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Abstract

As the effective field theory of the superstring theory, ten-dimensional N = 1 supersymmet-

ric Yang-Mills theory is induced. We consider the ten-dimensional space-time M10 as direct

products of our four-dimensional space-time M4 and three two-dimensional compact spaces

Xi (i = 1, 2, 3), i.e. M10 =M4 ×X2 ×X2 ×X3. In particular, we consider Xi as a torus, the

torus orbifold, and also the blow-up manifold of the torus orbifold with background magnetic

fluxes. We discuss the modular symmetry in the magnetized torus and its orbifold compacti-

fications. We find that the modular flavor groups and the representations as well as modular

weights of the chiral fields such as quarks and leptons obtained from the magnetized torus as

well as the orbifold compactifications can be uniquely determined with the magnetic fluxes. We

also discuss the magnetized blow-up manifold compactification in which orbifold singularities

are replaced by parts of sphere as a smooth manifold. We find that the chiral zero mode num-

bers on the blow-up manifold as well as the orbifold can be determined only by the magnetic

fluxes including localized fluxes due to the Atiyah-Singer index theorem, and then the degree

of freedom of localized fluxes gives new additional chiral zero modes. We also find that the new

chiral zero modes correspond to localized modes around the orbifold singularities.
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Chapter 1

Introduction

In the particle physics, the standard model (SM) is the successful theory to explain a lot of

observations related to the strong and electroweak (EW) interactions by GSM = SU(3)C ×
SU(2)L × U(1)Y gauge symmetry for their gauge bosons and the local symmetry for matter

fermions as well as Higgs fields in four-dimensional (4D) space-time. The SM particle contents

are listed in Table 1.1. Among them, there are three types of renormalizable couplings: gauge

couplings among gauge bosons and matter fermions as well as Higgs fields, Yukawa couplings

among matter fermions and Higgs fields, and Higgs self-couplings. Note that weak boson

masses and matter fermion masses are obtained by the EW spontaneously symmetry breaking

(SSB) of Higgs fields through the gauge couplings and Yukawa couplings with the Higgs fields,

respectively. On the other hand, before the EW symmetry breaking, gauge bosons and chiral

matter fermions cannot have their masses because of the gauge symmetries and the chiral

symmetries, respectively. Although neutrinos have much tinier masses than the other quarks

and charged leptons, they can be explained by considering the Weinberg operators among

lepton doublets and Higgs doublets with mass dimension 5 if neutrinos are Majorana neutrinos.

Then, by appropriately fitting their SM parameters: gauge coupling constants, Yukawa coupling

constants (as well as Weinberg operator coefficients), and Higgs self-coupling constants, the SM

predictions are consistent with a lot of observations.

However, there remain a lot of issues to be solved: quantum gravitational phenomena can-

not be explained in the SM, there are still some discrepancies between the SM predictions

and the experimental results, there are some mysteries such as the origins of the values of the

SM parameters to explain observations, and so on. In particular, to clear the origins of the

SM parameters may give us hints to discover more fundamental theories. For example, the

three gauge coupling constants may be unified around O(1016)GeV, (see Ref. [1] for the current

renormalization group (RG) flows of the SM parameters,) which implies that there is a more

fundamental theory to unify the three gauge symmetries into one larger gauge symmetry in-

cluding GSM such as SU(5) and SO(10) with one gauge coupling constant above the scale and

the large gauge symmetry is spontaneously broken at the scale like the EW symmetry breaking

by the SM Higgs fields. Such a fundamental theory is called a grand unified theory (GUT) [2–4].
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In such a GUT, quarks and leptons can be also unified into several multiplets. For example, i

th generational quarks and leptons including right-handed neutrinos are minimally unified into

one multiplet 16i in SO(10) GUT. In other words, a GUT can answer the origin of three gauge

couplings as well as quarks and leptons. However, three-generational quarks and leptons have

quite different generational structure (flavor structure); both three-generational up-type and

down-type quarks have quite hierarchical masses among the generations and their flavor mix-

ing through the weak interaction, written by Cabbibo-Kobayashi-Masukawa (CKM) matrix,

is small, while charged leptons also have hierarchical masses but neutrinos have much tinier

masses than quarks, and charged leptons and their flavor mixing, written by Pontecorvo-Maki-

Nakagawa-Skata (PMNS) matrix, is large. Note that their flavor structure can be determined

by the structure of Yukawa coupling constants as well as Weinberg operator coefficients and

there are about 20 parameters related to quark and lepton masses, flavor mixing angles, and

CP phases. Then, it is significant to clarify the origin of the flavor structure, and it is useful

to consider a flavor symmetry among the generations by which some Yukawa coupling coeffi-

cients as well as the Weinberg operator coefficients are related to each other. In particular,

non-Abelian discrete flavor symmetries such as Sn, An, ∆(3n2), and ∆(6n2) have been well

studied [5–13]. We note that the flavor symmetry must exist at a certain scale and the flavor

structure can be determined. To break the flavor symmetry, we usually introduce additional

SM gauge singlet scalar fields, so-called flavons. Of course, it is also important how the Wein-

berg operators are generated at the cut-off scale. One of the famous scenarios is the type-I

see-saw mechanism [14–18] by heavy right-handed Majorana neutrinos. The typical scale of

right-handed neutrino Majorana masses around O(1014)GeV if the Yukawa couplings are O(1).

Furthermore, we have not known yet why the EW symmetry breaking occurs at v ≃ 246GeV,

which is the vacuum expectation value (VEV) of the Higgs fields. To understand it, it may

be useful to consider the supersymmetry between chiral fermions and bosons such as the mini-

mal supersymmetric standard model (MSSM) [19–21]1 or/and consider gauge-Higgs unification

(GHU) [23–26], in which Higgs fields are regarded as extra-dimensional vector fields (4D scalar

fields) of higher dimensional vector fields with the gauge symmetries. In these ways, to solve

mysteries of the SM, it is useful to consider some symmetries. However, the above symmetries

are just assumptions and we have not known the reason why the symmetries are chosen.

The superstring theory, which is the string theory with the supersymmetry, is a promising

candidate for explaining all interactions including gravitational interaction above the Plank

scale O(1018)GeV.2 Note that there are 5 types of superstring theories: type-I, type-IIA, type-

IIB, SO(32) heterotic, and E8 × E8 heterotic superstring theories. In particular, we consider

type-IIB superstring theory. In addition, there are two types of strings: closed string and

open string, and particles are regarded as excitation modes of them in the string theory; from

the closed string, graviton and gravitino which is the superpartner of the graviton appear as

massless particles, while from the open string whose edge moves on D-branes, gauge bosons

1See, for a review, e.g. Ref. [22].
2See Refs. [27, 28] for phenomenological aspects of string theory.
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and gauginos which are the superpartners of the gauge bosons appear as massless particles. In

more detail, from open strings both of whose edges move on the same kind of N -stack D-branes,

U(N) gauge bosons and gauginos appear, that is, U(N) supersymmetrc Yang-Mills (SYM)

theory is induced as the effective field theory (EFT), while from open strings whose edges

move on different Na-stack D-branes and Nb-stack D-branes, respectively, chiral super fields

with (Na, N̄b) representation ((N̄a, Nb)) representation) under U(Na)×U(Nb) gauge symmetry,

corresponding to chiral matter fields as well as Higgs fields, appear. Thus, the superstring

theory is a promising theory to explain not only the strong and EW interactions but also the

gravitational interaction.

The superstring theory requires 10D space-time M10, which means that there is an extra

6D compact spaceM6 in addition to our observable 4D space-timeM4. Hence, the superstring

theory leads to the 10D EFT and a 4D EFT can be led below the compactification scale, which

is typically considered as O(1016)GeV ∼ O(1018)GeV. Namely, the 4D EFT depends on the

compactifications. Thus, it is important to reveal the property of the 4D EFT by making

use of the properties of a 6D compactification and whether the 4D EFT is consistent with

the SM. In particular, a Calabi-Yau (CY) manifold is promising compact space to derive 4D

N = 1 EFT such as the MSSM. However, it is difficult to calculate physical quantities such

as Yukawa couplings analytically. On the other hand, toroidal orbifolds are supposed to be

singular limits of certain CY manifolds, where only orbifold fixed points have curvature, and

the analytical calculation can be possible. Furthermore, certain toroidal orbifolds have a kind

of the geometrical symmetry called the modular symmetry. In particular, a 2D torus orbifold

has Γ̄ ≡ PSL(2,Z) modular symmetry. Interestingly, the modular group contains certain non-

Abelian discrete groups such as S3, A4, S4, and A5 [29], and new type flavor models, called

modular flavor models, in which such non-Abelian discrete groups derived from the modular

group are assumed as flavor groups have been investigated recently [30–40]. Then, we mainly

consider toroidal orbifold compactifications. We also assume that a 6D compact spaceM6 can

be decomposed as three 2D compact spaceXi (i = 1, 2, 3) for simplicity, i.e. M6 ≃ X1×X2×X3,

and one 2D compact space as 2D torus orbifold, i.e. X = T 2/ZN .
Therefore, in this paper,we consider 10D N = 1 U(N) SYM theory onM4×X1×X2×X3

(mainly X = T 2/ZN) with homogeneous background magnetic fluxes on each Xi (i = 1, 2, 3) as

the EFT of magnetized D-brane models in the type-IIB superstring theory, and the 4D EFT can

be obtained after overlap integration of wave functions on X1×X2×X3. Due to the magnetic

fluxes, the U(N) gauge symmetry is broken into
∏

A U(NA) including GSM . In particular, the

broken component fields, which become the fields with bi-fundamental representations under∏
A U(NA), have multi-generational chiral fermions as well as their superpartners [45–50] 3 such

as matter fermions as well as Higgs fields. In other words, the 10D SYM theory can be regarded

as a kind of GUT as well as GHU model, and considering appropriate 6D compactifications

including magnetic fluxes can lead MSSM-like models. Especially, the three-generational modes

have been classified in Refs. [51–53]. Their Yukawa couplings [45, 54] as well as higher-order

3Originally, it has been discussed in Refs. [41–44].
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couplings [55] have been calculated. In addition, Majorana neutrino mass terms derived from

D-brane instanton effects have been calculated in Refs. [56, 57]. Actually, realistic quark and

lepton masses and mixing angle as well as the CP phase can be obtained in Refs. [54,58–65].

Since certain torus orbifolds have the modular symmetry, it can induce flavor symmetries

among the multi-generational chiral fermions as well as the superpartners. Originally, the

behavior of modular transformation for wave functions on the magnetized (torus and) torus

orbifold has been studied in Refs. [49, 66]. Furthermore, in Refs. [67, 68], details of the mod-

ular flavor structure was revealed. Then, the modular flavor structure of the 4D fields can

also be found in Ref. [67]. In particular, it was found that the three-generational 4D chiral

fields obtained from magnetized T 2/ZN orbifold compactification transform under the modu-

lar transformation as three-dimensional representation of the modular ∆̃(6M2) group, which

is the quadruple covering group of ∆(6M2), or PSL(2,ZM) × Z8 group with modular weight

1/2 [68]. In addition, not only 4D fields but also coupling coefficients in 4D EFT such as

Yukawa couplings [53] 4 as well as Majorana mass terms [57, 70] transform under the modular

transformation. To see these modular transformation behaviors is one of the main parts of this

paper.

Moreover, not only magnetized (2D) torus orbifold compactification but also its magnetized

blow-up manifold compactification were studied in Refs. [71–74], in which orbifold singularities

are replaced by the parts of the magnetized 2D sphere [75,76]. Through these studies, one can

understand the magnetized torus orbifold compactification deeply; certain magnetic fluxes are

localized at orbifold singularities and the total magnetic fluxes including the localized fluxes

decide the chiral zero mode numbers due to the Atiyah-Singer (AS) index theorem. In addition,

the degree of freedom of localized fluxes gives new chiral zero modes corresponding to localized

modes at the orbifold singularities. These studies will be useful to explore phenomena on the

CY compactification, for the future. To see behavior on the magnetized blow-up manifold is

the other of main parts of this paper.

This paper is organized as follows. In chapter 2, we discuss magnetized torus models. In

particular, we review magnetized torus compactification in section 2.1 and then we discuss

the modular symmetry in magnetized torus compactification in section 2.2. In chapter 3,

we discuss magnetized torus orbifold models. In particular, we review magnetized T 2/ZN
compactification in section 3.1 and then we discuss the modular symmetry in magnetized T 2/ZN
compactification (and also magnetized (T 2

1×T 2
2 )/(Z

(t)
2 ×Z

(p)
2 ) compactification) in section 3.2. In

chapter 4, we discuss magnetized blow-up manifold of magnetized T 2/ZN orbifold. In particular,

we review magnetized S2 compactification in section 4.1 and then we discuss the magnetized

blow-up manifold compactification in section 4.2. In chapter 5, we summarize this paper. In

Appendix A, we show the detailed calculation of modular symmetry on magnetized T 2 and

T 2/Z2 orbifold. In Appendix B, we show the detailed calculation of the normalization of wave

functions on magnetized blow-up manifold. In Appendix C, we discuss the detailed anomaly

structure of discrete symmetries.

4See also Ref. [69].
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Matter fermions

(Spinor fields)
left-handed quarks left-handed leptons right-handed quarks right-handed leptons

Representation qiL = (3,2,+1
6
) liL = (1,2,−1

2
)

uiR = (3,1,+2
3
)

diR = (3,1,−1
3
)

eiR = (1,1,−1)

The first

generation
q1L =

(
urL ugL ubL
drL dgL dbL

)
l1L =

(
νeL
e

)
u1R =

(
urR ugR ubR

)
d1R =

(
drR dgR dbR

) e1R = eR

The second

generation
q2L =

(
crL cgL cbL
srL sgL sbL

)
l2L =

(
νµL
µ

)
u2R =

(
crR cgR cbR

)
d2R =

(
srR sgR sbR

) e2R = µR

The third

generation
q3L =

(
trL tgL tbL
brL bgL bbL

)
l3L =

(
ντL
τ

)
u3R =

(
trR tgR tbR

)
d3R =

(
brR bgR bbR

) e3R = τR

Gauge bosons

(Vector fields)
SU(3)C SU(2)L U(1)Y

Higgs fields

(Scalar fields)

Representation G = (8,1, 0) WL = (1,3, 0) B = (1,1, 0) ϕ = (1,2,+1
2
)

⇒ W±
L , ZL ⇒ γ (A) ⇒ h

Interaction
Strong

interaction

Weak

interaction

Electromagnetic (EM)

interaction

(
Yukawa

interaction

)
Table 1.1: The standard model particle contents with GSM = SU(3)C × SU(2)L × U(1)Y
symmetry
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Chapter 2

Magnetized torus models

First, in this chapter, we discuss magnetized torus models. We consider magnetized torus

compactifications in which homogeneous background magnetic fluxes are inserted in a torus.

The review is in section 2.1. Moreover, since a torus has a geometrical symmetry, called the

modular symmetry, we discuss the modular symmetry in magnetized torus compactification

in section 2.2. In particular, we can find that multi-generational chiral bi-fundamental fields

such as quarks and leptons, which are obtained in the compactification, transform non-trivially

under the modular transformation.

2.1 Magnetized torus compactification

In this section, we review magnetized torus compactifications.

2.1.1 10D N = 1 Super Yang-Mills theory

First of all, as the EFT of magnetized D-brane models in the superstring theory, let us start

from 10D N = 1 U(N) SYM theory. We denote a 10D space-time as M10. The coordinate

of M10 is XM (M = 0, ..., 9). The metric on M10 is GMN . It gives the gamma matrices for

2
10
2 = 32D spinor space such that {ΓM ,ΓN} = 2GMNI32. We consider U(N) gauge bosons

AIJM (X), which are U(N) adjoint vector fields, and U(N) gauginos λIJ(X), which are U(N)

adjoint spinor fields and the superpartners of the gauge bosons, where I, J = 1, ..., N . The 10D

N = 1 SYM action SSYM is given by

SSYM =

∫
M10

d10X
√
|det(GMN)|

[
− 1

4g210
FMN
IJ (X)F JI

MN(X) +
1

2g210
λ̄IJ(X)iΓMDMλ

JI(X)}
]
,

(2.1)

where g10 denotes the U(N) gauge coupling constant inM10 with the mass dimension −3, F IJ
MN

denotes the field strength of the gauge bosons,

F IJ
MN(X) = ∂MA

IJ
N (X)− ∂NAIJM − i[AM(X), AN(X)]IJ , (2.2)
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and DM denotes the covariant derivative for the gauginos,

DMλ
IJ(X) = ∂Mλ

IJ(X)− i[AM(X), λ(X)]IJ . (2.3)

Note that the chirality of λ onM10 is fixed by Γ11λ = −λ.
In this paper, let us assume the 10D space-time M10 as product of 4D Minkowski space-

time M4 and three 2D compact spaces Xi (i = 1, 2, 3), i.e. M10 =M4 × X1 × X2 × X3. In

particular, in this chapter, let us consider Xi = T 2
i simply. In the following subsection, we

discuss wave functions on one T 2 with background magnetic fluxes, called magnetized T 2.

2.1.2 Magnetized T 2 compactification

In this subsection, we review magnetized T 2 compactification1 [45, 77].

Geometry of T 2

First, let us review the geometry of a 2D torus, T 2. A 2D torus T 2 can be constructed by

dividing the complex plane C into 2D lattice Λ = {
∑

i=1,2 niei|ni ∈ Z}, i.e. T 2 ≃ C/Λ.
When we denote the complex coordinate of C as u, we define the complex coordinate of T 2

as z ≡ u/e1. Then, the coordinate of the point of one lattice vector e1 is z = 1 while that of

the point of the other lattice vector e2 is z = e2/e1 ≡ τ (Imτ > 0). Note that τ is called the

complex structure (CS) modulus of T 2. Thus, T 2 is defined by the identifications: z + 1 ∼ z

and z + τ ∼ z. In addition, dz is defined as dz = dy1 + τdy2, where dyi (i = 1, 2) denote the

dual one-forms satisfying dyi(ej) = δij. Similarly, ∂z is defined as ∂z = (2Imτ)−1(iτ̄∂y1 − i∂y2).
The metric of T 2 is given by

ds2 = gijdy
idyj =2hµνdz

µdz̄ν ,

g = |e1|2
(

1 Reτ

Reτ |τ |2

)
, h = |e1|2

(
0 1

2
1
2

0

)
. (2.4)

Then, the area of T 2, A, is calculated as

A =

∫
T 2

dy1dy2
√
|detg| =

∫
T 2

dzdz̄
√
|det(2h)| = |e1|2Imτ. (2.5)

The gamma matrices γz and γ z̄ satisfying {γz, γ z̄} = 2hzz̄ are defined as follows, where hzz̄ is

the inverse matrix of hzz̄. First, the gamma matrices γ1 and γ2 satisfying 2D Clifford algebra

{γa, γb} = 2δab (a, b = 1, 2) are given by

γ1 = σ1 =

(
0 1

1 0

)
, γ2 = σ2 =

(
0 −i
i 0

)
. (2.6)

1See also Ref. [78] for T 2 compactification without any magnetic fluxes.
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Next, we introduce two vielbeins e and f such that gij = eai e
b
jδab and hµν = f iµf

j
νgij, respectively.

They are given by

e = |e1|
(
1 Reτ

0 Imτ

)
, f−1 = |e1|−1

(
e1 e2
ē1 ē2

)
, (2.7)

⇒ (ẽ−1)µa ≡ (f−1)µi (e
−1)ia = |e1|−2(Imτ)−1

(
e1Imτ −e1Reτ + e2
ē1Imτ −ē1Reτ + ē2

)
. (2.8)

Then, the gamma matrices γz and γ z̄ satisfying {γz, γ z̄} = 2hzz̄ are given as

γz = (ẽ−1)zaγ
a = e−1

1

(
0 2

0 0

)
, γ z̄ = (ẽ−1)z̄bγ

b = ē−1
1

(
0 0

2 0

)
. (2.9)

The non-trivial Levi-Civita connection is given by

Γzzz = hzz̄∂zhzz̄ = 0,

Γz̄z̄z̄ = hz̄z∂z̄hz̄z = 0.
(2.10)

Moreover, the spin connection is given by

ωazb = (ẽ−1)zbΓ
z
zz ẽ

a
z − (ẽ−1)zb∂z ẽ

a
z − (ẽ−1)z̄b∂z ẽ

a
z̄ = 0,

ωaz̄b = (ẽ−1)z̄bΓ
z̄
z̄z̄ ẽ

a
z̄ − (ẽ−1)z̄b∂z ẽ

a
z̄ − (ẽ−1)zb∂z̄ ẽ

a
z = 0.

(2.11)

Note that the Lorentz generator is Σab = 1
4
[γa, γb].

The curvature of T 2 is given by

1

2πi

∫
T 2

Rz
zzz̄dz ∧ dz̄ = χ(T 2) = 0, (2.12)

where Rz
zzz̄ is obtained by

Rz
zzz̄ = ∂z̄Γ

z
zz = 0, (2.13)

while χ(T 2) denotes the Euler number of T 2.

Wave functions on magnetized T 2

Here, let us consider that the following Abelian homogeneous background magnetic flux,

1

2π

∫
T 2

⟨Fzz̄⟩dz ∧ dz̄ =
(
MaINa

M bINb

)
,

(
1

2π

∫
T 2

⟨F aa,bb
zz̄ ⟩dz ∧ dz̄ =Ma,b

)
, (2.14)

is inserted on T 2, where Na +Nb = N and Ma,b must be integers2 (Dirac’s quantization). Due

to this magnetic flux, U(N) symmetry is broken to U(Na)× U(Nb) symmetry.3 The magnetic

2It comes from the fact that the fist homotopy group of U(1), π1(U(1)), is π1(U(1)) = Z. On the other

hand, π1(SU(N)) = {e} means that off-diagonal components of the magnetic flux are zeros.
3The magnetic flux is inserted along directions of the diagonal U(1) of U(N) ≃ U(1)× SU(N) and the base

of Cartan subalgebra of SU(N). Then, U(N) ≃ U(1) × SU(N) symmetry is broken to U(1)a × SU(Na) ×
U(1)b × SU(Nb) ≃ U(Na)× U(Nb) symmetry.
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flux is given by the 2-form field strength,

1

2π
⟨F aa,bb⟩ = 1

2π
⟨F aa,bb

zz̄ ⟩dz ∧ dz̄ = Ma,b

Imτ

i

2
dz ∧ dz̄, (2.15)

which satisfies the Yang-Mills equations

∂z⟨F aa,bb
zz̄ ⟩ = ∂z̄⟨F aa,bb

zz̄ ⟩ = 0. (2.16)

Moreover, the field strength is obtained from the 1-form background gauge field,

⟨Aaa,bb(z)⟩ = ⟨Aaa,bbz (z)⟩dz + ⟨Aaa,bbz̄ (z)⟩dz̄

= − i
4

2πMa,b

Imτ
(z̄ + ζ̄a,b)dz +

i

4

2πMa,b

Imτ
(z + ζa,b)dz̄ (2.17)

=
2πMa,b

2Imτ
Im((z̄ + ζ̄a,b)dz),

by ⟨F aa,bb⟩ = d⟨Aaa,bb⟩, where ζa,b denote Wilson line (WL) phases. The boundary conditions

(BCs) of the gauge field are

⟨Aaa,bb(z + 1)⟩ = ⟨Aaa,bb(z)⟩+ d

(
2πMa,b

2Imτ
Imz

)
, (2.18)

⟨Aaa,bb(z + τ)⟩ = ⟨Aaa,bb(z)⟩+ d

(
2πMa,b

2Imτ
Imτ̄ z

)
, (2.19)

which correspond to the Abelian gauge transformation. The covariant derivative is defined as

D̂ = d− i⟨A(z)⟩
D̂zdz + D̂z̄dz̄ = (∂z − i⟨Az(z)⟩)dz + (∂z̄ − i⟨Az̄(z)⟩)dz̄, (2.20)

Along with BCs of the gauge field in Eqs. (2.18) and (2.19), U(N) adjoint spinor and scalar

fields on the magnetized T 2,

ΦT 2(z) =

(
Φaa
T 2(z) Φab

T 2(z)

Φba
T 2(z) Φbb

T 2(z)

)
, (2.21)
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should satisfy the following BCs,

ΦT 2(z + 1) = U1(z)ΦT 2(z)U−1
1 (z), U1(z) =

(
eπiM

a Im(z+ζa)
Imτ

+2πiαa1INa 0

0 eπiM
b Im(z+ζb)

Imτ
+2πiαb1INb

)
,

(2.22)

⇔


Φaa
T 2(z + 1) = Φaa

T 2(z)

Φbb
T 2(z + 1) = Φbb

T 2(z)

Φab
T 2(z + 1) = eπiM

Im(z+ζ)
Imτ

+2πiα1Φab
T 2(z)

Φba
T 2(z + 1) = e−πiM

Im(z+ζ)
Imτ

−2πiα1Φba
T 2(z)

, (2.23)

ΦT 2(z + τ) = Uτ (z)ΦT 2(z)U−1
τ (z), Uτ (z) =

(
eπiM

a Im(τ̄(z+ζa))
Imτ

+2πiαaτ INa 0

0 eπiM
b Im(τ̄(z+ζb))

Imτ
+2πiαbτ INb

)
,

(2.24)

⇔


Φaa
T 2(z + τ) = Φaa

T 2(z)

Φbb
T 2(z + τ) = Φaa

T 2(z)

Φab
T 2(z + τ) = eπiM

Im(τ̄(z+ζ))
Imτ

+2πiατΦab
T 2(z)

Φba
T 2(z + τ) = e−πiM

Im(τ̄(z+ζ))
Imτ

−2πiατΦba
T 2(z)

, (2.25)

where αa,b1 and αa,bτ denote the Scherk-Schwarz (SS) phases. Here, Φaa and Φbb denote fields

with U(Na) and U(Nb) adjoint representations, respectively, while Φab and Φba denote fields

with bi-fundamental representations, (Na, N̄b) and (N̄a, Nb), under U(Na)×U(Nb), respectively.

In particular, Φab feel the magnetic flux M ≡ Ma −M b, the WL phase Mζ ≡ Maζa −M bζb,

and the SS phases α1,τ ≡ αa1,τ − αb1,τ , while Φba feel the opposite sign of them. On the other

hand, the BCs of U(N) adjoint 1-form vector field on the magnetized T 2,

AT 2(z) =

(
AaaT 2(z) AabT 2(z)

AbaT 2(z) AbbT 2(z)

)
, (2.26)
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can be written as

AT 2(z + 1) = U1(z)AT 2(z)U−1
1 + iU1(z)dU

−1
1 (z), (2.27)

⇔


AaaT 2(z + 1) = AaaT 2(z) + d

(
2πMa

2Imτ
Imz

)
AbbT 2(z + 1) = AbbT 2(z) + d

(
2πMb

2Imτ
Imz

)
AabT 2(z + 1) = eπiM

Im(z+ζ)
Imτ

+2πiα1AabT 2(z)

AbaT 2(z + 1) = e−πiM
Im(z+ζ)

Imτ
−2πiα1AbaT 2(z)

, (2.28)

AT 2(z + τ) = Uτ (z)AT 2(z)U−1
τ + iUτ (z)dU

−1
τ (z), (2.29)

⇔


AaaT 2(z + τ) = AaaT 2(z) + d

(
2πMa

2Imτ
Imτ̄ z

)
AbbT 2(z + τ) = AbbT 2(z) + d

(
2πMb

2Imτ
Imτ̄ z

)
AabT 2(z + τ) = eπiM

Im(τ̄(z+ζ))
Imτ

+2πiαaτAabT 2(z)

AbaT 2(z + τ) = e−πiM
Im(τ̄(z+ζ))

Imτ
−2πiατAbaT 2(z)

. (2.30)

When we write AT 2(z) = ⟨A(z)⟩ + AT 2(z), BCs of the first term corresponds to Eqs. (2.18)

and (2.19) while BCs of the second term corresponds to (2.23) and (2.25). We also note that

WL phases ζa,b = ζa,b1 + τζa,b2 can be converted into SS phases, αa,b1 → α′a,b
1 = αa,b1 +Mζa,b2 and

αa,bτ → α′a,b
τ = αa,bτ −Mζa,b1 , by the following gauge transformation

⟨A(z)⟩ → ⟨Ã(z)⟩ = ⟨A(z)⟩+ iU−1
ζ (z)dUζ(z),

ΦT 2(z)→ Φ̃T 2(z) = U−1
ζ (z)ΦT 2(z)Uζ(z),

(2.31)

with

U−1
ζ (z) =

e−πiMa
(

Im(ζ̄az)
Imτ

+ζa1 ζ
a
2

)
INa 0

0 e
−πiMb

(
Im(ζ̄bz)

Imτ
+ζb1ζ

b
2

)
INb

 . (2.32)

Hence, hereafter, we consider vanishing WL phases ζa,b = 0 and then consider only SS phases

(αa,b1 , αa,bτ ). In the following, let us see wave functions of U(N) adjoint spinor, scalar, and vector

fields on T 2 with the magnetic flux in Eq. (2.14), which satisfy individual equation of motions

under the BCs in Eqs. (2.22) ((2.27)) and (2.24) ((2.27)).

• Spinor fields

First, let us see wave functions of U(N) adjoint 2D Majorana-Weyl (MW) spinor fields on

the magnetized T 2,

ψ
(2)

T 2 (z) =

(
ψT 2,+(z)

ψT 2,−(z)

)
, ψ±(z) =

(
ψaaT 2,±(z) ψabT 2,±(z)

ψbaT 2,±(z) ψbbT 2,±(z)

)
,(

ψJIT 2,∓(z) = ψIJT 2,±,n,j(z) (I, J = a, b)
)
,

(2.33)
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which satisfy the Dirac equation,(
i(γzD̂z + γ z̄D̂z̄)−mn

)
ψ

(2)

T 2,n(z) = 0, (2.34)

under the BCs in Eqs. (2.22) and (2.24). Here, we define the Dirac operator,

i /̂D ≡ i(γzD̂z + γ z̄D̂z̄) =

(
0 2ie−1

1 (∂z − i⟨Az(z)⟩)
2iē−1

1 (∂z̄ − i⟨Az̄(z)⟩) 0

)
≡
(

0 −iD†

iD 0

)
,

(2.35)

and then the Dirac equation for component fields can be written as

iDψT 2,+,n(z) = 2iē−1
1 (∂z̄ψT 2,+,n(z)− i[⟨Az̄(z)⟩, ψT 2,+,n(z)]) = mnψT 2,−,n(z), (2.36)

⇔


iDaaψaaT 2,+,n(z) = 2iē−1

1 ∂z̄ψ
aa
T 2,+,n(z) = mnψ

aa
T 2,−,n(z)

iDbbψbbT 2,+,n(z) = 2iē−1
1 ∂z̄ψ

bb
T 2,+,n(z) = mnψ

bb
T 2,−,n(z)

iDabψabT 2,+,n(z) = 2iē−1
1

(
∂z̄ +

πM
2Imτ

z
)
ψabT 2,+,n(z) = mnψ

ab
T 2,−,n(z)

−iDbaψbaT 2,+,n(z) = 2iē−1
1

(
∂z̄ − πM

2Imτ
z
)
ψbaT 2,+,n(z) = mnψ

ba
T 2,−,n(z)

,

⇔


2iē−1

1 ∂z̄ψ
aa
T 2,+,n(z) = mnψ

aa
T 2,−,n(z)

2iē−1
1 ∂z̄ψ

bb
T 2,+,n(z) = mnψ

bb
T 2,−,n(z)

2iē−1
1 e−

πM
2Imτ

|z|2∂z̄

[
e
πM
2Imτ

|z|2ψabT 2,+,n(z)
]
= mnψ

ab
T 2,−,n(z)

2iē−1
1 e

πM
2Imτ

|z|2∂z̄

[
e−

πM
2Imτ

|z|2ψbaT 2,+,n(z)
]
= mnψ

ba
T 2,−,n(z)

,

− iD†ψT 2,−,n(z) = 2ie1(∂zψT 2,−,n(z)− i[⟨Az(z)⟩, ψT 2,−,n(z)]) = mnψT 2,+,n(z), (2.37)

⇔


−iD†

aaψ
aa
T 2,−,n(z) = 2ie−1

1 ∂zψ
aa
T 2,−,n(z) = mnψ

aa
T 2,+,n(z)

−iD†
bbψ

bb
T 2,−,n(z) = 2ie−1

1 ∂zψ
bb
T 2,−,n(z) = mnψ

bb
T 2,+,n(z)

−iD†
abψ

ab
T 2,−,n(z) = 2ie−1

1

(
∂z − πM

2Imτ
z̄
)
ψabT 2,−,n(z) = mnψ

ab
T 2,+,n(z)

iD†
baψ

ba
T 2,−,n(z) = 2ie−1

1

(
∂z +

πM
2Imτ

z̄
)
ψbaT 2,−,n(z) = mnψ

ba
T 2,+,n(z)

,

⇔


2ie−1

1 ∂zψ
aa
T 2,−,n(z) = mnψ

aa
T 2,+,n(z)

2ie−1
1 ∂zψ

bb
T 2,−,n(z) = mnψ

bb
T 2,+,n(z)

2ie−1
1 e

πM
2Imτ

|z|2∂z

[
e−

πM
2Imτ

|z|2ψabT 2,−,n(z)
]
= mnψ

ab
T 2,+,n(z)

2ie−1
1 e−

πM
2Imτ

|z|2∂z

[
e
πM
2Imτ

|z|2ψabT 2,−,n(z)
]
= mnψ

ab
T 2,+,n(z)

,

where n denotes the Landau level.

In particular, the lowest modes (n = 0) satisfying the above Dirac equation with m0 = 0

are expressed as

ψaaT 2,+,0(z) = haa0 (z), ψaaT 2,−,0(z) = ψaaT 2,+,0(z) = h̄aa0 (z̄),

ψbbT 2,+,0(z) = hbb0 (z), ψbbT 2,−,0(z) = ψbbT 2,+,0(z) = h̄bb0 (z̄),

ψabT 2,+,0(z) = e−
πM
2Imτ

|z|2hab0 (z), ψabT 2,−,0(z) = ψbaT 2,+,0(z) = e
πM
2Imτ

|z|2h̄ba0 (z̄),

ψbaT 2,+,0(z) = e
πM
2Imτ

|z|2hba0 (z), ψabT 2,−,0(z) = ψabT 2,+,0(z) = e−
πM
2Imτ

|z|2h̄ab0 (z̄),

(2.38)
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where h(z) denotes a holomorphic function. Since they should also satisfy the BCs in Eqs. (2.23)

and (2.25), the holomorphic functions can be determined as

haa0 (z) = N aa
0 ,

hbb0 (z) = N bb
0 ,

hab0 (z) =
∑|M |

j=0N ab
0,je

πM
2Imτ

z2ϑ

[ j+α1

M

−ατ

]
(Mz,Mτ) ≡

∑|M |
j=0 h

(j+α1,ατ ),M

T 2,0 (z),

hba0 (z) =
∑|M |−1

j=0 N ba
0,je

− πM
2Imτ

z2ϑ

[
−(j+α1)

−M
−(−ατ )

]
(−Mz,−Mτ) ≡

∑|M |−1
j=0 h

−(j+α1,ατ ),−M
T 2,0 (z),

(2.39)

where N denotes a constant and ϑ denotes the Jacobi-theta function,

ϑ

[
a

b

]
(ν, τ) =

∑
l∈Z

eπi(a+l)
2τe2πi(a+l)(ν+b). (2.40)

When we also define

ψ
(j+α1,ατ ),M

T 2,0 (z, τ) ≡ e−
πM
2Imτ

|z|2h
(j+α1,ατ ),M

T 2,0 (z), (2.41)

ψab+,0 and ψba+,0 can be written as

ψabT 2,+,0(z) =

|M |−1∑
j=0

ψ
(j+α1,ατ ),M

T 2,0 (z, τ), ψbaT 2,+,0(z) =

|M |−1∑
j=0

ψ
−(j+α1,ατ ),−M
T 2,0 (z, τ). (2.42)

Note that each j th wave function written by Eq. (2.41) satisfies the lowest mode (zero mode)

Dirac equation and the BCs, which means that there are |M | number of independent zero mode

solutions. Finally, these solutions must be normalizable. Thus, whenM > 0 (M < 0), ψab+ (ψba+ )

as well as their anti-fields ψba− = ψab+ (ψab− = ψba+ ) have well-defined |M | number of degenerate

zero modes while ψba+ (ψab+ ) as well as their anti-fields ψab− = ψba+ (ψba− = ψab+ ) have no physical

relevant zero modes. Indeed, this result is consistent with the AS index theorem,

nab+ − nab− =
1

2π

∫
T 2

Fab =M, (2.43)

nba+ − nba− =
1

2π

∫
T 2

Fba = −M, (2.44)

where nab+ , nab− , nba+ , nba− denote zero mode numbers of ψab+ , ψab− , ψba+ , ψba− , respectively, and Fab,

Fba denote the magnetic fluxes which ψab± , ψba± feel, respectively. Therefore, we can obtain |M |
generational bi-fundamental chiral fermions from the magnetized T 2 compactification. Here-

after, let us consider M > 0. In addition, we set the SS phases as 0 ≤ α1,τ < 1 because of

the periodicity. Now, let us discuss the normalization of wave functions in Eq. (2.41) from the
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following inner product,∫
T 2

dzdz̄
√
|det(2h)|ψ(j+α1,ατ ),M

T 2,0 (z, τ)ψ
(k+α1,ατ ),M

T 2,0 (z, τ)

=δj,k|N ab
0,j|2A

∑
l∈Z

∫ 1

0

d

(
Imz

Imτ

)
e−2πMImτ( Imz

Imτ
+
j+α1
M

+l)
2

(2.45)

=|N ab
0,j|2A(2ImτM)−1/2δj,k.

Here, we assume that the normalization factor N ab
0,j does not depend on the geometrical param-

eters such as A and τ , that is, we set the normalization condition as∫
T 2

dzdz̄
√
|det(2h)|ψ(j+α1,ατ ),M

T 2,0 (z, τ)ψ
(k+α1,ατ ),M

T 2,0 (z, τ) = A(2Imτ)−1/2δj,k, (2.46)

and then the normalization factor is determined by |N ab
0,j| = (M)1/4. Although the phase of

N ab
0,j is not determined, it seems to be natural4 to set N ab

0,j = |N ab
0,j|e2πi

j+α1
M

ατ . Therefore, we

consider the following M number of zero mode wave functions on the magnetized T 2,

ψ
(j+α1,ατ ),M

T 2,0 (z, τ) = e−
πM
2Imτ

|z|2h
(j+α1,ατ ),M

T 2 (z),

h
(j+α1,ατ ),M

T 2,0 (z) = (M)1/4e2πi
j+α1
M

ατ e
πM
2Imτ

z2ϑ

[ j+α1

M

−ατ

]
(Mz,Mτ) .

(2.47)

Next, let us see wave functions of the n th excited modes. By further acting the Dirac

operator on the Dirac equation, we can obtain the characteristic equations,(
D†D 0

0 DD†

)(
ψT 2,+,n(z)

ψT 2,−,n(z)

)
= m2

n

(
ψT 2,+,n(z)

ψT 2,−,n(z)

)
, (2.48)

where D and D† satisfy the commutation relations:

[Daa,D†
aa] = 0, [Dbb,D†

bb] = 0, (2.49)

[Dab,D†
ab] =

4πM

A
, [Dba,D†

ba] =
−4πM
A

. (2.50)

For ψaaT 2,± and ψbbT 2,±, the solutions satisfying the BCs in Eqs. (2.22) and (2.24) are

ψaaT 2,+,n(z) = N aa
n e2πi

Im(n̄z)
Imτ , ψaaT 2,−,n(z) = ψaaT 2,+,n(z),

ψbbT 2,+,n(z) = N bb
n e

2πi
Im(n̄z)
Imτ , ψbbT 2,−,n(z) = ψbbT 2,+,n(z),

(2.51)

4When we set the phase at z = 0 as 1, from the BC (2.25), the phase at z = τ becomes e2πiατ . It implies

that the phase at z = y2τ is e2πiy
2τ . Moreover, from Eq. (2.45), the wave function’s density |ψ(j+α1,ατ ),M

T 2,0 (z, τ)|
behaves as a gaussian whose peak at y2 = Imz/Imτ = (j+α1)/M . Hence, it seems to be natural that the wave

function ψ
(j+α1,ατ ),M
T 2,0 (z, τ) has the phase e2πi(j+α1)ατ/M .
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with

m2
n =

(2π)2

A
|n|2

Imτ
=

∣∣∣∣2πA nu

∣∣∣∣2 , (2.52)

where n = n1 + τn2 = (n1e1 + n2e2)/e1 ≡ nu/e1, which corresponds to the coordinate of the

lattice point. In order for the normalization factors N aa,bb
n not to depend on the geometrical

parameters, we set the normalization conditions as∫
T 2

dzdz̄
√
|det(2h)|ψaa,,bbT 2,+,n′(z)ψ

aa,bb
T 2,+,n(z) = Aδn′,n. (2.53)

On the other hand, let us consider ψab± and ψba± . Note that when M > 0, j th zero mode of

ψabT 2,+,0 in Eq. (2.47) satisfies

Dabψ(j+α1,ατ ),M

T 2,0 (z, τ) = 0, (2.54)

while it also becomes of the j th zero mode of ψbaT 2,−,0 = ψabT 2,+,0, that is, it also satisfies

D†
baψ

(j+α1,ατ ),M

T 2,0 (z, τ) = 0. (2.55)

Here, when we define a(†) ≡
√

A
4πM
D(†), they satisfy

[aab, a
†
ab] = 1, [a†abaab, aab] = −aab, [a†abaab, a

†
ab] = a†ab,

[a†ba, aba] = 1, [abaa
†
ba, a

†
ba] = −a

†
ba, [abaa

†
ba, aba] = aba.

