≤ B




(by the union bound)

≤

K∑
i=1

Pr




1⌈
zB
τmin

⌉

⌈
zB
τmin

⌉∑
s=1

Ci,s ≤ τi −
z − 1

z
τmin




*.
,
by

1⌈
zB
τmin

⌉ ≤ 1
zB
τmin

and τi ≥ τmin
+/
-

≤ Ke−2
(

zB
τmin

)
((z−1)/z)2τ2

min

(by the Hoeffding inequality)

= Ke−2((z−1)2/z)τminB (A· 14)
≤ Ke−2τminB(z−2) . (A· 15)

For any action i,

E[Ni (T (B))]

=

∞∑
T=1
E[Ni (T )] Pr{T (B) = T }

≤

⌊
2BK
τmin

⌋∑
T=0

E[Ni (T )] Pr{T (B) = T }

+

∞∑
⌊

2BK
τmin

⌋
+1

T Pr{T (B) = T }

(because E[Ni (T )] ≤ T)

≤

⌊
2BK
τmin

⌋∑
T=0

E

[
Ni

(⌊
2BK
τmin

⌋)]
Pr{T (B) = T }

+

∞∑
T=

⌊
2BK
τmin

⌋
+1

T (Pr{T (B) ≥ T }

− Pr{T (B) ≥ T + 1})

≤ E

[
Ni

(⌊
2BK
τmin

⌋)]

+

(⌊
2BK
τmin

⌋
+ 1

)
Pr

{
T (B) ≥

⌊
2BK
τmin

⌋
+ 1

}
+

∞∑
T=

⌊
2BK
τmin

⌋
+2

Pr{T (B) ≥ T }

≤ E

[
Ni

(⌊
2BK
τmin

⌋)]
+

(
2BK
τmin

+ 1
)

Ke−τminB

+

∞∑
T=

⌊
2BK
τmin

⌋
+2

Pr{T (B) ≥ T }

(
by (A· 14)

and z =
τminT
BK

≥ 2 for T =
⌊

2BK
τmin

⌋
+ 1

)
≤ E

[
Ni

(⌊
2BK
τmin

⌋)]
+ o(1)

+

∞∑
T=

⌊
2BK
τmin

⌋
+2

Ke−2τminB
(
τminT
BK −2

)
(by (A· 15))

≤ E

[
Ni

(⌊
2BK
τmin

⌋)]
+ o(1)

+
Ke−2

τ2
min
K

(⌊
2BK
τmin

⌋
+2

)
e4τminB

1 − e−2
τ2

min
K

(by the sum of geometrical series)
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≤ E

[
Ni

(⌊
2BK
τmin

⌋)]
+ o(1) +

Ke−2
τ2

min
K

1 − e−2
τ2

min
K

*
,
using e−2

τ2
min
K

(⌊
2BK
τmin

⌋
+2

)
≤ e−2

τ2
min
K

(
2BK
τmin
+1

)
+
-

≤ E

[
Ni

(⌊
2BK
τmin

⌋)]
+ o(1) +

K2

2τ2
min(

by
e−x

1 − e−x
=

1
ex − 1

≤
1
x
for x ≥ 0

)
Then we find that

R̃π (B)

=
∑

i : ∆i>0
τi∆i E[Ni (T (B))]

≤
∑

i : ∆i>0
τi∆i *

,
E

[
Ni

(⌊
2BK
τmin

⌋)]
+

K2

2τ2
min
+ o(1)+

-

=
∑

i : ∆i>0
τi∆i *

,
E

[
Ni

(⌊
2BK
τmin

⌋)]
+

K2

2τ2
min

+
-
+ o(1).

for any policy.
Next we derive Ineq. (7). First, we have

Pr
{

T (B) ≤
⌊

B
2Kτmax

⌋}

≤ Pr



⋃
i∈[K]




⌊
B

2Kτmax

⌋∑
s=1

Ci,s ≥
B
K







*..
,
because

Ni

(⌊
B

2Kτmax

⌋ )∑
s=1

Ci,s ≥
B
K

for some i
+//
-

≤

K∑
i=1

Pr



⌊
B

2Kτmax

⌋∑
s=1

Ci,s ≥
B
K




(by the union bound)

≤

K∑
i=1

Pr
{

1⌊
B

2Kτmax

⌋

⌊
B

2Kτmax

⌋∑
s=1

Ci,s ≥ τi + τmax

}
*.
,
by

1⌊
B

2Kτmax

⌋ ≥ 1
B

2Kτmax

and τi ≤ τmax
+/
-

≤ Ke−2
⌊

B
2Kτmax

⌋
τ2

max (by the Hoeffding inequality)

≤ Ke−2
(

B
2Kτmax −1

)
τ2

max (A· 16)

For any action i,

E[Ni (T (B))]

=

∞∑
T=1
E[Ni (T )] Pr{T (B) = T }

≥

∞∑
T=

⌊
B

2Kτmax

⌋
+1

E[Ni (T )] Pr{T (B) = T }

≥ E

[
Ni

(⌊
B

2Kτmax

⌋
+ 1

)]

·

(
1 − Pr

{
T (B) ≤

⌊
B

2Kτmax

⌋})
≥ E

[
Ni

(⌊
B

2Kτmax

⌋
+ 1

)]

·

(
1 − Ke−2

(
B

2Kτmax −1
)
τ2

max
)
(by A· 16)

≥ E

[
Ni

(⌊
B

2Kτmax

⌋
+ 1

)]

−

(
B

2τmax
+ K

)
e−2

(
B

2Kτmax −1
)
τ2

max(
by E

[
Ni

(⌊
B

2Kτmax

⌋
+ 1

)]
≤

B
2Kτmax

+ 1
)

≥ E

[
Ni

(⌊
B

2Kτmax

⌋
+ 1

)]
− o(1)

Then we find that

R̃π (B)

=
∑

i : ∆i>0
τi∆i E[Ni (T (B))]

≥
∑

i : ∆i>0
τi∆i

(
E

[
Ni

(⌊
B

2Kτmax

⌋
+ 1

)]
− o(1)

)

=
∑

i : ∆i>0
τi∆i E

[
Ni

(⌊
B

2Kτmax

⌋
+ 1

)]
− o(1).

�

Appendix F: Distribution Parameters Used in Experi-
ments on Real-World Dataset

Table A· 1 Reward and cost distributions based on real-world dataset.
i Xi (t) Ci (t) τi

µi
τi

1 B(0.0379) Λ(4.13, 0.8372) 88.6 0.000428
2 B(0.0220) Λ(3.80, 0.9002) 67.3 0.000327
3 B(0.0218) Λ(4.02, 0.9032) 83.5 0.000262
4 B(0.0376) Λ(4.11, 0.6982) 77.6 0.000485
5 B(0.0406) Λ(4.15, 0.7452) 84.0 0.000483
6 B(0.0403) Λ(3.92, 0.9282) 77.3 0.000522
7 B(0.0501) Λ(3.64, 0.9512) 59.7 0.000840
8 B(0.0554) Λ(3.88, 0.8682) 70.5 0.000787
9 B(0.0206) Λ(4.07, 0.6972) 74.9 0.000274
10 B(0.0125) Λ(4.07, 0.6282) 71.3 0.000176
11 B(0.0259) Λ(3.93, 0.9102) 77.3 0.000335
12 B(0.0391) Λ(4.35, 0.7422) 102 0.000382
13 B(0.0459) Λ(4.07, 1.062) 102 0.000449
14 B(0.0220) Λ(4.07, 0.6332) 71.6 0.000307
15 B(0.0250) Λ(3.73, 0.9972) 68.3 0.000366
16 B(0.0305) Λ(3.69, 0.9852) 64.7 0.000472
17 B(0.0623) Λ(3.70, 1.072) 72.0 0.000866
18 B(0.0253) Λ(4.07, 0.9142) 88.7 0.000286
19 B(0.0412) Λ(4.11, 0.5252) 70.2 0.000587
20 B(0.0103) Λ(4.11, 0.5772) 72.3 0.000143
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