(2.56)

This means that aab and a†ba can be regarded as lowering operators while a†ab and aba can be

regarded as raising operators, and then a†abaab and abaa
†
ba can be regarded as number operators.

Thus, we can obtain

a†abaabψ
(j+α1,ατ ),M

T 2,n (z, τ) = nψ
(j+α1,ατ ),M

T 2,n (z, τ), aabψ
(j+α1,ατ ),M

T 2,0 (z, τ) = 0, (2.57)

⇒ ψ
(j+α1,ατ ),M

T 2,n (z, τ) =
1√
n!
(a†ab)

nψ
(j+α1,ατ ),M

T 2,0 (z, τ), (2.58)

abaa
†
baψ

(j+α1,ατ ),M

T 2,n (z, τ) = nψ
(j+α1,ατ ),M

T 2,n (z, τ), a†baψ
(j+α1,ατ ),M

T 2,0 (z, τ) = 0, (2.59)

⇒ ψ
(j+α1,ατ ),M

T 2,n (z, τ) =
1√
n!
(aba)

nψ
(j+α1,ατ ),M

T 2,0 (z, τ), (2.60)

which correspond to the j th mode of n th excited modes of ψabT 2,+ and ψbaT 2,−, i.e.,

ψabT 2,+,n(z) =
M−1∑
j=0

ψ
(j+α1,ατ ),M

T 2,n (z, τ), ψbaT 2,−,n(z) = ψab+,n(z) =
M−1∑
j=0

ψ
(j+α1,ατ ),M

T 2,n (z, τ), (2.61)

19



with

m2
n =

4πM

A
n. (2.62)

Note that when we rewrite zero mode wave functions as

ψ
(j+α1,ατ ),M

T 2,0 (z, τ) = N ab
0,j

∑
l∈ZΘ

(j+α1,ατ ),M
l ,

Θ
(j+α1,ατ ),M
l = e2πi

j+α1
M

ατ eπiMReτ( j+α1M )
2

eπiMRez Imz
Imτ e2πi(MRez−ατ )( j+α1M

+l)e−πiMImτ( Imz
Imτ

+
j+α1
M

+l)
2

,

the n th excited mode wave functions in Eq. (2.58) can be explicitly written by using the

Hermite function,

Hn(x) = (−1)nex2 d
n

dxn
[e−x

2

], (2.63)

as

ψ
(j+α1,ατ ),M

T 2,n (z, τ) = N ab
n,j

∑
l∈Z

Θ
(j+α1,ατ ),M
l Hn

(√
2πMImτ

(
Imz

Imτ
+
j + α1

M
+ l

))
, (2.64)

where normalization factors N ab
n,j are determined by the normalization condition,∫

T 2

dzdz̄
√
|det(2h)|ψ(j+α1,ατ ),M

T 2,n′ (z, τ)ψ
(k+α1,ατ ),M

T 2,n (z, τ) = A(2Imτ)−1/2δj,kδn′,n, (2.65)

and then they are related to those of zero modes: N ab
n,j = (2nn!)−1/2N ab

0,j. On the other hand,

from Eq. (2.36),

DabψabT 2,+,n(z) = mnψ
ab
T 2,−,n(z) ⇔ aabψ

ab
T 2,+,n(z) =

√
nψabT 2,−,n(z), (2.66)

and the fact that

aabψ
(j+α1,ατ ),M

T 2,n (z, τ) = aab

(
1√
n
a†abψ

(j+α1,ατ ),M

T 2,n−1 (z, τ)

)
=
√
nψ

(j+α1,ατ ),M

T 2,n−1 (z, τ), (2.67)

we can also find the solutions for ψabT 2,−,n and ψbaT 2,+,n as

ψabT 2,−,n(z) =
M−1∑
j=0

ψ
(j+α1,ατ ),M

T 2,n−1 (z, τ), ψbaT 2,+,n(z) = ψab−,n(z) =
M−1∑
j=0

ψ
(j+α1,ατ ),M

T 2,n−1 (z, τ), (2.68)

with the eigenvaluem2
n in Eq. (2.62). We comment that Eq. (2.67) is also related to the property

of the Hermite function:

d

dx
Hn(x) = 2nHn−1(x). (2.69)

• Scalar fields
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Second, let us see wave functions of U(N) adjoint scalar fields on the magnetized T 2,

ϕT 2(z) =

(
ϕaaT 2(z) ϕabT 2(z)

ϕbaT 2(z) ϕbaT 2(z)

)
, (2.70)

which satisfy the Klein-Gordon equation,(
hzz̄(D̂zD̂z̄ + D̂z̄D̂z) +m2

n

)
ϕT 2,n(z) = 0, (2.71)

under the BCs in Eqs (2.22) and (2.24). Here, we define the Laplace operator,

∆̂ ≡ −hzz̄(D̂zD̂z̄ + D̂z̄D̂z) =
1

2

{
D,D†} = DD† − 1

2

[
D,D†] = D†D +

1

2

[
D,D†] , (2.72)

and then the Klein-Gordon equation (2.71) can be rewritten as

∆̂ϕT 2,n(z) = m2
nϕT 2,n(z). (2.73)

From Eq. (2.72) and Eqs. (4.32)-(2.68), the well-defined solutions are

ϕaaT 2,n(z) = ψaaT 2,+,n(z), m2
n =

(2π)2

A
|n|2

Imτ
=

∣∣∣∣2πA nu

∣∣∣∣2 (|n| ≥ 0), (2.74)

ϕbbT 2,n(z) = ψbbT 2,+,n(z), m2
n =

(2π)2

A
|n|2

Imτ
=

∣∣∣∣2πA nu

∣∣∣∣2 (|n| ≥ 0), (2.75)

ϕabT 2,n(z) = ψabT 2,+,n(z), m2
n =

4πM

A

(
n+

1

2

)
(n ≥ 0), (2.76)

ϕbaT 2,n(z) = ψbaT 2,+,n+1(z), m2
n =

4πM

A

(
n+

1

2

)
(n ≥ 0). (2.77)

We note that even the lowest modes of both ϕabT 2 and ϕbaT 2 are massive while those of ϕaaT 2 and

ϕbbT 2 are massless and constants.

• Vector fields

Third, let us see wave functions of U(N) adjoint vector fields on magnetized T 2,

AT 2(z)

=AT 2,z(z)dz + AT 2,z̄dz̄

=

(
⟨Aaaz (z)⟩+ AaaT 2,z(z) AabT 2,z(z)

AbaT 2,z(z) ⟨Abbz (z)⟩+ AbbT 2,z(z)

)
dz

+

(
⟨Aaaz̄ (z)⟩+ AaaT 2,z̄(z) AabT 2,z̄(z)

AbaT 2,z̄(z) ⟨Abbz̄ (z)⟩+ AbbT 2,z̄(z)

)
dz̄,(

AT 2z̄ = (AT 2,z(z))
†) , (2.78)
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which satisfy the Yang-Mills-Proca equation,

hzz̄D̂zFT 2,z̄z +m2
nAT 2,z,n(z) = 0,

(
hz̄zD̂z̄FT 2,zz̄ +m2

nAT 2,z̄,n(z) = 0
)
, (2.79)

with the gauge-fixing condition,

hzz̄
(
D̂zAT 2,z̄,n(z) + D̂z̄AT 2,z,n(z)

)
= 0, (2.80)

under the BCs in Eqs. (2.27) and (2.29). The field strength in Eq. (2.79) can be rewritten as

FT 2,zz̄(z) = ⟨Fzz̄⟩+ D̂zAT 2,z̄(z)− D̂z̄AT 2,z(z)

= ⟨Fzz̄⟩+ 2D̂zAT 2,z̄(z) (2.81)

= ⟨Fzz̄⟩ − 2D̂z̄AT 2,z(z),

where we use the gauge fixing condition (2.80) in the second and third lines. Then, the Yang-

Mills-Proca equation in Eq. (2.79) can be rewritten by

D†DAT 2,z,n(z) + ihzz̄[⟨Fzz̄⟩, AT 2,z,n(z)] = m2
nAT 2,z,n(z),

⇔
(
∆̂− [D,D†]

)
AT 2,z,n(z) = m2

nAT 2,z,n(z), (2.82)

DD†AT 2,z̄,n − ihzz̄[⟨Fzz̄⟩, AT 2,z̄,n(z)] = m2
nAT 2,z̄,n(z),

⇔
(
∆̂ + [D,D†]

)
AT 2,z̄,n(z) = m2

nAT 2,z̄,n(z). (2.83)

Therefore, by using the results in Eqs. (2.74)-(2.77), the well-defined solutions are

AaaT 2,z,n(z) = ψaaT 2,+,n(z), AaaT 2,z̄,n(z) = AaaT 2,z,n(z), m2
n =

(2π)2

A
|n|2

Imτ
=

∣∣∣∣2πA nu

∣∣∣∣2 (|n| ≥ 0),

(2.84)

AbbT 2,z,n(z) = ψbbT 2,+,n(z), AbbT 2,z̄,n(z) = AbbT 2,z,n(z), m2
n =

(2π)2

A
|n|2

Imτ
=

∣∣∣∣2πA nu

∣∣∣∣2 (|n| ≥ 0),

(2.85)

AabT 2,z,n(z) = ψabT 2,+,n(z), AbaT 2,z̄,n(z) = AabT 2,z,n(z), m2
n =

4πM

A

(
n− 1

2

)
(n ≥ 0), (2.86)

AbaT 2,z,n(z) = ψbaT 2,+,n−1(z), AabT 2,z̄,n(z) = AbaT 2,z,n(z), m2
n =

4πM

A

(
n− 1

2

)
(n ≥ 2). (2.87)

We note that the lowest mode of AabT 2,z (AbaT 2,z̄) becomes tachyonic while that of AbaT 2,z (Aabz̄ )

becomes massive. On the other hand, the lowest modes of AaaT 2,z (AaaT 2,z̄) and A
bb
T 2,z (AbbT 2,z̄) are

massless but they are constants, which correspond to the WL phases.
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2.1.3 4D EFT

Now, let us see 4D EFT of 10D N = 1 SYM theory, in which the action is given by Eq. (2.1),

onM10 =M4 × T 2
1 × T 2

2 × T 2
3 , where the magnetic fluxes are inserted on each T 2

i (i = 1, 2, 3).

First, we denote the real coordinate ofM4 as xµ (µ = 0, ..., 3) and the complex coordinate of

T 2
i as (zi, z̄i). The metric ofM10 is defined as

ds2 = GMNdX
MdXN

= gµνdx
µdxν +

∑
i=1,2,3

2hziz̄idzidz̄i. (2.88)

ΓM matrices are decomposed as

Γµ = γµ ⊗ I2 ⊗ I2 ⊗ I2,
Γz1 = γ5 ⊗ γz1 ⊗ I2 ⊗ I2, Γz̄1 = γ5 ⊗ γ z̄1 ⊗ I2 ⊗ I2,
Γz2 = γ5 ⊗ σ3 ⊗ γz2 ⊗ I2, Γz̄2 = γ5 ⊗ σ3 ⊗ γ z̄2 ⊗ I2,
Γz3 = γ5 ⊗ σ3 ⊗ σ3 ⊗ γz3 , Γz̄3 = γ5 ⊗ σ3 ⊗ σ3 ⊗ γ z̄3 ,

(2.89)

where {γµ, γν} = 2ηµνI4 and {γzi , γ z̄i} = 2hziz̄iI2 are satisfied. The spinor fields λIJ are

decomposed as

λIJ(X) =
∑

n1,n2,n3

ψIJ(4)n1n2n3
(x)⊗ ψIJ(2)n1

(z1)⊗ ψIJ(2)n2
(z2)⊗ ψIJ(2)n3

(z3)

=
∑

n1,n2,n3

(
ψIJL,n1n2n3

(x)

ψIJR,n1n2n3
(x)

)
⊗
(
ψIJ+,n1

(z1)

ψIJ−,n1
(z1)

)
⊗
(
ψIJ+,n2

(z2)

ψIJ−,n2
(z2)

)
⊗
(
ψIJ+,n3

(z3)

ψIJ−,n3
(z3)

)
, (2.90)

where γ5ψ
IJ
L (x) = −ψIJL (x), γ5ψ

IJ
R (x) = +ψIJR (x), σ3ψ

IJ
± (zi) = ±ψIJ± (zI), and ψ

IJ(2) = σ1ψJI(2)

are satisfied. On the other hand, the vector fields can be decomposed as

AIJµ (X) =
∑

n1,n2,n3
AIJµ,n1n2n3

(x)ϕIJn1
(z1)ϕ

IJ
n2
(z2)ϕ

IJ
n3
(z3),

AIJz1 (X) =
∑

n1,n2,n3
ϕ
(z1)IJ
n1n2n3(x)A

IJ
z1,n1

(z1)ϕ
IJ
n2
(z2)ϕ

IJ
n3
(z3),

AIJz̄1 (X) =
∑

n1,n2,n3
ϕ
(z̄1)IJ
n1n2n3(x)A

IJ
z̄1,n1

(z1)ϕ
IJ
n2
(z2)ϕ

IJ
n3
(z3)

=
∑

n1,n2,n3
ϕ
(z1)JI
n1n2n3(x)AJIz1,n1

(z1)ϕJIn2
(z2)ϕJIn3

(z3) = AJIz1 (X),

AIJz2 (X) =
∑

n1,n2,n3
ϕ
(z2)IJ
n1n2n3(x)ϕ

IJ
n1
(z1)A

IJ
z2,n2

(z2)ϕ
IJ
n3
(z3),

AIJz̄2 (X) =
∑

n1,n2,n3
ϕ
(z̄2)IJ
n1n2n3(x)ϕ

IJ
n1
(z1)A

IJ
z̄2,n2

(z2)ϕ
IJ
n3
(z3)

=
∑

n1,n2,n3
ϕ
(z2)JI
n1n2n3(x)ϕJIn1

(z1)AJIz2,n2
(z2)ϕJIn3

(z3) = AJIz2 (X),

AIJz3 (X) =
∑

n1,n2,n3
ϕ
(z3)IJ
n1n2n3(x)ϕ

IJ
n1
(z1)ϕ

IJ
n2
(z2)A

IJ
z3,n3

(z3),

AIJz̄3 (X) =
∑

n1,n2,n3
ϕ
(z3)IJ
n1n2n3(x)ϕ

IJ
n1
(z1)ϕ

IJ
n2
(z2)A

IJ
z3,n3

(z3)

=
∑

n1,n2,n3
ϕ
(z̄3)JI
n1n2n3(x)ϕJIn1

(z1)ϕJIn2
(z2)AJIz̄3,n3

(z3) = AJIz3 (X).

(2.91)

Here, we consider the following Abelian homogeneous background magnetic fluxes

1

2π

∫
T 2
i

⟨Fziz̄i⟩dzi ∧ dz̄i =

M
a
i INa

M b
i INb

. . .

 (Na +Nb + · · · = N), (2.92)
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are inserted in each T 2
i . Due to the magnetic fluxes U(N) gauge symmetry is broken to∏

A=a,b,... U(NA).

Then, by applying wave functions on the magnetized T 2
i (i = 1, 2, 3) obtained in the previous

subsection and calculating overlap integration of them, we can obtain the following 4D EFT:

S4D =

∫
M4

d4x
√
|det(gµν)|

×

[ ∑
n1,n2,n3

(
−C

IJ

4g24
(F µν,n1n2n3

IJ (x))2 +
CIJ

2g24
(
∑
i=1,2,3

m2
ni
)(Aµ,n1n2n3

IJ (x))2

)

+
∑
i=1,2,3

∑
n1,n2,n3

(
−C

IJ

g24
|Dµϕ

(zi)IJ
n1n2n3

(x)|2 + CIJ

g24
(
∑
i=1,2,3

m2
ni
)|ϕ(zi)IJ

n1n2n3
(x)|2

+

 Ŷ (3)
n1n2n3,−1i

mni

2g24

√(
hziz̄i

2

)3 {[
ϕ(zi)(x), ϕ(z̄i)(x)

]
ϕ(zi)(x)

}
n1n2n3,−1i

+ h.c.


+
Ŷ

(4)
n1n2n3

g24

∣∣∣∣hziz̄i2

[
ϕ(zi)(x), ϕ(z̄i)(x)

]IJ
n1n2n3

∣∣∣∣2
)

+
∑

n1,n2,n3

(
CIJ

2g24
ψ

(4)IJ
n1n2n3(x)(iγ

µDµ +
∑
i=1,2,3

mni)ψ
(4)IJ
n1n2n3

(x)

+
Ŷ

(3)
n1n2n3

2g24
ψ

(4)IJ
n1n2n3(x)

[
ϕ( /zi)(x), ψ(4)(x)

]JI
n1n2n3

)
+
∑
i=1,2,3

1

4g24

(∑
A

2πMA

Ai

)2 ]
,

(2.93)

where, each coefficient can be obtained from overlap integration of wave functions on the

magnetized T 2
i

5. In more detail, we need to calculate two, three, and four point couplings of

them.

The two-point couplings are given by normalization conditions in Eqs. (2.53) and (2.65).

Both of them include the are of T 2
i , Ai, which has mass dimension −2. Then, we can obtain

the mass-dimensionless gauge coupling on M4, g
−2
4 ≡ A1A2A3g

−2
10 . The two-point couplings

between bi-fundamental fields under the remaining gauge group are also proportional to CIJ =∏
i=1,2,3(2Imτi)

−1/2 =
∏

i=1,2,3(iτ̄i − iτi)−1/2.

Next, let us see three-point couplings. The non-trivial three-point couplings are such as

couplings among bi-fundamental fields with (Na, N̄b), (Nb, N̄c), and (Nc, N̄a), which feel the

magnetic fluxes Mab
i ≡ Ma

i − M b
i , M

bc
i ≡ M b

i − M c
i , and M ca

i ≡ M c
i − Ma

i , respectively.

Obviously, Mab
i +M bc

i +M ca
i = 0 and then one of them whose absolute value is largest has

different sign from the others. For example, let us consider that on one T 2, Mab,M bc > 0,

M ca < 0, and |M ca| =Mac =Mab +M bc are satisfied. In this case, the non-trivial three-point

5In the 4D scalar three-point couplings, 2i
√

hziz̄i

2 D̂z̄iAzi,ni = mniAzi,ni−1 is used.
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couplings are written by

ŷIJKT 2,nInJnK =

∫
T 2

dzdz̄
√
|det(2hzz̄)|ψ

(K+αac1 ,αacτ ),Mac

T 2,nK
(z, τ)ψ

(I+αab1 ,αabτ ),Mab

T 2,nI
(z, τ)ψ

(J+αbc1 ,α
bc
τ ),Mbc

T 2,nJ
(z, τ),

(2.94)

where αAB1,τ ≡ αA1,τ − αB1,τ (A,B = a, b, c) and they satisfy αab1,τ + αbc1,τ = αac1,τ . By applying the

multiple relation [45,54,77]6,

ψ
(I+αab1 ,αabτ ),Mab

T 2,nI
(z, τ)ψ

(J+αbc1 ,α
bc
τ ),Mbc

T 2,nJ
(z, τ)

=
Mac−1∑
p=0

nI∑
sI=0

nJ∑
sJ=0

yIJp,M
y

T 2,nInJ (sI ,sJ )
(τ)ψ

(I+J+pMab+αac1 ,αacτ ),Mac

T 2,sI+sJ
(z, τ), (2.95)

yIJp,M
y

T 2,nInJ (sI ,sJ )
(τ) = nICsInJCsJ (−1)n

J−sJ
√

(sI + sJ)!(nI − sI + nJ − sJ)!
nI !nJ !

×

√
(Mab)sI+nJ−sJ (M bc)nI−sI+sJ

(Mac)nI+nJ+1
ψ

(LIJp+αy1 ,α
y
τ ),M

y

T 2,ny (0, τ), (2.96)(
LIJp + αy1 =M bc(I + pMab + αab1 )−Mab(J + αbc1 ), α

y
τ =M bcαabτ −Mabαbcτ

My =MabM bcMac, ny = nI − sI + nJ − sJ ,

)
, (2.97)

we can calculate Eq. (2.94) as

ŷIJKT 2,nInJnK =
Mac−1∑
p=0

nI∑
sI=0

nJ∑
sJ=0

yIJp,M
y

T 2,nInJ (sI ,sJ )
(τ)

×
∫
T 2

dzdz̄
√
|det(2hzz̄)|ψ

(K+αac1 ,αacτ ),Mac

T 2,nK
(z, τ)ψ

(I+J+pMab+αac1 ,αacτ ),Mac

T 2,sI+sJ
(z, τ)

=A(2Imτ)−1/2

Mac−1∑
p=0

nI∑
sI=0

nJ∑
sJ=0

yIJp,M
y

T 2,nInJ (sI ,sJ )
(τ)δsI+sJ ,nKδI+J+pMab,K+qMac

=A(2Imτ)−1/2yIJKT 2,nInJnK (τ), (2.98)

with

yIJKT 2,nInJnK (τ) =
Mac−1∑
p=0

nI∑
sI=0

nJ∑
sJ=0

yIJp,M
y

T 2,nInJ (ℓI ,ℓJ )
(τ)δsI+sJ ,nKδI+J+pMab,K+qMac

=

g−1∑
p′=0

min(nJ ,nK)∑
sJ=max(0,nK−nI)

y
IJ(p0+(Mac/g)p′),My

T 2,nInJ (nK−ℓ,ℓJ ) (τ)

=

min(nJ ,nK)∑
sJ=max(0,nK−nI)

yIJp0,ℓ
y

T 2,nInJ (nK−ℓ,ℓJ )(τ), (2.99)

6See also Ref. [79].
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where gy ≡ gcd(Mab,M bc,Mac), ℓy ≡ lcm(Mab,M bc,Mac), My = ℓy(gy)2, and (p0, q0) is the

solution of

Mac

g
q0 −

Mab

g
p0 =

I + J −K
g

∈ Z,
(
gcd

(
Mac

g
,
Mab

g

)
= 1

)
. (2.100)

In particular, when nI = nJ = 0, nK must be also nK = 0. The 4D three-point coupling

coefficient Ŷ IJK is given by Ŷ IJK =
∏

i=1,2,3(ŷ
IJK
T 2
i ,n

I
i n
J
i n

K
i
/Ai), where

∏
i=1,2,3Ai is absorbed

in the gauge coupling constant. Now, let us see in detail the relation of ŷIJKT 2,nInJnK/A and

yIJKT 2,nInJnK (τ); y
IJK
T 2,nInJnK (τ) becomes a holomorphic function of τ , which can be regarded as the

holomorphic three-point coupling in the supergravity theory in the following, while ŷIJKT 2,nInJnK/A
is the three-pint coupling in the global supersymmetric theory. Since a superpotential in the

global supersymmetric theory, Ŵ , and one in the supergravity theory, W (τ), are related as

|Ŵ |2 = eK |W (τ)|2, (2.101)

with the Kähler potential, K ,of the modulus τ ,

K = − ln [i(τ̄ − τ)] = − ln (2Imτ), (2.102)

we can write

ŷIJKT 2,nInJnK

A
= eK/2yIJKT 2,nInJnK (τ) = (2Imτ)−1/2yIJKT 2,nInJnK (τ). (2.103)

Thus, ŷIJKT 2,nInJnK/A and yIJKT 2,nInJnK (τ) are regarded as three-point couplings in the global su-

persymmetric theory and the supergravity theory, respectively. We note that Eq. (2.102) is

derived from the metric on the CS modulus space:

ds2CS = 2∂τ∂τ̄Kdτdτ̄ =
1

2A

∫
dzdz̄

√
|det(2hzz̄)|(hzz̄)2δhzzδhz̄z̄ = 2

−1
(τ − τ̄)2

dτdτ̄ , (2.104)

where δhzz and δhz̄z̄ can be obtained from the modulus shift τ → τ + dτ for dz = dy1 + τdy2

and dz̄ = dy1 + τ̄ dy2 in the metric of T 2, ds2 = 2hzz̄dzdz̄,

dz →
(
1 +

dτ

τ − τ̄

)
dz − dτ

τ − τ̄
dz̄, dz̄ →

(
1− dτ̄

τ − τ̄

)
dz̄ +

dτ̄

τ − τ̄
dz,

⇒ δhzz =
2hzz̄dτ̄

τ − τ̄
, δhz̄z̄ = −

2hzz̄dτ

τ − τ̄
. (2.105)

Similarly, the four-point coupling (with Mab,M bc,M cd > 0, Mda < 0, and |Mda| = Mad =

26



Mab +M bc +M cd) can be also calculated as

ŷIJKLT 2,nInJnKnL

=

∫
T 2

dzdz̄
√
|det(2hzz̄)|ψ

(L+αad1 ,αadτ ),Mad

T 2,nL
(z)ψ

(I+αab1 ,αabτ ),Mab

T 2,nI
(z)ψ

(J+αbc1 ,α
bc
τ ),Mbc

T 2,nJ
(z)ψ

(K+αcd1 ,αcdτ ),Mcd

T 2,nK
(z),

=

∫
T 2

d2zd2ẑ
√
|det(2hzz̄)|ψ

(L+αad1 ,αadτ ),Mad

T 2,nL
(ẑ)ψ

(I+αab1 ,αabτ ),Mab

T 2,nI
(ẑ)

× δ2(ẑ − z)ψ(J+αbc1 ,α
bc
τ ),Mbc

T 2,nJ
(z)ψ

(K+αcd1 ,αcdτ ),Mcd

T 2,nK
(z),

=A−1(2Imτ)1/2×∑
H,nH

(∫
T 2

d2ẑ
√
|det(2hẑ ¯̂z)|ψ

(L+αad1 ,αadτ ),Mad

T 2,nL
(ẑ)ψ

(I+αab1 ,αabτ ),Mab

T 2,nI
(ẑ)ψ

(H+αbd1 ,α
bd
τ ),Mbd

T 2,nH
(ẑ)

)

×
(∫

T 2

d2z
√
|det(2hzz̄)|ψ

(H+αbd1 ,α
bd
τ ),Mbd

T 2,nH
(z, τ)ψ

(J+αbc1 ,α
bc
τ ),Mbc

T 2,nJ
(ẑ, τ)ψ

(K+αcd1 ,αcdτ ),Mcd

T 2,nK
(z, τ)

)
=A(2Imτ)−1/2

∑
H,nH

yLIHT 2,nLnInH (τ)y
HJK
T 2,nHnJnK (τ). (2.106)

Thus, once we obtain three-point coupling, we can also calculate four-point couplings as well

as higher order couplings [55,77].

Now, let us go back to the 4D effective action in Eq. (2.93). Here, since the mass scale A−2

is around (O(1016)GeV)2 ∼ (O(1018)GeV)2, we focus on 4D massless modes. For unbroken

U(NA) (A = a, b, c, ...) adjoint fields, ΦAA, the lowest constant modes are massless. By re-

minding the chirality onM10 is fixed, there are four number of massless gauginos and 4C2 = 6

number of massless scalar fields for one massless gauge boson. That is, there remains 4D

N = 4 supersymmetry for the unbroken U(NA) adjoint sector. Next, let us see bi-fundamental

fields under U(NA) × U(NB) (A,B = a, b, c, ..., and A ̸= B), ΦAB. First, 4D vector gauge

bosons become massive, that is, the gauge symmetry between U(NA) and U(NB) is broken.

On the other hand, there are
∏

i=1,2,3 |MAB
i | number of degenerate bi-fundamental massless

chiral fermions like quarks and leptons as well as Higgsinos. The chirality is determined by the

signs of magnetic fluxes on each T 2
i (i = 1, 2, 3). In addition, if the following condition,

MAB
1,2,3 > 0,

MAB
1

A1

+
MAB

2

A2

=
MAB

3

A3

,

⇒ MAB
1

A1

+
MAB

2

A2

− MAB
3

A3

= 0, (2.107)

is satisfied, only ϕ(Z3)AB(x) has
∏

i=1,2,3 |MAB
i | number of massless modes, and they become

superpartners of the above chiral fermions like squarks and sleptons as well as Higgs bosons.

Thus, in such cases, there remains 4D N = 1 supersymmetry for the bi-fundamental sector.
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Therefore, 4D effective action for the lowest fields is given as

S0
4D =

∫
M4

d4x
√
|det(gµν)|g−2

4

×

[∑
A

(
−1

4
(FAA

µν )−
∑
i=1,2,3

|Dµϕ
(zi)AA(x)|2 +

4∑
i=1

ψ
(4)AA
i (x)iγµDµψ

(4)A
i (x)

)
(2.108)

+

∏
i |MAB

i |∑
j=0

−
∣∣∣Dµϕ

(zi)AB
j

∣∣∣2∏
i(iτ̄i − iτi)1/2

+
ψ

(4)AB
j (x)iγµDµψ

(4)AB
j (x)∏

i(iτ̄i − iτi)1/2

 (2.109)

+
∑
j,k,l

(
Ŷ ijlψ

(4)IJ
l (x)

[
ϕ
( /zi)

j (x), ψ
(4)
k (x)

]IJ
+

∣∣∣∣Ŷ jklh
ziz̄i

2

[
ϕ
(zi)
j (x), ϕ

(z̄i)
k (x)

]IJ ∣∣∣∣2
)]

,

(2.110)

where Eqs. (2.108), (2.109), and (2.110) show that the 4D effective actions for the kinetic terms

of unbroken gauge adjoint sector, the kinetic terms of bi-fundamental fields, and their coupling

terms: Yukawa couplings and four-point scalar couplings, respectively. In particular, to identify

the
∏

i=1,2,3 |MAB
i | degenerate chiral bi-fundamental fermions ψAB as three-generational chiral

fermions such as quarks and leptons, it is needed that MAB
1 = 3 and MAB

2 = MAB
3 , which

means that the three-generational structure comes from only X1 = T 2
1 and the contributions

on X2 = T 2
2 and X3 = T 2

3 are just constants. Then, we mainly focus on one 2D compact space

to search flavor structure.

2.2 Modular symmetry in magnetized T 2 models

In this section, we discuss the modular symmetry in magnetized T 2 models.

2.2.1 Modular symmetry on T 2

In this subsection, let us review the modular symmetry on T 2 and modular forms. 7

Modular symmetry

As mentioned before, T 2 is constructed by identifying the lattice Λ = {
∑

i=1,2 niei|ni ∈ Z}, i.e.
T 2 ≃ C/Λ. The same lattice can be spanned by lattice vectors γ(ei) (i = 1, 2) transformed by

Γ = SL(2,Z) =
{
γ =

(
a b

c d

) ∣∣∣∣a, b, c, d ∈ Z, detγ = ad− bc = 1

}
, (2.111)

7See e.g. Refs. [80–83] for the modular symmetry on T 2 and modular forms of even weight. See Ref. [84]

for modular forms of odd modular weight. See Refs. [81, 82,85–87] for modular forms of half-integral weight.
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such that

γ :

(
e2
e1

)
→
(
γ(e2)

γ(e1)

)
=

(
a b

c d

)(
e2
e1

)
=

(
ae2 + be1
ce2 + de1

)
. (2.112)

Here, the generators of SL(2,Z) are

S =

(
0 1

−1 0

)
, T =

(
1 1

0 1

)
, (2.113)

and they satisfy

Z ≡ S2 = −I2, Z2 = S4 = (ST )3 = I2, ZT = TZ. (2.114)

Under the lattice transformation, the CS modulus τ transforms as

γ : τ =
e2
e1
→ γ(τ) =

γ(e2)

γ(e1)
=
aτ + b

cτ + d
, (2.115)

S : τ → S(τ) = −1

τ
, (2.116)

T : τ → T (τ) = τ + 1, (2.117)

where S and T transformations for τ satisfy

S2 = (ST )3 = I. (2.118)

This transformation is called the modular transformation, and the (inhomogeneous) modular

group is Γ̄ ≡ SL(2,Z)/{±I} = PSL(2,Z). Thus, there is a symmetry between a torus with a

modulus τ and another torus with the modulus γ(τ). This Γ̄ symmetry for the modulus is called

the modular symmetry. Then, the fundamental region of the modulus τ becomes |Reτ | ≤ 1/2

and Imτ ≥
√

1− (Reτ)2.

Although, in a 4D EFT with the modular symmetry, the modular transformed parameter

is only the modulus τ , not only the modulus τ but also the coordinate z transform under the

modular transformation as follows:

γ : z =
u

e1
→ γ(z) =

u

γ(e1)
=

z

cτ + d
, (2.119)

S : z → S(z) = −z
τ
, (2.120)

T : z → T (z) = z. (2.121)

Hereafter, we call γ : (z, τ) → (γ(z, τ)) as the “modular transformation”. In particular,

(S2(z, τ)) = (−z, τ). Thus, Γ = SL(2,Z) is important and it is called the full modular group

(or homogeneous modular group).
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Modular forms

Now, let us see modular transformation for functions of modular parameters. When holomor-

phic functions of τ , f j(τ), satisfy

γ : f j(τ)→ f j(γ(τ)) = Jk(γ, τ)f
i(τ), Jk(γ, τ) = (cτ + d)k, γ =

(
a b

c d

)
∈ Γ, (2.122)

S : f j(τ)→ f i(S(τ)) = Jk(S, τ)f
j(τ), Jk(S, τ) = (−τ)k, S =

(
0 1

−1 0

)
∈ Γ, (2.123)

T : f j(τ)→ f i(T (τ)) = Jk(T, τ)f
j(τ), Jk(T, τ) = 1, T =

(
1 1

0 1

)
∈ Γ, (2.124)

f j(τ) are called modular forms of weight k for Γ, where Jk(γ, τ) denotes the automorphy factor

with weight k and satisfies

Jk(γ2γ1, τ) = Jk(γ2, γ1(τ))Jk(γ1, τ), γ1, γ2 ∈ Γ. (2.125)

Note that k must be even since they transform under S2 = −I transformation as

f j(S2(τ)) = f j(τ) = (−1)kf j(τ). (2.126)

Here, let us consider the principal congruence subgroup of level N , defined by

Γ(N) ≡
{
h =

(
a′ b′

c′ d′

)
∈ Γ

∣∣∣∣(a′ b′

c′ d′

)
≡
(
1 0

0 1

)
(mod N)

}
, (2.127)

which is a normal subgroup of Γ (Γ(N)◁Γ). Obviously, Γ(1) ≃ Γ. S2 = −I is included in Γ(N)

only with N = 1, 2. Then we also define Γ̄ ≡ Γ/{±I}. Similarly, holomorphic functions f j(τ)

satisfying

h : f j(τ)→ f j(h(τ)) = Jk(h, τ)f
j(τ), Jk(h, τ) = (c′τ + d′)k, h =

(
a′ b′

c′ d′

)
∈ Γ(N),

(2.128)

are called modular forms of weight k for Γ(N). When N = 2, k must be even because of the

same reason for Γ(1) ≃ Γ. When N > 2, on the other hand, k must be integer because of

(1)k = 1. They transform under γ ∈ Γ transformation as

γ : f j(τ)→ f j(γ(τ)) = Jk(γ, τ)ρ(γ)jj′f
j′(τ), Jk(γ, τ) = (cτ + d)k, γ =

(
a b

c d

)
∈ Γ,

(2.129)

S : f j(τ)→ f j(S(τ)) = Jk(S, τ)ρ(S)jj′f
j′(τ), Jk(S, τ) = (−τ)k, S =

(
0 1

−1 0

)
∈ Γ,

(2.130)

T : f i(τ)→ f j(T (τ)) = Jk(T, τ)ρ(T )jj′f
j′(τ), Jk(T, τ) = 1, T =

(
1 1

0 1

)
∈ Γ,

(2.131)
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where ρ(γ) denotes unitary representation satisfying

ρ(γ2γ1) = ρ(γ2)ρ(γ1), γ1, γ2 ∈ Γ, (2.132)

and ρ(h) = I for h ∈ Γ(N), i.e.

ρ(Z)2 = ρ(S)4 = [ρ(S)ρ(T )]3 = ρ(T )N = I,
(
ρ(S)2 = I (N = 2)

)
. (2.133)

In addition, for γ = S2 = −I, the following should be satisfied:

f j(S2(τ)) = f i(τ) = (−1)kρ(S)2jj′f j
′
(τ) ⇔ ρ(Z) = ρ(S)2 = (−1)kI, (2.134)

which also satisfies

ρ(Z)ρ(T ) = ρ(T )ρ(Z). (2.135)

Thus, when k is even, because of ρ(S)2 = I, ρ becomes the representation of the quotient group

ΓN ≡ Γ̄/Γ̄(N), where Γ̄(N) is defined as Γ̄(N) ≡ Γ(N)/{±I} for N = 1, 2 and Γ̄(N) ≡ Γ for

N > 2. Here, ΓN is called the finite modular group since its order becomes finite. Interestingly,

ΓN with N = 2, 3, 4, and 5 are isomorphic to well-known non-Abelian discrete groups, S3,

PSL(2,Z3) ≃ A4, S4, and PSL(2,Z5) ≃ A5, respectively. Moreover, for N > 5, (although

other algebraic relations in addition to those in Eqs. (2.133) and (2.134) are imposed,) Γ7

is isomorphic to PSL(2,Z7) while Γ8 and Γ16 contain ∆(96) and ∆(384) as their subgroups,

respectively [29]. On the other hand, when k is odd, ρ becomes the representation of the

quotient group Γ′
N ≡ Γ/Γ(N), called the homogeneous finite modular group [84]. It is the

double covering group of ΓN . Therefore, modular forms of odd (even) weight for Γ(N) transform

under Γ′
N = Γ/Γ(N) (ΓN = Γ̄/Γ̄(N)) non-trivially.

In order to treat modular forms of half-integral weight in the next section, we introduce the

metapletic double covering group of Γ = SL(2,Z), defined as

Γ̃ = S̃L(2,Z) = {γ̃ = [γ, ϵ]|γ ∈ Γ, ϵ ∈ {±1}} . (2.136)

The multiplication is given by

γ̃1γ̃2 = [γ1, ϵ1][γ2, ϵ2] = [γ1γ2, A(γ1, γ2)ϵ1ϵ2], γ̃1,2 = [γ1,2, ϵ1,2] ∈ Γ̃, (2.137)

where A(γ1, γ2) denotes the Kubota’s twisted 2-cocycle [88] for Γ, satisfying the following the

relation,

(γ̃1γ̃2)γ̃3 = γ̃1(γ̃2γ̃3),

⇔ A(γ1, γ2)A(γ1γ2, γ3) = A(γ1, γ2γ3)A(γ2, γ3). (2.138)

It is defined as follows. First, let us introduce Kubota’s function χ : Γ→ Z, defined by

χ(γ) =

{
c (c ̸= 0)

d (c = 0)
, γ =

(
a b

c d

)
∈ Γ. (2.139)
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We also introduce the Hilbert symbol, defined by

(a, b)H =

{
−1 (a < 0 and b < 0)

1 (otherwise)
. (2.140)

Then, the 2-cocycle A : Γ× Γ→ {±1} is defined as

A(γ1, γ2) = (detγ1, detγ2)H

(
χ(γ1γ2)

χ(γ1)
,
χ(γ1γ2)

χ(γ2)detγ1

)
H

. (2.141)

Here, let us set generators of Γ̃ as

S̃ ≡ [S,−1] (S̃−1 = [S−1,−1]), T̃ ≡ [T, 1] (T̃−1 = [T−1, 1]). (2.142)

They satisfy the following algebraic relations;

S̃2 = [−I, 1] ≡ Z̃, Z̃2 = S̃4 = [I,−1], Z̃4 = S̃8 = (S̃T̃ )3 = [I, 1] ≡ Ĩ, Z̃T̃ = T̃ Z̃. (2.143)

The action of γ̃ ∈ Γ̃ on τ as well as z is the same as one of γ ∈ Γ, i.e. γ̃(z, τ) = γ(z, τ).

Furthermore, we introduce the metapletic congruence subgroup of level N ∈ 4Z, defined by

Γ̃(N) ≡ {[h, ϵ] ∈ Γ̃|h ∈ Γ(N), ϵ = 1}, (2.144)

which is a normal subgroup of Γ̃ (Γ̃(N) ◁ Γ̃) and isomorphic to Γ(N). Now, modular forms of

half-integral weight k/2 for Γ̃(N) (N ∈ 4Z)8, f j(τ), are holomorphic functions which transform

under γ̃ ∈ Γ̃ as

γ̃ : f j(τ)→ f j(γ̃(τ)) = J̃k/2(γ̃, τ)ρ(γ̃)jj′f
j′(τ)

J̃k/2(γ̃, τ) = ϵk(cτ + d)k/2
, γ̃ =

[(
a b

c d

)
, ϵ

]
∈ Γ̃, (2.145)

S̃ : f j(τ)→ f j(S̃(τ)) = J̃k/2(S̃, τ)ρ(S̃)jj′f
j′(τ)

J̃k/2(S̃, τ) = (−1)k(−τ)k/2
, S̃ =

[(
0 1

−1 0

)
,−1

]
∈ Γ̃, (2.146)

T̃ : f j(τ)→ f j(T̃ (τ)) = J̃k/2(T̃ , τ)ρ(T̃ )jj′f
j′(τ)

J̃k/2(T̃ , τ) = 1
, T̃ =

[(
1 1

0 1

)
, 1

]
∈ Γ̃, (2.147)

and for h̃ ∈ Γ̃(N) ⊂ Γ̃, in particular, satisfy

h̃ : f j(τ)→ f j(h̃(τ)) = J̃k/2(h̃, τ)f
j(τ), J̃k/2(h̃, τ) = Jk/2(h, τ), h̃ = [h, 1] ∈ Γ̃(N). (2.148)

The automorphy factor Jk/2(γ̃, τ) = ϵkJk/2(γ, τ) satisfies

J̃k/2(γ̃2γ̃1, τ) = (A(γ2, γ1))
k J̃k/2(γ̃2, γ̃1(τ))J̃k/2(γ̃1, τ), γ̃1, γ̃2 ∈ Γ̃, (2.149)

8It is required to define modular forms of half-integral weight mathematically.
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while the unitary representation should satisfy ρ(h̃) = I for h̃ ∈ Γ̃(N) i.e.

ρ(Z̃)4 = ρ(S̃)8 = [ρ(S̃)ρ(T̃ )]3 = ρ(T̃ )N = I. (2.150)

Here, we take (−1)k = e−πik/2. In addition, for Z̃2 = S̃4 = [I,−1] and Z̃ = S̃2 = [−I, 1], the
followings should be satisfied:

f j(S̃4(τ)) = f j(τ) = −ρ(S̃)4jj′f j
′
(τ) ⇔ ρ(Z̃)2 = ρ(S̃)4 = −I, (2.151)

f j(S̃2(τ)) = f j(τ) = e−πik/2ρ(S̃)2jj′f
j′(τ) ⇔ ρ(Z̃) = ρ(S̃)2 = eπik/2I, (2.152)

which also satisfies

ρ(Z̃)ρ(T̃ ) = ρ(T̃ )ρ(Z̃). (2.153)

Thus, ρ becomes the representation of the quotient group Γ̃N ≡ Γ̃/Γ̃(N), called the metapletic

finite modular group. It is the further double covering group of Γ′
N , that is, the quadruple

covering group of ΓN . In other words, modular forms of half-integral weight for Γ̃(N) transform

under Γ̃N = Γ̃/Γ̃(N) non-trivially. Note that these results are consistent with an integral weight

case.

Furthermore, we treat modular transformation of not only the CS modulus τ but also the

complex coordinate z in the next section, we extend the definition of modular forms; in stead

of modular forms f i(τ), when wave functions ψj(z, τ) transform under γ̃ ∈ Γ̃ as

γ̃ : ψj(z, τ)→ ψj(γ̃(z, τ)) = J̃k/2(γ̃, τ)ρ(γ̃)jj′ψ
j′(z, τ), J̃k/2(γ̃, τ) = ϵk(cτ + d)k/2, γ̃ ∈ Γ̃,

(2.154)

S̃ : ψj(z, τ)→ ψj(S̃(z, τ)) = J̃k/2(S̃, τ)ρ(S̃)jj′ψ
j′(z, τ), J̃k/2(S̃, τ) = (−1)k(−τ)k/2, S̃ ∈ Γ̃,

(2.155)

T̃ : ψj(z, τ)→ ψj(T̃ (z, τ)) = J̃k/2(T̃ , τ)ρ(T̃ )jj′ψ
j′(z, τ), J̃k/2(T̃ , τ) = 1, T̃ ∈ Γ̃,

(2.156)

and for h̃ ∈ Γ̃(N), in particular, they satisfy

h̃ : ψj(z, τ)→ ψj(h̃(z, τ)) = J̃k/2(h̃, τ)ψ
j(z, τ), h̃ ∈ Γ̃(N), (2.157)

we call ψj(z, τ) as “modular forms” of weight k/2 for Γ̃(N) and they transform under Γ̃N =

Γ̃/Γ̃(N) non-trivially. Note that Eq. (2.152) does not have to be satisfied since (S̃2(z, τ)) =

(−z, τ).

2.2.2 Modular symmetry in magnetized T 2 compactification

In this section, let us discuss the modular symmetry on the magnetized T 2. The following

analysis is based on Refs. [53, 67,68,70].
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In addition to the “modular transformation” for (z, τ) in Eqs. (2.115) and (2.119), by

considering the transformation,

γ : Imτ → Imτ
|cτ+d|2 , γ : e1 → (cτ + d)e1, (2.158)

we obtain the following transformation:

γ : hµν → |cτ + d|2hµν ,
γ : γz → (cτ + d)−1γz, γ : γ z̄ → (cτ̄ + d)−1γ z̄,

γ : ⟨Fzz̄⟩ → |cτ + d|2⟨Fzz̄⟩,
γ : ⟨Az⟩ → (cτ + d)⟨Az⟩, γ : ⟨Az̄⟩ → (cτ̄ + d)⟨Az̄⟩,
γ : Dz → (cτ + d)Dz, γ : Dz̄ → (cτ̄ + d)Dz̄.

(2.159)

Then, we find that the square of the line element ds2, the area of T 2 A, the constant 2-form

field strength ⟨F ⟩, 1-form vector potential ⟨A⟩, the covariant derivative D and the derivative

operators such as D(†), (a(†),) and mass eigenvalues m2
n, (m

2
n,) are modular invariant. Hence,

both wave functions of (z, τ) and (γ(z, τ)) satisfy the same equation of motions. Indeed, non-

holomorphic parts of wave functions are modular invariant. Next, let us see the “modular

transformation” for the BCs by U1 and Uτ . We note that the shifts on the coordinate S(z),

S(z) → S(z) + 1 and S(z) → S(z) + S(τ), correspond to the shifts on the coordinate z,

z → z − τ and z → z + 1, respectively, while the shifts on the coordinate T (z), T (z) →
T (z) + 1 and T (z) → T (z) + T (τ), correspond to the shifts on the coordinate z, z → z + 1,

z → z + τ + 1, respectively. Indeed, we can find that S(U1) = U−τ and S(Uτ ) = U1 by

mapping S(αa,b1 , αa,bτ ) = ({1 − αa,bτ }, α
a,b
1 ), while T (U1) = U1 and T (Uτ ) = Uτ+1 by mapping

T (αa,b1 , αa,bτ ) = (αa,b1 , {αa,bτ + αa,b1 +Ma,b/2}). Here, we define {x} for a number x such that

0 ≤ {x} ≡ x − [x] < 1, where [x] denotes the floor function. In particular, when (αa,b1 , αa,bτ ) =

(0, 0) [(1/2, 1/2)] for Ma,b = even [odd], the SS phases are modular invariant. In these cases,

wave functions of (z, τ) and (γ(z, τ)) satisfy same BCs as well as equation of motions.

Now, let us see the following “modular transformation” for wave functions in Eq. (2.47):

S : ψ
(j+α1,ατ ),M

T 2,0 (z, τ)→ ψ
(j+S(α1,ατ )),M

T 2,0 (S(z, τ)) = ψ
(j+{1−ατ},α1),M

T 2,0

(
−z
τ
,−1

τ

)
, (2.160)

T : ψ
(j+α1,ατ ),M

T 2,0 (z, τ)→ ψ
(j+T (α1,ατ )),M

T 2,0 (T (z, τ)) = ψ
(j+ατ ,{ατ+α1+M/2}),M
T 2,0 (z, τ + 1). (2.161)

They can be rewritten by ψ
(j+α1,ατ ),M

T 2,0 (z, τ) as follows:

ψ
(j+{1−ατ},α1),M

T 2,0

(
−z
τ
,−1

τ

)
= −(−τ)1/2

M−1∑
j′=0

−eπi/4√
M

e2πi
(j+{1−ατ })(j′+α1)

M ψ
(j′+α1,ατ ),M

T 2,0 (z, τ),

(2.162)

ψ
(j+α1,{ατ+α1+M/2}),M
T 2,0 (z, τ + 1) =

M−1∑
j′=0

eπi
(j+α1)

2

M δj,j′ψ
(j+α1,ατ ),M

T 2,0 (z, τ). (2.163)
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The detailed calculations are in Appendix A.1. In particular, forM = even and (α1, ατ ) = (0, 0),

they can be expressed as

S̃ : ψ
(j+0,0),M

T 2,0 (z, τ)→ ψ
(j+0,0),M

T 2,0 (S̃(z, τ)) = J̃1/2(S̃, τ)
∑M−1

j′=0 ρ
(0,0)

T 2 (S̃)jj′ψ
(j′+0,0),M

T 2,0 (z, τ),

J̃1/2(S̃, τ) = −(−τ)1/2, ρ
(0,0)

T 2 (S̃)jj′ =
−eπi/4√

M
e2πi

jj′
M ,

(2.164)

T̃ : ψ
(j+0,0),M

T 2,0 (z, τ)→ ψ
(j+0,0),M

T 2,0 (T̃ (z, τ)) = J̃1/2(T̃ , τ)
∑M−1

j′=0 ρ(T̃ )jj′ψ
(j′+0,0),M

T 2,0 (z, τ),

J̃1/2(T̃ , τ) = 1, ρ
(0,0)

T 2 (T̃ )jj′ = eπi
j2

M δj,j′ ,
(2.165)

where J̃1/2 and ρ
(0,0)

T 2 satisfy the following relations,

J̃1/2(Z̃, τ) = J̃1/2(S̃
2, τ) = (−1)1/2 = e−πi/2, ρ

(0,0)

T 2 (Z̃)jj′ = ρ
(0,0)

T 2 (S̃)2jj′ = eπi/2δM−j,j′ , (2.166)

J̃1/2(Z̃
2, τ) = J̃1/2(S̃

4, τ) = −1, ρ
(0,0)

T 2 (Z̃)2jj′ = ρ
(0,0)

T 2 (S̃)4jj′ = −δj,j′ , (2.167)

J̃1/2(Z̃
4, τ) = J̃1/2(S̃

8, τ) = 1, ρ
(0,0)

T 2 (Z̃)4jj′ = ρ
(0,0)

T 2 (S̃)8jj′ = δj,j′ , (2.168)

J̃1/2((S̃T̃ )
3, τ) = 1, [ρ

(0,0)

T 2 (S̃)ρ
(0,0)

T 2 (T̃ )]3jj′ = δj,j′ , (2.169)

J̃1/2(T̃
2M , τ) = 1, ρ

(0,0)

T 2 (T̃ )2Mjj′ = δj,j′ , (2.170)

ρ
(0,0)

T 2 (Z̃)ρ
(0,0)

T 2 (T̃ ) = ρ
(0,0)

T 2 (T̃ )ρ
(0,0)

T 2 (Z̃). (2.171)

Therefore, by comparing the definition of “modular forms” in the previous subsection,M(∈ 2Z)
number of degenerate wave functions of bi-fundamental fields on the magnetized T 2 behave

as “modular forms” of weight 1/2 for Γ̃(2M) and they transform non-trivially under Γ̃2M =

Γ̃/Γ̃(2M). The detailed calculations are in Appendix A.1. On the other hand, for M = odd

and (α1, ατ ) = (1/2, 1/2), they can be expressed as

S̃ : ψ
(j+ 1

2
, 1
2
),M

T 2,0 (z, τ)→ ψ
(j+ 1

2
, 1
2
),M

T 2,0 (S̃(z, τ)) = J̃1/2(S̃, τ)
∑M−1

j′=0 ρ
( 1
2
, 1
2
)

T 2 (S̃)jj′ψ
(j′+ 1

2
, 1
2
),M

T 2,0 (z, τ),

J̃1/2(S̃, τ) = −(−τ)1/2, ρ
( 1
2
, 1
2
)

T 2 (S̃)jj′ =
−eπi/4√

M
e2πi

(j+1
2 )(j′+1

2 )

M ,

(2.172)

T̃ : ψ
(j+ 1

2
, 1
2
),M

T 2,0 (z, τ)→ ψ
(j+ 1

2
, 1
2
),M

T 2,0 (T̃ (z, τ)) = J̃1/2(T̃ , τ)
∑M−1

j′=0 ρ
( 1
2
, 1
2
)

T 2 (T̃ )jj′ψ
(j′+ 1

2
, 1
2
),M

T 2,0 (z, τ),

J̃1/2(T̃ , τ) = 1, ρ
( 1
2
, 1
2
)

T 2 (T̃ )jj′ = eπi
(j+1

2 )2

M δj,j′ ,

(2.173)
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where J̃1/2 and ρ
( 1
2
, 1
2
)

T 2 satisfy the following relations,

J̃1/2(Z̃, τ) = J̃1/2(S̃
2, τ) = (−1)1/2 = e−πi/2, ρ

( 1
2
, 1
2
)

T 2 (Z̃)jj′ = ρ
( 1
2
, 1
2
)

T 2 (S̃)2jj′ = −eπi/2δM−(j+ 1
2
),(j′+ 1

2
),

(2.174)

J̃1/2(Z̃
2, τ) = J̃1/2(S̃

4, τ) = −1, ρ(
1
2
, 1
2
)

T 2 (Z̃)2jj′ = ρ
( 1
2
, 1
2
)

T 2 (S̃)4jj′ = −δj,j′ , (2.175)

J̃1/2(Z̃
4, τ) = J̃1/2(S̃

8, τ) = 1, ρ
( 1
2
, 1
2
)

T 2 (Z̃)4jj′ = ρ
( 1
2
, 1
2
)

T 2 (S̃)8jj′ = δj,j′ , (2.176)

J̃1/2((S̃T̃ )
3, τ) = 1, [ρ

( 1
2
, 1
2
)

T 2 (S̃)ρ
( 1
2
, 1
2
)

T 2 (T̃ )]3jj′ = δj,j′ , (2.177)

J̃1/2(T̃
M , τ) = 1, ρ

( 1
2
, 1
2
)

T 2 (T̃ )Mjj′ = eπi/4δj,j′ , (2.178)

J̃1/2(T̃
8M , τ) = 1, ρ

( 1
2
, 1
2
)

T 2 (T̃ )8Mjj′ = δj,j′ , (2.179)

ρ
( 1
2
, 1
2
)

T 2 (Z̃)ρ
( 1
2
, 1
2
)

T 2 (T̃ ) = ρ
( 1
2
, 1
2
)

T 2 (T̃ )ρ
( 1
2
, 1
2
)

T 2 (Z̃). (2.180)

Therefore, similarly,M(∈ 2Z+1) number of degenerate wave functions of bi-fundamental fields

on the magnetized T 2 behave as “modular forms” of weight 1/2 for Γ̃(8M) and they transform

non-trivially under Γ̃8M = Γ̃/Γ̃(8M). Note that since ρ
( 1
2
, 1
2
)

T 2 (T̃ )M = eπi/4I commutes with

∀ρ(
1
2
, 1
2
)

T 2 (γ̃), it becomes the generator of the center group Z8 of Γ̃8M . The detailed calculations

are in Appendix A.1. For example, when M = 2 and (α1, ατ ) = (0, 0), ρ
(0,0)

T 2 can be expressed

as

ρ
(0,0)

T 2 (S̃) =
eπi/4√

2

(
−1 −1
−1 1

)
, ρ

(0,0)

T 2 (T̃ ) =

(
1 0

0 i

)
. (2.181)

Actually, according to Ref. [87], it corresponds to the 2D irreducible unitary representation9 2̂

of Γ̃4 ≃ S̃4, which is further double covering group of Γ′
4 ≃ S ′

4 (quadruple covering group of

Γ4 ≃ S4). Here, we have a few comments. First, not only the above zero mode wave functions

but also any n th excited mode wave functions in Eq. (2.58) have same characters since a(†) is

modular invariant and it commutes with ρ as well as J̃1/2. Second, as for wave functions of the

remaining U(Na,b) adjoint fields on the magnetized T 2 in Eqs. (2.51), they are modular invariant

by considering the modular transformation of n = n1 + τn2 = (n1e1 + n2e2)/e1 ≡ nu/e1 which

corresponds to the coordinate of the lattice point, i.e. γ : n→ n/(cτ + d).

Then, let us consider the modular symmetry in the 4D EFT. Notice that the modular

transformation comes from SL(2,Z) transformation of lattice vectors and the lattice itself does

not change, that is, the modular transformation induces just basis transformation:

Φn(X) =
∑
j

Φn,j(x)⊗ Φj
T 2,n(z, τ) =

∑
j′

Φn,j′(x)⊗ Φj′

T 2,n(z, τ). (2.182)

From the modular transformation for wave functions on the magnetized T 2 in Eqs. (2.164)-

(2.165) and Eqs. (2.172)-(2.173), the modular transformation induces the following transfor-

9When we denote 2̂ in Ref. [87] as 2̂ref , Eq. (2.181) can be obtained by the unitary transformation, σ32̂refσ
−1
3 .
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mation for j th 4D bi-fundamental fields Φn,j(x);

γ̃ : Φn,j(x)→ J̃−1/2(γ̃, τ)
M−1∑
j′=0

ρ̄
(α,α)

T 2 (γ̃)jj′Φn,j′(x), (2.183)

with α = 0 for M ∈ 2Z and α = 1/2 for M ∈ 2Z+ 1, where we used the unitarity (ρ−1)T = ρ̄.

Therefore, M -generational 4D bi-fundamental fields transform under the modular transforma-

tion as M -dimensional representation of Γ̃2M (M ∈ 2Z) or Γ̃8M (M ∈ 2Z + 1) with modular

weight −k = −1/2. Actually, by combining the modular transformation for the coefficient

(iτ̄ − iτ)−1/2, (iτ̄ − iτ)−1/2 → |cτ + d|(iτ̄ − iτ)−1/2, we can find that the kinetic terms in the

4D action in Eq. (2.109):

KΦ =
∑
n,j

Φn,j(x)
†DΦn,j(x)

(iτ̄ − iτ)
, (2.184)

are modular invariant, where D denotes the covariant derivative operator. On the other hand,

remaining U(Na,b) adjoint 4D fields are modular invariant since their wave functions on the

magnetized T 2 are modular invariant. It is also consistent with the 4D action. Next, let us

see the modular symmetry for three-point couplings. In particular, let us see the modular

symmetry for holomorphic three-point couplings in Eq. (2.95) as well as Eq. (2.99). Here, we

note that ℓy = lcm(Mab,M bc,Mac) ∈ 2Z and (αy1, α
y
τ ) ≡ (0, 0) (mod 1) whether each wave

function has (M ;α1, ατ ) = (even; 0, 0) or (odd; 1/2, 1/2). We also note that the results of the

modular transformation for wave functions in Eqs. (2.164) and (2.165) do not depend on the

coordinate z. Thus, holomorphic three-point couplings become modular forms of weight 1/2

for Γ̃(2ℓy) and they transform non-trivially under Γ̃2ℓy . Actually, the representation of the

holomorphic three-point couplings, ρ
y(0,0)

T 2 (γ̃)(ijk)(i′j′k′), is consistent with tensor products of the

representations of matter fields, ρ
i(αi,αi)

T 2 (γ̃)ii′ :

ρ
y(0,0)

T 2 (γ̃)(ijk)(i′j′k′) = ρ
i(αi,αi)

T 2 (γ̃)ii′ ⊗ ρj(α
j ,αj)

T 2 (γ̃)jj′ ⊗ ρ̄k(α
k,αk)

T 2 (γ̃)kk′ . (2.185)

It can be also understood from Eq. (2.94). Then, combining the modular transformation for

4D fields, the holomorphic superpotential of the three-point couplings

Wy(τ) = yijk
T 2,ninjnk

(τ)Φni,i(x)Φnj ,j(x)Φnk,k(x), (2.186)

is transformed under the modular transformation as

γ : Wy(τ)→ J−1(γ, τ)Wy(τ) = (cτ + d)−1Wy(τ), (2.187)

which means that the holomorphic superpotential has modular weight −1. This is consistent

within the supergravity theory. In the supergravity theory, the following combination of the

Kähler potential K and a holomorphic superpotential W (τ),

G ≡ K + ln |W (τ)|2, (2.188)
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called the supergravity Kähler function, must be invariant under the modular transformation.

In T 2 case, the Kähler potential is given by Eq. (2.102) and it transforms under the modular

transformation as

γ : K → K + ln |cτ + d|2. (2.189)

Thus, a holomorphic superpotential W (τ) should transform as

γ : W (τ)→ (cτ + d)−1W (τ). (2.190)

(This is a Kähler transformation.) Hence, the transformation in Eq. (2.187) is consistent with

Eq. (2.190). However, we consider global supersymmetric theory. Remind that the relations

of superpotentials as well as three-point couplings in the supergravity theory and the global

supersymmetric theory are discussed in Eqs. (2.101) and (2.103). Thus, the super potential in

the global supersymmetric theory,

Ŵy(τ) = ŷijk
T 2,ninjnk

(τ)Φni,i(x)Φnj ,j(x)Φnk,k(x), (2.191)

is modular invariant. Therefore, the 4D effective actions in Eqs. (2.108)-(2.110) as well as

Eq. (2.93) are modular invariant. In other words, the 4D EFT obtained from the magnetized

torus compactification has Γ̃N modular flavor symmetry, where N is determined by magnetic

fluxes.

Here, we comment on the “modular transformation” for wave functions on magnetized

T 2
1 × T 2

2 ,

Ψ
(j1+α(1),j2+α(2)),M1M2

T 2
1×T 2

2 ,0
((z1, τ1), (z2, τ2)) ≡ ψ

(j1+α(1),α(1)),M1

T 2
1 ,0

(z1, τ1)ψ
(j2+α(2),α(2)),M2

T 2
2 ,0

(z2, τ2), (2.192)

where α
(1,2)
1 = α

(1,2)
τ = α(1,2) = 0, 1/2 for M1,2 =even, odd, respectively. In general, each torus

T 2
i (i = 1, 2) has the “modular symmetry” SL(2,Zi) independently and then wave functions on

magnetized T 2
i transform under SL(2,Zi) independently. However, when the moduli τ1 and τ2

are identified, i.e. τ1 = τ2 ≡ τ , the “modular symmetry on T 2
1 ×T 2

2 is reduced from SL(2,Z1)×
SL(2,Z2) to SL(2,Z). Then, in this case, the “modular symmetry” for wave functions in

Eq. (2.192) is non-trivial; we can find that the automorphy factor becomes (J̃1/2(γ̃, τ))
2 =

J1(γ, τ) and the unitary representation,

ρ
(α(1),α(2))

T 2
1×T 2

2
(γ)(j1j2)(j′1j′2) ≡ ρ

(α(1),α(1))

T 2
1

(γ̃)j1j′1ρ
(α(2),α(2))

T 2
1

(γ̃)j2j′2 , (2.193)

satisfies

ρ
(α(1),α(2))

T 2
1×T 2

2
(Z) = ρ

(α(1),α(2))

T 2
1×T 2

2
(S)2 = −e2πi(α(1)+α(2))δM−(j1+α(1)),(j′1+α

(1))δM−(j2+α(2)),(j′2+α
(2)), (2.194)

ρ
(α(1),α(2))

T 2
1×T 2

2
(Z)2 = ρ

(α(1),α(2))

T 2
1×T 2

2
(S)4 = [ρ

(α(1),α(2))

T 2
1×T 2

2
(S)ρ

(α(1),α(2))

T 2
1×T 2

2
(T )]3 = δ(j1,j2),(j′1,j′2), (2.195)

[ρ
(α(1),α(2))

T 2
1×T 2

2
(Z)ρ

(α(1),α(2))

T 2
1×T 2

2
(T )] = [ρ

(α(1),α(2))

T 2
1×T 2

2
(T )ρ

(α(1),α(2))

T 2
1×T 2

2
(Z)], (2.196)
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and

ρ
(α(1),α(2))

T 2
1×T 2

2
(T )N=2ℓ12 = δ(j1,j2),(j′1,j′2), (M1 = 2s1,M2 = 2s2),

ρ
(α(1),α(2))

T 2
1×T 2

2
(T )N=2ℓ12 = δ(j1,j2),(j′1,j′2), (M1 = 4s1,M2 = 2s2 − 1),

ρ
(α(1),α(2))

T 2
1×T 2

2
(T )2ℓ12 = −δ(j1,j2),(j′1,j′2), (M1 = 2(2s1 − 1),M2 = 2s2 − 1),

⇒ ρ
(α(1),α(2))

T 2
1×T 2

2
(T )N=4ℓ12 = δ(j1,j2),(j′1,j′2),

ρ
(α(1),α(2))

T 2
1×T 2

2
(T )ℓ12 = e

πi
M1+M2
4g1,2 δ(j1,j2),(j′1,j′2), (M1 = 2s1 − 1,M2 = 2s2 − 1),

⇒ ρ
(α(1),α(2))

T 2
1×T 2

2
(T )N = δ(j1,j2),(j′1,j′2), N =


ℓ12 (M1 +M2 ∈ 8Z)
2ℓ12 (M1 +M2 ∈ 4Z)
4ℓ12 (M1 +M2 ∈ 2Z)

,

(2.197)

where ℓ12 ≡ lcm(M1,M2), g12 ≡ gcd(M1,M2), and s1,2 ∈ Z. Hence, the M1M2 number of

wave functions (2.192) behave as “modular forms” of weight 1 for Γ(N) and they transform

non-trivially under Γ′
N = Γ/Γ(N) [89].

2.2.3 CP symmetry in magnetized T 2 compactification

In this subsection, let us discuss CP symmetry in magnetized T 2 compactification [67].

First of all, we consider the 6D space-time,M6 = R1,3 × T 2, and a spinor field onM6,

ψ(4)IJ(X) =
∑

n,j

(
ψ

(2)IJ
L,n,j (x)⊗ ψIJ+,n,j(z, τ)

ψ
(2)IJ
R,n,j (x)⊗ ψIJ−,n,j(z, τ)

)
,

ψ(4̄)IJ(X) =
∑

n,j

(
ψ

(2)IJ
L,n,j (x)⊗ ψIJ−,n,j(z, τ)

ψ
(2)IJ
R,n,j (x)⊗ ψIJ+,n,j(z, τ)

)
,

(2.198)

where IJ corresponds to the charge in an internal space symmetry such as gauge symmetry.

Let us consider the simultaneous CP transformation: 4D CP transformation and the following

2D transformation [67,90] (see also Refs. [91,92]),

CP :

(
e2
e1

)
→
(
CP (e2)

CP (e1)

)
=

(
1 0

0 −1

)(
ē2
ē1

)
=

(
ē2
−ē1

)
, CP =

(
1 0

0 −1

)
, (2.199)

⇒ CP :

(
z =

u

e1
, τ =

e2
e1

)
→
(
CP (z) =

CP (u)

CP (e1)
, CP (τ) =

CP (e2)

CP (e1)

)
=

(
−z̄ = ū

−ē1
,−τ̄ =

ē2
−ē1

)
, (2.200)(

CP :
(
z = y1 + τy2, τ = Reτ + iImτ

)
→
(
−z̄ = −y1 − τ̄ y2,−τ̄ = −Reτ − i(−Imτ)

) )
,

(2.201)

where it satisfies that Im(−τ̄) = Imτ > 0, (CP )2 = I, and det(CP ) = −1. That is the

complex conjugate transformation and the parity transformation for e1. Hereafter, we call this
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2D transformation 2D “CP transformation”. Then, this simultaneous transformation can be

embedded in a 6D proper Lorentz transformation [93–98], that is, this transformation is the

same as 6D C transformation. Under 6D C transformation,

C : ψ(4)IJ(X)→ ψ(4̄)JI(X). (2.202)

In addition, under 4D CP transformation,

CP : ψ
(2)IJ
L,n,j (x)→ ψ

(2)JI
L,n,j (x). (2.203)

Hence, under 2D “CP transformation” in Eq. (2.200),

CP : ψIJ+,n,j(z, τ)→ ψIJ+,n,j(−z̄,−τ̄) = ψJI−,n,j(z, τ) = ψIJ+,n,j(z, τ), (2.204)

will be obtained, where we also consider 2D MW condition: ψJI∓,n,j(z, τ) = ψIJ±,n,j(z, τ).

Now, let us see the “CP symmetry” in the magnetized T 2 compactification. Along with

the “CP transformation”, the magnetic fluxes Ma,b in 2-form field strength as well as 1-form

gauge field are also transformed as

CP :MA → −MA (A = a, b, ...). (2.205)

Then, we can obtain the following “CP transformation”

CP : γz → −γ z̄, CP : γ z̄ → −γz,
CP : ⟨Fzz̄⟩ → ⟨Fz̄z⟩ = −⟨Fzz̄⟩,
CP : ⟨Az⟩ → −⟨Az̄⟩, CP : ⟨Az̄⟩ → −⟨Az⟩,
CP : Dz → −Dz̄, CP : Dz̄ → −Dz.

(2.206)

From those “CP transformation”, in particular, the Dirac operator iDab transforms into −iD†
ba.

Indeed, wave functions of ψab+,n,j(z, τ) = ψ
(j+α1,ατ ),M

T 2,n transform as

CP : ψ
(j+α1,ατ ),M

T 2,n (z, τ)→ ψ
(−(j+α1),ατ ),−M
T 2,n (−z̄,−τ̄) = ψ

(j+α1,ατ ),M

T 2,n (z, τ). (2.207)

That is, we can obtain Eq. (2.204): wave functions of ψab+,n,j(z, τ) = ψ
(j+α1,ατ ),M

T 2,n transform into

ψba−,n,j(z, τ) = ψ
(j+α1,ατ ),M

T 2,n (z, τ) under the “CP transformation”.

Next, let us extend to the generalized “CP symmetry” consistent with the modular sym-

metry [90]. First, among the “CP transformation” in Eq. (2.199) and the Γ = SL(2,Z)
transformation in Eq. (2.113), they have the following relations;

(CP )−1S(CP )−1 = S−1, (CP )T (CP )−1 = T−1. (2.208)

Then, in this case, the symmetry can be extended as Γ∗ ≡ SL(2,Z)⋊ ZCP2 ≃ GL(2,Z), called
the extended modular group. Under the extended modular transformation by γ∗ ∈ Γ∗, (z, τ)

transforms as

γ∗ : (z, τ)→ (γ∗(z, τ)) =

{ (
z

cτ+d
, aτ+b
cτ+d

)
, (detγ∗ = 1)(

z̄
cτ̄+d

, aτ̄+b
cτ̄+d

)
, (detγ∗ = −1) , γ∗ =

(
a b

c d

)
∈ Γ∗, (2.209)
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where the above in Eq. (2.209) contains even number of CP transformation, while the below

in Eq. (2.209) contains odd number of CP transformation. Then, the automorphy factor with

weight k ∈ Z is also extended as

J∗
k (γ

∗, τ) ≡
{

(cτ + d)k, (detγ∗ = 1)

(cτ̄ + d)k, (detγ∗ = −1) , γ∗ =

(
a b

c d

)
∈ Γ∗. (2.210)

Furthermore, we can consider the metapletic double covering group of the extended modular

group Γ∗ = GL(2,Z), Γ̃∗ ≡ G̃L(2,Z) [67, 86], by simply replacing γ ∈ Γ with γ∗ ∈ Γ∗ and

setting the generator C̃P as

C̃P ≡ [CP, 1], (C̃P
−1

= [CP,−1]). (2.211)

In this case, the generators S̃, T̃ , and C̃P satisfy the following algebraic relations:

C̃P
2
= [I,−1] = Z̃2, C̃P

4
= [I, 1] = Z̃4 = Ĩ ,

(C̃P )S̃(C̃P )−1 = [S−1,−1] = S̃−1, (C̃P )T̃ (C̃P )−1 = [T−1, 1] = T̃−1,
(2.212)

and also Eq. (2.143). The automorphy factor with weight k/2 is similarly written as Eq. (2.148)

by replacing Jk/2(γ, τ) with J
∗
k/2(γ

∗, τ).

Now, let us see the generalized CP symmetry consistent with the modular symmetry in

magnetized T 2 compactification. We can rewrite the “CP transformation” for wave functions

on the magnetized T 2 in Eq. (2.207) as

C̃P : ψ
(−(j+α),α),M

T 2,n (z, τ)→ ψ
(j+α,α),−M
T 2,n (−z̄,−τ̄) = J̃∗

1/2(C̃P , τ)
M−1∑
j′=0

ρ
(α,α)

T 2 (C̃P )jj′ψ
(j′+α,α),M
T 2,n (z, τ),

J̃∗
1/2(C̃P , τ) = (−1)1/2 = e−πi/2, ρ

(α,α)

T 2 (C̃P )jj′ = eπi/2δj,j′ , (2.213)

where α = 0 for M ∈ 2Z or α = 1/2 for M ∈ 2Z+ 1. Note that we can check that

J̃∗
1/2(C̃P , τ) = −(−1)1/2 = −e−πi/2 = eπi/2, ρ

(α,α)

T 2 (C̃P
−1
)jj′ = ρ

(α,α)

T 2 (C̃P )−1
jj′ = e−πi/2δj,j′ .

(2.214)

By combining Eqs. (2.164)-(2.165) or Eqs. (2.172)-(2.173) , we can obtain the following relations

J̃∗
1/2((C̃P )

2, τ) = J̃∗
1/2(Z̃

2, τ) = −1, ρ
(α,α)

T 2 (C̃P )2jj′ = ρα,αT 2 (Z̃)
2
jj′ = −δj,j′ , (2.215)

J̃∗
1/2((C̃P )

4, τ) = J̃∗
1/2(Z̃

4, τ) = 1, ρ
(α,α)

T 2 (C̃P )4jj′ = ρ
(α,α)

T 2 (Z̃)4jj′ = δj,j′ , (2.216)

J̃∗
1/2((C̃P )S̃(C̃P )

−1, τ) = J̃∗
1/2(S̃

−1, τ), [ρ
(α,α)

T 2 (C̃P )ρ
(α,α)

T 2 (S̃)ρ
(α,α)

T 2 (C̃P )−1]jj′ = ρ
(α,α)

T 2 (S̃)−1
jk ,

(2.217)

J̃∗
1/2((C̃P )T̃ (C̃P )

−1, τ) = J̃∗
1/2(T̃

−1, τ), [ρ
(α,α)

T 2 (C̃P )ρ
(α,α)

T 2 (T̃ )ρ
(α,α)

T 2 (C̃P )−1]jj′ = ρ
(α,α)

T 2 (T̃ )−1
jk ,

(2.218)

in addition to Eqs. (2.166)-(2.171) or Eqs. (2.174)-(2.180). Therefore, we can find that the wave

functions, which behave as “modular forms” of weight 1/2 for Γ̃(N) with N = 2M (M ∈ 2Z)
or N = 8M (M ∈ 2Z+ 1), transform non-trivially under Γ̃∗

N ≡ Γ̃∗/Γ̃(N).
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Chapter 3

Magnetized torus orbifold models

Next, in this chapter, we discuss magnetized torus orbifold models. In the previous section, we

have seen that due to background magnetic fluxes, the original gauge symmetry is broken to the

smaller gauge subsymmetries, e.g. U(N)→
∏

A U(NA), and particularly we can obtain multi-

generational chiral bi-fundamental fields, which can correspond to three-generational quarks

and leptons. On the other hand, for unbroken U(NA) adjoint sector, there remains 4D N = 4

supersymmetry. (Even if we start from 6D space-time, i.e. M6 = R1,3 × T 2, there remains 4D

N = 2 supersymmetry.) It means there are massless adjoint scalar fields. However, at least in

the low energy scale, e.g. below a TeV scale, we have not observed their existence. Thus, in the

following, we consider magnetized torus orbifold compactification to project out those 4D gauge

adjoint scalar fields by orbifold projection. In addition, although three-generational chiral bi-

fundamental fields can be obtained by only one case that the magnetic flux which they feel is

just equal to 3, there are various cases to obtain them in the magnetized torus orbifold models.

In section 3.1, we review magnetized T 2/ZN compactification. Then, in section 3.2, we discuss

the modular symmetry in magnetized T 2/ZN compactification. We also discuss the modular

symmetry in magnetized (T 2
1 × T 2

2 )/(Z
(t)
2 × Z(p)

2 ) compactification. In particular, we can find

that the three-generation modes, in particular, transform as three-dimensional representations

of certain non-Abelian modular flavor symmetries.

3.1 Magnetized T 2/ZN compactification

In this section, we review magnetized T 2/ZN twisted orbifold compactification1 [46,47,49,50].

3.1.1 Construction of T 2/ZN orbifolds

First, let us construct T 2/ZN twisted orbifolds. A T 2/ZN twisted orbifold can be constructed

by further identifying a point of T 2, z, with the ZN twisted point, ρz (ρ = e2πi/N), i.e. ρz ∼ z,

1See also Ref. [78] for T 2/ZN twisted orbifold compactification without any magnetic fluxes.
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in addition to z+1 ∼ z and z+τ ∼ z. In particular, a lattice point z = m1+m2τ (∀m1,m2 ∈ Z)
must transform into another lattice point n1 + n2τ (∃n1, n2 ∈ Z) under the ZN transforma-

tion, i.e. ρ(m1 +m2τ) = n1 + n2τ . Here, since (m2,m1) and (n2, n1) are 2D integer vectors,

(n2, n1) can be obtained by a SL(2,Z) transformation of (m2,m1) as(
n2 n1

)
=
(
m2 m1

)(a b

c d

)
=
(
am2 + cm1 bm2 + dm1

)
, a, b, c, d ∈ Z, ad− bc = 1.

(3.1)

Thus, for ∀m1,m2 ∈ Z, the following relation should be satisfied;

ρ(m1 +m2τ) = (bm2 + dm1) + (am2 + cm1)τ, (3.2)

⇔ (ρ− cτ − d)m1 + (ρτ − aτ − b)m2 = 0,

⇔
{
ρ = cτ + d,

ρτ = aτ + b,

⇔

{
cτ 2 − (a− d)τ − b = 0, (← τ = aτ+b

cτ+d
),

ρ = cτ + d.
(3.3)

Here, we consider the fundamental region of τ : |Reτ | ≤ 1/2, Imτ ≥
√

1− (Reτ)2. When c = 0,

the solution is (
a b

c d

)
=

(
−1 0

0 −1

)
= S−2 ⇒ ρ = −1 (N = 2), ∀τ. (3.4)

When c ̸= 0, the solutions are

τ =
a− d
2c

+ i

√
4− (a+ d)2

2c
, ρ =

a+ d

2
+ i

√
4− (a+ d)2

2
, (3.5)

with

a+ d = 0,±1, |a− d| ≤ c ≤ −b, ad− bc = 1, (3.6)

that is, (
a b

c d

)
=

(
0 −1
1 0

)
= S−1 ⇒ τ = i, ρ = i (N = 4), (3.7)(

a b

c d

)
=

(
−1 −1
1 0

)
= (ST )−1 ⇒ τ = −1

2
+ i

√
3

2
, ρ = −1

2
+ i

√
3

2
(N = 3), (3.8)((

a b

c d

)
=

(
0 −1
1 −1

)
= (TS)−1 ⇒ τ =

1

2
+ i

√
3

2
, ρ = −1

2
+ i

√
3

2
(N = 3)

)
,(

a b

c d

)
=

(
1 −1
1 0

)
= (ST−1)−1 ⇒ τ =

1

2
+ i

√
3

2
, ρ =

1

2
+ i

√
3

2
(N = 6), (3.9)((

a b

c d

)
=

(
0 −1
1 1

)
= (T−1S)−1 ⇒ τ = −1

2
+ i

√
3

2
, ρ =

1

2
+ i

√
3

2
(N = 6)

)
.

43



Therefore, there are only four types of T 2/ZN twisted orbifolds with N = 2, 3, 4, 6. In detail,

T 2/Z2 twisted orbifold is allowed for any modulus τ , while the other T 2/ZN twisted orbifolds

are allowed for τ = ρ. Here, Eq. (3.2) can be reinterpreted as

ρ(m1 +m2τ) =(n1 + n2τ)

=
(
n2 n1

)(τ
1

)
=
(
m2 m1

)(a b

c d

)(
τ

1

)
=
(
m2 m1

)(aτ + b

cτ + d

)
=(cτ + d)

(
m2 m1

)(aτ+b
cτ+d

1

)
=(cτ + d)(m1 +m2τ), (3.10)

⇔ (m1 +m2τ)

cτ + d
=ρ−1(m1 +m2τ). (3.11)

Thus, moduli τ of T 2/ZN orbifolds with N = 2, 3, 4, 6 are invariant under [S2](−1), [ST ](−1),

S(−1), [ST−1](−1) transformations, respectively, and these transformations with the moduli in-

duce the ZN twists z → ρ(−1)z.

In the T 2/ZN orbifolds, furthermore, there are some fixed points zfpI = yfp1I + y
fp
2Iτ , satisfying

ρzfpI + u+ vτ = zfpI (∃u, v ∈ Z). (3.12)

Note that from the above analysis, the following relation is satisfied:

ρ(m1 +m2τ) + ((1− d)m1 − bm2) + (−cm1 + (1− a)m2) τ = m1 +m2τ. (3.13)

Then, if there exists ∃m1,m2, k, u, v ∈ Z satisfying
(1− d)m1 − bm2 = ku

−cm1 + (1− a)m2 = kv

0 ≤ m1,2

k
< 1

, (3.14)

zfpI = m1+m2τ
k

satisfies Eq. (3.12). Therefore, fixed points zfpI and (u, v) are given as

zfpI =


0, 1

2
, τ
2
, 1+τ

2
(N = 2)

0, 2+τ
3
, 1+2τ

3
(N = 3)

0, 1+τ
2

(N = 4)

0 (N = 6)

, (u, v) =


(0, 0), (1, 0), (0, 1), (1, 1) (N = 2)

(0, 0), (1, 0), (1, 1) (N = 3)

(0, 0), (1, 0) (N = 4)

(0, 0) (N = 6)

. (3.15)
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In addition, T 2/Z4 has one Z2 fixed point, and T 2/Z6 has one Z2 fixed point and one Z3 fixed

point. Here, since the deficient angle around a ZN fixed point becomes 2π− 2π
N

= 2πN−1
N

, there

is the localized curvature,

ξRI
N

=
N − 1

N
, (3.16)

at the ZN fixed point zfpI . The total curvatures of T 2/ZN orbifolds become

T 2/Z2 :
∑
I

ξRI
N

=
1

2
× 4 = 2, (3.17)

T 2/Z3 :
∑
I

ξRI
N

=
2

3
× 3 = 2, (3.18)

T 2/Z4 :
∑
I

ξRI
N

=
3

4
× 2 +

1

2
= 2, (3.19)

T 2/Z6 :
∑
I

ξRI
N

=
5

6
+

1

2
+

2

3
= 2, (3.20)

and they are the same as that of S2 written by the Euler number, χ(S2) = 2.

3.1.2 Wave functions on magnetized T 2/ZN
Now, let us see wave functions on the T 2/ZN twisted orbifolds. Because of identifications under

ZN twists, a field on the T 2/ZN , Φ(z), should also satisfies the following BC(s),

ΦT 2/ZN (ρz) = SΦU0,ρΦT 2/ZN (z)U
−1
0,ρ , (3.21)

ΦT 2/ZN (ρ
Nz) = SNΦ UN

0,ρΦT 2/ZN (z)U
−N
0,ρ = ΦT 2/ZN (z), (3.22)

in addition to BCs in Eqs. (2.22) and (2.24), where Uρ acts on the gauge space of Φ while SΦ
acts on a scalar Φ = ϕ, a vector Φ = A, and a spinor Φ = ψ, as follows, respectively. First, Sϕ
acts on a scalar ϕ as

Sϕ : ϕIJT 2/ZN (z)→ 1 · ϕIJT 2/ZN (z). (3.23)

Accordingly, U0,ρ should satisfy

UN
0,ρ = I, (3.24)

and then SΦ should also satisfy

SNΦ = I. (3.25)
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Second, from the result in Eq. (3.23) and the fact that dz and dz̄ are transformed under ZN
twist as dz → ρdz and dz̄ → ρ̄dz̄, respectively, SA acts on an 1-form vector (AT 2/ZN ,z, AT 2/ZN ,z̄)

T

as

SA :

(
AIJT 2/ZN ,z(z)

AIJT 2/ZN ,z̄(z)

)
→
(
ρ̄

ρ

)(
AIJT 2/ZN ,z(z)

AIJT 2/ZN ,z̄(z)

)
, (3.26)

where it satisfies Eq. (3.25). Third, Sψ should satisfy

ργz = SψγzS−1
ψ , ρ̄γ z̄ = Sψγ z̄S−1

ψ . (3.27)

In addition, it should also satisfy Eq. (3.25). Hence, Sψ acts on a spinor (ψT 2/ZN ,z, ψT 2/ZN ,−)
T

as

Sψ :

(
ψIJT 2/ZN ,+(z)

ψIJT 2/ZN ,−(z)

)
→ ρφ

IJ
N +1/2

(
ρ−1/2

ρ1/2

)(
ψIJT 2/ZN ,+(z)

ψIJT 2/ZN ,−(z)

)
, φIJN ∈ Z/NZ. (3.28)

Note that there remains ZN ⊂ U(1)s uncertainty2 and Eq. (3.28) implies ψIJ has the U(1)s
charge φIJN +1/2. Finally, we assume that U0,ρ does not further break U(Na)×U(Nb) symmetry.

Thus, U0,ρ, satisfying Eq. (3.24), forms as

U0,ρ =

(
ρm

aINa
ρm

bINb

)
, ma,mb ∈ Z/NZ. (3.29)

For the component fields, the ZN twisted BCs are as follows:
ϕaaT 2/ZN (ρz) = ϕaaT 2/ZN (z),

ϕbbT 2/ZN (ρz) = ϕbbT 2/ZN (z),

ϕabT 2/ZN (ρz) = ρmϕabT 2/ZN (z),

ϕbaT 2/ZN (ρz) = ρ−mϕaaT 2/ZN (z),

(3.30)


AaaT 2/ZN ,z(ρz) = ρ−1AaaT 2/ZN ,z(z), AaaT 2/ZN ,z̄(ρz) = ρAaaT 2/ZN ,z̄(z),

AbbT 2/ZN ,z(ρz) = ρ−1AbbT 2/ZN ,z(z), AbbT 2/ZN ,z̄(ρz) = ρAbbT 2/ZN ,z̄(z),

AabT 2/ZN ,z(ρz) = ρm−1AabT 2/ZN ,z(z), AabT 2/ZN ,z̄(ρz) = ρm+1AabT 2/ZN ,z̄(z),

AbaT 2/ZN ,z(ρz) = ρ−m−1AbaT 2/ZN ,z(z), AbaT 2/ZN ,z̄(ρz) = ρ−m+1AaaT 2/ZN ,z̄(z),

(3.31)


ψaaT 2/ZN ,+(ρz) = ψaaT 2/ZN ,+(z), ψaaT 2/ZN ,−(ρz) = ρψaaT 2/ZN ,−(z),

ψbbT 2/ZN ,+(ρz) = ψbbT 2/ZN ,+(z), ψbbT 2/ZN ,−(ρz) = ρψbbT 2/ZN ,−(z),

ψabT 2/ZN ,+(ρz) = ρmψabT 2/ZN ,+(z), ψabT 2/ZN ,−(ρz) = ρm+1ψabT 2/ZN ,−(z),

ψbaT 2/ZN ,+(ρz) = ρ−m−1ψbaT 2/ZN ,+(z), ψbaT 2/ZN ,−(ρz) = ρ−mψbaT 2/ZN ,−(z),

(3.32)

where m ≡ ma −mb ∈ Z/NZ and we adopted φaaN = φbbN = φabN = 0, φbaN = −1.

2It may depend on information on another X2 ×X3 compact space.
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Furthermore, U1(z) and Uτ (z) are constrained by the ZN identification as follows:{
U−1(−z) = U1(z), U−τ (−z) = Uτ (z), (N = 2)

Uτ (τz) = U1(z), Uτ2(τz) = Uτ (z), (N = 3, 4, 6)
, (3.33)

⇒


2αa,b1 ≡ 0 (mod 1), 2αa,bτ ≡ 0 (mod 1), (N = 2)

αa,b1 = αa,bτ ≡ αa,b, 3αa,b +Ma,b/2 ≡ 0 (mod 1), (N = 3)

αa,b1 = αa,bτ ≡ αa,b, 2αa,b ≡ 0 (mod 1), (N = 4)

αa,b1 = αa,bτ ≡ αa,b, αa,b +Ma,b/2 ≡ 0 (mod 1), (N = 6)

,

⇔ (αa,b1 , αa,bτ ) =



(0, 0), (0, 1/2), (1/2, 0), (1/2, 1/2) (N = 2){
(0, 0), (1/3, 1/3), (2/3, 2/3) (Ma,b ∈ 2Z)
(1/6, 1/6), (3/6, 3/6), (5/6, 5/6) (Ma,b ∈ 2Z+ 1)

(N = 3)

(0, 0), (1/2, 1/2) (N = 4){
(0, 0) (Ma,b ∈ 2Z)
(1/2, 1/2) (Ma,b ∈ 2Z+ 1)

(N = 6)

. (3.34)

Here, we note that Eq. (3.21) is the BC around a ZN fixed point zfp0 = 0. Then, let us see

the behavior of ZN twist around an arbitrary ZN fixed point zfpI . First, let us define a new

coordinate ZI such that Z = 0 at the fixed point zfpI , i.e.,

ZI ≡ z − zfpI . (3.35)

Second, we rewrite z as

z = (z − zfpI ) + zfpI = ZI + zfpI . (3.36)

In particular, the second term, zfpI , can be regarded as the WL phase ζ = zfpI (ζ1 = yfp1I , ζ2 = yfp2I)

from the point of view of the coordinate Z. Then, the WL phase can be converted into SS

phases by gauge transformation U−1

ζ=zfpI
(Z), i.e.,

ΦT 2/ZN (z) = ΦT 2/ZN (ZI + zfpI ) = UzfpI
(Z)Φ̃(Z)U−1

zfpI
(Z). (3.37)

Similarly, ρz can be rewritten as

ρz = ρZI + ρzfpI = ZI + zfpI − u− vτ, (3.38)

where we use Eq. (3.12). Here, the third and fourth terms, −u− vτ , are regarded as T 2 shifts

while the second term, zfpI , can be also regarded as the WL phase, i.e.,

ΦT 2/ZN (ρz)

=ΦT 2/ZN (ρZI + zfpI − u− vτ)
=V −1

u+vτ (ρZ)ΦT 2/ZN (ρZI + zfpI )Vu+vτ (ρZ)

=V −1
u+vτ (ρZ)UzfpI

(ρZ)Φ̃T 2/ZN (ρZI)U
−1

zfpI
(ρZ)Vu+vτ (ρZ), (3.39)(

V −1
u+vτ (ρZ) ≡ U−v

τ (ρZI + zfpI − u)U
−u
1 (ρZI + zfpI )

)
.
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Combining Eqs. (3.37) and (3.39), Eq. (3.21) can be rewritten by

Φ̃T 2/ZN (ρZI) = SΦUI,ρΦ̃T 2/ZN (ZI)UzfpI
(Z)U−1

I,ρ , (3.40)

with

UI,ρ =U
−1

zfpI
(ρZ)Uu

1 (ρZI + zfpI )U
v
τ (ρZI + zfpI − u)U0,ρUzfpI

(Z)

=U−1

zfpI
(ρZ)UρzfpI

(ρZ)Uu
1 (ρZI + zfpI )U

v
τ (ρZI + zfpI − u)U0,ρ

=

(
ρχ

a
(m)I INa

ρχ
b
(m)I INb

)
, (3.41)

where χ(m)I ≡ χa(m)I − χb(m)I are given as

χ(m)I = N

{
uα1 + vατ +

M

2
(uv + uyfp2I − vy

fp
1I)

}
+m (mod N), (3.42)

and SS phases of Φ̃T 2/ZN are modified from ΦT 2/ZN as

(β1, βτ ) ≡ (α1 +Myfp2I , ατ −Myfp1I) (mod 1). (3.43)

Here, χ(m)I are called winding numbers around the fixed point zfpI . We note that the above

results include zfpI = 0 case.

So far, we have seen BCs under ZN twist. On the other hand, equation of motions are not

changed under the ZN . Thus, n th excited modes of a field ΦIJ

T 2/ZmIJN

(z) (I, J = a, b), satisfying

the following BC

ΦIJ

T 2/ZmIJN ,n
(ρz) = ρm

IJ

ΦIJ

T 2/ZmIJN ,n
(z), (3.44)

(3.45)

in addition to BCs in Eqs. (2.23) and (2.25), can be expressed by the following linear combi-

nation of the n th excited modes of wave functions on the magnetized T 2, ΦIJ
T 2,n(z);

ΦIJ

T 2/ZmIJN ,n
(z) = N

T 2/ZmIJN ,n

N−1∑
k=0

(ρm
IJ

)−kΦIJ
T 2,n(ρ

kz), (3.46)

where N
T 2/ZmIJN ,n

denotes the normalization factor determined similarly from Eq. (2.46).

For IJ = aa, bb, the following condition is useful,

ψaa,bbT 2,+,n(ρ
kz) = ψaa,bb

T 2,+,ρkn
(z). (3.47)

In particular, since the massless mode (n = 0) on T 2 is constant (ψaa,bbT 2,+,0(ρ
kz) = ψaa,bbT 2,+,0(z)),

there is no massless mode on T 2/ZN (because of
∑

k(ρ
maa,bb)−k = 0) unless maa,bb = 0. In other
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words, only ϕaa,bbT 2/ZN and ψaa,bbT 2/ZN ,+ have massless modes. That is, the unbroken U(Na,b) sector

also becomes chiral.

For IJ = ab (ba), the following “modular transformation” for wave functions ψ
(j+α1,ατ ),M

T 2,n (z, τ)

is useful:

ψ
(j+α1,ατ ),M

T 2,n (e2πi/2z, τ) =ψ
(j+α1,ατ ),M

T 2,n (S̃2(z, τ))

=e2πiατψ
(M−(j+α1),{1−ατ}),M
T 2,n (z, τ), (3.48)

ψ
(j+α,α),M

T 2,n (e2πi/3z, e2πi/3) =ψ
(j+α,α),M

T 2,n (S̃T̃ (z, e2πi/3))

=
M−1∑
j′=0

e−πi/12√
M

e2πi
(j+α)(j′+α)

M eπi
(j′+α)2
M ψ

(j′+α,α),M
T 2,n (z, e2πi/3), (3.49)

ψ
(j+α,α),M

T 2,0 (e2πi/4z, e2πi/4) =ψ
(j+α,α),M

T 2,n (S̃(z, e2πi/4))

=
M−1∑
j′=0

1√
M
e2πi

(j+α)(j′+α)
M ψ

(j′+α,α),M
T 2,0 (z, e2πi/4), (3.50)

ψ
(j+α,α),M

T 2,n (e2πi/6z, e2πi/6) =ψ
(j+α,α),M

T 2,n (S̃T̃−1(z, e2πi/3))

=
M−1∑
j′=0

eπi/12√
M

e2πi
(j+α)(j′+α)

M e−πi
(j′+α)2
M ψ

(j′+α,α),M
T 2,n (z, e2πi/6). (3.51)

They show that eigenfunctions on the magnetized T 2/ZN orbifold with ZN charge mab, i.e.

ψ
(j+α1,ατ ),M

T 2/ZmabN ,n
(z, τ), can be obtained from appropriate unitary transformation of wave functions

on the magnetized T 2, ψ
(j+α1,ατ ),M

T 2,n (z, τ). Thus, the degenerate numbers of ψ
(j+α1,ατ ),M

T 2/ZmabN ,n
(z, τ)

are reduced from M , which is the degenerate number of ψ
(j+α1,ατ ),M

T 2,n (z, τ), and the sum of the

degenerate numbers of ψ
(j+α1,ατ ),M

T 2/ZmabN ,n
(z, τ) for all ZN charges must be M . In particular, Ref. [50]

shows that the chiral zero mode numbers can be written by

nab+ − nab− = nab+ =
M

N
−
V(m)

N
+ 1, (3.52)

where V(m) denotes the total winding number: V(m) ≡
∑

I χ(m)I . In the next chapter, we show

that this zero mode counting formula can be also regarded as the AS index theorem. Note that

since only ZN twisted BC is further imposed while the equation of motion does not change,

zero modes on the magnetized T 2/ZN with ZN charge m, in particular, can be written as

ψ
(j+α1,ατ ),M

T 2/ZmN ,0
(z, τ) = e−

πM
2Imτ

|z|2h
(j+α1,ατ ),M

T 2/ZmN ,0
(z),

h
(j+α1,ατ ),M

T 2/ZmN ,0
(z) =

∑
j′ NT 2/ZmN ,0,j′

∑N−1
k=0 ρ

−kmh
(j′+α1,ατ ),M

T 2,0 (ρkz),
(3.53)

where h
(j+α1,ατ ),M

T 2/ZmN ,0
(z) denote the holomorphic functions of z and the normalization factor

NT 2/ZmN ,0,j is determined by the normalization condition,∫
T 2

dzdz̄
√
|det(2h)|ψ(j+α1,ατ ),M

T 2/ZmN ,0
(z, τ)ψ

(k+α1,ατ ),M

T 2/Zm′
N ,0

(z, τ) = A(2Imτ)−1/2δj,kδm,m′ , (3.54)
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since we use wave functions on the magnetized T 2.

Similarly, we can calculate three-point couplings as well as higher-order couplings on the

magnetized T 2/ZN by appropriate unitary transformation for each wave function. We have a

comment that the coupling coefficient must be ZN invariant.

Furthermore, in the orbifold compactifications, right-handed Majorana neutrino mass terms

can also be generated by D-brane instanton effects. Here, a D-brane instanton, which is localized

on 4D space-time but wrapped on the compact space, appears as a non-perturbative effect.

Since the D-brane instanton spreads on the compact space, additional fermionic zero modes

appear between the D-brane instanton and a U(N) gauge D-brane. Hereafter, we call them

D-brane instanton zero modes. First, let us consider that there are two gauge D-branes with

magnetic fluxes Ma and M b (Ma > M b) and then the right-handed neutrino zero modes νI(z),

which feel the magnetic fluxM =Ma−M b, appear between their gauge D-branes. In addition,

if D-brane instanton with magnetic flux Minst (M
a > Minst > M b) appears, D-brane instanton

zero modes βj(z) (γk(z)), which feel the magnetic flux Mβ = Ma −Minst (Mγ = Minst −Mb),

also appear between the D-brane instanton and the gauge D-brane. Then, the three-point

couplings ŷIjk among βj(z), γk(z), and ν
I(z) are generated.3 Note that the D-brane instanton

zero modes are localized on 4D space-time at x. Then, after integrating out of the D-brane

instanton zero modes, additional couplings of νI(x) at x are generated by D-brane instanton

effects. In particular, the Majorana masses can be generated [56,57,99–101] by

∆L4D =M IJνI(x)νJ(x)

= e−Scl(Tα,Minst)

∫
d2βd2γe−ŷ

I
jkβ

j(x)γk(x)νI(x)

= e−Scl(Tα,Minst)(εijεkℓŷIikŷ
J
jℓ)νI(x)νJ(x) (3.55)

= e−Scl(Tα,Minst)mIJνI(x)νJ(x),

where the Majorana masses can be generated only if both the number of D-brane instanton

zero modes, βj(x) and γk(x) are just two (i, j = 1, 2) since they are Grassmannian satisfying∫
dψψ = 1 (ψ = βj, γk). (3.56)

On the other hand, Scl(Tα,Minst) denotes the classical action of the D-brane instanton written

by Dirac-Born-Infeld (DBI) action, which depends on the moduli Tα, corresponding to the

Kähler moduli and the dilaton as well as the axion in type-IIB string theory, and the magnetic

flux Minst in the compact space. Note that since D-brane instanton is independent of the

gauge D-branes, we can consider an intermediate scale of Majorana neutrino masses such as

O(1014)GeV. Then, by combining their Yukawa couplings, we can also realize tiny neutrino

masses.

3We assume that the contributions on the other compact spaces, X2 and X3, are just constants.
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3.2 Modular symmetry in magnetized T 2/ZN compacti-

fication

In this section, let us discuss the modular symmetry on the magnetized T 2/ZN twisted orbifolds.

The following analysis is based on Refs. [67,68].

3.2.1 Modular symmetry on magnetized T 2/ZN orbifold

First of all, the moduli τ of T 2/ZN with N = 3, 4, 6 are fixed by τ = τN = e2πi/N . Thus, they

have only following modular subsymmetries,

GN ≡ {γ ∈ Γ|γτN = τN},

⇔


G3 = Z3 = ⟨ST |(ST )3 = I⟩
G4 = Z4 = ⟨S|(S)4 = I⟩
G6 = Z6 = ⟨ST−1|(ST−1)6 = I⟩

, (3.57)

and their generator γ induces ZN twist, i.e. γ : z → ρz. Since wave functions on the magnetized

T 2/ZN are ZN -eigenfunctions, they also have GN modular subsymmetries.

On the other hand, T 2/Z2 can be constructed for any modulus τ . Thus, there remains

the full modular symmetry. Now, let us see “modular symmetry” of wave functions on the

magnetized T 2/Z2 twisted orbifold. The difference between wave functions on magnetized T 2

and T 2/Z2 is just Z2 BC for wave functions on T 2/Z2, and it can be satisfied by the following

unitary transformation for wave functions on T 2;

ψ
(j+α1,ατ ),M

T 2/ZmN ,n
(z, τ) =NT 2/Zm2

(
ψ

(j+α1,ατ ),M

T 2,n (z, τ) + (−1)mψ(j+α1,ατ ),M

T 2,0 (−z, τ)
)

=NT 2/Zm2

(
ψ

(j+α1,ατ ),M

T 2,n (z, τ) + (−1)m+2ατψ
(M−(j+α1),{1−ατ}),M
T 2,n (z, τ)

)
. (3.58)

Then, when α1 = ατ ≡ α = 0, 1/2 forM =even, odd, respectively, the representations of S̃ and

T̃ are modified as

ρ
(α,α)

T 2/Zm2
(S̃)j,j′ =

 NT 2/Z0
2,n,j
NT 2/Z0

2,n,j
′
−4eπi/4√

M
cos
(
2π (j+α)(j′+α)

M

)
(m = 0)

NT 2/Z1
2,n,j
NT 2/Z1

2,n,j
′
−4ieπi/4√

M
sin
(
2π (j+α)(j′+α)

M

)
(m = 1)

, (3.59)

ρ
(α,α)

T 2/Zm2
(T̃ )j,j′ =

{
eπi

(j+α)2

M δj,j′ (m = 0)

eπi
(j+α)2

M δj,j′ (m = 1)
, (3.60)

and they satisfy

ρ
(α,α)

T 2/Zm2
(Z̃)jj′ = ρ

(α,α)

T 2/Zm2
(S̃)2jj′ = (−1)meπi/2δj,j′ , (3.61)

in addition to Eqs. (2.167)-(2.171) and Eqs. (2.175)-(2.180), in stead of Eqs. (2.166) and (2.174).

It shows that both Z2-even and odd mode wave functions are closed under the “modular

51



transformation” each other, that is, the representation on magnetized T 2 can be reducible into

smaller representations on the magnetized T 2/Z2 orbifold. In addition, both of them with

M =even and odd also behave as “modular forms” of weight 1/2 for Γ̃(2M) and Γ̃(8M), and

they transform non-trivially under Γ̃2M and Γ̃8M , respectively. For example, let us consider the

case with M = 4 and (α1, ατ ) = (0, 0). For wave functions on the magnetized T 2,
ψ

(0,0),4

T 2 (z, τ)

ψ
(1,0),4

T 2 (z, τ)

ψ
(2,0),4

T 2 (z, τ)

ψ
(3,0),4

T 2 (z, τ)

 , (3.62)

representations of S̃ and T̃ are given by

ρ
(0,0)

T 2 (S̃) =
−eπi/4

2


1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

 , ρ
(0,0)

T 2 (T̃ ) =


1 0 0 0

0 eπi/4 0 0

0 0 −1 0

0 0 0 eπi/4

 . (3.63)

On the other hand, for wave functions on magnetized T 2/Z2 with m = 0,
ψ

(0,0),4

T 2/Z0
2
(z, τ)

ψ
(1,0),4

T 2/Z0
2
(z, τ)

ψ
(2,0),4

T 2/Z0
2
(z, τ)

 =


ψ

(0,0),4

T 2 (z, τ)
1√
2

(
ψ

(1,0),4

T 2 (z, τ) + ψ
(3,0),4

T 2 (z, τ)
)

ψ
(2,0),4

T 2 (z, τ)

 , (3.64)

and ones with m = 1,

ψ
(1,0),4

T 2/Z1
2
(z, τ) =

1√
2

(
ψ

(1,0),4

T 2 (z, τ)− ψ(3,0),4

T 2 (z, τ)
)
, (3.65)

representations of S̃ and T̃ are given by

ρ
(0,0)

T 2/Z0
2
(S̃) =

−eiπ/4

2

 1
√
2 1√

2 0 −
√
2

1 −
√
2 1

 , ρ
(0,0)

T 2/Z0
2
(T̃ ) =

1 0 0

0 eπi/4 0

0 0 −1

 , (3.66)

and

ρ
(0,0)

T 2/Z1
2
(S̃) = e−πi/4, ρ

(0,0)

T 2/Z1
2
(T̃ ) = eπi/4, (3.67)

respectively. It means that the 4D-representation on magnetized T 2 in Eq. (3.63) are de-

composed into the 3D-representation on the magnetized T 2/Z2 with m = 0 in Eq. (3.66) and

1D-representation on the magnetized T 2/Z2 withm = 1 in Eq. (3.67). The 1D-representation in

Eq. (3.67) becomes the representation of Z8 group. On the other hand, the 3D-representation in
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Eq. (3.66) becomes non-trivial. In the next subsection, in particular, let us see 3D-representations

on the magnetized T 2/Z2 twisted orbifold compatible with the modular symmetry.

Before the end of this subsection, we comment on modular symmetry for Majorana neutrino

mass terms generated by D-brane instanton effects which are non-perturbative effects. Since

we can find the modular transformation for 4D fields and three-point couplings, we can check

the modular symmetry for Majorana mass terms in Eq. (3.55). However, we can find that they

are not modular invariant by the modular transformation for measures of D-brane instanton

zero modes:

γ̃ : d2βd2γ → J2(γ̃, τ)det[ρ
(αinst,αinst)

T 2/Zm2
(γ̃)]d2βd2γ, (3.68)

which can be obtained from Eq. (3.56) and the modular transformation for 4D D-barane in-

stanton zero modes. In other words, this modular symmetry anomaly4 comes from integration

of D-brane instanton zero modes appeared from D-brane instanton which is a non-perturbative

effects. Especially, if det[ρ
(αinst,αinst)

T 2/Zm2
(γ̃1)] ̸= 1 for the generator γ̃1 ∈ ZN , the ZN subsymmetry

of the modular flavor symmetry is broken by integration of D-brane instanton zero modes ap-

peared from D-brane instanton which is a non-perturbative effects. Thus, in order to clarify

which part of the modular flavor symmetry is broken, it is important to find which elements of

the modular flavor group such that the determinants of the representation of them are not equal

to 1. Note that the general analysis of the non-Abelian discrete symmetry anomaly has been

discussed in Ref. [102]. (See also Appendix C.) In particular, we can obtain the determinants

of the representation of T̃ and S̃ transformations from Eq. (3.61) and Eqs. (2.167)-(2.171) as

well as Eqs. (2.175)-(2.180);

detρ
(α,α)

T 2/Zm2
(T̃ ) =



e
πi
M

∑M
2
j=0 j

2

= e
πi
24

(M+1)(M+2) (α,m) = (0, 0)

e
πi
M

∑M
2 −1

j=1 j2 = e
πi
24

(M−1)(M−2) (α,m) = (0, 1)

e
πi
M

∑M−1
2 −1

j=0 (j2+j+ 1
4
) = e

πi
24

(M−1)(M−2) (α,m) = (1
2
, 0)

e
πi
M

∑M−1
2

j=0 (j2+j+ 1
4
) = e

πi
24

(M+1)(M+2) (α,m) = (1
2
, 1)

,

detρ
(α,α)

T 2/Zm2
(S̃) = detρ

(α,α)

T 2/Zm2
(T̃ )−3detρ

(α,α)

T 2/Zm2
(S̃)−2 =


e−

πi
8
(M+2)(M+3) (α,m) = (0, 0)

e−
πi
8
(M−2)(M−3) (α,m) = (0, 1)

e−
πi
8
M(M−1) (α,m) = (1

2
, 0)

e−
πi
8
M(M+1) (α,m) = (1

2
, 1)

.

(3.69)

Then, we can find that which combinations of S̃ and T̃ are anomaly-free or anomalous [103].

4If the other moduli Tα in the classical action of the D-brane instanton Scl(Tα,Minst
) also transform appropri-

ately under the modular transformation of τ , (which may be supported by the 4D Green-Schwarz mechanism,)

the modular symmetry anomaly can be canceled.
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3.2.2 Modular flavor symmetry of three-generation modes on mag-

netized T 2/Z2 twisted orbifold

In this subsection, let us see the detailed structure of modular flavor symmetry of three-

generational chiral zero modes on the magnetized T 2/Z2 orbifold. First of all, as shown in

Tables 3.1 and 3.2, there are four three-generation modes on the magnetized T 2/Z2 orbifold con-

sistent with the “modular symmetry”: (M ;α1, ατ ;m) = (4; 0, 0; 0), (8; 0, 0; 1), (5; 1/2, 1/2; 1),

and (7; 1/2, 1/2; 0), respectively.

M 2 4 6 8

Z2-even: N0(M) M
2
+ 1 2 3 4 5

Z2-odd: N1(M) M
2
− 1 0 1 2 3

order h of T̃ (T̃ h = 1) 2M 4 8 12 16

Table 3.1: The number of the Z2-even (m = 0) modes, N0(M), and the Z2-odd (m = 1) modes,

N1(M), on the T 2/Z2 twisted orbifold with M =even and (α1, α2) = (0, 0), and the order of T̃ .

The three generations are boxed.
M 1 3 5 7

Z2-even: N0(M) M−1
2

0 1 2 3

Z2-odd: N1(M) M+1
2

1 2 3 4

order h of T̃ (T̃ h = 1) 8M 8 24 40 56

Table 3.2: The number of the Z2-even (m = 0) modes, N0(M), and the Z2-odd (m = 1) modes,

N1(M), on the T 2/Z2 twisted orbifold with M =odd and (α1, α2) = (1/2, 1/2), and the order

of T̃ . The three generations are boxed.

Here, we notice that Ref. [29] shows three-dimensional representations can be obtained

from specific finite modular groups ΓN (N = 3, 4, 5, 7, 8, 16): Γ3 ≃ PSL(2,Z3) ≃ A4, Γ4 ≃ S4,

Γ5 ≃ PSL(2,Z5) ≃ A5, Γ7 ≃ PSL(2,Z7), Γ8 ⊃ ∆(96), and Γ16 ⊃ ∆(384). In the following,

we can find that the above four three-generation modes are representations of the covering or

central extended groups of corresponding finite modular groups ΓN .

• M =even and (α1, ατ) = (0, 0) case

Here, let us consider M =even and (α1, ατ ) = (0, 0) case. In this case, there are only two

three-generation modes: (M ;α1, ατ ;m) = (4; 0, 0; 0), (8; 0, 0; 1). From now, we show that the

three-generation modes with M = 4, 8 are representations of the quadruple covering group of

∆(6M2)(⊂ Γ2M), ∆̃(6M2)(⊂ Γ̃2M).

First, as in appendix A.2, if the representations of S̃ and T̃ transformation further satisfy

(S̃−1T̃−1S̃T̃ )3 = 1, (3.70)
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in addition to the algebraic relations of Γ̃2M (M ∈ 4Z), the following generators,

a = S̃T̃ 2S̃5T̃ 4, a′ = S̃T̃ 2S̃−1T̃−2, b = T̃
M
2
+3S̃

3
2
M+3T̃M , c = S̃T̃M−2S̃T̃

3
2
M−1, (3.71)

satisfy

aM = a′M = b3 = c8 = 1, (3.72)

aa′ = a′a, cbc−1 = b−1, bab−1 = a−1a′−1, ba′b−1 = a, cac−1 = a′−1, ca′c = a−1,

which means that they become generators of ∆̃(6M2) ≃ (ZM ×ZM)⋊Z3⋊Z8 ≃ ∆(3M2)⋊Z8,

where a(
′), b, c denote ones of Z(′)

M , Z3, Z8, respectively. Note that if the representations of S̃ and

T̃ transformation satisfy Eq. (3.70) and the algebraic relations of Γ2M (Γ′
2M) (M ∈ 4Z) instead of

Γ̃2M , the generators in Eq. (3.71) satisfy the relations in Eq. (3.72) replacing c8 = 1 with c2 = 1

(c4 = 1), that is, they become generators of ∆(6M2) ≃ (ZM × ZM)⋊Z3 ⋊Z2 ≃ ∆(3M2)⋊Z2

(∆′(6M2) ≃ (ZM×ZM)⋊Z3⋊Z4 ≃ ∆(3M2)⋊Z4). Thus, ∆̃(6M2)(⊂ Γ̃2M) (∆′(6M2)(⊂ Γ′
2M))

become the quadruple (double) covering group of ∆(6M2)(⊂ Γ2M).

The representations of S̃ and T̃ transformation for the three-generation modes, (M ;α1, ατ ;m)

= (4; 0, 0; 0) and (8; 0, 0; 1) are given by

ρ
(0,0)

T 2/Z0
2
(S̃) =

−eπi/4

2

 1
√
2 1√

2 0 −
√
2

1 −
√
2 1

 , ρ
(0,0)

T 2/Z0
2
(T̃ ) =

1

eπi/4

−1

 , (3.73)

and

ρ
(0,0)

T 2/Z1
2
(S̃) =

−ieπi/4

2

 1
√
2 1√

2 0 −
√
2

1 −
√
2 1

 , ρ
(0,0)

T 2/Z1
2
(T̃ ) = eπi/8

1

e3πi/8

−1

 , (3.74)

respectively. Both of the above S̃ and T̃ matrices are the same forms as

ρ(S̃) =
eiθ1

2

 1
√
2 1√

2 0 −
√
2

1 −
√
2 1

 , ρ(T̃ ) = eiθ2

1

eiθ3

−1

 , ∀θ1,2,3 ∈ R, (3.75)

and we can find that they satisfy Eq. (3.70). Thus, the representations of the three-generation

modes (M ;α1, ατ ;m) = (4; 0, 0; 0), (8; 0, 0; 1) in Eqs. (3.73) and (3.74) become the three-

dimensional representations of ∆̃(6M2) (∆̃(96) and ∆̃(384)).5 In other words, we can find that

the three-generation modes with (M ;α1, ατ ;m) = (4; 0, 0; 0), (8; 0, 0; 1) are transformed under

the modular transformation as three-dimensional representations of finite modular ∆̃(6M2)

(∆̃(96) and ∆̃(384)) groups with weight 1/2.

5Eq. (3.73) also satisfies S̃5T̃ 6S̃T̃ 4S̃T̃ 2S̃T̃ 4 = I [87].
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We comment on the modular flavor symmetry anomaly. Since we can find that the deter-

minants of generators are

det(a) = det(a′) = det(b) = 1, det(c) = det(S)2det(T )
M
2
−3 = eπi/4, det(c)8 = 1, (3.76)

from Eq. (3.69), only Z8 symmetry, generated by c, can be anomalous while the normal sub-

groups ∆(3M2) (∆(48) and ∆(192)) automatically remain anomaly-free. It is consistent with

the general result of non-Abelian discrete symmetry anomaly [102].

• M =odd and (α1, ατ) = (1/2, 1/2) case

Here, let us considerM =odd and (α1, ατ ) = (1/2, 1/2) case. In this case, there are only two

three-generation modes: (M ;α1, ατ ;m) = (5; 1/2, 1/2; 1), (7; 1/2, 1/2; 0). From now, we show

that the three-generation modes with M = 5, 7 are representations of the Z8 central extension

group of ΓM ≃ PSL(2,ZM), PSL(2,ZM)× Z8.

First, let us see modular flavor symmetry of the three-generation modes with (M ;α1, ατ ;m) =

(5; 1/2, 1/2; 1). The representation of S̃ and T̃ is given by

ρ
( 1
2
, 1
2
)

T 2/Z1
2
(S̃) =

−ieπi/4√
5

2 sin
(
π
10

)
2 sin

(
3π
10

) √
2

2 sin
(
3π
10

)
2 sin

(
π
10

)
−
√
2√

2 −
√
2 1

 , ρ
( 1
2
, 1
2
)

T 2/Z0
2
(T̃ ) = eπi/20

1

e2πi/5

e6πi/5

 .

(3.77)

When we define the following generators,

a = S̃T̃ 25, b = S̃T̃ , c = T̃ 5, (3.78)

they satisfy

a2 = b3 = (ab)5 = c8 = 1, ac = ca, bc = cb, (3.79)

which mean they are the generators of A5 × Z8. Thus, we can find that the three-generational

modes with (M ;α1, ατ ;m) = (5; 1/2, 1/2; 1) are transformed as the three-dimensional represen-

tation of finite modular A5 × Z8 ≃ PSL(2,Z5)× Z8 group with weight 1/2.

Next, let us see modular flavor symmetry of the three-generation modes with (M ;α1, ατ ;m) =

(7; 1/2, 1/2; 0). The representation of S̃ and T̃ is given by

ρ
( 1
2
, 1
2
)

T 2/Z0
2
(S̃) =

−2eπi/4√
7

cos
(
π
14

)
cos
(
3π
14

)
cos
(
5π
14

)
cos
(
3π
14

)
cos
(
9π
14

)
− cos

(
π
14

)
cos
(
5π
14

)
− cos

(
π
14

)
cos
(
3π
14

)
 , ρ

( 1
2
, 1
2
)

T 2/Z0
2
(T̃ ) = eπi/28

1

e2πi/7

e6πi/7

 .

(3.80)

Note that they also satisfy

(S̃−1T̃−1S̃T̃ )4 = 1. (3.81)
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When we define the following generators,

a = S̃T̃ 49, b = S̃T̃ , c = T̃ 7, (3.82)

they satisfy

a2 = b3 = (ab)7 = (a−1b−1ab)4 = c8 = 1, ac = ca, bc = cb, (3.83)

which mean they are the generators of PSL(2,Z7) × Z8. Thus, we can find that the three-

generational modes with (M ;α1, ατ ;m) = (7; 1/2, 1/2; 0) are transformed as the three-dimensional

representation of finite modular PSL(2,Z7)× Z8 group with weight 1/2.

We comment on the modular flavor symmetry anomaly. Since we can find that the deter-

minants of generators are

det(a) = det(b) = 1, det(c) = det(T )M = e3πi/4, det(c)8 = 1, (3.84)

from Eq. (3.69), only Z8 symmetry, generated by c, can be anomalous while the simple groups

PSL(2,ZM) (PSL(2,Z5) ≃ A5 and PSL(2,Z7)) automatically remain anomaly-free. It is

consistent with the general result of non-Abelian discrete symmetry anomaly [102].

3.2.3 Modular flavor symmetry of three-generation modes on mag-

netized (T 2
1 × T 2

2 )/(Z
(t)
2 × Z(p)

2 ) orbifold

In this subsection, similarly let us see the modular flavor symmetry of three-generational chiral

zero modes on the magnetized (T 2 × T 2)/(Z(t)
2 × Z(p)

2 ) orbifold [89], where Z(t)
2 denotes the

Z2 twist: (z1, z2) → (−z1,−z2), while Z(p)
2 denotes the Z2 permutation: (z1, z2) ↔ (z2, z1).

Note that Z(p)
2 identification requires that A1 = A2 ≡ A, τ1 = τ2 ≡ τ , M1 = M2 ≡ M ,

α
(1)
1,τ = α

(2)
1,τ ≡ α1,τ , and m1 = m2 ≡ m. In addition, since we consider the case that the wave

functions have modular flavor symmetries, it requires that α1 = ατ ≡ α and α = 0, 1/2 for

M = even, odd, respectively. Hence, we consider the following wave functions,

Ψ
(j1+α,j2+α),M
(t)m(p)n,0 (z1, z2, τ) ≡ N (j1,j2)

(t,p)

(
Ψ

(j1+α,j2+α),M

(T 2
1×T 2

2 )/Z
(t)m
2 ,0

(z1, z2, τ) + (−1)nΨ(j1+α,j2+α),M

(T 2
1×T 2

2 )/Z
(t)m
2 ,0

(z2, z1, τ)

)
,

(3.85)

with

Ψ
(j1+α,j2+α),M

(T 2
1×T 2

2 )/Z
(t)m
2 ,0

(z1, z2, τ) ≡ ψ
(j1+α,α),M

T 2
1 /Z

(t)
2 ,0

(z1, τ)ψ
(j2+α,α),M

T 2
2 /Z

(t)
2 ,0

(z2, τ), (3.86)

where we set j1 ≥ j2 and N (j1,j2)
(t,p) = 1/2 for j1 = j2, otherwise N (j1,j2)

(t,p) = 1/
√
2. Indeed, they

satisfy

Ψ
(j1+α,j2+α),M
t(m)(p)n,0 (−z1,−z2, τ) = (−1)mΨ(j1+α,j2+α),M

t(m)(p)n,0 (z1, z2, τ),

Ψ
(j1+α,j2+α),M
t(m)(p)n,0 (z2, z1, τ) = (−1)nΨ(j1+α,j2+α),M

t(m)(p)n,0 (z1, z2, τ).
(3.87)
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Now, we discuss the “modular symmetry” for the wave functions in Eq. (3.85). First, they

have the modular weight 1. On the other hand, the unitary representation,

ρ
(α,α)
(t)m(p)n(γ)(j1j2)(j′1j′2) ≡ 2N (j1,j2)

(t,p) N
(j′1,j

′
2)

(t,p)

(
ρ
(α,α)
(t)m (γ)(j1j2)(j′1j′2) + (−1)nρ(α,α)(t)m (γ)(j1j2)(j′2j′1)

)
, (3.88)

with

ρ
(α,α)
(t)m (γ)(j1j2)(j′1j′2) ≡ ρ

(α,α)

T 2/Zm2
(γ̃)j1,j′1ρ

(α,α)

T 2/Zm2
(γ̃)j2,j′2 , (3.89)

satisfies

ρ
(α,α)
(t)m(p)n(Z) = ρ

(α,α)
(t)m(p)n(S)

2 = −δ(j1j2),(j′1j′2), (3.90)

ρ
(α,α)
(t)m(p)n(Z)

2 = ρ
(α,α)
(t)m(p)n(S)

4 = [ρ
(α,α)
(t)m(p)n(S)ρ

(α,α)
(t)m(p)n(T )]

3 = δ(j1j2),(j′1j′2), (3.91)

[ρ
(α,α)
(t)m(p)n(Z)ρ

(α,α)
(t)m(p)n(T )] = [ρ

(α,α)
(t)m(p)n(T )ρ

(α,α)
(t)m(p)n(Z)], (3.92)

and

ρ
(α,α)
(t)m(p)n(T )

N=2M = δ(j1j2),(j′1j′2), (M ∈ 2Z)
ρ
(α,α)
(t)m(p)n(T )

M = eπi/2δ(j1j2),(j′1j′2), (M ∈ 2Z+ 1)

⇒ ρ
(α,α)
(t)m(p)n(T )

N=4M = δ(j1j2),(j′1j′2).

(3.93)

Thus, wave functions on magnetized (T 2
1 ×T 2

2 )/(Z
(t)
2 ×Z(p)

2 ) orbifold behave as “modular forms”

of weight 1 for Γ(N) with N = 2M for M ∈ 2Z, N = 4M for M ∈ 2Z+ 1, and they transform

non-trivially under Γ′
N .

In particular, in the following, let us see the modular flavor symmetry of three-generational

chiral zero modes. First of all, as shown in Tables 3.3 and 3.4, there are eight three-generation

modes on the magnetized (T 2
1 × T 2

2 )/(Z
(t)
2 × Z(p)

2 ) orbifold consistent with the “modular sym-

metry”: (M,α,m, n) = (2, 0, 0, 0), (4, 0, 0, 1), (6, 0, 1, 0), (8, 0, 1, 1), (3, 1/2, 1, 0), (5, 1/2, 1, 1),

(5, 1/2, 0, 0), and (7, 1/2, 0, 1), respectively.
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M 2 4 6 8

(even, even): N(0,0)(M) (M + 2)(M + 4)/8 3 6 10 15

(even, odd): N(0,1)(M) M(M + 2)/8 1 3 6 10

(odd, even): N(1,0)(M) M(M − 2)/8 0 1 3 6

(odd, odd): N(1,1)(M) (M − 2)(M − 4)/8 0 0 1 3

order h of T̃ (T̃ h = 1) 2M 4 8 12 16

Table 3.3: The number of (Z(t)
2 twist, Z(p)

2 permutation)-eigenmodes, N(m,n)(M), on the (T 2
1 ×

T 2
2 )/(Z

(t)
2 × Z(p)

2 ) orbifold with M =even and (α1, α2) = (0, 0), and the order of T̃ . The three

generations are boxed.
M 1 3 5 7

(even, even): N(0,0)(M) (M − 1)(M + 1)/8 0 1 3 6

(even, odd): N(0,1)(M) (M − 1)(M − 3)/8 0 0 1 3

(odd, even): N(1,0)(M) (M + 1)(M + 3)/8 1 3 6 10

(odd, odd): N(1,1)(M) (M + 1)(M − 1)/8 0 1 3 6

order h of T̃ (T̃ h = 1) 4M 4 12 20 28

Table 3.4: The number of (Z(t)
2 twist, Z(p)

2 permutation)-eigenmodes, N(m,n)(M), on the (T 2
1 ×

T 2
2 )/(Z

(t)
2 × Z(p)

2 ) orbifold with M =odd and (α1, α2) = (1/2, 1/2), and the order of T̃ . The

three generations are boxed.

Similarly, in the following, we can find that those three-generation modes are representations

of the covering or central extended groups of corresponding finite modular groups ΓN (N =

3, 4, 5, 7, 8, 16).

• M =even and α = 0 case

Here, let us consider M =even and α = 0 case. In this case, there are only four three-

generation modes: (M,α,m, n) = (2, 0, 0, 0), (4, 0, 0, 1), (6, 0, 1, 0) (8, 0, 1, 1). From now, we

show that the three-generation modes with M = 2, 4, 6, 8 are representations of the double

covering group of ∆(6M2)(⊂ Γ2M), ∆′(6M2)(⊂ Γ′
2M).

First, the representations of S and T transformation for the three-generation modes, (M,α,m, n)
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= (2, 0, 0, 0), (4, 0, 0, 1), (6, 0, 1, 0) and (8, 0, 1, 1) are given by

ρ
(0,0)
(t)0(p)0(S) =

i

2

 1
√
2 1√

2 0 −
√
2

1 −
√
2 1

 , ρ
(0,0)
(t)0(p)0(T ) =

1

i

−1

 , (3.94)

ρ
(0,0)
(t)0(p)1(S) = −

i

2

 1
√
2 1√

2 0 −
√
2

1 −
√
2 1

 , ρ
(0,0)
(t)0(p)1(T ) = eπi/4

1

e3πi/4

−1

 , (3.95)

ρ
(0,0)
(t)1(p)0(S) = −

i

2

 1
√
2 1√

2 0 −
√
2

1 −
√
2 1

 , ρ
(0,0)
(t)1(p)0(T ) = eπi/3

1

i

−1

 , (3.96)

ρ
(0,0)
(t)1(p)1(S) =

i

2

 1
√
2 1√

2 0 −
√
2

1 −
√
2 1

 , ρ
(0,0)
(t)1(p)1(T ) = e5πi/8

1

e5πi/8

−1

 , (3.97)

respectively. They satisfy the algebraic relations of Γ′
2M in Eqs. (3.90)-(3.93). In addition, since

they are the same forms as ones in Eq. (3.75), they satisfy Eq. (3.70). Then, as mentioned in

previous subsection, we can prove that, in appendix A.2, the generators

a = ST 2ST 4, a′ = ST 2S−1T−2, b = T
M
2
+3S

3
2
M+3TM , c = STM−2ST

3
2
M−1, (3.98)

with M = 4s (s ∈ Z), and similarly the generators

a = ST 2ST 4, a′ = ST 2S−1T−2, b = T
M
2 S

3
2
MTM , c = STMST

3
2
M , (3.99)

with M = 2(2s− 1) (s ∈ Z), satisfy

aM = a′M = b3 = c4 = 1, (3.100)

aa′ = a′a, cbc−1 = b−1, bab−1 = a−1a′−1, ba′b−1 = a, cac−1 = a′−1, ca′c−1 = a−1,

which means that they become generators of ∆′(6M2) ≃ (ZM ×ZM)⋊Z3⋊Z4 ≃ ∆(3M2)⋊Z4,

where a(
′), b, c denote ones of Z(′)

M , Z3, Z4, respectively. In particular, we have a comment

on Eq. (3.96). Since the T matrix in Eq. (3.96) also satisfies T 4 = e4πi/3I, this can be the Z3

generator, d = T 4, and it commutes with all the generators in Eq. (3.99). In addition, in this

case, the generators a and a′ in Eq. (3.99) satisfy a2 = a′2 = 1. Therefore, we can find that the

the three-generation modes with (M,α,m, n) = (2, 0, 0, 0), (4, 0, 0, 1), (6, 0, 1, 0), and (8, 0, 1, 1)

are transformed as the three-dimensional representations of finite modular S ′
4 ≃ ∆′(24), ∆′(96),

S ′
4 × Z3, and ∆′(384) groups with weight 1, respectively.

Similarly, we comment on the modular flavor symmetry anomaly. Since we can find that

the determinants of generators are

det(a) = det(a′) = det(b) = 1,

det(c) =

{
det(S)2det(T )

M
2
−3 = e−πi/2 (M = 4, 8)

det(S)2det(T )
M
2 = eπi/2 (M = 2, 6)

, det(c)4 = 1,
(3.101)
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and also det(d) = det(T )4 = 1, only Z4 symmetry, generated by c, can be anomalous while the

normal subgroups, A4 ≃ ∆(12), ∆(48), A4 × Z3, and ∆(192), automatically remain anomaly-

free. It is consistent with the general result of non-Abelian discrete symmetry anomaly [102].

• M =odd and α = 1/2 case

Next, let us consider M = odd and α = 1/2 case. In this case, there are only four three-

generation modes: (M,α,m, n) = (3, 1/2, 1, 0), (5, 1/2, 1, 1), (5, 1/2, 0, 0), and (7, 1/2, 0, 1).

From now, we show that the three-generation modes with M = 3, 5, 7 are representations of

the Z4 central extension group of ΓM ≃ PSL(2,ZM), PSL(2,ZM) × Z4. We note that all of

the following representations of S and T transformation satisfy the algebraic relations of Γ′
4M

in Eqs. (3.90)-(3.93).

First, from the following representation of S and T transformation for (M,α,m, n) =

(3, 1/2, 1, 0),

ρ
( 1
2
, 1
2
)

(t)1(p)0(S) = −
i

3

1 2 2

2 1 −2
2 −2 1

 , ρ
( 1
2
, 1
2
)

(t)1(p)0(T ) =

eπi/6 e5πi/6

e9πi/6

 , (3.102)

we can obtain the following generators,

a = ST 9, b = ST, c = T 3, (3.103)

satisfying

a2 = b3 = (ab)3 = c4 = 1, ac = ca, bc = cb, (3.104)

which mean the generators in Eq. (3.103) are ones of A4 × Z4. Therefore, we can find that

the three-generation modes with (M,α,m, n) = (3, 1/2, 1, 0) are transformed under the mod-

ular transformation as the three-dimensional representations of finite modular A4 × Z4 ≃
PSL(2,Z3)× Z4 group with weight 1.

Second, from the following representation of S and T transformation for (M,α,m, n) =

(5, 1/2, 0, 0),

ρ
( 1
2
, 1
2
)

(t)0(p)0(S) =
4i

5

 A2
√
2AB B2

√
2AB B2 − A2 −

√
2AB

B2 −
√
2AB A2

 , ρ
( 1
2
, 1
2
)

(t)0(p)0(T ) =

eπi/10 e5πi/10

e9πi/10

 ,

(3.105)

A = cos
( π
10

)
, B = cos

(
3π

10

)
,

we can obtain the following generators,

a = ST 25, b = ST, c = T 5, (3.106)
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satisfying

a2 = b3 = (ab)5 = c4 = 1, ac = ca, bc = cb, (3.107)

which mean the generators in Eq. (3.106) are ones of A5 × Z4. Therefore, we can find that

the three-generation modes with (M,α,m, n) = (5, 1/2, 0, 0) are transformed under the mod-

ular transformation as the three-dimensional representations of finite modular A5 × Z4 ≃
PSL(2,Z5)× Z4 group with weight 1.

Third, similarly, from the following representation of S and T transformation for (M,α,m, n)

= (5, 1/2, 1, 1),

ρ
( 1
2
, 1
2
)

(t)1(p)1(S) = −
2i

5

 2 (A2 −B2) −
√
2 (A+B) −

√
2 (A+B)

−
√
2 (A+B) A− 1 B + 1

−
√
2 (A+B) B + 1 A− 1

 ,

A = sin
( π
10

)
, B = sin

(
3π

10

)
,

ρ
( 1
2
, 1
2
)

(t)1(p)1(T ) =

e5πi/10 e13πi/10

e17πi/10

 , (3.108)

we can obtain the generators in Eq. (3.106) satisfying Eq. (3.107). Therefore, we can find that

the three-generation modes with (M,α,m, n) = (5, 1/2, 1, 1) are also transformed under the

modular transformation as the three-dimensional representations of finite modular A5 × Z4 ≃
PSL(2,Z5)× Z4 group with weight 1.

Fourth, from the following representation of S and T transformation for (M,α,m, n) =

(7, 1/2, 0, 1),

ρ
( 1
2
, 1
2
)

(t)0(p)1(S) =
4i

7

 AD −B2 − (A2 +BC) − (AB + CD)

− (A2 +BC) AB − C2 B2 + AC

− (AB + CD) B2 + AC BD − A2

 ,

A = cos
( π
14

)
, B = cos

(
3π

14

)
, C = cos

(
5π

14

)
, D = cos

(
9π

14

)
,

ρ
( 1
2
, 1
2
)

(t)0(p)1(T ) =

e5πi/14 e13πi/14

e17πi/14

 , (3.109)

which also satisfy Eq. (3.81), we can obtain the following generators,

a = ST 49, b = ST, c = T 7, (3.110)

satisfying

a2 = b3 = (ab)7 = (a−1b−1ab)4 = c4 = 1, ac = ca, bc = cb, (3.111)
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which mean the generators in Eq. (3.110) are ones of PSL(2,Z7)× Z4. Therefore, we can find

that the three-generation modes with (M,α,m, n) = (7, 1/2, 0, 1) are transformed under the

modular transformation as the three-dimensional representations of finite modular PSL(2,Z7)×
Z4 group with weight 1.

Similarly, we comment on the modular flavor symmetry anomaly. Since we can find that

the determinants of generators are

det(a) = det(b) = 1, det(c) = det(T )M = e−πi/2, det(c)4 = 1, (3.112)

only Z4 symmetry, generated by c, can be anomalous while the simple groups PSL(2,ZM)

(PSL(2,Z3) ≃ A4, PSL(2,Z5) ≃ A5, and PSL(2,Z7)) remain anomaly-free. It is consistent

with the general result of non-Abelian discrete symmetry anomaly [102].
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Chapter 4

Magnetized blow-up manifold of T 2/ZN
orbifold

In the previous chapter, we have considered magnetized T 2/ZN orbifold compactification. Here,

we remind that T 2/ZN orbifolds have some fixed points and they become singularities with the

localized curvature in Eq. (3.16). Then, let us consider a smooth manifold constructed by

blowing up the orbifold singularities as a 2D compact space. We call the smooth manifold

the blow-up manifold of T 2/ZN . (Hereafter, we call the blow-up manifold.) The blow-up

manifold can be constructed by replacing around singularities which become cones with smooth

manifolds. In particular, since the amount of the curvature of T 2/ZN orbifolds is the same as

one of S2, we embed parts of S2 instead cut the cones whose tops are the orbifold singularities.

In this chapter, let us consider such a blow-up manifold with magnetic fluxes (magnetized

blow-up manifold). First, in section 4.1, we review the magnetized S2 compactification. Then,

in section 4.2, we discuss the magnetized blow-up manifold compactification.

4.1 Magnetized S2 compactification

In this section, we review magnetized S2 compactification [75,76].

4.1.1 Geometry of S2

Let us review the geometry of a 2D sphere, S2. First, as shown in Fig. 4.1, we can project a

point on S2 whose cartesian coordinate is (R sin θ cosφ,R sin θ sinφ,−R cos θ), from the north

pole of S2 whose cartesian coordinate is (0, 0, R), onto the point on the complex plane passing

through the center of S2 whose cartesian coordinate is (R tan(θ/2) cosφ,R tan(θ/2) sinφ, 0), i.e.

S2 ≃ CP1. Here, we use the spherical parameters (R, θ, φ).
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𝜃
𝑅

𝑧′

(𝑅sin𝜃cos𝜑, 𝑅sin𝜃sin𝜑,−𝑅cos𝜃)

(𝑅tan
𝜃

2
cos𝜑, 𝑅tan

𝜃

2
sin𝜑, 0)

𝑧′ = 𝑅tan
𝜃

2

Figure 4.1: The cross section of S2 ≃ CP1

We define the complex coordinate on CP1, z′, such that z′ = R tan θ
2
eiφ at the point whose

cartesian coordinate is written by (R tan(θ/2) cosφ,R tan(θ/2) sinφ, 0).

The metric on S2 ≃ CP1 is given by

ds2 = g′ijdy
′idy′

j
= 2h′µνdz

′µdz̄′
ν
, (4.1)

g′ =

(
R2 0

0 R2 sin2 θ

)
, (4.2)

h′ =

(
0 2 cos4 θ

2

2 cos4 θ
2

0

)
=

(
0 2R4

(R2+|z′|2)2
2R4

(R2+|z′|2)2 0

)
, (4.3)

where dy′1 = dθ and dy′2 = dφ. Then, the are of S2, A′, is calculated as

A′ =

∫
S2

dy′
1
dy′

2
√
|detg′| =

∫
S2

dz′dz̄′
√
|det(2h′)| = 4πR2. (4.4)

The gamma matrices γz
′
and γ z̄

′
satisfying {γz′ , γ z̄′} = 2h′z

′z̄′ are similarly defined as follows.

First, the gamma matrices γ1 and γ2 satisfying 2D Clifford algebra {γa, γb} = 2δab (a, b = 1, 2)

are given by

γ1 = σ1 =

(
0 1

1 0

)
, γ2 = σ2 =

(
0 −i
i 0

)
. (4.5)

Next, we introduce a vielbein e′ such that h′µν = e′aµe
′b
νδab. It is given by

e′ =

(
R2

R2+|z′|2
R2

R2+|z′|2
−iR2

R2+|z′|2
iR2

R2+|z′|2

)
. (4.6)

Then, the gamma matrices γ′z
′
and γ′z̄

′
satisfying {γ′z

′
, γ′z̄

′
} = 2h′z

′z̄′ are given as

γ′
z′
= (e′

−1
)z

′

a γ
a =

1

R2

(
0 R2 + |z′|2
0 0

)
, γ′

z̄′
= (e−1)z̄

′

b γ
b =

1

R2

(
0 0

R2 + |z′|2 0

)
. (4.7)
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The non-trivial Levi-Civita connection is given by

Γ′z′
z′z′ = h′z

′z̄′∂z′h
′
z′z̄′ =

−2z̄′

R2+|z′|2 ,

Γ′z̄′
z̄′z̄′ = h′z̄

′z′∂z̄′h
′
z̄′z′ =

−2z′

R2+|z′|2 .
(4.8)

Then, we should replace ∂z′ (∂z̄′) with the covariant derivative ∇′
z′ (∇′

z̄′), which is defined for

a 1-form vector field V ′
z′(z

′) and a 2-form tensor field T ′
z′z̄′(z

′) as

∇′
z′V

′
z′(z

′) ≡ (∂z′ − Γ′z′
z′z′)V

′
z′(z

′), (∇′
z̄′V

′
z̄′(z

′) ≡ (∂z̄′ − Γ′z̄′
z̄′z̄′)V

′
z̄′(z

′)),

∇′
z′T

′
z′z̄′(z

′) ≡ (∂z′ − Γ′z′
z′z′)T

′
z′z̄′(z

′), (∇′
z̄′T

′
z′z̄′(z

′) ≡ (∂z̄′ − Γ′z̄′
z̄′z̄′)T

′
z′z̄′(z

′)).
(4.9)

Moreover, the spin connection is given by

ω′a
z′b = (e′−1)z

′

b Γ
′z′
z′z′e

′a
z′ − (e′−1)z

′

b ∂z′e
′a
z′ − (e′−1)z̄

′

b ∂z′e
′a
z̄′ ⇒ ω′

z′12 = − i
2

2
R2+|z′|2 z̄

′,

ω′a
z̄′b = (e′−1)z̄

′

b Γ
′z̄′
z̄′z̄′e

′a
z̄′ − (e′−1)z̄

′

b ∂z′e
′a
z̄′ − (e′−1)z

′

b ∂z̄′e
′a
z′ ⇒ ω′

z̄′12 =
i
2

2
R2+|z′|2 z

′.
(4.10)

As the Lorentz generator is Σab = 1
4
[γa, γb], Σ12 is obtained as

Σ12 =
i

2
σ3 =

i

2

(
1 0

0 −1

)
. (4.11)

Then, the covariant derivative ∇′
z′ (∇′

z̄′) for a spinor S ′(z′) = (S ′
+(z

′), S ′
−(z

′))T is defined as

∇′
z′S

′(z′) ≡ (∂z′ + ω′
z′12Σ

12)S ′(z′), (∇′
z̄′S

′(z′) ≡ (∂z̄′ + ω′
z̄′12Σ

12)S ′(z′)). (4.12)

Note that ∇′
z′ = ∂z′ (∇′

z̄′ = ∂z̄′) for a scalar.

The curvature of S2 is given by

1

2πi

∫
S2

R′z′
z′z′z̄′dz

′ ∧ dz̄′ = 1

2π

∫
S2

2iR2

(R2 + |z′|2)2
dz′ ∧ dz̄′ = χ(S2) = 2, (4.13)

where R′z′
z′z′z̄′ is obtained by

R′z′
z′z′z̄′ = ∂z̄′Γ

′z′
z′z′ =

−2R2

(R2 + |z′|2)2
, (4.14)

while χ(S2) denotes the Euler number of S2.

4.1.2 Wave functions on magnetized S2

Here, let us consider that the following Abelian homogeneous magnetic flux,

1

2π

∫
S2

⟨F ′
z′z̄′⟩dz′ ∧ dz̄′ =

(
M ′aINa

M ′bINb

)
,

(
1

2π

∫
S2

⟨F aa,bb
z′z̄′ ⟩dz

′ ∧ dz̄′ =M ′a,b
)
, (4.15)
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is inserted on S2, where Na +Nb = N and M ′a,b must be integers (Dirac’s quantization). The

magnetic flux is given by the 2-form field strength,

1

2π
⟨F ′aa,bb⟩ = 1

2π
⟨F ′aa,bb

z′z̄′ ⟩dz′ ∧ dz̄′ =
M ′a,b

4πR2

4R4

(R2 + |z′|2)2
i

2
dz′ ∧ dz̄′, (4.16)

which satisfies the Yang-Mills equations

∇′
z′⟨F ′aa,bb

z′z̄′ ⟩ = (∂z′ − Γz
′

z′z′)⟨F ′aa,bb
z′z̄′ ⟩ = 0, ∇′

z̄′⟨F ′aa,bb
z′z̄′ ⟩ = (∂z̄′ − Γz̄

′

z̄′z̄′)⟨F ′aa,bb
z′z̄′ ⟩ = 0. (4.17)

Moreover, the field strength is obtained from the 1-form background gauge field,

⟨A′aa,bbb(z′)⟩ = ⟨A′aa,bb
z′ (z′)⟩dz′ + ⟨A′aa,bb

z̄′ (z′)⟩dz̄′

= − i
2

2πM ′a,b

4πR2

2R2

R2 + |z′|2
z̄′dz′ +

i

2

2πM ′a,b

4πR2

2R2

R2 + |z′|2
z′dz̄′, (4.18)

by ⟨F ′aa,bb⟩ = d′⟨A′aa,bb⟩. The covariant derivative is defined as

D̂′ = d′ − i⟨A′(z′)⟩
D̂′
z′dz

′ + D̂′
z̄′dz̄

′ = (∇z′ − i⟨A′
z′(z

′)⟩)dz′ + (∇z̄′ − i⟨A′
z̄′(z

′)⟩)dz̄′. (4.19)

In the following, let us see wave functions of U(N) adjoint spinor, scalar, and vector fields

on S2 with the magnetic flux in Eq. (4.15), which satisfy individual equation of motions.

• Spinor fields

First, let us see wave functions of U(N) adjoint 2D MW spinor fields on the magnetized S2,

ψ
(2)

S2 (z
′) =

(
ψS2,+(z

′)

ψS2,−(z
′)

)
, ψS2,±(z

′) =

(
ψaaS2,±(z

′) ψabS2,±(z
′)

ψbaS2,±(z
′) ψbbS2,±(z

′)

)
,(

ψJIS2,∓(z
′) = σ1ψ

IJ(2)

S2,± (z′) (I, J = a, b)
)
,

(4.20)

which satisfy the Dirac equation,(
i(γ′

z′
D̂′
z′ + γ′

z̄′
D̂′
z̄′)−mn

)
ψ

(2)

S2,n(z
′) = 0. (4.21)

Here, we define the Dirac operator,

i /̂D
′
≡ i(γ′

z′
D̂′
z′ + γ′

z̄′
D̂′
z̄′)

=

(
0 iR

2+|z′|2
R2 (∂z′ − i

2
ω′
z′12 − i⟨A′

z′(z
′)⟩)

iR
2+|z′|2
R2 (∂z̄′ +

i
2
ω′
z̄′12 − i⟨A′

z̄′(z)⟩) 0

)

≡
(

0 −iD′†

iD′ 0

)
, (4.22)
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and then the Dirac equation (4.21) can be rewritten as

iD′ψS2,+,n(z
′) = iR

2+|z′|2
R2

(
(∂z̄′ +

i
2
ω′
z̄′12)ψS2,+,n(z

′)− i[⟨A′
z̄′(z

′)⟩, ψS2,+,n(z
′)]
)
= mnψS2,−,n(z

′),

(4.23)

⇔


iD′

aaψ
aa
S2,+,n(z

′) = i
R2

(
(R2 + |z′|2)∂z̄′ − 1

2
z′
)
ψaaS2,+,n(z

′) = mnψ
aa
S2,−,n(z

′)

iD′
bbψ

bb
S2,+,n(z

′) = i
R2

(
(R2 + |z′|2)∂z̄′ − 1

2
z′
)
ψbbS2,+,n(z

′) = mnψ
bb
S2,−,n(z

′)

iD′
abψ

ab
S2,+,n(z

′) = i
R2

(
(R2 + |z′|2)∂z̄′ − 1−M ′

2
z′
)
ψabS2,+,n(z

′) = mnψ
ab
S2,−,n(z

′)

−iD′
baψ

ba
S2,+,n(z

′) = i
R2

(
(R2 + |z′|2)∂z̄′ − 1+M ′

2
z′
)
ψbaS2,+,n(z

′) = mnψ
ba
S2,−,n(z

′)

,

⇔



i
(

R2

R2+|z′|2

)− 3
2
∂z̄′

[(
R2

R2+|z′|2

) 1
2
ψaaS2,+,n(z

′)

]
= mnψ

aa
S2,−,n(z

′)

i
(

R2

R2+|z′|2

)− 3
2
∂z̄′

[(
R2

R2+|z′|2

) 1
2
ψbbS2,+,n(z

′)

]
= mnψ

bb
S2,−,n(z

′)

i
(

R2

R2+|z′|2

)− 3−M′
2

∂z̄′

[(
R2

R2+|z′|2

) 1−M′
2

ψabS2,+,n(z
′)

]
= mnψ

ab
S2,−,n(z

′)

i
(

R2

R2+|z′|2

)− 3+M′
2

∂z̄′

[(
R2

R2+|z′|2

) 1+M′
2

ψbaS2,+,n(z
′)

]
= mnψ

ba
S2,−,n(z

′)

,

−iD′†ψS2,−,n(z
′) = iR

2+|z′|2
R2

(
(∂z′ − i

2
ω′
z′12)ψS2,−,n(z

′)− i[⟨A′
z′(z

′)⟩, ψS2,−,n(z
′)]
)
= mnψS2,+,n(z

′),

(4.24)

⇔


−iD′†

aaψ
aa
S2,−,n(z

′) = i
R2

(
(R2 + |z′|2)∂z′ − 1

2
z̄′
)
ψaaS2,−,n(z

′) = mnψ
aa
S2,+,n(z

′)

−iD′†
bbψ

bb
S2,−,n(z

′) = i
R2

(
(R2 + |z′|2)∂z′ − 1

2
z̄′
)
ψbbS2,−,n(z

′) = mnψ
bb
S2,+,n(z

′)

−iD′†
abψ

ab
S2,−,n(z

′) = i
R2

(
(R2 + |z′|2)∂z′ − 1+M ′

2
z̄′
)
ψabS2,−,n(z

′) = mnψ
ab
S2,+,n(z

′)

iD′†
baψ

ba
S2,−,n(z

′) = i
R2

(
(R2 + |z′|2)∂z′ − 1−M ′

2
z̄′
)
ψbaS2,−,n(z

′) = mnψ
ba
S2,+,n(z

′)

,

⇔



i
(

R2

R2+|z′|2

)− 3
2
∂z′

[(
R2

R2+|z′|2

) 1
2
ψaaS2,−,n(z

′)

]
= mnψ

aa
S2,+,n(z

′)

i
(

R2

R2+|z′|2

)− 3
2
∂z′

[(
R2

R2+|z′|2

) 1
2
ψbbS2,−,n(z

′)

]
= mnψ

bb
S2,+,n(z

′)

i
(

R2

R2+|z′|2

)− 3+M′
2

∂z′

[(
R2

R2+|z′|2

) 1+M′
2

ψabS2,−,n(z
′)

]
= mnψ

ab
S2,+,n(z

′)

i
(

R2

R2+|z′|2

)− 3−M′
2

∂z′

[(
R2

R2+|z′|2

) 1−M′
2

ψbaS2,−,n(z
′)

]
= mnψ

ba
S2,+,n(z

′)

,
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where M ′ ≡M ′a −M ′b and n denotes the Landau level.

In particular, the lowest modes (n = 0) satisfying the above Dirac equation with m0 = 0

are expressed as

ψaaS2,+,0(z
′) =

(
R2

R2+|z′|2

)− 1
2
h′aa0 (z′), ψaaS2,−,0(z

′) = ψaaS2,+,0(z
′) =

(
R2

R2+|z′|2

)− 1
2
h̄′aa0 (z̄′),

ψbbS2,+,0(z
′) =

(
R2

R2+|z′|2

)− 1
2
h′bb0 (z

′), ψbbS2,−,0(z
′) = ψbbS2,+,0(z

′) =
(

R2

R2+|z′|2

)− 1
2
h̄′bb0 (z̄′),

ψabS2,+,0(z
′) =

(
R2

R2+|z′|2

)M′−1
2

h′ab0 (z′), ψabS2,−,0(z
′) = ψbaS2,+,0(z

′) =
(

R2

R2+|z′|2

)M′−1
2

h̄′ba0 (z̄′),

ψbaS2,+,0(z
′) =

(
R2

R2+|z′|2

)−M′+1
2

h′ba0 (z′), ψabS2,−,0(z
′) = ψabS2,+,0(z

′) =
(

R2

R2+|z′|2

)M′−1
2

h̄′ab0 (z̄′),

(4.25)

where h′(z′) denotes a holomorphic function. In addition, they should be normalizable; they

must be finite on S2 ≃ CP1. For example, in order for ψab+ (ψba+ ) as well as the anti-fields

ψba− = ψab+ (ψab− = ψba+ ) to have physical relevant zero mode solutions on the magnetized S2, it

should be required that M ′ > 0 (M ′ < 0) and h′ab0 (z′) (h′ba0 (z′)) as well as h̄′ba0 (z̄′) (h̄′ab0 (z̄′)) are

written by (|M ′| − 1)-polynomials, that is, there are |M ′| number of degenerate zero modes. In

this case, however, ψba+ (ψab+ ) as well as their anti-fields ψab− = ψba+ (ψba− = ψab+ ) have no physical

relevant zero modes. Indeed, this result is consistent with the AS index theorem,

nab+ − nab− =
1

2π

∫
S2

F ′
ab =M ′, (4.26)

nba+ − nba− =
1

2π

∫
S2

F ′
ba = −M ′, (4.27)

where nab+ , nab− , nba+ , nba− denote zero mode numbers of ψab+ , ψab− , ψba+ , ψba− , respectively, and Fab,

Fba denote the magnetic fluxes which ψab± , ψba± feel, respectively. Note that although S2 also has

the curvature, it does not contribute to the AS index theorem. Therefore, we can obtain |M ′|
generational bi-fundamental chiral fermions from the magnetized S2 compactification. On the

other hand, there are no physical relevant zero mode solutions. Hereafter, we consider the case

that ψab+ as well as the anti-fields ψba− = ψab+ are zero modes;

ψa
′,M ′−1
S2,0 (z′) =

(
R2

R2+|z′|2

)M′−1
2

ha
′,M ′

S2 (z′),

ha
′,M ′

S2 (z′) = NS2,0,a′R
−aza

′
, (a ∈ Z/M ′Z),

(4.28)
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where the normalization factor NS2,0,a′ on S
2 is determined from the inner product,∫

S2

dz′dz̄′
√
|det(2h)|ψa′,M ′−1

S2,0 (z′)ψb
′,M ′−1
S2,0 (z′)

=δ′a′,b|NS2,0,a′ |2A′
∫ ∞

0

d

(
R2

R2 + |z′|2

)(
1− R2

R2 + |z′|2

)a′ (
R2

R2 + |z′|2

)M ′−1−2a′

=δa′,b′ |NS2,0,a′|2A′
∫ 1

0

dtt(M
′−a′)−1(1− t)(a′+1)−1

=δa′,b′ |NS2,0,a′|2A′β(M ′ − a′, a′ + 1), (4.29)

where β(M ′−a′, a′+1) denotes the beta function and satisfies the following recurrence relation

obtained from the partial integral;

β(M ′ − a′, a′ + 1) =
a′

M ′ − a′
β(M ′ − a′ + 1, a′), β(M ′, 1) =

1

M ′ , (4.30)

and then it can be written by the gamma function Γ(X) satisfying Γ(X + 1) = XΓ(X);

β(M ′ − a′, a′ + 1) =
Γ(M ′ − a′)Γ(a′ + 1)

Γ(M ′ + 1)
. (4.31)

Here, we comment for the n th excited states. (See Ref. [76].) By further acting the Dirac

operator on the Dirac equation, we can obtain the characteristic equations,(
D′†D′ 0

0 D′D′†

)(
ψS2,+,n(z)

ψS2,−,n(z)

)
= m2

n

(
ψS2,+,n(z)

ψS2,−,n(z)

)
, (4.32)

where D′ and D′† satisfy the following commutation relations:

[D′
aa,D′†

aa] = −
R2 + |z′|2

R4
(z′∂z′ − z̄′∂z̄′), (4.33)

[D′
bb,D′†

bb] = −
R2 + |z′|2

R4
(z′∂z′ − z̄′∂z̄′), (4.34)

[D′
ab,D′†

ab] = −
R2 + |z′|2

R4
(z′∂z′ − z̄′∂z̄′ −M ′), (4.35)

[D′
ba,D′†

ab] = −
R2 + |z′|2

R4
(z′∂z′ − z̄′∂z̄′ +M ′). (4.36)

In particular, to see the solutions of:

D′†
abD′

abψ
ab
S2,+,n(z) = m2

nψ
ab
S2,+,n(z), (4.37)
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we define the following operators,

J3
ab ≡ z′∂z′ − z̄′∂z̄′ −

M ′ − 1

2
, (4.38)

J+
ab ≡ RD′

ab +
z′

R
(J3
ab −

M ′ − 1

2
) (4.39)

=
1

R

(
(R2 + |z′|2)∂z̄′ −

1−M ′

2
z′ + z′(z′∂z′ − z̄′∂z̄′ − (M ′ − 1))

)
=

1

R
(R2∂z̄′ + z′

2
∂z′ −

M ′ − 1

2
z′),

J−
ab ≡ RD′†

ab +
z̄′

R
(J3
ab −

M ′ + 1

2
) (4.40)

= − 1

R

(
(R2 + |z′|2)∂z′ −

1 +M ′

2
z̄′ − z̄′(z′∂z′ − z̄′∂z̄′ −M ′)

)
= − 1

R
(R2∂z′ + z̄′2∂z̄′ +

M ′ − 1

2
z̄′),

J2
ab = J−

abJ
+
ab + (J3

ab)
2 + J3

ab

= R2D′†
abD′

ab +
1

4
(M ′2 − 1), (4.41)

and they satisfy

[J+
ab, J

−
ab] = 2J3

ab, [J
3
ab, J

±
ab] = ±J

+
ab, [J

2
ab, J

±
ab] = [J2

ab, J
3
ab] = 0. (4.42)

Then, it means that the solutions of Eq. (4.37) are eigenfunctions of J2
ab and J3

ab; they are

written as

ψabS2,+,n(z
′) =

n+M ′∑
a′=−n

ψa
′,M ′−1
S2,n (z′)

=
n+M ′∑
a′=−n

(
R2

R2 + |z′|2

)M′−1
2

NS2,n,a′R
−a′za

′
P a′,M ′−a′−1
n

(
R2

R2 + |z′|2

)
, (4.43)

with

m2
n =

(
n+ M ′

2

)2 − (M ′

2

)2
R2

=

(
J + 1

2

)2 − (M ′

2

)2
R2

, (4.44)

where Pn denotes the Jacobi polynomial given by

P a′,b′

n (x) =
(−1)n

2nn!
(1− x)−a′(1 + x)−b

′ dn

dxn
[(1− x)a′+n(1 + x)b

′+n], (4.45)

and the Landau level n is related to the angular momentum J as in Eq. (4.44), which comes

from Eq. (4.41). Moreover, by solving Eq. (4.23) with the property:

d

dx
P a′,M ′−a′−1
n (x) =

n+M ′

2
P a′+1,M ′−a′
n−1 (x), (4.46)
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the solutions of ψabS2,−,n are expressed as

ψabS2,−,n(z
′) =

n+M ′∑
a′=−n

ψa
′,M ′+1
S2,n (z′)

=
n+M ′∑
a′=−n

(
R2

R2 + |z′|2

)M′+1
2

NS2,n,a′i

√
n+M ′

n
R−(a′+1)za

′+1P a′+1,M ′−a′
n−1

(
R2

R2 + |z′|2

)
.

(4.47)

Then, similarly we can obtain ψbaS2,−,n = ψabS2,+,n and ψbaS2,+,n = ψabS2,−,n, while ψ
aa,bb
S2,+,n and ψaa,bbS2,−,n

are obtained from ψabS2,+,n and ψabS2,−,n with M ′ = 0, respectively.

• Scalar fields

Second, let us see wave functions of U(N) adjoint scalar fields on the magnetized S2,

ϕS2(z′) =

(
ϕaaS2(z′) ϕabS2(z′)

ϕbaS2(z′) ϕbaS2(z′)

)
, (4.48)

which satisfy the Klein-Gordon equation,(
h′
z′z̄′

(D̂′
z′D̂

′
z̄′ + D̂′

z̄′D̂
′
z′) +m2

n

)
ϕS2,n(z

′) = 0. (4.49)

Note that the geometrical connection does not act on the scalar fields. Here, we define the

Laplace operator,

∆̂′ ≡− h′z
′z̄′
(D̂′

z′D̂
′
z̄′ + D̂′

z̄′D̂
′
z′)

=− 2h′
z′z̄′
D̂′
z′D̂

′
z̄′ + h′

z′z̄′
[D̂′

z′ , D̂
′
z̄′ ]

=− 2h′
z′z̄′
D̂′
z̄′D̂

′
z′ − h′

z′z̄′
[D̂′

z′ , D̂
′
z̄′ ], (4.50)

where D̂′
z′ and D̂z̄′ are given by

D̂′
z′ =

(
D̂′aa
z′ D̂′ab

z′

D̂′ba
z′ D̂′bb

z′

)
=

(
∂z′ ∂z′ − M ′

2(R2+|z′|2) z̄
′

∂z′ +
M ′

2(R2+|z′|2) z̄
′ ∂z′

)
,

D̂′
z̄′ =

(
D̂′aa
z̄′ D̂′ab

z̄′

D̂′ba
z̄′ D̂′bb

z̄′

)
=

(
∂z̄′ ∂z̄′ +

M ′

2(R2+|z′|2)z
′

∂z̄′ − M ′

2(R2+|z′|2)z
′ ∂z̄′

)
,

(4.51)

and then they satisfy the commutation relations,

h′
z′z̄′

[D̂′aa
z′ , D̂

′aa
z̄′ ] = 0, (4.52)

h′
z′z̄′

[D̂′bb
z′ , D̂

′bb
z̄′ ] = 0, (4.53)

h′
z′z̄′

[D̂′ab
z′ , D̂

′ab
z̄′ ] =

M ′

2R2
, (4.54)

h′
z′z̄′

[D̂′ba
z′ , D̂

′ba
z̄′ ] = −

M ′

2R2
. (4.55)
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Thus, the solutions of the Klein-Gordon equation,

∆̂′ϕS2,n(z
′) = m2

nϕS2,n(z
′), (4.56)

must be eigenfunctions for the operator h′z
′z̄′D̂′

z′D̂
′
z̄′ (or D̂

′
z̄′D̂

′
z′). We also note that the operators

in the characteristic equation for spinors can be rewritten as

(
D′†D′ 0

0 D′D′†

)
= −h′z

′z̄′

 ˜̂D′
z′D̂

′
z̄′ 0

0
˜̂
D′
z̄′D̂

′
z′

 , (4.57)

where
˜̂
D′
z′ and

˜̂
D′
z̄′ are defined for

D̂′
z′ =

(
D̂′aa
z′ D̂′ab

z′

D̂′ba
z′ D̂′bb

z′

)
=

(
∂z′ − 1

2(R2+|z′|2) z̄
′ ∂z′ − 1+M ′

2(R2+|z′|2) z̄
′

∂z′ − 1−M ′

2(R2+|z′|2) z̄
′ ∂z′ − 1

2(R2+|z′|2) z̄
′

)
,

D̂′
z̄′ =

(
D̂′aa
z̄′ D̂′ab

z̄′

D̂′ba
z̄′ D̂′bb

z̄′

)
=

(
∂z̄′ − 1

2(R2+|z′|2)z
′ ∂z̄′ − 1−M ′

2(R2+|z′|2)z
′

∂z̄′ − 1+M ′

2(R2+|z′|2)z
′ ∂z̄′ − 1

2(R2+|z′|2)z
′

)
,

(4.58)

as

˜̂
D′
z′ =

˜̂D′aa
z′

˜̂
D′ab
z′˜̂

D′ba
z′

˜̂
D′bb
z′

 =

(
∂z′ +

1
2(R2+|z′|2) z̄

′ ∂z′ +
1−M ′

2(R2+|z′|2) z̄
′

∂z′ +
1+M ′

2(R2+|z′|2) z̄
′ ∂z′ +

1
2(R2+|z′|2) z̄

′

)
,

˜̂
D′
z̄′ =

˜̂D′aa
z̄′

˜̂
D′ab
z̄′˜̂

D′ba
z̄′

˜̂
D′bb
z̄′

 =

(
∂z̄′ +

1
2(R2+|z′|2)z

′ ∂z̄′ +
1+M ′

2(R2+|z′|2)z
′

∂z̄′ +
1−M ′

2(R2+|z′|2)z
′ ∂z̄′ +

1
2(R2+|z′|2)z

′

)
,

(4.59)

and they satisfy the following commutation relations,

[
˜̂
D′aa
z′ , D̂

′aa
z̄′ ] = [

˜̂
D′aa
z̄′ , D̂

′aa
z′ ] = − R2

(R2+|z′|2)2 ,

[
˜̂
D′bb
z′ , D̂

′bb
z̄′ ] = [

˜̂
D′bb
z̄′ , D̂

′bb
z′ ] = − R2

(R2+|z′|2)2 ,

[
˜̂
D′ab
z′ , D̂

′ab
z̄′ ] = [

˜̂
D′ba
z̄′ , D̂

′ba
z′ ] =

R2

(R2+|z′|2)2 (M
′ − 1),

[
˜̂
D′ba
z′ , D̂

′ba
z̄′ ] = [

˜̂
D′ab
z̄′ , D̂

′ab
z′ ] = − R2

(R2+|z′|2)2 (M
′ + 1).

(4.60)

Thus, when we denote the “effective” magnetic fluxes which spinors ψAB and scalars ϕAB

(A,B = a, b) feel M ′AB
ψ and M ′AB

ϕ , respectively, they are written by

M ′aa
ϕ = 0, M ′aa

ψ = −1,
M ′bb

ϕ = 0, M ′bb
ψ = −1,

M ′ab
ϕ =M, M ′ab

ψ =M ′ − 1,

M ′ba
ϕ = −M ′, M ′ba

ψ = −M ′ − 1,

(4.61)
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and then we can find the solutions of Eq. (4.56):

ϕaaS2,n(z
′) = ψ

aa,M ′aa
ψ →M ′aa

ϕ

S2,+,n (z′), m2
n =

n(n+ 1)

R2
(n ≥ 0), (4.62)

ϕbbS2,n(z
′) = ψ

bb,M ′bb
ψ→M ′bb

ϕ

S2,+,n (z′), m2
n =

n(n+ 1)

R2
(n ≥ 0), (4.63)

ϕabS2,n(z
′) = ψ

ab,M ′ab
ψ →M ′ab

ϕ

S2,+,n (z′), m2
n =

n(n+M ′ + 1)

R2
+
M ′

2R2
(n ≥ 0), (4.64)

ϕbaS2,n(z
′) = ψ

ba,M ′ba
ψ →M ′ba

ϕ

S2,+,n+1 (z′), m2
n =

n(n+M ′ + 1)

R2
+
M ′

2R2
(n ≥ 0). (4.65)

In particular, M ′ + 1 number of the lowest modes of ϕabS2 and ϕbaS2 are massive while the lowest

modes of ϕaaS2 and ϕbbS2 are massless and constants. Here, we note that the curvature contribution

for a spinor reduces the “effective” flux of the spinor than that of a scalar by 1.

• Vector fields

Third, let us see wave functions of U(N) adjoint vector fields on magnetized S2,

AS2(z′) =AS2,z′(z)dz
′ + AS2,z̄′dz̄

′ (
AS2z̄′(z

′) = (AS2,z′(z
′))†
)

(4.66)

=

(
⟨A′aa

z′ (z
′)⟩+ AaaS2,z′(z

′) A′ab
S2,z′(z

′)

AbaS2,z′(z
′) ⟨A′bb

z′(z
′)⟩+ AbbS2,z′(z

′)

)
dz′

+

(
⟨A′aa

z̄′ (z
′)⟩+ AaaS2,z̄′(z

′) AabS2,z̄′(z
′)

AbaS2,z̄′(z
′) ⟨A′bb

z̄′(z
′)⟩+ AbbS2,z̄′(z

′)

)
dz̄′, (4.67)

which satisfy the Yang-Mills-Proca equation,

h′
z′z̄′
D̂′
zFS2,z̄′z′ +m2

nAS2,z′,n(z
′) = 0,

(
h′
z̄′z′
D̂′
z̄′FS2,z′z̄′ +m2

nAS2,z̄′,n(z
′) = 0

)
, (4.68)

with the gauge-fixing condition,

h′
z′z̄′
(
D̂′
z′AS2,z̄′,n(z

′) + D̂′
z̄′AS2,z′,n(z

′)
)
= 0. (4.69)

The field strength in Eq. (4.72) can be rewritten as

F ′
S2,z′z̄′(z

′) = ⟨F ′
z′z̄′⟩+ D̂′

z′AS2,z̄′(z)− D̂′
z̄′AS2,z′(z

′)

= ⟨F ′
z′z̄′⟩+ 2D̂′

z′AS2,z̄′(z
′) (4.70)

= ⟨F ′
z′z̄′⟩ − 2D̂′

z̄′AS2,z′(z
′),

where we use the gauge fixing condition (4.69) in the second and third lines. Then, the Yang-

Mills-Proca equation in Eq. (4.72) can be rewritten by

− 2h′z
′z̄′D̂′

z′D̂
′
z̄′AS2,z′,n(z

′) + ih′z
′z̄′ [⟨F ′

z′z̄′⟩, AS2,z′,n(z
′)] = m2

nAS2,z′,n(z
′),

⇔
(
∆̂′ − 2h′z

′z̄′ [D̂′
z′ , D̂

′
z̄′ ]
)
AS2,z′,n(z

′) = m2
nAS2,z′,n(z

′), (4.71)

− 2h′z
′z̄′D̂′

z̄′D̂
′
z′AS2,z̄′,n − ih′z

′z̄′ [⟨F ′
z′z̄′⟩, AS2,z̄′,n(z)] = m2

nAS2,z̄′,n(z
′),

⇔
(
∆̂′ + 2h′z

′z̄′ [D̂′
z′ , D̂

′
z̄′ ]
)
AS2,z̄′,n(z

′) = m2
nAS2,z̄′,n(z

′). (4.72)
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Note that although only the covariant derivative in Eq. (4.72) includes the Levi-Civita connec-

tion in Eq, (4.8) due to Γ′z′
z̄′z = Γ′z̄′

z̄′z = 0 and Eq. (4.9) this contribution is absorbed in Eq. (4.17).

Therefore, by using the results in Eqs. (4.62)-(4.65), the solutions of Eq. (4.72) are

AaaS2,z′,n(z
′) = ϕaaS2,n(z

′), AaaS2,z̄′,n(z
′) = AaaS2,z′,n(z

′), m2
n =

n(n+ 1)

R2
, (4.73)

AbbS2,z′,n(z
′) = ϕbbS2,n(z

′), AbbS2,z̄′,n(z
′) = AbbS2,z′,n(z

′), m2
n =

n(n+ 1)

R2
(n ≥ 0), (4.74)

AabS2,z′,n(z
′) = ϕabS2,n(z

′), AbaS2,z̄′,n(z
′) = AabS2,z′,n(z

′), m2
n =

n(n+M ′ + 1)

R2
− M ′

2R2
(n ≥ 0),

(4.75)

AbaS2,z′,n(z
′) = ϕbaS2,n(z

′), , AabS2,z̄′,n(z
′) = AbaS2,z′,n(z

′), m2
n =

n(n+M ′ + 1)

R2
+

3M ′

2R2
(n ≥ 0).

(4.76)

Here, we note that in the normalization condition, we need the additional term hz
′z̄′ to make

the vector quanta to be scalar quanta. Thus, the lowest massless modes of AaaS2,z′ (A
aa
S2,z̄′) and

AbbS2,z′ (A
bb
S2,z̄′) are not physical relevant solutions. On the other hand, M ′ − 1 number of the

lowest modes of AabS2,z′ (A
ba
S2,z̄′) become tachyonic while those of AbaS2,z′ (A

ab
z̄′ ) become massive.

4.2 Magnetized blow-up manifold compactification

In this section, let us see wave functions on magnetized blow-up manifolds of T 2/ZN orbifolds.

The following analysis is based on our papers [71,73,74].

4.2.1 Construction of blow-up manifold of T 2/ZN orbifold

In this subsection, we discuss construction of blow-up manifolds of T 2/ZN orbifolds. We notice

that a ZN fixed point becomes a singularity of the T 2/ZN orbifold and around the singularity

becomes cone. The blow-up manifolds, as mentioned before, can be constructed by replacing

the cones with parts of S2. First, we cut the cone around the singularity with |z| ≤ r, that is,

the slant height of the cone is r. The development of the cut-out cone is shown in the left figure

of Figure 4.2. Then, the radius of the base of the cone becomes r/N . Next, we embed a part

of S2 smoothly instead of the cone as shown in the right figure of Figure 4.2. The right figure

shows the cross sections of the cone and the S2, where the S2 tangents to the surface of the

cone. Hence, the angle θ0 in the right figure of Figure 4.2 satisfies cos θ0 = 1/N and the radius

of the S2 must be R = r cot θ0 = r/
√
N2 − 1. Thus, we embed a part of S2, 0 ≤ θ ≤ θ0, with

the radius R = r/
√
N2 − 1, that is, we embed (N − 1)/2N -part of S2, which can be checked as∫ 2π

0
Rdφ

∫ θ0
0
dθR sin θ∫ 2π

0
Rdφ

∫ π
0
dθR sin θ

=
2πR2N−1

N

4πR2
=
N − 1

2N
. (4.77)
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Indeed, the curvature of the embedded part of S2 becomes 2× (N −1)/2N = (N −1)/N , while

the curvature of the cut-out singularity has (N − 1)/N which comes from the deficient angle as

shown in Eq. (3.16). It means that this blow-up procedure does not change the total curvature

(which is a topological invariant number). Hereafter, we call remaining region of T 2/ZN and

embedded regions instead of cut-out cones from T 2/ZN as bulk region and blow-up regions,

respectively.

𝑟
𝑁

𝑟
2𝜋
𝑁

𝑤

𝑧

𝑟

𝑟

𝑁

cos 𝜃0 =
1

𝑁

𝜃0
𝑟cot 𝜃0 𝑧

𝑧′

𝑤

Figure 4.2: The left figure shows the development of a cone around a singularity coming from

a ZN fixed point of T 2/ZN orbifold. The right figure shows the cross sections of the cone

and the S2 with radius R = r/
√
N2 − 1. The blow-up manifold of the T 2/ZN orbifold can be

constructed by cutting out the cone and embedding the (N − 1)/2N -part of S2 (0 ≤ θ ≤ θ0 =

cos−1(1/N)) instead. Here, z and z′ denote the coordinates of T 2/ZN and S2, respectively,

and they are related through the coordinate w; i.e. at the connecting points, z = reiφ/N and

z′ = r
N+1

eiφ are related through w as z ↔ w = N+1
N
z′.

Next, let us see coordinate on the blow-up manifold. We use z and z′ as the coordinates on

the bulk region and blow-up regions, respectively. From now, we show the relation of z and z′

at the connecting points. Hereafter, we show the case of blowing up of the singularity zfp0 = 0.

The following analysis can be also applied for another singularity zfpI by replacing z with ZI .

First, at one of the connecting points, z and z′ can be expressed as

z = reiφT2 , z′ =
r√

N2 − 1
tan

θ0
2
eiφS2 =

r

N + 1
eiφS2 , (4.78)

respectively. In addition, as shown in Figure 4.2, we define a new coordinate w on the complex

plane on which the cut surface is and which is parallel to the complex with the coordinate z′

such that the coordinate of the cut edge is w = r
N
eiφS2 . Thus, we can find that z and z′ are

related through w as z ↔ w = N+1
N
z′ at the connecting points in Eq. (4.78). Indeed, from the

left figure of Figure 4.2, we obtain the relation,

rd(φT 2) =
r

N
dφ(ϕS2) ⇔ φT 2 =

φS2

N
. (4.79)
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Hereafter, we denote φ ≡ φS2 . On the other hand, from the right figure of Figure 4.2, we obtain

the relation

d|z| = Rdθ = 2 cos2
θ0
2
d|z′| = (1 +

1

N
)d|z′| = N + 1

N
d|z′|. (4.80)

By combining these relations, we obtain the relation,

e−i
φ
N dz

∣∣∣∣z=rei φN =
N + 1

N
e−iφdz′

∣∣∣∣
z′ r
N+1

eiφ
, (4.81)

which can derived from

e−i
φ
N dz = e−i

φ
N

∂z
∂|z|d|z|+ e−i

φ
N

∂z
∂( φ
N
)
d( φ

N
) = d|z|+ ird( φ

N
),

N+1
N
e−iφdz′ = N+1

N
e−iφ ∂z′

∂|z′|d|z
′|+ N+1

N
e−iφ ∂z

′

∂φ
dφ = N+1

N
d|z′|+ i r

N
dφ.

(4.82)

4.2.2 Singular gauge transformation

In order to obtain wave functions on the magnetized blow-up manifold by connecting ones on

magnetized T 2/ZN and ones on magnetized S2 smoothly, we should modify the BC under ZN
twist in Eq. (3.21). In detail, when wave functions on S2 go round the circle which is the cut

edge, the values of them are the same as the original values: ΦS2(z′e2πi) = ΦS2(z′). Then,

wave functions on T 2/ZN should also satisfy Φ̃T 2/ZN (ze
2πi/N) = Φ̃T 2/ZN (z) when they go round

the circle. Hence, we consider modification of the BCs in Eq. (3.21) by a (singular) gauge

transformation, as in the case that SS phases and WL phases are related through a gauge

transformation.

We note that since there is a freedom to insert additional magnetic fluxes independent of

background magnetic fluxes at orbifold singularities (localized fluxes1), a singular gauge trans-

formation by which the flux is changed only at the one point can be allowed while usual gauge

transformation does not change the flux. Now, we introduce the singular gauge transformation

at zfp0 = 0, by the following unitary transformation2,

VξF0 (z) =

(
V ξF

a

0 (z)INa 0

0 V ξF
b

0 (z)INb

)
, (4.83)

with

V (z) =

ψ( 1
2
, 1
2
),1

T 2/Z1
N ,0

(z, τ)

ψ
( 1
2
, 1
2
),1

T 2/Z1
N ,0

(z, τ)


1/2

=

ψ( 1
2
, 1
2
),1

T 2,0 (z, τ)

ψ
( 1
2
, 1
2
),1

T 2,0 (z, τ)

1/2

=

h( 12 , 12 ),1T 2 (z)

h
( 1
2
, 1
2
),1

T 2 (z)

1/2

≃

(h
( 1
2
, 1
2
),1

T 2 )(1)(0)z

(h
( 1
2
, 1
2
),1

T 2 )(1)(0)z

1/2

,

(4.84)

1For example, see Ref. [104–106].
2See Refs. [104–107].

77



as

⟨Aaa,bb(z)⟩ → ⟨Ãaa,bb(z)⟩ = ⟨Aaa,bb(z)⟩+ δ⟨A(z)⟩,
δ⟨Aaa,bb(z)⟩ = iV ξF

a,b

0 (z)dV −ξFa,b0 (z)

= −i ξ
Fa,b

0

2

(h
( 12 ,

1
2 ),1

T2 )(1)(z)

h
( 12 ,

1
2 ),1

T2 (z)
+ i

ξF
a,b

0

2

(h
( 12 ,

1
2 ),1

T2 )(1)(z)

h
( 12 ,

1
2 ),1

T2 (z)

≃ −i ξ
Fa,b

0

2
1
z
dz + i

ξF
a,b

0

2
1
z̄
dz̄,

(4.85)

where we showed the approximation around zfp0 = 0 in the rightest sides and (h
( 1
2
, 1
2
),1

T 2 )(n)(z) ≡
dnh

( 12 ,
1
2 ),1

T2 (z)

dzn
. Then, the singular gauge transformation modifies the field strength,

1
2π
⟨F aa,bb⟩ → 1

2π
⟨F̃ aa,bb⟩ = 1

2π
⟨F aa,bb⟩+ 1

2π
δ⟨F aa,bb⟩,

1
2π
δ⟨F aa,bb⟩ = iξF

a,b
0 δ(z)δ(z̄)dz ∧ dz̄,

(4.86)

which induces the localized flux ξF
a,b

0 /N at zfp0 = 0. Moreover, we also consider a singular

gauge transformation for the spin connection since only orbifold singularities have localized

curvatures in Eq. (3.16). Here, we note that the functional form of the spin connection on S2

is the same as one of the gauge connection field on S2 replacing the magnetic flux M by the

curvature χ(S2) = 2. Then, the localized curvature at zfp0 = 0, ξR0 /N = (N − 1)/N , is taken in

by the following singular gauge transformation for the spin connection,

w = 0→ w̃(z) = w + δw(z) = δw(z),

δw(z) = iV ξR0 (z)dV −ξR0 (z) = −i ξ
R
0

2

(h
( 12 ,

1
2 ),1

T2 )(1)(z)

h
( 12 ,

1
2 ),1

T2 (z)
+ i

ξR0
2

(h
( 12 ,

1
2 ),1

T2 )(1)(z)

h
( 12 ,

1
2 ),1

T2 (z)

≃ −i ξ
R
0

2
1
z
dz + i

ξR0
2

1
z̄
dz̄.

(4.87)

From those singular gauge transformation for the gauge connection field and the spin connec-

tion, wave functions on the magnetized T 2/ZN are changed as

Φ̃T 2/ZN (z) = V −sΦξR0 (z)V (φIJN +1/2)ξFs0 δΦ,ψ(z)VξF0 (z)ΦT 2/ZN (z)V
−1
ξF0

(z), (4.88)

where sΦ denotes the spin charge of Φ: sΦ = 0 for Φ = ϕ, sΦ = 1 (−1) for Φ = Az (Az̄), and

sΦ = 1/2 (−1/2) for Φ = ψ+ (ψ−), and we also introduce the localized flux of U(1)s, ξ
Fs
0 /N .
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For the component fields, Eq. (4.88) can be expressed as
ϕ̃aaT 2/ZN (z) = ϕaaT 2/ZN (z),

ϕ̃bbT 2/ZN (z) = ϕbbT 2/ZN (z),

ϕ̃abT 2/ZN (z) = V ξF0 (z)ϕabT 2/ZN (z),

ϕ̃baT 2/ZN (z) = V −ξF0 (z)ϕaaT 2/ZN (z),

(4.89)


ÃaaT 2/ZN ,z(z) = V −ξR0 (z)AaaT 2/ZN ,z(z), ÃaaT 2/ZN ,z̄(z) = V ξR0 (z)AaaT 2/ZN ,z̄(z),

ÃbbT 2/ZN ,z(z) = V −ξR0 (z)AbbT 2/ZN ,z(z), ÃbbT 2/ZN ,z̄(z) = V ξR0 (z)AbbT 2/ZN ,z̄(z),

ÃabT 2/ZN ,z(z) = V −ξR0 +ξF0 (z)AabT 2/ZN ,z(z), ÃabT 2/ZN ,z̄(z) = V ξR0 +ξF0 (z)AabT 2/ZN ,z̄(z),

ÃbaT 2/ZN ,z(z) = V −ξR0 −ξF0 (z)AbaT 2/ZN ,z(z), ÃbaT 2/ZN ,z̄(z) = V ξR0 −ξF0 (z)AaaT 2/ZN ,z̄(z),

(4.90)



ψ̃aaT 2/ZN ,+(z) = V − ξR0
2
+
ξ
Fs
0
2 (z)ψaaT 2/ZN ,+(z), ψ̃aaT 2/ZN ,−(z) = V

ξR0
2
+
ξ
Fs
0
2 (z)ψaaT 2/ZN ,−(ρz),

ψ̃bbT 2/ZN ,+(z) = V − ξR0
2
+
ξ
Fs
0
2 (z)ψbbT 2/ZN ,+(z), ψ̃bbT 2/ZN ,−(z) = V

ξR0
2
+
ξ
Fs
0
2 (z)ψbbT 2/ZN ,−(z),

ψ̃abT 2/ZN ,+(z) = V − ξR0
2
+
ξ
Fs
0
2

+ξF0 (z)ψabT 2/ZN ,+(z), ψ̃abT 2/ZN ,−(z) = V
ξR0
2
+
ξ
Fs
0
2

+ξF0 (z)ψabT 2/ZN ,−(z),

ψ̃baT 2/ZN ,+(z) = V − ξR0
2
−
ξ
Fs
0
2

−ξF0 (z)ψbaT 2/ZN ,+(z), ψ̃baT 2/ZN ,−(z) = V
ξR0
2
−
ξ
Fs
0
2

−ξF0 (z)ψbaT 2/ZN ,−(z),

(4.91)

where ξF0 ≡ ξF
a

0 − ξF
b

0 . Since V (z) satisfies V (ρz) = ρV (z), by combining Eqs. (3.30)-(3.32),

the ZN twisted BCs are modified as
ϕ̃aaT 2/ZN (ρz) = ϕ̃aaT 2/ZN (z),

ϕ̃bbT 2/ZN (ρz) = ϕ̃bbT 2/ZN (z),

ϕ̃abT 2/ZN (ρz) = ρξ
F
0 +mϕ̃abT 2/ZN (z),

ϕ̃baT 2/ZN (ρz) = ρ−ξ
F
0 −mϕ̃aaT 2/ZN (z),

(4.92)


ÃaaT 2/ZN ,z(ρz) = ρ−ξ

R
0 −1ÃaaT 2/ZN ,z(z), ÃaaT 2/ZN ,z̄(ρz) = ρξ

R
0 +1ÃaaT 2/ZN ,z̄(z),

ÃbbT 2/ZN ,z(ρz) = ρ−ξ
R
0 −1ÃbbT 2/ZN ,z(z), ÃbbT 2/ZN ,z̄(ρz) = ρξ

R
0 +1ÃbbT 2/ZN ,z̄(z),

ÃabT 2/ZN ,z(ρz) = ρ−ξ
R
0 +ξF0 +m−1ÃabT 2/ZN ,z(z), ÃabT 2/ZN ,z̄(ρz) = ρξ

R
0 +ξF0 +m+1ÃabT 2/ZN ,z̄(z),

ÃbaT 2/ZN ,z(ρz) = ρ−ξ
R
0 −ξF0 −m−1ÃbaT 2/ZN ,z(z), ÃbaT 2/ZN ,z̄(ρz) = ρξ

R
0 −ξF0 −m+1ÃaaT 2/ZN ,z̄(z),

(4.93)



ψ̃aaT 2/ZN ,+(ρz) = ρ−
ξR0
2
+
ξ
Fs
0
2 ψ̃aaT 2/ZN ,+(z), ψ̃aaT 2/ZN ,−(ρz) = ρ

ξR0
2
+
ξ
Fs
0
2

+1ψ̃aaT 2/ZN ,−(z),

ψ̃bbT 2/ZN ,+(ρz) = ρ−
ξR0
2
+
ξ
Fs
0
2 ψ̃bbT 2/ZN ,+(z), ψ̃bbT 2/ZN ,−(ρz) = ρ

ξR0
2
+
ξ
Fs
0
2

+1ψ̃bbT 2/ZN ,−(z),

ψ̃abT 2/ZN ,+(ρz) = ρ−
ξR0
2
+
ξ
Fs
0
2

+ξF0 +mψ̃abT 2/ZN ,+(z), ψ̃abT 2/ZN ,−(ρz) = ρ
ξR0
2
+
ξ
Fs
0
2

+ξF0 +m+1ψ̃abT 2/ZN ,−(z),

ψ̃baT 2/ZN ,+(ρz) = ρ−
ξR0
2
−
ξ
Fs
0
2

−ξF0 −m−1ψ̃baT 2/ZN ,+(z), ψ̃baT 2/ZN ,−(ρz) = ρ
ξR0
2
−
ξ
Fs
0
2

−ξF0 −mψ̃baT 2/ZN ,−(z).

(4.94)

Therefore, in order for Φ̃T 2/ZN (z) to satisfy Φ̃T 2/ZN (ρz) = Φ̃T 2/ZN (z), the following relations,

ξR0 = N − 1, ξF0 ≡ −m (mod N), ξFs0 ≡ ξR0 (mod N), (4.95)
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are needed. In particular, the total localized flux which Φab feels at zfp0 = 0 becomes

ξFtotal
0

N
=

1

2

ξFs0
N
δΦ,ψ +

ξF0
N

=
N − 1

2N
− m

N
+ ℓ0, ℓ0 ∈ Z, (4.96)

where ℓ0 comes from mod N property. Similarly, around a ZN singularity zfpI , in order for

Φ̃T 2/ZN (Z) to satisfy Φ̃T 2/ZN (ρZ) = Φ̃T 2/ZN (Z), the following relations

ξRI = N − 1, ξFI ≡ −χ(m)I (mod N), ξFsI ≡ ξRI (mod N), (4.97)

are needed and the total localized flux which Φab feels at zfpI becomes

ξFtotal
I

N
=

1

2

ξFsI
N
δΦ,ψ +

ξFI
N

=
N − 1

2N
−
χ(m)I

N
+ ℓI , ℓI ∈ Z. (4.98)

We note that the shift BCs are modified by

V (z + 1) = e2πi(1/2)eπi
Imz
Imτ V (z),

V (z + τ) = e2πi(1/2)eπi
Imτ̄z
Imτ V (z).

(4.99)

Hereafter, we consider the following lowest modes on the magnetized T 2/ZN with ZN charge

m,

ψ̃
(j+α1,ατ ),M

T 2/ZmN ,0
(z, τ) =V −m+ℓ0N(z)ψ

(j+α1,ατ ),M

T 2/ZmN ,0
(z, τ)

=e−
πM
2Imτ

|z|2
∣∣∣h( 12 , 12 ),1T 2 (z)

∣∣∣m−ℓ0N (
h
( 1
2
, 1
2
),1

T 2 (z)
)−m+ℓ0N

h
(j+α1,ατ ),M

T 2/ZmN ,0
(z)

≃e−
πM
2Imτ

|z|2|z|m−ℓ0NCj
0Nz

ℓ0N , (4.100)

Cj
0 =

 (h
( 1
2
, 1
2
),1

T 2 )(1)(0)∣∣∣(h( 12 , 12 ),1T 2 )(1)(0)
∣∣∣
−m+ℓ0N∑

j′

N ′
T 2/ZmN ,0,j′

(h
(j′+α1,ατ ),M

T 2,0 )(m)(0)

m!
, (4.101)

where we take the normalization condition,∫
T 2

dzdz̄
√
|det(2h)|ψ̃(j+α1,ατ ),M

T 2/ZmN ,0
(z, τ)ψ̃

(k+α1,ατ ),M

T 2/ZmN ,0
(z, τ) = δj,k. (4.102)

4.2.3 Wave functions on magnetized blow-up manifold

Now, let us see wave functions of the lowest modes on the magnetized blow-up manifold by

connecting smoothly ones on the magnetized T 2/ZN in Eq. (4.102), which become ones on the

bulk region, and ones on magnetized S2 in Eq. (4.28), which become ones on blow-up regions.

In the following, we consider blow-up of the singularity zfp0 = 0.

Due to the coordinate relation in Eq. (4.81), the junction condition is given by

ψ̃
(j+α1,ατ ),M

T 2/ZmN ,0
(z)

∣∣∣∣
z=reiφ/N

= ψ
M ′(−1)

S2,0 (z′)

∣∣∣∣
z′= r

N+1
eiφ
,

1

e−i
φ
N

dψ̃
(j+α1,ατ ),M

T2/Zm
N
,0

(z)

dz

∣∣∣∣
z=reiφ/N

= 1
N+1
N

e−iφ

dψM
′

S2,0
(z′)

dz′

∣∣∣∣
z′= r

N+1
eiφ
.

(4.103)
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From the non-holomorphic parts of wave functions, we obtain the following relations:

πr2

NImτ
M +

N − 1

2N
− m

N
+ ℓ0 =

N − 1

2N
M ′, (4.104)

for spinor fields and

πr2

NImτ
M − m

N
+ ℓ0 =

N − 1

2N
M ′, (4.105)

for scalar and vector fields. (Note that in the above result as well as the following analysis, we

can similarly obtain the results for scalar and vector cases by replacing the magnetic flux which

the spinor feels, M ′, with M ′ + 1, and then hereafter, we mainly discuss the spinor cases.) On

the other hand, from holomorphic parts, the holomorphic function on the blow-up region can

be determined as

hM
′

S2 (z′) = C ′j
0R

−ℓ0z′ℓ0 , C ′j
0 = Cj

0Nr
me−

πM
2Imτ

r2
(
N + 1

N − 1

) ℓ0
2
(
N + 1

2N

)−M′−1
2

. (4.106)

Therefore, wave functions on the magnetized blow-up manifold can be written as

ψjblow−up,0 =


(

R2

R2+|z′|2

)M′−1
2

C ′j
0R

−ℓ0z′ℓ0 (|z′| ≤ r
N+1

)

e−
πM
2Imτ

|z|2
∣∣∣h( 12 , 12 ),1T 2 (z)

∣∣∣m−ℓ0N (
h
( 1
2
, 1
2
),1

T 2 (z)
)−m+ℓ0N

h
(j+α1,ατ ),M

T 2/ZmN ,0
(z) (r ≤ |z|)

≃ e−
πM
2Imτ

|z|2|z|m−ℓ0NCj
0Nz

ℓ0N

.

(4.107)

To determine the normalization, we first calculate the following inner product,

Gij =

∫
blow−up manifold

dzdz̄
√
|det(2h)|ψiblow−up,0ψ

j
blow−up,0

= δi,j −
∫ r

0

d|z||z|
∫ 2π

N

0

dφ(Ci
0)

∗Cj
0N

2|z|2me−
πM
Imτ

|z|2

+

∫ r
N+1

0

d|z′||z′|
∫ 2π

0

dφ

(
2R2

R2 + |z′|2

)2(
R2

R2 + |z′|2

)M ′−1

(C ′i
0)

∗C ′j
0R

−2ℓ0|z′|2ℓ0

≃ δi,j + (Ci
0)

∗Cj
0π(r

2)m+1B0 , (4.108)

with

B0 ≃
(
N − 1

2N
(M ′ − ℓ0)

)−1 1−
∑ℓ0

p=0
Γ(M ′+1)

Γ(M ′−p+1)Γ(p+1)

(
N+1
2N

)M ′−p (N−1
2N

)p
Γ(M ′+1)

Γ(M ′−ℓ0+1)Γ(ℓ0+1)

(
N+1
2N

)M ′−ℓ0 (N−1
2N

)ℓ0 +

(
−m+ 1

N

)−1

.
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We show the detailed calculation in Appendix B.1. Then, we next perform the unitary trans-

formation for flavor index j,

ψj
′

blow−up,0 = Uj′jψ
j
blow−up,0,

U =
∏

J

(
UJ(J+1)

)
diag(e−iarg(C

j
0)),

UJ(J+1) =



1
. . .

cos θJ(J+1) − sin θJ(J+1)

sin θJ(J+1) cos θJ(J+1)

. . .

1


, tan2 θJ(J+1) =

∑J
I=1 |CI0 |2

|CJ+1
0 |2 .

(4.109)

Then, the inner product (G)i′j′ can be rewritten as

G ≃

1
. . .

1 +
∑

j |C
j
0 |2π(r2)m+1B0

 . (4.110)

Thus, by redefining the normalization factor for the last mode j′ = j′max as N ′j′max

T 2/ZN =

N j′max

T 2/ZN (1 +O((r2)m+1))−1/2, all of the above modes can be orthonormal basis.

So far, we have obtained zero mode wave functions on the magnetized blow-up manifold

by blowing up the singularity zfp0 = 0 in Eq. (4.107). (Hereafter, we call them bulk zero mode

wave functions.) We can also apply for blowing up another singularity zfpI by replacing z, m,

and (α1, ατ ) with Z, χ(m)I , and (β1, βτ ), respectively. In particular, Eqs. (4.104) and (4.105)

can be rewritten as

πr2I
NImτ

M +
N − 1

2N
−
χ(m)I

N
+ ℓI =

N − 1

2N
M ′, (4.111)

for spinor fields and

πr2I
NImτ

M −
χ(m)I

N
+ ℓ0 =

N − 1

2N
M ′, (4.112)

for scalar and vector fields. We discuss their physical meaning in the next subsection.

4.2.4 Physical meaning of the result from junction condition

In this subsection, we discuss the physical meaning of the results from the junction condition

in Eq. (4.111) as well as Eq. (4.112). By using the result in Eq. (4.96), they can be rewritten

as

πr2I
NImτ

M +
ξFtotal
I

N
=
N − 1

2N
M ′. (4.113)
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Now, we can find the physical meaning: the left-hand side shows the magnetic flux on the

cut-out cones from T 2/ZN including localized flux3, while the right-hand shows the magnetic

flux on the embedded part of S2. In other words, not only the curvature but also the magnetic

flux (which are topological invariant numbers) are not changed under the blow-up procedure.

In particular, in the orbifold limit rI → 0, the magnetic flux on the blow-up region corresponds

to the localized flux at zfpI indeed:

ξFtotal
I

N
=
N − 1

2N
M ′
∣∣∣∣
rI→0

. (4.114)

Moreover, since the blow-up manifold is a smooth manifold, we can apply the AS index

theorem for the magnetized blow-up models. We notice that the AS index theorem on a

general 2D compact smooth manifoldM2 [93, 108] has only flux contribution:

n+ − n− =
1

2π

∫
M2

F. (4.115)

Then, the AS index theorem on the blow-up manifold can be expressed as

nab+ − nab− =
1

2π

∫
blow−upmanifold

Fab (4.116)

=
1

2π

∫
T 2/ZN bulk

Fab +
∑
I

1

2π

∫
N−1
2N

×S2

F ′
ab (4.117)

=

(
M

N
−
∑
I

πr2I
NImτ

M

)
+
∑
I

N − 1

2N
M ′

I(rI) (4.118)

=

(
M

N
−
∑
I

πr2I
NImτ

M

)
+
∑
I

(
πr2I
NImτ

M +
ξFtotal
I

N

)
(4.119)

=
M

N
+
∑
I

ξFtotal
I

N
. (4.120)

We emphasize that the result does not depend on the blow-up radius rI . In other words, the

result still holds in the orbifold limit rI → 0:

nab+ − nab− =
1

2π

∫
T 2/ZN

F̃ab (4.121)

=
1

2π

∫
T 2/ZN

Fab +
∑
I

1

2π

∫
T 2/ZN

δFIab (4.122)

=
M

N
+
∑
I

ξFtotal
I

N
, (4.123)

3Since wave functions on the blow-up region are different for spinor case and scalar and vector cases because

of the curvature contribution, the results in Eqs. (4.111) and (4.112) seem to be inconsistent. However, due to

the additional U(1)s localized flux which only spinors feel, the contribution of it and the curvature contribution

for spinors are cancelled each other, and then it becomes consistent with scalar and vector cases.
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where Eqs. (4.121), (4.122), and (4.123) correspond to the limit of Eqs. (4.116), (4.117), and

(4.119), nothing but (4.120), respectively.4 Therefore, this can be regarded as the AS theorem

on the T 2/ZN orbifold and it is important that the index can be given by only the amount

of magnetic fluxes including localized fluxes which ψab± feels. Here, the localized fluxes are

determined by Eq. (4.98), which are related to the localized curvature and the winding numbers.

Then, this AS theorem can be rewritten as

nab+ − nab− =
M

N
+
∑
I

(
−
χ(m)I

N
+

1

2

ξRI
N

+ ℓI

)
=
M

N
−
V(m)

N
+ 1 +

∑
I

ℓI . (4.124)

Thus, when we take ℓI = 0, it corresponds to Eq. (3.52), which shows that the above result of

AS theorem is correct. However, the degree of freedom of localized fluxes ℓI , which comes from

mod N property in Eq. (4.97), shows that there also exists
∑

I ℓI number of chiral zero modes

on the blow-up manifold as well as the T 2/ZN orbifold. We will discuss the detailed physical

meaning in the next subsection.

4.2.5 Localized zero-mode wave functions

Now, let us see the new chiral zero mode wave functions due to the degree of freedom of localized

flux ℓI . In particular, we discuss ℓ0 ̸= 0 case.

First, we recall that the bulk zero mode wave functions on the bulk region near the fixed

point zfp0 = 0 and the blow-up region are proportional to zℓ0N and z′ℓ0 , respectively. Then,

it indicates that the new zero mode wave functions on the bulk region near zfp0 = 0 and the

blow-up region will be proportional to za0N and z′a0 for a0 = 0, ..., ℓ0− 1, respectively. We also

remind that the factor zℓ0N comes from the fact that the holomorphic function of the following

wave function,

ψNT 2/Z1
N
(z) ≡

(
ψ

( 1
2
, 1
2
),1

T 2/Z1
N
(z)
)N

=
(
ψ

( 1
2
, 1
2
),1

T 2 (z)
)N

, (4.125)

is proportional to zN near zfp0 = 0 though it is ZN invariant. Here, BCs of Eq. (4.125) are the

same as ones of wave functions with M = N , (α1, ατ ) ≡ (N
2
− [N

2
], N

2
− [N

2
]), and m = 0, i.e.,

ψ
(j+N

2
−[N

2
],N

2
−[N

2
]),N

T 2/Z0
N

(z), where [x] denotes the floor function. It means that wave functions

in Eq. (4.125) can be expanded by ψ
(j+N

2
−[N

2
],N

2
−[N

2
]),N

T 2/Z0
N

(z). Thus, if we construct other wave

function ψN
T 2/Z0

N
(z), which has the same BCs of ψ

(j+N
2
−[N

2
],N

2
−[N

2
]),N

T 2/Z0
N

(z), from a ZN invariant

(m = 0) mode, we can obtain new zero mode wave function whose holomorphic function is

4We note that in the orbifold limit rI → 0 (R → 0), the second term of Eq. (4.122) with the field strength

in Eq.(4.16) can be written by ∫
N−1
2N ×S2

iM ′
Iδ(z

′)δ(z̄′)dz′ ∧ dz̄′.
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proportional to za0N near zfp0 = 0 by replacing (ψN
T 2/Z1

N
(z))ℓ0−a0 with (ψN

T 2/Z0
N
(z))ℓ0−a0 . Actually,

we can know the zero mode number of ψ
(j+N

2
−[N

2
],N

2
−[N

2
]),N

T 2/Z0
N

(z) is just two, which means that there

exists the other zero mode different from Eq. (4.125). The result of ψN
T 2/Z0

N
(z) is the following:

ψNT 2/Z0
N
(z) ≡ e−

πN
2Imτ

|z|2hN0 (z)

≡



(
ψ

(0,0),1

T 2/Z0
N
(z)
)N

=
(
ψ

(0,0),1

T 2 (z)
)N

(N = 2, 4)(
ψ

( 1
6
, 1
6
),1

T 2/Z0
N
(z)
)N

=
(
ψ

( 1
6
, 1
6
),1

T 2 (z)
)N

(N = 3)(
ψ

(0,0),2

T 2/Z0
N
(0)ψ

(0,0),2

T 2/Z0
N
(z)
)N/2

(N = 6)

, (4.126)

with

ψ
(0,0),2

T 2/Z0
N
(z) =

√√
3 + 1

2
√
3
e−πi/8ψ

(0,0),2

T 2 (z) +

√√
3− 1

2
√
3
eπi/8ψ

(1,0),2

T 2 (z).

Therefore, the ℓ0 number of new chiral zero mode wave functions can be expressed as

ψ̃a0T 2/ZN ,+,0 ≡ N
a0
T 2/ZN

(
ψN
T2/Z0

N

(z)

ψN
T2/Z1

N

(z)

)ℓ0−a0
ψ̃

(α1,ατ )

T 2/ZmN ,+,0
(z)

≃ Ca0
0 N |z|m−ℓ0Ne−

πM
2Imτ

|z|2za0N ,

(4.127)

where the coefficient Ca0 is given by

Ca0
0 ≡ N a0

T 2/ZN

 hN0 (0)

((h
( 1
2
, 1
2
)

T 2 )(1)(0))N

ℓ0−a0∑
j

Cj
0 , a0 ∈ Z/ℓ0Z. (4.128)

Note that the non-holomorphic part of Eq. (4.127) does not change from that of Eq. (4.100),

which means that the new chiral zero mode wave functions (4.127) satisfy not only the same

BCs but also the same equation of motion with the bulk zero mode wave functions. These new

zero-modes diverge at the singular point zfp0 = 0, while they are suppressed as they go away

from the singular point, as shown in Figure 4.3.

Figure 4.3: Probability density of unnormalized zero mode wave function |ψ̃a0=ℓ0−1
T 2/Z4,+,0

|2.
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That is, the ℓ0 number of new zero modes correspond to localized modes around the singular

point zfp0 = 0. Similarly, there are ℓI number of zero modes around the singular point zfpI as

the localized modes. Therefore, there also exists
∑

I ℓI number of localized zero modes.

Although these localized modes in Eq. (4.127) diverge at zfp0 = 0, they can be regularized by

replacing the cone around zfp0 = 0 with the part of S2. Then, to calculate their normalization,

we consider their wave functions on the magnetized blow-up manifold. Similarly, by applying

the junction condition in Eq. (4.103), the wave functions, corresponding to localized modes, on

the magnetized blow-up manifold can be obtained as

ψa0blow−up,0 =



(
R2

R2+|z′|2

)M′−1
2

C ′a0
0 R

−a0z′a0 (|z′| ≤ r
N+1

)

e−
πM
2Imτ

|z|2
∣∣∣h( 12 , 12 ),1T 2 (z)

∣∣∣m−ℓ0N
N a0
T 2/ZN

(
hN0 (z)

(h
( 12 ,

1
2 )

T2 (z))N

)ℓ0−a0∑
j h̃

j(z) (r ≤ |z|)

≃ e−
πM
2Imτ

|z|2|z|m−ℓ0NCa0
0 Nz

a0N

,

(4.129)

where the coefficient C ′a0 is given by

C ′a0
0 = Ca0

0 Nr
m−(ℓ0−a0)Ne−

πM
2Imτ

r2
(
N + 1

N − 1

)a0
2
(
N + 1

2N

)−M′−1
2

. (4.130)

Furthermore, since these wave functions are suppressed as they go away from the orbifold

singular point and then the contributions of wave functions on the bulk region are tiny, we

assume that the approximation of wave functions on the bulk region near the singular point

zfp0 = 0 is valid on bulk region anywhere and also we expand the integral region to |z| → ∞.

Under the assumptions, it turns out that the ℓ0 number of new zero modes are orthogonal to

each other and also orthogonal to all of the bulk zero modes by using the following results:∫ 2π
N

0

darg(z) zkN = 0,

∫ 2π

0

darg(z′) z′
k
= 0, (k ̸= 0). (4.131)

Thus, the normalization of localized modes can be determined in the following way:

1 =

∫
blow−up manifold

dzdz̄
√
|det(g)||ψa0blow−up,0|

2

≃
∫ ∞

r

d|z||z|
∫ 2π

N

0

dφ|Ca0
0 |2N2|z|2(m−(ℓ0−a0)N)e−

πM
Imτ

|z|2

+

∫ r
N+1

0

d|z′||z′|
∫ 2π

0

dφ

(
2R2

R2 + |z′|2

)2(
R2

R2 + |z′|2

)M ′−1

|C ′a0
0 |2R−2a0|z′|2a0

≃ |Ca0
0 |

2 π

(
1

r2

)(ℓ0−a0)N−(m+1)
[
N

(
− πM

Imτ
r2
)(ℓ0−a0)N−(m+1)

[(ℓ0 − a0)N − (m+ 1)]!
E1

(
πM

Imτ
r2
)
+ L0

]
, (4.132)
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with

L0 ≃
(
N − 1

2N
(M ′ − a0)

)−1 1−
∑a0

p=0
M ′!

(M ′−p)!p!

(
N+1
2N

)M ′−p (N−1
2N

)p
M ′!

(M ′−a0)!a0!

(
N+1
2N

)M ′−a0 (N−1
2N

)a0 +

(
(ℓ0 − a0)−

m+ 1

N

)−1

,

where E1 denotes the exponential integral. The detailed calculation of Eq. (4.132) is shown in

Appendix B.2. Therefore, we obtained normalizable zero mode wave functions in Eq. (4.129)

and they correspond to localized modes under the orbifold limit r → 0. Similarly, we can apply

the above analysis for localized modes around other orbifold singular points by replacing z, m,

and (α1, ατ ) with Z, χ(m)I , and (β1, βτ ), respectively.

Finally, we comment for three-point couplings of bulk zero modes as well as localized modes

on the magnetized blow-up manifold. When we denote bulk zero-modes and localized zero-

modes shortly as B and L, respectively, only three patterns of three-point couplings: (i) B1-

B2-B3 coupling, (ii) L1-L2-L3 coupling, and (iii) B1-L2-L3 coupling, can become non-vanishing

three-point couplings5. These three-point couplings can be similarly calculated by applying the

calculation of normalization.

5This selection rule may come from conservation of angular momentum.
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Chapter 5

Summary and discussions

We summarize this paper. We have considered ten-dimensional N = 1 U(N) supersymmetric

Yang-Mills theory on M4 × X2 × X2 × X3 with background magnetic fluxes on each two-

dimensional compact space Xi (i = 1, 2, 3) as the effective field theory of magnetized D-brane

models in type-IIB superstring theory. As the two-dimensional compact space, we have consid-

ered two-dimensional torus T 2 in chapter 2, its ZN twisted orbifold T 2/ZN in chapter 3, and

furthermore blow-up manifolds of the T 2/ZN orbifold which are constructed by replacing the

orbifold singularities with parts of two-dimensional sphere S2 in chapter 4.

In chapters 2 and 3, we have discussed the modular symmetry in magnetized torus and

torus orbifold models. (The detailed calculations related to the modular symmetry are in

Appendix A.) In particular, we have found the followings.

• When the magnetic flux M on the magnetized T 2 is even (odd) and the Scherk-Schwarz

phases (α1, ατ ) = (0, 0) ((α1, ατ ) = (1/2, 1/2)), M number of bi-fundamental chiral zero

modes behave as “modular forms” of weight 1/2 for Γ̃(2M) (Γ̃(8M)) and then they

transform under Γ̃2M ≡ Γ̃/Γ̃(2M) (Γ̃8M ≡ Γ̃/Γ̃(8M)) non-trivially.

• In addition, T 2/Z2 orbifold also has the same modular symmetry as T 2 and both Z2-

even (m = 0) and odd modes (m = 1) are closed independently under the “modular

transformation”. In other words, the M number of zero modes on the magnetized T 2 can

be decomposed into smaller representations on the magnetized T 2/Z2 orbifold.

• In particular, three-generational zero modes with (M ;α1, ατ ;m) = (4; 0, 0; 0), (8; 0, 0; 1)

transform as three-dimensional representations of modular ∆̃(6M2) group (which is the

quadruple covering group of ∆(6M2)), while three-generational zero modes with (M ;α1, ατ )

= (5; 1/2, 1/2; 1), (7; 1/2, 1/2; 0) transform as three-dimensional representations of modu-

lar PSL(2,ZM)× Z8 group.

• Along with the “modular transformation” for wave functions on the magnetized T 2 as

well as T 2/Z2 orbifold, the four-dimensional fields also transform non-trivially under the
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metapletic finite modular group Γ̃2M (Γ̃8M) with modular weight −k = −1/2. Then, we
can find that the kinetic terms are modular invariant.

• Furthermore, since coupling coefficients in the four-dimensional effective field theory such

as Yukawa couplings can be obtained from overlap integration of wave functions on the

magnetized T 2 as well as T 2/Z2 orbifold, we can also find the modular transformation for

them. Note that the obtained couplings are couplings in a global supersymmetric theory

and they are related to the (holomorphic) couplings in supergravity theory through Kähler

potential. In particular, holomorphic three-point couplings become modular forms of

weight 1/2 for Γ̃(2lcm(Mab,M bc,M ca)) and then they transform under Γ̃2lcm(Mab,Mbc,Mca)

non-trivially, where MAB (A,B = a, b, c) denote the magnetic fluxes which coupling

fields feel. By combining the modular transformation for the four-dimensional fields, we

have found that the holomorphic superpotential of the three-point couplings has modular

weight −1, which is consistent within the supergravity theory. Through the Kähler po-

tential of the modulus on T 2 as well as T 2/Z2, we can obtain the couplings in the global

symmetric four-dimensional effective theory and then we can find that their coupling

terms are also modular invariant.

• However, when we consider non-perturbative effects such as Majorana neutrino mass

terms derived from D-brane instanton effects, some parts of the modular symmetry which

a classical action has can be broken. For example, the Majorana neutrino mass terms are

not modular invariant by the modular transformation for measures of D-brane instanton

zero modes which are integrated out. (We discuss, in Appendix C, which parts of discrete

symmetries can be anomalous.)

In addition, we have discussed the magnetized blow-up manifold compactification in chap-

ter 4. In particular, we have obtained wave functions on the blow-up manifold by replacing

around orbifold singularities like cones with parts of S2 not to modify the topological invariant

numbers: curvature and magnetic fluxes. In addition, since the blow-up manifold is a smooth

two-dimensional manifold, we can apply the Atiyah-Singer index theorem on the blow-up man-

ifold, and then we have found that the chiral zero mode numbers on not only the blow-up

manifold but also the orbifold, by taking orbifold limits, are determined only by the magnetic

fluxes including localized fluxed at the orbifold singularities. Moreover, the Atiyah-Singer index

theorem on the T 2/ZN orbifold also shows that the additional degree of freedom of localized

fluxes gives additional new chiral zero modes. We have found that the additional new zero

modes correspond to localized modes around orbifold singularities. (The detailed calculations

of normalizations of their zero mode wave functions on the magnetized blow-up manifold are

in Appendix B.)

Since coupling coefficients such as Yukawa couplings are obtained from overlap integration

of wave functions, it is important to clear the wave functions on the compact space and their

properties such as symmetries to understand the structure of couplings such as flavor structure.

Then, I would like to study followings for the future.
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• We have found the modular groups and the representations as well as modular weight of

four-dimensional fields obtained from the magnetized T 2 as well as T 2/Z2 orbifold com-

pactifications. They are determined by the magnetic flux and the fact that the modular

weight is 1/2. However, it has not been clear that the reason why the modular weight is

1/2. I would like to reveal it elsewhere.

• I would also like to explore the detailed properties of wave functions on magnetized blow-

up manifolds such as the modular symmetry.

• It is important to extend those analyses to more higher-dimensional toroidal orbifolds

such as T 4/ZN and T 6/ZN , and also their blow-up manifolds. Then, we may analytically

find phenomena on the Calabi-Yau manifold indirectly for the future.

• Moreover, to determine the flavor structure, we should fix the value of the modulus, called

the modulus stabilization. Actually, the modulus stabilization was studied in supergravity

theory (with some assumptions) in Refs. [109, 110]. Then, it is important to consider

not only ten-dimensional supersymmetric Yang-Mills theory but also ten-dimensional

supergravity theory as the effective field theory of the superstring theory. I would also

like to reveal properties such as the modular symmetry of the four-dimensional effective

field theory of not only ten-dimensional supersymmetric Yang-Mills theory but also the

supergravity theory in concrete compactifications such as toroidal orbifolds as well as their

blow-up manifolds with background magnetic fluxes and three-form fluxes. Furthermore,

by applying those results, I would like to determine the structure of coupling coefficients

such as Yukawa couplings without any assumptions for the future.
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Appendix A

Modular symmetry on magnetized T 2

and T 2/Z2 orbifold

A.1 Modular transformation for wave functions on mag-

netized T 2

Here, we show the detailed calculations of “modular transformation” for wave functions on the

magnetized T 2.

First, let us show the explicit calculation of Eq. (2.163) in the following:

ψ
(j+α1,{ατ+α1+M/2}),M
T 2,0 (z, τ + 1)

=e−
πM

2Im(τ+1)
|z|2(M)1/4e2πi

j+α1
M

{ατ+α1+M/2}e
πM

2Im(τ+1)
z2ϑ

[ j+α1

M

−{ατ + α1 +M/2}

]
(Mz,M(τ + 1))

=e−
πM
2Imτ

|z|2(M)1/4e2πi
j+α1
M

{ατ+α1+M/2}e
πM
2Imτ

z2
∑
l∈Z

eπiM(τ+1)( j+α1M
+l)

2

e2πi(Mz−{ατ+α1+M/2})( j+α1M
+l)

=eπiM( j+α1M )
2

e−
πM
2Imτ

|z|2(M)1/4e2πi
j+α1
M

ατ e
πM
2Imτ

z2

×
∑
l∈Z

eπiMτ( j+α1M
+l)

2

e2πi(Mz−ατ )( j+α1M
+l)e2πi((j+α1)+M/2+ατ−(ατ+α1+M/2)+[ατ+α1+M/2])l

=eπiM( j+α1M )
2

e−
πM
2Imτ

|z|2(M)1/4e2πi
j+α1
M

ατ e
πM
2Imτ

z2
∑
l∈Z

eπiMτ( j+α1M
+l)

2

e2πi(Mz−ατ )( j+α1M
+l)

=eπiM( j+α1M )
2
(
e−

πM
2Imτ

|z|2(M)1/4e2πi
j+α1
M

ατ e
πM
2Imτ

z2ϑ

[ j+α1

M

−ατ

]
(Mz,Mτ)

)
=

M−1∑
j′=0

eπi
(j+α1)

2

M δj,j′ψ
(j′+α1,ατ ),M

T 2,0 (z, τ). (A.1)

91



On the other hand, the explicit calculation of Eq. (2.162) is the following:

ψ
(j+{1−ατ},α1),M

T 2,0

(
−z
τ
,−1

τ

)
=e

− πM

2Im(− 1
τ )
|− z

τ |
2

(M)1/4e2πi
j+{1−ατ }

M
α1e

πM

2Im(− 1
τ )
(− z

τ )
2

ϑ

[
j+{1−ατ}

M

−α1

](
−M z

τ
,−M 1

τ

)
=e−

πM
2Imτ

|z|2(M)1/4e2πi
j+{1−ατ }

M
α1e

πM
2Imτ

z2e−πiM
z2

τ

∑
l∈Z

e−πiM
1
τ (

j+{1−ατ }
M

+l)
2

e2πi(−M
z
τ
−α1)( j+{1−ατ }

M
+l)

=e−
πM
2Imτ

|z|2(M)1/4e
πM
2Imτ

z2
∑
l∈Z

e−πi
M
τ (z+

j+{1−ατ }
M

+l)
2

e−2πiα1l

=− (−τ)1/2
M−1∑
j′=0

−eπi/4√
M

e−
πM
2Imτ

|z|2(M)1/4e
πM
2Imτ

z2
∑
l′∈Z

e
πiMτ

(
j′+α1
M

+l′
)2

e
2πiM(z+ j+{1−ατ }

M )
(
j′+α1
M

+l′
)

(A.2)

=− (−τ)1/2
M−1∑
j′=0

−eπi/4√
M

e2πi
(j+{1−ατ })(j′+α1)

M e−
πM
2Imτ

|z|2(M)1/4e2πi
j′+α1
M

ατ e
πM
2Imτ

z2

×
∑
l′∈Z

e
πiMτ

(
j′+α1
M

+l′
)2

e
2πi(Mz−ατ )

(
j′+α1
M

+l′
)
e2πi(j+1−ατ−[1−ατ ]+ατ )l′

=− (−τ)1/2
M−1∑
j′=0

−eπi/4√
M

e2πi
(j+{1−ατ })(j′+α1)

M

× e−
πM
2Imτ

|z|2(M)1/4e2πi
j′+α1
M

ατ e
πM
2Imτ

z2
∑
l′∈Z

e
πiMτ

(
j′+α1
M

+l′
)2

e
2πi(Mz−ατ )

(
j′+α1
M

+l′
)

=− (−τ)1/2
M−1∑
j′=0

−eπi/4√
M

e2πi
(j+{1−ατ })(j′+α1)

M

(
e−

πM
2Imτ

|z|2(M)1/4e2πi
j′+α1
M

ατ e
πM
2Imτ

z2ϑ

[
j′+α1

M

−ατ

]
(Mz,Mτ)

)

=− (−τ)1/2
M−1∑
j′=0

−eπi/4√
M

e2πi
(j+{1−ατ })(j′+α1)

M ψ
(j′+α1,ατ ),M

T 2,0 (z, τ). (A.3)

Here, in Eq. (A.2), we used the Poisson resummation:∑
l∈Z

f(l) =
∑
n∈Z

f̂(n), (A.4)

where f̂ denotes the Fourier mode of a function f ,

f̂(k) =

∫ ∞

−∞
dxf(x)e−2πikx.

Specifically, when we set

f(x) = e−πi
M
τ (z+

j+{1−ατ }
M

+x)
2

e−2πiα1x,
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we obtain

f̂(k) =

∫ ∞

−∞
dxe−πi

M
τ (z+

j+{1−ατ }
M

+x)
2

e−2πi(k+α1)x

=eπi
τ
M

(k+α1)2e2πi(z+
j+{1−ατ }

M )(k+α1)

∫ ∞

−∞
dxe−πi

M
τ (z+

j+{1−ατ }
M

+x+k+α1)
2

=eπiτ
(k+α1)

2

M e2πi(z+
j+{1−ατ }

M )(k+α1)

∫ ∞

−∞
dye−πi

M
τ
y2

=− (−τ)1/2−e
πi/4

√
M

eπiMτ( k+α1M )
2

e2πi(z+
j+{1−ατ }

M )(k+α1),

and then we can obtain∑
l∈Z

e−πi
M
τ (z+

j+{1−ατ }
M

+l)
2

e−2πiα1l

=− (−τ)1/2
M−1∑
j′=0

∑
l′∈Z

−eπi/4√
M

e
πiMτ

(
j′+α1
M

+l′
)2

e
2πiM(z+ j+{1−ατ }

M )
(
j′+α1
M

+l′
)
, (A.5)

where we redefined n ≡Ml′ + j′ (j′ = 0, ...,M − 1).

The detailed calculations of Eqs. (2.166)-(2.171) and (2.174)-(2.180) are as follows:

ρ
(α,α)

T 2 (S̃)2jj′′ =
eπi/2

M

M−1∑
j′=0

e2πi
(j′+α)((j+α)+(j′′+α))

M = e2πiαeπi/2δM−(j+α),(j′′+α), (A.6)

ρ
(α,α)

T 2 (S̃)4jj′ =−
M−1∑
j′′=0

δM−(j+α),(j′′+α)δ(j′′+α),M−(j′+α) = −δj,j′ , (A.7)

ρ
(α,α)

T 2 (S̃)8jj′ =δj,j′ , (A.8)

[ρ
(α,α)

T 2 (S̃)ρ
(α,α)

T 2 (T̃ )]3jj′′′

=
−e3πi/4

M
√
M

∑
j′,j′′

e2πi
(j+α)(j′+α)

M eπi
(j′+α)2
M e2πi

(j′+α)(j′′+α)
M eπi

(j′′+α)2
M e2πi

(j′′+α)(j′′′+α)
M eπi

(j′′′+α)2
M

=
−e3πi/4

M
√
M

M−1∑
j′,j′′=0

eπi
((j′+α)+(j′′+α)+(j′′′+α))2

M e2πi
(j′+α)(j−j′′′)

M

=
1

M

M−1∑
j′=0

e2πi
(j′+α)(j−j′′′)

M (A.9)

=δj,j′′′ , (A.10)

ρ
(0,0)

T 2 (T̃ )2Mjj′ =e2πiM
j2

M δj,j′ = δj,j′ , (α = 0), (A.11)

ρ
( 1
2
, 1
2
)

T 2 (T̃ )Mjj′ =e
πiM

(j+1
2 )2

M δj,j′ = eπi/4δj,j′ , ρ
( 1
2
, 1
2
)

T 2 (T̃ )8Mjj′ = δj,j′ , (α =
1

2
), (A.12)
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[ρ
(α,α)

T 2 (S̃)2ρ
(α,α)

T 2 (T̃ )]jj′ =
M−1∑
j′′=0

eπi/2δM−(j+α),(j′′+α)e
πi

(j′′+α)2
M δj′′,j′

=
M−1∑
j′′=0

eπi
(j′′+α)2

M δj′,j′′e
πi/2δ(j′′+α),M−(j+α)

=[ρ
(α,α)

T 2 (T̃ )ρ
(α,α)

T 2 (S̃)2]j′j, (A.13)

where α = α1 = ατ = 0, 1/2 for M =even, odd, respectively. Here, in Eq. (A.9), we used the

Landsberg-Schaar relation:

1
√
p

p−1∑
n=0

e
πin2q
p =

eiπ/4
√
q

q−1∑
n=0

e−
πin2p
q . (A.14)

A.2 ∆̃(6M 2) as subgroup of Γ̃2M

Here, we prove that when the generators of Γ̃2M :

S̃2T̃ = T̃ S̃2, S̃4 = e2πi(k/2)1, S̃8 = (S̃T̃ )3 = T̃ 2M = 1, (A.15)

further satisfy Eq. (3.70):

(S̃−1T̃−1S̃T̃ )3 = 1, (A.16)

the generators in Eq. (3.71):

a = S̃T̃ 2S̃5T̃ 4, a′ = S̃T̃ 2S̃−1T̃−2, b = T̃
M
2
+3S̃

3
2
M+3T̃M , c = S̃T̃M−2S̃T̃

3
2
M−1, (A.17)

in particular for M ∈ 4Z, become the generators of the subgroup of Γ̃2M , ∆̃(6M2) ≃ (ZM ×
ZM)⋊ Z3 ⋊ Z8:

aM = a′M = b3 = c8 = 1, (A.18)

aa′ = a′a, cbc−1 = b−1, bab−1 = a−1a′−1, ba′b−1 = a, cac−1 = a′−1, ca′c = a−1,

where a(
′), b, c denote ones of Z(′)

M , Z3, Z8, respectively. Note that when k/2 = integer [even],

that is, S̃ and T̃ are generators of Γ′
2M [Γ2M ], we can similarly prove that the generators

in Eq. (A.17) satisfy Eq. (A.18) replacing c8 = 1 with c4 = 1 [c2 = 1], which means that

they become the generators of the subgroup of Γ′
2M [Γ2M ], ∆′(6M2) ≃ (ZM × ZM) ⋊ Z3 ⋊ Z4

[∆(6M2) ≃ (ZM × ZM)⋊ Z3 ⋊ Z2].

First, by using Eqs. (A.15), Eq. (A.16) can be rewritten1 as

1 = (S̃−1T̃−1S̃T̃ )3

= (T̃ S̃T̃ S̃S̃T̃ )3

= (T̃ S̃3T̃ 2)3

= (S3T 3)3. (A.19)

1When k/2 ∈ Z and M = 1, 2, we can check that Eq. (A.16) is already satisfied.
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By using Eqs. (A.15) and (A.19), the generator a′ can be rewritten as

a′ = S̃T̃ 2S̃−1T̃−2

= S̃T̃ 3T̃−1S̃−1T̃−1T̃−1

= S̃T̃ 3S̃T̃ S̃T̃−1

= S̃−2S̃3T̃ 3S̃3T̃ 3T̃−1T̃−1S̃−1T̃−1

= T̃−3S̃−3T̃−1S̃−1T̃ S̃

= T̃−3T̃ S̃T̃ T̃ S̃−1

= T̃−2S̃T̃ 2S̃−1. (A.20)

Then, we can obtain the relation,

S̃T̃ 2pS̃−1T̃ 2q = (S̃T̃ 2S̃−1)pT̃ 2q = T̃ 2qS̃T̃ 2pS−1, p, q ∈ Z, (A.21)

in general. Similarly, by using this relation, the generator a can be rewritten as

a = S̃T̃ 2S̃5T̃ 4

= T̃ 4S̃T̃ 2S̃5. (A.22)

Thus, we can prove the following relations,

aM = S̃−2M T̃ 4M S̃T̃ 2M S̃−1 = 1, a′M = T̃−2M S̃T̃ 2M S̃−1 = 1, (A.23)

aa′ = S̃T̃ 4S̃5T̃ 2 = a′a, (A.24)

where we also use Eq. (A.15) with M ∈ 4Z. 2 Furthermore, from Eqs. (A.15) and (A.19), we

also obtain

1 = (T̃ 3S̃3T̃ 3S̃3T̃ 3S̃3)(S̃T̃ S̃T̃ S̃T̃ )

= T̃ 3S̃3T̃ 3S̃3T̃ 4S̃T̃ S̃T̃ S̃4

= T̃−2T̃ 5S̃5T̃ 5S̃5T̃ 5T̃−1S̃−1T̃−1S̃−1T̃ S̃4

= T̃−2T̃ 5S̃5T̃ 5S̃5T̃ 5S̃5T̃ 2

= (S̃5T̃ 5)3. (A.25)

Then, we can prove

(S̃2n−1T̃ 2n−1)3 = 1, n ∈ N, (A.26)

2It is because S̃−2M = 1, which is satisfied only if M ∈ 4Z. However, when k/2 ∈ Z, it is satisfied even if

M = 2(2s− 1) (s ∈ Z).
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on the mathematical induction. Thus, we can prove the other relations in Eq. (A.18),

b3 = (T̃
M
2
+3S̃

3
2
M+3T̃M)3

= T̃
M
2
+3(S̃

3
2
M+3T̃

3
2
M+3)3T̃−M

2
−3

= 1, (A.27)

c2 = S̃T̃M−2S̃T̃
3
2
M−1S̃T̃M−2S̃T̃

3
2
M−1

= S̃T̃M−2S̃−1T̃−1S̃−1T̃−1T̃M−1S̃M−1T̃M−1S̃−M+6

= S̃T̃M−2T̃ S̃S̃−M+1T̃−M+1S̃−M+1S̃−M+6

= S̃−M+2, (A.28)

c4 = S̃4, (A.29)

c8 = 1, (A.30)

cbc−1 = (S̃T̃M−2S̃T̃
3
2
M−1)(T̃

M
2
+3S̃

3
2
M+3T̃M)(T̃− 3

2
M+1S̃−1T̃−M+2S̃−1)

= S̃T̃M−2S̃T̃ 2S̃
3
2
M+3T̃−M

2
+1S̃−1T̃−M+2S̃−1

= S̃
3
2
M+4T̃ 2S̃T̃

M
2
−1S̃−1T̃−M+2S̃−1

= S̃
3
2
M+6T̃ 2S̃−1T̃−1S̃−1T̃−M+2S̃−1T̃

M
2

= S̃
3
2
M+6T̃ 3S̃T̃−M+3S̃−1T̃

M
2

= S̃
3
2
M T̃−M T̃−M+3S̃−M+3T̃−M+3S̃−M+3T̃−M+3T̃−M

2
−3

= T̃−M S̃− 3
2
M−3T̃−M

2
−3

= b−1, (A.31)
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bab−1 = (T̃
M
2
+3S̃

3
2
M+3T̃M)(S̃T̃ 2S̃5T̃ 4)(T̃−M S̃− 3

2
M−3T̃−M

2
−3)

= S̃
3
2
M+4T̃

M
2
+5S̃5T̃ 4S̃− 3

2
M−3T̃−M

2
−3

= T̃ 5S̃5T̃ 5T̃−1S̃−1T̃−1T̃−2S̃2

= S̃−5T̃−5S̃−5S̃T̃ S̃T̃−2S̃2

= S̃−5T̃−4S̃−1T̃−2

= T̃−2S̃−5T̃−4S̃−1

= a−1a′−1, (A.32)

ba′b−1 = (T̃
M
2
+3S̃

3
2
M+3T̃M)(S̃T̃ 2S̃−1T̃−2)(T̃−M S̃− 3

2
M−3T̃−M

2
−3)

= T̃
M
2
+3S̃−1T̃−2S̃T̃−M

2
−1

= T̃ 4T̃−1S̃−1T̃−1T̃−1S̃−1T̃−1S̃2

= T̃ 4S̃T̃ S̃S̃T̃ S̃S̃2

= T̃ 4S̃T̃ 2S̃5

= S̃T̃ 2S̃5T̃ 4

= a, (A.33)

cac−1 = (S̃T̃M−2S̃T̃
3
2
M−1)(S̃T̃ 2S̃5T̃ 4)(T̃ 1− 3

2
M S̃−1T̃ 2−M S̃−1)

= S̃T̃M−2S̃−1T̃−1S̃−1T̃ 2S̃5T̃ 5S̃T̃ 2−M S̃

= S̃T̃M−1S̃T̃ 3S̃5T̃ 5S̃T̃ 2−M S̃

= S̃T̃M−1S̃T̃−2S̃−5T̃−3−M S̃−3

= S̃−1T̃−1S̃T̃ T̃−3S̃−3T̃−3S̃−3

= T̃ S̃T̃ 2S̃5T̃ 3

= T̃ 2T̃ S̃T̃ 2S̃T̃ S̃4

= T̃ 2S̃T̃−2S̃−1

= a′−1, (A.34)

ca′c−1 = (S̃T̃M−2S̃T̃
3
2
M−1)(S̃T̃ 2S̃−1T̃−2)(T̃ 1− 3

2
M S̃−1T̃ 2−M S̃−1)

= S̃T̃M−2S̃−1T̃−1S̃−1T̃ 2S̃−1T̃−1S̃−1T̃ 2−M S̃3

= S̃T̃M−1S̃T̃ 4S̃T̃ 3−M S̃3

= S̃3T̃ 3S̃3T̃ 3T̃ S̃T̃−1S̃−1

= T̃−3S̃−3T̃ S̃T̃−1S̃−1

= T̃−4S̃−5T̃−2S̃−1

= a−1. (A.35)

Therefore, when Eq. (A.16) is also satisfied in addition to Eq. (A.15), particularly for M ∈ 4Z,
the generators in Eq. (A.17) become generators of ∆̃(6M2) ≃ (ZM × ZM)⋊ Z3 ⋊ Z8, which is
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the subgroup of Γ̃2M .
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Appendix B

Normalization of wave functions on

magnetized blow-up manifold

B.1 Normalization of bulk zero modes

Here, we show the detailed calculation of Eq. (4.108). It consists of three terms. The first term

comes from all regions of the original T 2/ZN orbifold. The second term comes from the region

of the cone around zfp0 = 0 which is cut out from the T 2/ZN orbifold. The third term comes

from the region of the part of S2 which is embedded instead of the cone. In the following, we

show the detailed calculation of the second and third terms.

The second term can be calculated as

G
(2)
ij ≡

∫ r

0

d|z||z|
∫ 2π

N

0

dφ(Ci
0)

∗Cj
0N

2|z|2me−
πM
Imτ

|z|2

= (Ci
0)

∗Cj
0πN

(
πM

Imτ

)−(m+1) ∫ πM
Imτ

r2

0

d

(
πM

Imτ
|z|2
)(

πM

Imτ
|z|2
)m

e−(
πM
Imτ

|z|2)

= (Ci
0)

∗Cj
0πN

(
πM

Imτ

)−(m+1) ∫ πM
Imτ

r2

0

dt t(m+1)−1e−t

= (Ci
0)

∗Cj
0πN

(
πM

Imτ

)−(m+1)

γ

(
m+ 1,

πM

Imτ
r2
)
,

where γ(m+ 1, πM
Imτ

r2) denotes the lower incomplete gamma function. It satisfies the following

recurrence relation:

γ
(
m+ 1, πM

Imτ
r2
)
= mγ

(
m, πM

Imτ
r2
)
−
(
πM
Imτ

r2
)m

e−(
πM
Imτ

r2)

γ
(
1, πM

Imτ
r2
)
= 1− e−(

πM
Imτ

r2) .

99



By solving this recurrence relation, γ(m+ 1, πM
Imτ

r2) can be expressed as

γ

(
m+ 1,

πM

Imτ
r2
)

= m!e−
πM
Imτ

r2

[
e
πM
Imτ

r2 −
m∑
p=0

1

p!

(
πM

Imτ
r2
)p]

= e−
πM
Imτ

r2 1

m+ 1

(
πM

Imτ
r2
)m+1 ∞∑

p=0

(m+ 1)!

(m+ 1 + p)!

(
πM

Imτ
r2
)p

.

Thus, the second term G
(2)
ij can be written by

G
(2)
ij = (Ci

0)
∗Cj

0π(r
2)m+1e−

πM
Imτ

r2
(
m+ 1

N

)−1 ∞∑
p=0

(m+ 1)!

(m+ 1 + p)!

(
πM

Imτ
r2
)p

. (B.1)

On the other hand, the third term can be calculated as

G
(3)
ij ≡

∫ r
N+1

0

d|z′||z′|
∫ 2π

0

dφ

(
2R2

R2 + |z′|2

)2(
R2

R2 + |z′|2

)
(C ′i

0)
∗C ′j

0R
−2ℓ0|z′|2ℓ0

=(C ′i
0)

∗C ′j
04πR

2

×
∫ 1

N+1
2N

d

(
R2

R2 + |z′|2

)(
1− R2

R2 + |z′|2

)ℓ0 ( R2

R2 + |z′|2

)M ′−ℓ0−1

=(Ci
0)

∗Cj
0N

2(r2)me−
πM
Imτ

r2
(
N + 1

N − 1

)ℓ0 ( 2N

N + 1

)M ′−1

4π

(
r2

(N − 1)(N + 1)

)
×

(∫ 1

0

dt t(M
′−ℓ0)−1(1− t)(ℓ0+1)−1 −

∫ N+1
2N

0

dt t(M
′−ℓ0)−1(1− t)(ℓ0+1)−1

)

=(Ci
0)

∗Cj
0π(r

2)m+1e−
πM
Imτ

r2
(

2N

N + 1

)M ′−ℓ0 ( 2N

N − 1

)ℓ0+1

×
(
β(M ′ − ℓ0, ℓ0 + 1)− βN+1

2N
(M ′ − ℓ0, ℓ0 + 1)

)
,

where β(M ′− ℓ0, ℓ0+1) and βN+1
2N

(M ′− ℓ0, ℓ0+1) denote the beta function and the incomplete

beta function, respectively. They satisfy the following recurrence relations:

β(M ′ − ℓ0, ℓ0 + 1) = ℓ0
M ′−ℓ0βN+1

2N
(M ′ − ℓ0 + 1, ℓ0)

β(M ′, 1) = 1
M ′

,

βN+1
2N

(M ′ − ℓ0, ℓ0 + 1) = 1
M ′−ℓ0

(
ℓ0βN+1

2N
(M ′ − ℓ0 + 1, ℓ0) +

(
N+1
2N

)M ′−ℓ0 (N−1
2N

)ℓ0)
βN+1

2N
(M ′, 1) = 1

M ′

(
N+1
2N

)M ′ .
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By solving these recurrence relations, they can be expressed as

β(M ′ − ℓ0, ℓ0 − 1) =
Γ(M ′ − ℓ0)Γ(ℓ0 + 1)

Γ(M ′ + 1)
,

βN+1
2N

(M ′ − ℓ0, ℓ0 − 1) =
Γ(M ′ − ℓ0)Γ(ℓ0 + 1)

Γ(M ′ + 1)

×
ℓ0∑
p=0

Γ(M ′ + 1)

Γ(M ′ − p+ 1)Γ(p+ 1)

(
N + 1

2N

)M ′−p(
N − 1

2N

)p
,

respectively. Here, Γ(X) denotes the gamma function, which satisfies the recurrence relation

Γ(X + 1) = XΓ(X).

Thus, the third term G
(3)
ij can be written by

G
(3)
ij =(Ci

0)
∗Cj

0π(r
2)m+1e−

πM
Imτ

r2
(
N − 1

2N
(M ′ − ℓ0)

)−1

×
1−

∑ℓ0
p=0

Γ(M ′+1)
Γ(M ′−p+1)Γ(p+1)

(
N+1
2N

)M ′−p (N−1
2N

)p
Γ(M ′+1)

Γ(M ′−ℓ0+1)Γ(ℓ0+1)

(
N+1
2N

)M ′−ℓ0 (N−1
2N

)ℓ0 . (B.2)

By combining those results, we obtain Eq. (4.108).

B.2 Normalization of localized zero modes

Here, we show the detailed calculation in Eq. (4.132). The first term comes from the bulk

region, while the second term comes from the blow-up region. The first term can be calculated

as ∫ ∞

r

d|z||z|
∫ 2π

N

0

dφ|Ca0
0 |2N2|z|2(m−(ℓ0−a0)N)e−

πM
Imτ

|z|2

= |Ca0
0 |

2 πN

(
πM

Imτ

)(ℓ0−a0)N−(m+1) ∫ ∞

πM
Imτ

r2
d

(
πM

Imτ
|z|2
)(

πM

Imτ
|z|2
)m−(ℓ0−a0)N

e−(
πM
Imτ

|z|2)

= |Ca0
0 |

2 πN

(
πM

Imτ

)(ℓ0−a0)N−(m+1) ∫ ∞

πM
Imτ

r2
dt tm−(ℓ0−a0)Ne−t

= |Ca0
0 |

2 πN

(
πM

Imτ

)(ℓ0−a0)N−(m+1)

Γ

(
1 +m− (ℓ0 − a0)N,

πM

Imτ
r2
)
,

where Γ
(
1 +m− (ℓ0 − a0)N, πMImτ r

2
)
denotes the upper incomplete gamma function. Note that

1 +m− (ℓ0 − a0)N < 0. It satisfies the following recurrence relation:

Γ
(
1 +m− (ℓ0 − a0)N, πMImτ r

2
)
=

1
1+m−(ℓ0−a0)N

(
Γ
(
2 +m− (ℓ0 − a0)N, πMImτ r

2
)
−
(
πM
Imτ

r2
)1+m−(ℓ0−a0)N e−(

πM
Imτ

r2)
)

Γ
(
0, πM

Imτ
r2
)
= E1

(
πM
Imτ

r2
) ,
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where E1

(
πM
Imτ

r2
)
denotes the exponential integral. We note that if πM

Imτ
r2 is sufficiently large,

E1

(
πM
Imτ

r2
)
can be expanded as

E1

(
πM

Imτ
r2
)
≃ e−(

πM
Imτ

r2)
∑
p=0

(−1)pp!
(
πM

Imτ
r2
)−(p+1)

.

By solving this recurrence relation, Γ
(
1 +m− (ℓ0 − a0)N, πMImτ r

2
)
can be expressed as

Γ

(
1 +m− (ℓ0 − a0)N,

πM

Imτ
r2
)

=
(−1)(ℓ0−a0)N−(m+1)

[(ℓ0 − a0)N − (m+ 1)]!

E1

(
πM

Imτ
r2
)
− e−(

πM
Imτ

r2)
(ℓ0−a0)N−(m+2)∑

p=0

(−1)pp!
(
πM

Imτ
r2
)−(p+1)

 .
On the other hand, the second term is the same as G

(3)
ij in the previous appendix by replacing

ℓ0 with a0. Thus, by combining those results, we obtain Eq. (4.132).
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Appendix C

Anomaly structure of discrete

symmetries

C.1 Anomalies of discrete symmetry

Here, we review anomalies of discrete symmetry [111, 112]. First of all, let us assume that a

classical action S is invariant under unitary transformation by a discrete group G for chiral

fermions ψL = PLΨ, ψL → ρ(g)ψL, where ρ(g) denotes a unitary representation of ∀g ∈ G.

In this case, we say that the theory has G symmetry at least at classical level. However, the

classical chiral symmetry can be broken by quantum effects. In the following, we see quantum

anomalies of the chiral discrete symmetry by the Fujikawa’s method [113,114].

First, let us see the case with the global G = ZN symmetry under background non-Abelian

gauge fields as well as gravity, where the chiral fermions have R representation under the

non-Abelian gauge group Ggauge. Note that the generator g ∈ ZN satisfies gN = e and then

the unitary representation can be expressed as ρ(g)jk = eiαqjδjk with the phase parameter,

α = 2π/N , and the ZN charge of j th component of ψL, qj ∈ Z/NZ. In the Fujikawa’s method,

the measure in the path integral,
∫
DΨDΨ̄eiS, transforms as

DΨDΨ̄→ J(α)DΨDΨ̄. (C.1)

The Jacobian J(α) can be written as [115,116],

J(α) = exp

[
i

∫
d4x (A(x;α)gauge + A(x;α)grav)

]
, (C.2)

with α = 2π/N . The anomaly functions are written by

A(x;α)gauge =
1

32π2
ϵµνρσTr(αqj[FµνFρσ]), A(x;α)grav = −

1

2

1

384π2

1

2
ϵµνρσRλγ

µνRρσλγtr(αqjR),

(C.3)
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where Tr denotes the summation over all internal indices. The index theorems [115,116] give∫
d4x

1

32π2
ϵµνρσF a

µνF
b
ρσtr[t

atb] ∈ Z,
1

2

∫
d4x

1

384π2

1

2
ϵµνρσRλγ

µνRρσλγ ∈ Z, (C.4)

where ta,b denote generators of Ggauge in the R representation. We use the normalization of

Dynkin index T2(R),

T2(R)δab = tr[tatb], (C.5)

such that T2(R) = 1/2 for N fundamental representation of SU(N) and T2(R) = 1 for 2N

vector representation of SO(2N). In the case of R = 27 representation of E6, for example, we

obtain T2(R) = 3. Thus, the anomaly-free condition for the mixed anomaly ZN−Ggauge−Ggauge

is given by

J(α) = e2πi
∑
qj2T2(R)n/N = 1, ∀n ∈ Z ⇔

∑
qj2T2(R) ≡ 0 (mod N). (C.6)

Otherwise, the ZN symmetry can be anomalous.

Next, let us see the case with the global non-Abelian discrete G symmetry. Since each

element g ∈ G satisfies gN(g) = e, where N(g) is the order of g, we can study its anomalies

similar to the case with ZN symmetry. We note that chiral fermions construct a multiplet under

the non-Abelian G symmetry in general, and then the unitary representation of g ∈ G for such

a multiplet, ρ(g), forms as unitary matrix. However, we can always make ρ(g) diagonalized as

ρ(g)jk = eiα(g)qj(g)δjk with the phase parameter of the g transformation, α(g) = 2π/N(g), and

the charge of j th component of the multiplet for g transformation, qj ∈ Z/N(g)Z, by taking

the appropriate base of the fermions. Here, we comment that, in such a base, the unitary

representations of some of the other elements g′ ∈ G, ρ(g′), form as non-diagonalized matrices.

Then, we can apply the analysis of the ZN symmetry anomalies to the non-Abelian discrete G

symmetry anomalies. The anomaly-free condition for the mixed anomalies G−Ggauge−Ggauge

is given by

J(α(g)) = e2πi
∑
qj2T2(R)n/N(g) = (e2πiQ(g)/N(g))

∑
R 2T2(R)n = (detρ(g))

∑
R 2T2(R)n = 1, ∀n ∈ Z,

(C.7)

where Q(g) ≡
∑

j qj(g) and it is preserved even if the representation ρ(g) is non-diagonalized

matrix. Hence, the symmetries given by elements g with

detρ(g) = 1, (⇔ Q(g) ≡ 0 (mod N(g))), (C.8)

are always anomaly free. Other parts of G can be anomalous. The anomalies of symmetries

given by elements g with ρ(g) ̸= 1 depend on matter contents. That is, for
∑

R 2T2(R) = P , the

subgroup constructed by elements g with (detρ(g))P = 1 is anomaly free, although the subgroup

constructed by elements g with detρ(g) = 1 is always anomaly free. Thus, the determinant

detρ(g) is the key point in the analysis of following sections.
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C.2 Determinant of representations

Here, let us see the anomaly structure of non-Abelian discrete G symmetry by using concrete

representations ρ(g) for the elements g ∈ G. In this section, in particular, we concentrate on

the theory with
∑

R 2T2(R) = 1, and then the anomaly-free condition is detρ(g) = 1. We

comment on the theory with
∑

R 2T2(R) = P > 1 and anomaly-free condition (detρ(g))P = 1

in section C.4.

When we know representations of ∀g ∈ G, ρ(g), we can calculate detρ(g) explicitly. Let

us suppose that gN(g) = e and then detρ(g)N(g) = 1 are satisfied for a fixed element g, and

also (detρ(g))N = 1 is satisfied for any element g in G. Then, the determinant detρ(g) for

∀g ∈ G can be written as detρ(g) = e2πiQ
′(g)/N , where Q′(g) is written by Q′(g) = Q(g)N/N(g).

As shown in the previous section, if detρ(g) = 1 (Q′(g) ≡ 0 (mod N)) is satisfied, the g

transformation can be regarded as anomaly-free transformation. Here, we define

G0 ≡ {g0 ∈ G|detρ(g0) = 1}, (C.9)

as the subset of G. In the following proof, we can find that G0 becomes a normal subgroup

of G, G0 ◁ G. Thus, if all of anomalous transformations are broken by quantum effects, the G

symmetry is broken into the normal subgroup G0 at quantum level.

Proof

We can prove that G0 is a subgroup of G, G0 ⊂ G, from (I), and also a normal subgroup of G,

G0 ◁ G, from (II).

(I) Let us take ∀g0 ∈ G0 and ∀g′0 ∈ G0 (detρ(g0) = detρ(g′0) = 1). Then, the element g0g
′
0 is

also included in G0, g0g
′
0 ∈ G0 (detρ(g0g

′
0) = 1). In particular, the identity element e is

included in G0 (detρ(e) = 1), and then the inverse element g−1
0 for ∀g0 ∈ G0 (detρ(g0) = 1)

is also included in G0 (detρ(g−1
0 ) = 1).

(II) When we take ∀g0 ∈ G0 (detρ(g0) = 1) and ∀g ∈ G, the conjugate element gg0g
−1 is also

included in G0, gg0g
−1 ∈ G0 (detρ(gg0g

−1) = detρ(g0) = 1).

Now, we can rewrite ∀g ∈ G with detρ(g) = e2πik/N (Q′(g) ≡ k (mod N)), by g1 with

detρ(g1) = e2πi/N (Q′(g1) ≡ 1 (mod N)) and ∃g0 ∈ G0, as g = g0g
k
1 . That is, the coset,

whose element g satisfies detρ(g) = e2πik/N , can be expressed as G0g
k
1 . (See also Fig. C.1.) In

addition, in the following proof, we can find that such cosets generate the residue class group

G/G0 ≃ ZN .

Proof

We can prove that the residue class group G/G0 is Abelian from (I) and also isomorphic to ZN
from (II).

(I) G0g
k1
1 and G0g

k2
1 satisfy the relation (G0g

k1
1 )(G0g

k2
1 ) = (G0g

k2
1 )(G0g

k1
1 ) = G0g

k1+k2
1 .
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(II) G0g
N−k
1 becomes inverse coset of G0g

k
1 since gN1 ∈ G0 (detρ(gN1 ) = 1).

We comment that the element g1 ∈ G generally satisfies gN1 = g0 (∃g0 ∈ G), while it satisfies
g
N(g1)
1 = e. Hence, we find G0 ∩ ZN(g1) = ZN(g1)/N in general, where ZN(g1) (ZN(g1)/N), whose

generator is g1 (gN1 ), is the subgroup of G (G0). By applying the isomorphism theorem 2 in

subsection C.5.1, indeed, we obtain

G/G0 ≃ G0ZN(g1)/G0 ≃ ZN(g1)/ZN(g1)/N ≃ ZN . (C.10)

In particular, if g1 satisfies gN1 = e ∈ G0 (N(g1) = N), g1 generates ZN subgroup of G and

also the ZN subgroup satisfies G = G0ZN and G0 ∩ ZN = {e}. Hence, in this case, G can be

decomposed1 as

G ≃ G0 ⋊ ZN . (C.11)

It means that the anomaly-free and anomalous parts of G can be separated. In more general, if

there exists ∃g ∈ G with N(g) = N and gcd(Q(g), N(g)) = 1, G can be written as Eq. (C.11)

since the element g generates ZN subgroup of G and it satisfies G = G0ZN and G0∩ZN = {e}.
For example, when N is a prime number, they are automatically satisfied.

・・・
𝐺

𝐺0

det𝜌 𝑔 = 1

𝑒

det𝜌 𝑔 = 𝑒2𝜋𝑖
1
𝑁

𝐺0𝑔1
1

𝑔1
1

𝐺0𝑔1
𝑁−1

det𝜌 𝑔 = 𝑒2𝜋𝑖
𝑁−1
𝑁

𝑔1
𝑁−1

Figure C.1: Image of cosets G0g
k
1 to which elements g with detρ(g) = e2πik/N belong. Here, gk1

(written by blue) denotes the representative element of the coset G0g
k
1

We summarize the important points in this section.

• Generally, the anomaly-free subset of G, G0, becomes a normal subgroup of G, G0 ◁ G,

and then the anomalous part becomes G/G0 ≃ ZN , where N can be found from detρ(g) =

e2πiQ
′(g)/N (∀g ∈ G).

1See also subsection C.5.2.
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• In particular, if there exists ∃g ∈ G with N(g) = N and gcd(Q(g), N(g)) = 1, G can be

decomposed as G ≃ G0 ⋊ ZN . It means that the anomaly-free and anomalous parts can

be separated.

C.3 Group structure

In the previous section, we have obtained G/G0 ≃ ZN generally when we know the representa-

tion of ∀g ∈ G, ρ(g). However, even if we do not use explicit representations, the result is still

useful although we do not know the explicit number N from the beginning. In this section,

we study the detailed structure of G0 and G/G0 ≃ ZN from the group structure of G. We

emphasize that the following analysis can be applied for any representations.

First, we introduce the derived subgroup of G,

D(G) ≡< xyx−1y−1 ∈ G|x, y ∈ G > . (C.12)

(It is also called the commutator subgroup.) The derived subgroup D(G) is a normal subgroup

G, D(G) ◁ G. It can be checked by

g(xyx−1y−1)g−1 = (gxg−1)(gyg−1)(gxg−1)−1(gyg−1)−1 ∈ D(G),

for ∀xyx−1y−1 ∈ D(G) and ∀g ∈ G. The quotient group G/D(G) becomes Abelian. It can be

checked by

(D(G)X)(D(G)Y ) = (D(G)Y )(D(G)X),

for any cosets D(G)X and D(G)Y with X,Y /∈ D(G), because of XYX−1Y −1 ∈ D(G). We

note that, among normal subgroups of G, KG, such that G/KG becomes Abelian, the derived

subgroup D(G) is the smallest normal subgroup.2 Thus, since G/G0 ≃ ZN , we can find that

G0 ⊇ D(G). (C.13)

Indeed, we can check it by

detρ(xyx−1y−1) = det[ρ(x)ρ(y)ρ(x)−1ρ(y)−1] = 1.

Therefore, the derived subgroup of G, D(G), is always anomaly free. The whole anomaly-free

subgroup G0 is either the same as D(G) or larger than D(G). In the following, we study how

large G0 is compared with D(G).

When we factorize the order of G/D(G) into prime numbers pi, i.e. |G/D(G)| =
∏r

i=1 p
Ai
i =

pA1
1 · · · pArr , due to the fundamental structure theorem of finite Abelian group3, G/D(G) can be

generally written as

G/D(G) ≃ (Z
p
a1,1
1
× · · · × Z

p
a1,n1
1

)× · · · × (Z
p
ar,1
r
× · · · × Zpar,nrr

), (C.14)

2If a discrete group G itself is an Abelian group, we obtain D(G) = {e}.
3See also subsection C.5.3.
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where ai,j satisfy

Ai =

ni∑
j=1

ai,j, ai,j ≥ ai,j+1.

On the other hand, G/G0 is isomorphic to a single cyclic group ZN . Thus, the structure of the
Abelian group G/D(G) in Eq. (C.14) is clue to study how large G0 is compared with D(G).

Now, let us classify our particle theories by the determinant of the representation (including

reducible representation), detρ(Xi,j), for the element Xi,j ∈ Z
p
ai,j
i
⊂ G/D(G).4

(i) In the theory in which the element ∀Xi,j ∈ Z
p
ai,j
i

for ∀i, j satisfies

detρ(Xi,j) = 1, (C.15)

we can easily find that

G0 = G. (C.16)

(ii) In the theory in which the element ∃Xi,j ∈ Z
p
ai,j
i
− {e} for ∃i, j satisfies

detρ(Xi,j) = 1, (C.17)

while any other element ∀X ′
i,j ∈ Z

p
ai,j
i
− {e,Xi,j} for ∀i, j satisfies

detρ(X ′
i,j) ̸= 1, (C.18)

we can find that

G ⊃ G0 ⊃ D(G). (C.19)

Since there are several patterns belong to this class in some discrete groups G, we do not

discuss this class in detail. However, we can also apply the following analysis to this class.

(iii) In the theory in which the element ∀Xi,j ∈ Z
p
ai,j
i
− {e} for ∀i, j satisfies

detρ(Xi,j) ̸= 1, (C.20)

we can find that

G ⊃ G0 ⊇ D(G), (C.21)

4Although Z
p
ai,j
i

is a subgroup of G/D(G), it is not a subgroup of G in general. In other words, the element

Xi,j ∈ Z
p
ai,j
i

corresponds to an element of the coset D(G)Xi,j in G. However, since we obtain detρ(gD) =

1 (∀gD ∈ D(G)), the determinant detρ(Xi,j) can also be reflected in G as the same way.
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in the following. First, if there exists ai,2 ̸= 0 for ∃i, pai,2i − 1 numbers of combination

elements Xm1
i,1 X

m2
i,2 satisfy

detρ(Xm1
i,1 X

m2
i,2 ) = 1, (C.22)

where m1 and m2 satisfy the following relation;

Q(Xm1
i,1 X

m2
i,2 ) = m1Q(Xi,1) +m2Q(Xi,2)p

ai,1−ai,2
i ≡ 0 (mod p

ai,1
i ),

⇔ m1Q(Xi,1) = p
ai,1−ai,2
i n, m2Q(Xi,2) = p

ai,2
i − n, ∀n ∈ Z/pai,2i Z− {0}.

(C.23)

Thus, those Xm1
i,1 X

m2
i,2 as well as e are also included in G0, which means that

G ⊃ G0 ⊃ D(G), (C.24)

and also they construct Z
p
ai,2
i

subgroup of G0/D(G). Generally, if there are ZN1 and ZN2

symmetries in G/D(G), where N1 and N2 are not coprime to each other, gcd(N1, N2)− 1

numbers of elements Xm1
1 Xm2

2 (X1 ∈ ZN1 , X2 ∈ ZN2) as well as e satisfy detρ(X1X2) = 1

and then they construct Zgcd(N1,N2) subgroup of G0/D(G). In a similar way, we can find

that

G0/D(G) ≃ (Z
p
a1,2
1
× · · · × Z

p
a1,n1
1

)× · · · × (Z
p
ar,2
r
× · · · × Zpar,nrr

). (C.25)

Then, by applying the isomorphism theorem 3 in subsection C.5.1 with Eqs. (C.14) and

(C.25), we can obtain

ZN ≃ G/G0 ≃ (G/D(G))/(G0/D(G)) ≃ Z
(p
a1,1
1 ···p

ar,1
r )

. (C.26)

Indeed, when Eq. (C.20) is satisfied, the determinant of the representation for ∀g ∈ G,
detρ(g), can be written as detρ(g) = e2πiQ

′(g)/(p
a1,1
1 ···p

ar,1
r ). It also shows Eq. (C.26). Notice

that N = p
a1,1
1 · · · par,1r =

∏r
i=1 p

ai,1
i is the least common multiple of orders of each Z

p
ai,j
i

in G/D(G), which becomes the maximum order of the anomalous G/G0 ≃ ZN . In other

words, the maximum order of the anomalous G/G0 ≃ ZN can be found from G/D(G),

which is determined by G.

In particular, if and only if Ai = ai,1 (ai,2 = 0) for all i, any element X in the Abelian

group G/D(G) leads to

detρ(X) ̸= 1. (C.27)

It means that

G0 = D(G), (C.28)

and then, by applying Eq. (C.100) in subsection C.5.3, we can obtain

ZN ≃ G/G0 = G/D(G) ≃ Z
(p
A1
1 ···pArr )

. (C.29)

Therefore, D(G) and G/D(G) are important clues to understand the structure of G0

and G/G0 ≃ ZN . In the following analysis, we mainly discuss this class (iii) in which

Eq. (C.20) is satisfied.
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C.3.1 Various examples of discrete groups

Here, let us see the detail structure of G0 and G/G0 ≃ ZN from the structure of D(G) and

G/D(G) in specific examples of discrete group G.

First, let G be a perfect group, which is defined as a group satisfying D(G) = G. In

this case, we obviously find that G = G0 = D(G), that is, the whole G symmetry is always

anomaly free. One of the example is non-Abelian simple group such as An (n ≥ 5) and

PSL(2,Zp) (p ̸= 2, 3, p ∈ P).5

On the other hand, an Abelian simple group, which is just isomorphic to Zp (p ∈ P), is not
a perfect group since D(G) = {e}. In this case, the flavor model can be classified as either the

class (i), G0 = G ≃ Zp, or the class (iii), G0 = D(G) = {e}, G/G0 ≃ ZN = Zp. One of the

example is G = A3 ≃ Z3 group.

Next, let us see the case that the group G can be written by a semidirect product, i.e.

G ≃ KG ⋊G(1), in the following four steps.

Step 1 (G ≃ ZA ⋊ ZB)
Let us start from the simplest group, G ≃ ZA ⋊ ZB (A ≥ 3). Here, we find that D(G) ⊆ ZA
from G/ZA ≃ ZB. The algebraic relations for generators α ∈ ZA and β ∈ ZB are given by

αA = βB = e, (C.30)

and also

βαβ−1 = αm ∈ ZA, (βαβ−1α−1 = αm−1 ∈ D(G)), m ∈ Z/AZ− {0, 1}, (C.31)

⇒ βbαaβ−b = aam
b

, (βbαaβ−bα−a = aa(m
b−1) ∈ D(G)), a ∈ Z/AZ, b ∈ Z/BZ, (C.32)

where m satisfies6 the following conditions,

(mb − 1) = (m− 1)(
∑b−1

r=0m
r) ̸≡ 0 (mod A) for ∀b

(mB − 1) = (m− 1)(
∑B−1

r=0 m
r) ≡ 0 (mod A)

. (C.33)

From Eq, (C.32), we find that

D(G) = {αa′gcd(m−1,A)|a′ ∈ Z/(A/gcd(m− 1, A))Z} = ZA/gcd(m−1,A) ⊆ G0. (C.34)

Note that, in the case of G ≃ ZA, D(G) = {e}. Then, we obtain that

G/D(G) ≃ Zgcd(m−1,A) × ZB, (C.35)

5Since a simple group is defined as a group G whose normal subgroups are just {e} and G itself, in order for

G/D(G) to be Abelian, D(G) must be G itself for a non-Abelian simple group G.
6If m = 1, in particular, the group G can be written as G ≃ ZA × ZB . This is the specific case of the above

general analysis.
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since cosets D(G)α and D(G)β satisfy

(D(G)α)gcd(m−1,A) = (D(G)β)B = D(G),

(D(G)β)(D(G)α)(D(G)β)−1 = D(G)(βαβ−1α−1)α = D(G)α.

The above result can also be understood from the viewpoint of ZA charge constraint. Sup-

pose that the chiral fermions are ZA eigenstates, ρ(α)jk = e2πiqj/Aδjk, and qj is the ZA charge

of j th component. Eq. (C.31) means that there exists a state with ZA charge mqj and β

transforms the j th component with qj to the state with mqj. For example, when we consider a

fundamental irreducible representation, it forms B-dimensional representation with ZA charge
t(q1, q2, q3, ..., qB) =

t(q,mq,m2q, ...,mB−1q). It means that ZA charges in a multiplet are con-

strained by the semidirect product by ZB, while there is no constraint for ZB charges. Indeed,

we obtain

detρ(α) = e2πi
∑B−1
r=0 mrq/A = e2πiqn/gcd(m−1,A), (C.36)

and then we can check Eqs. (C.34) and (C.35) from it.

Now, as discussed in the above general analysis, let us study the class (iii). First of all, we

denote A′ ≡ gcd(m− 1, A). When we consider the elements, αxβy, which satisfy

Q(αx)B/gcd(A′, B) +Q(βy)A′/gcd(A′, B) ≡ 0 (mod lcm(A′, B)), (C.37)

⇔ xQ(α) = (gcd(A′, B)− s)A′/gcd(A′, B), yQ(β) = sB/gcd(A′, B), s ∈ Z/gcd(A′, B)Z,

they satisfy detρ(αxβy) = 1. It means that the elements of gcd(A′, B) numbers of cosets

D(G)αxβy (including D(G)αA
′
= D(G)) become the elements of G0. In addition, since those

cosets satisfy (D(G)αxβy)gcd(A
′,B) = D(G), they give

G0/D(G) ≃ Zgcd(A′,B), (C.38)

which is the (normal) subgroup of G/D(G). We note that the generators of G0 are αA
′
and

αxβy with Eq. (C.37), and they satisfy

(αA
′
)A/A

′
= e, (αxβy)gcd(A

′,B) = (αA
′
)
k=

x(mygcd(A
′,B)−1)

A′(my−1) , (αxβy)(αA
′
)(αxβy)−1 = (αA

′
)m

y

.

(C.39)

In particular, if k ≡ 0 (mod A/A′), that is, if αxβy generates Zgcd(A′,B) subgroup of G0, G0 can

be decomposed as

G0 ≃ D(G)⋊ Zgcd(A′,B) = ZA/A′ ⋊ Zgcd(A′,B). (C.40)

Then, by applying the isomorphism theorem 3 in subsection C.5.1, we can obtain

ZN ≃ G/G0 ≃ (G/D(G))/(G0/D(G)) ≃ (ZA′ × ZB)/Zgcd(A′,B) ≃ Zlcm(A′,B), (C.41)
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where we also apply Eq. (C.101) in subsection C.5.3 for Eq. (C.35),

G/D(G) ≃ ZA′ × ZB ≃ Zgcd(A′,B) × Zlcm(A,B). (C.42)

Similar to Eq. (C.37), there exists αx
′
βy

′
with ∃(x′, y′), which satisfies

Q(αz
′
)B/gcd(A′, B) +Q(βy

′
)A′/gcd(A′, B) ≡ 1 (mod lcm(A′, B)), (C.43)

since A′/gcd(A′, B) and B/gcd(A′, B) are coprime to each other. It means that the element

αx
′
βy

′
corresponds to g1 in the previous section. Indeed, the coset D(G)αx

′
βy

′ ⊂ G0α
x′βy

′

satisfies (D(G)αx
′
βy

′
)lcm(A′,B) = D(G) ⊂ G0. We note that, similar to Eq. (C.39), the element

αx
′
βy

′
with Eq. (C.43) generally satisfies

(αx
′
βy

′
)lcm(A′,B) = (αA

′
)
k′=x′(my

′lcm(A′,B)−1)

A′(my′−1) ,

(αx
′
βy

′
)(αA

′
)(αx

′
βy

′
)−1 = (αA

′
)m

y′
,

(αx
′
βy

′
)(αxβy)(αx

′
βy

′
)−1 = (αA

′
)ℓ

′=[x(my
′−1)−x′(my−1)]/A′

(αxβy).

(C.44)

If k′ ≡ 0 (mod A/A′), that is, if αx
′
βy

′
generates Zlcm(A′,B) subgroup of G, G can be written as

G ≃ G0 ⋊ Zlcm(A′,B). In addition, if ℓ′ ≡ 0 (mod A/A′), αx
′
βy

′
commutes with αxβy. Thus, if

k, k′, ℓ′ are multiples of A/A′, that is, if Zgcd(A′,B)×Zlcm(A,B) in Eq. (C.42) is actually a subgroup

of G, G can be written as

G ≃ D(G)⋊ (Zgcd(A′,B) × Zlcm(A,B)) ≃ ZA/A′ ⋊ (ZA′ × ZB)
≃ (D(G)⋊ Zgcd(A′,B))⋊ Zlcm(A,B)

≃ G0 ⋊ Zlcm(A,B),

(C.45)

where the second line can be found from Eqs. (C.94) and (C.95) in subsection C.5.2.

Now, let us see examples. First, if A = p ∈ P, we obtain A′ = 1, and then we find that

D(G) = ZA ⊆ G0. In the class (iii), we obtain G0 = D(G) = ZA and G/G0 ≃ ZN = ZB.
Second, let us see G = DA ≃ ZA ⋊ Z2 case. In this case, we obtain m = A − 1 from

Eq. (C.33), and then we can find that

D(G) =

{
< α̃|α̃A/2 = e >= ZA/2 (A ∈ 2Z)
< α|αA = e >= ZA (A ∈ 2Z+ 1)

, (C.46)

G/D(G) ≃
{

Z2 × Z2 =< (dα, dβ)|d2α = d2β = de, dαdβ = dβdα = dαβ > (A ∈ 2Z)
Z2 =< dβ|d2β = de > (A ∈ 2Z+ 1)

,

(C.47)

where α̃ ≡ α2, dX ≡ D(G)X. In the class (iii), we can obtain

G0 =

{
< α̃, β̃|α̃A/2 = β̃2 = e, β̃α̃β̃−1 = α̃−1 >= ZA/2 ⋊ Z2 ≃ DA/2 (A ∈ 2Z)
< α|αA = e >= ZA (A ∈ 2Z+ 1)

, (C.48)

G/G0 ≃ ZN = Z2 =< gβ|g2β = ge >, ∀A, (C.49)
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where β̃ ≡ αβ (x = y = 1), gβ ≡ G0β (x′ = 0, y′ = 1). In particular, since β2 = β̃2 = e,

G = DA can be written as

DA = G ≃ G0 ⋊ Z2

≃
{

(D(G)⋊ Z2)⋊ Z2 (A ∈ 2Z)
D(G)⋊ Z2 (A ∈ 2Z+ 1)

≃
{
DA/2 ⋊ Z2 (A ∈ 2Z)
ZA ⋊ Z2 (A ∈ 2Z+ 1)

.

(C.50)

Here, we comment on the case with A = 2(2m − 1) (m ∈ Z) especially. In this case, we have

the coset relation, gβ = gαA/2 (x′ = A/2, y′ = 0), and then k, k′, ℓ′ are multiples of A/A′ = A/2.

Thus, Eq. (C.45) is satisfied;

DA = G ≃ D(G)⋊ (Z2 × Z2) ≃ ZA/2 ⋊ (Z2 × Z2)

≃ G0 × Z2 ≃ DA/2 × Z2.

One of the example is G = S3 ≃ D3 ≃ A3 ⋊ Z2. In this case, the S3 flavor model can be

classified as either the class (iii), G0 = D(G) = Z3 ≃ A3, G/G0 ≃ ZN = Z2, or the class (i),

G0 = G = S3. It depends on representations (including reducible representations) in the model.

Indeed, S3 group has three irreducible representations, 1 (detρ1(β) = 1), 1′ (detρ1′(β) = −1),
and 2 (detρ2(β) = −1) [6, 7]. Then, the whole S3 symmetry is anomaly free in flavor models

in which even numbers of 1′ and 2 are included. Otherwise, the Z2 subsymmetry can be

anomalous.

We comment on G = QA case. The algebraic relations of QA are same as those of DA with

A ∈ 2Z, except that β2 = αA/2 instead of β2 = e. Then, we find that D(QA) = D(DA), while

the representation of β depends on that of α. In the case of A ∈ 4Z, since both αA/2 and e

are elements of D(QA), the analysis of QA is the same as that of DA. On the other hand, in

the case of A ∈ 2(2Z+ 1), since αA/2 /∈ D(QA), β becomes anomalous Z4 generator in general.

This is the different point from DA.

Third, let us see G = Tpk ≃ Zpk ⋊ Z3 with p ̸= 3 and p ∈ P. If gcd(m − 1, pk) ̸= 1, m can

be expressed as m = pℓ + 1 with ℓ ∈ Z/kZ− {0}. It needs to satisfy that

m3 − 1 = pℓ(p2ℓ + 3pℓ + 3) ≡ 0 (mod pk),

⇒ p2ℓ + 3pℓ + 3 = pk−ℓx, (x ∈ Z),
3 = pk−ℓx− p2ℓ − 3pℓ = pℓ

′
y. (C.51)

However, it cannot be satisfied if p ̸= 3. Hence, we find that gcd(m − 1, pk) = 1 and then

D(G) = Zpk ⊆ G0. Therefore, the Tpk flavor model corresponds to either the class (iii),

G0 = D(G) = Zpk , G/G0 ≃ ZN = Z3, or the class (i), G0 = G = Tpk . In more general, when

we consider G ≃ Zpk ⋊ ZB with gcd(p,B) = 1, we find that gcd(m − 1, pk) = 1 and then

D(G) = Zpk ⊆ G0.
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Step 2 (G ≃ (ZA × Z′
A)⋊ ZB)

Next, we study more complicated case, G ≃ (ZA × Z′
A) ⋊ ZB. First, let us see G = Σ(2n2) ≃

(Zn × Z′
n)⋊ Z2. The algebraic relations for generators α ∈ Zn, α′ ∈ Z′

n, and β ∈ Z2 are given

by

αn = α′n = β2 = e, (C.52)

and also

α′αα′−1 = α ∈ Zn, (αα′α−1 = α′ ∈ Z′
n) (C.53)

βαβ−1 = αm1α′m2 ∈ Zn × Z′
n, βα−1β−1 = αm3α′m4 ∈ Zn × Z′

n. (C.54)

Here, mi (i = 1, 2, 3, 4) can be determined by the constraints, β2αβ−2 = α, β2α′β−2 = α′, and

then we obtain m1 = m4 = 0, m2 = m3 = 1. Namely, Eq. (C.54) can be rewritten as

βαβ−1 = α′, βα′β−1 = α. (C.55)

Hence, we can find that

D(G) =< α̃|α̃n = e >= Zn, (C.56)

G/D(G) ≃ Zn × Z2 =< (dα̃′ , dβ)|dnα̃′ = d2β = de, dα̃′dβ = dβdα̃′ = dαβ >, (C.57)

where α̃ ≡ αα′−1, dX ≡ D(G)X.

The above result can also be understood from the viewpoint of Zn and Z′
n charge constraints.

Suppose that the chiral fermions are Zn and Z′
n eigenstates, where we denote [Zn,Z′

n] charges

of the j th component field as [qj, q
′
j]. Eq. (C.55) means that there exists a state with charge

[q′j, qj] and β transforms the j th component with charge [qj, q
′
j] to the state with charge [q′j, qj].

For example, when we consider a fundamental irreducible representation, it forms a doublet

with charge t([q1, q
′
1], [q2, q

′
2]) =

t([q, q′], [q′, q]). Then, we obtain

detρ(α) = detρ(α′) = e2πi(q+q
′)/n, (C.58)

and we can actually check Eqs. (C.56) and (C.57). We note that there is no constraint for Z2

charges.

In the class (iii), we can obtain

G0 =

{
< α̃, β̃|α̃n = e, β̃2 = α̃n/2, β̃α̃β̃−1 = α̃−1 >= Qn (n ∈ 2Z)
< α̃|α̃n = e >= Zn (n ∈ 2Z+ 1)

, (C.59)

G/G0 ≃ ZN =

{
Zn =< gα|gnα = ge > (n ∈ 2Z)
Zn × Z2 ≃ Z2n =< gγ̃|g2nγ̃ = ge > (n ∈ 2Z+ 1)

, (C.60)

where β̃ ≡ α−n/2β, γ̃ ≡ α−(n−1)/2β, gX ≡ G0X. We also introduce α̃′ ≡ γ̃2 = α̃−(n−1)/2α′ and

β̃′ ≡ γ̃n = α̃−(n2−1)/4β, and then since αn = γ̃2n(= α̃′n = β̃′2) = e, G = Σ(2n2) can be written
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as

Σ(2n2) = G ≃ G0 ⋊ ZN

≃
{
Qn ⋊ Zn (n ∈ 2Z)
Zn ⋊ Z2n (n ∈ 2Z+ 1)

≃
{
Qn ⋊ Zn (n ∈ 2Z)
(Zn ⋊ Z2)× Zn ≃ Dn × Zn (n ∈ 2Z+ 1)

,

(C.61)

where the semidirect products for n ∈ 2Z case and n ∈ 2Z + 1 case come from the relations,

αβ̃α−1 = α̃β̃, and β̃′α̃β̃′−1 = α̃−1, α̃′α̃α̃′−1 = α̃, α̃′β̃′α̃′−1 = β̃′, respectively.

This analysis can be easily applied to G = Σ(3n3) ≃ (Zn × Z′
n × Z′′

n) ⋊ Z3. The algebraic

relations for generators α ∈ Zn, α′ ∈ Z′
n, α

′′ ∈ Z′′
n, and β ∈ Z3 are given by

αn = α′n = α′′n = β3 = e,

αα′ = α′α, α′α′′ = α′′α′, α′′α = αα′′,

βαβ−1 = α′, βα′β−1 = α′′, βα′′β−1 = α.

(C.62)

Then, we can find that

D(G) =< α̃, α̃′|α̃n = α̃′n = e, α̃α̃′ = α̃′α̃ >= Zn × Zn, (C.63)

G/D(G) ≃ Zn × Z3 =< (dα, dβ)|dnα = d3β = de, dαdβ = dβdα = dαβ >, (C.64)

where α̃ ≡ α′α′′−1, α̃′ ≡ αα′−1, dX ≡ D(G)X. In the class (iii), we can obtain

G0 =

{
< α̃, α̃′, β̃|β̃3 = (α̃α̃′−1)n/3, β̃α̃β̃−1 = α̃−1α̃′−1, β̃α̃′β̃−1 = α̃ >≡ Rn (n ∈ 3Z)
< α̃, α̃′ >= Zn × Zn (otherwise)

,

(C.65)

G/G0 ≃ ZN =

{
Zn =< gα|gnα = ge > (n ∈ 3Z)
Zn × Z3 ≃ Z3n =< gγ̃|g2nγ̃ = ge > (otherwise)

, (C.66)

where β̃ ≡ α−n/3β, γ̃ ≡ α−(n∓1)/3β, gX = G0X. Here, since the relations between α̃ and α̃′ are

same as Eq. (C.63), we omit them. We also introduce α̃′′ ≡ γ̃3 and β̃′ ≡ γ̃n, and then since

αn = γ̃3n(= α̃′′n = β̃′3) = e, G = Σ(3n3) can be written as

Σ(3n3) = G ≃ G0 ⋊ ZN

≃
{
Rn ⋊ Zn (n ∈ 3Z)
(Zn × Zn)⋊ Z3n (otherwise)

≃
{
Rn ⋊ Zn (n ∈ 3Z)
((Zn × Zn)⋊ Z3)× Zn ≃ ∆(3n2)× Zn (otherwise)

.

(C.67)

where Rn is related to the following ∆(3n2) as with the case that Qn is related to Dn. The

semidirect products for n ∈ 3Z case and n ∈ 3Z±1 cases come from the relations, αβ̃α−1 = α̃′β̃,

and β̃′α̃β̃′−1 = α̃−1α̃′−1, β̃′α̃′β̃′−1 = α̃, α̃′′δα̃′′−1 = δ (δ = α̃, α̃′, β̃′), respectively.
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Next, let us see another example, G = ∆(3n2) ≃ (Zn × Z′
n) ⋊ Z3. The algebraic relations

for generators α ∈ Zn, α′ ∈ Z′
n, and β ∈ Z3 are given by

αn = α′n = β3 = e, (C.68)

and also

α′αα′−1 = α ∈ Zn, (αα′α−1 = α′ ∈ Z ′
n) (C.69)

βαβ−1 = αm1α′m2 ∈ Zn × Z′
n, βα−1β−1 = αm3α′m4 ∈ Zn × Z′

n. (C.70)

Here, mi (i = 1, 2, 3, 4) can be determined by the constraints, β3αβ−3 = α, β3α′β−3 = α′, and

then we obtain m1 = m2 = −1, m3 = 1, m4 = 0. Namely, Eq. (C.70) can be rewritten as

βαβ−1 = α−1α′−1, βα′β−1 = α. (C.71)

Hence, we can obtain

D(G) =

{
< α̃, α̃′|α̃n = α̃′n/3 = e, α̃α̃′ = α̃′α̃ >= Zn × Zn/3 (n ∈ 3Z)
< α̃, α̃′|α̃n = α̃′n = e, α̃α̃′ = α̃′α̃ >= Zn × Zn (otherwise)

, (C.72)

G/D(G) ≃
{

Z3 × Z3 =< (dα, dβ)|d3α = d3β = de, dαdβ = dβdα = dαβ > (n ∈ 3Z)
Z3 =< dβ|d3β = de > (otherwise)

,

(C.73)

where α̃ ≡ αα′−1, α̃′ ≡ α−3, dX ≡ D(G)X.

The above result can also be understood from the viewpoint of Zn and Z′
n charge constraints.

Suppose that the chiral fermions are Zn and Z′
n eigenstates, where we denote the [Zn,Z′

n] charges

of the j th component field as [qj, q
′
j]. Eq. (C.71) means that there exists a state with charge

[−(qj + q′j), qj] and β transforms the j th component with charge [qj, q
′
j] to the sate with charge

[−(qj + q′j), qj]. For example, when we consider a fundamental irreducible representation, it

forms a triplet with charge t([q1, q
′
1], [q2, q

′
2], [q3, q

′
3]) =

t([q, q′], [−(q+q′), q], [q′,−(q+q′)]). Then,
we obtain

detρ(α) = detρ(α′) = 1, (C.74)

and we can actually check Eqs. (C.72) and (C.73). We note that for the triplet, Eq. (C.74) and

also detρ(β) = 1 are satisfied, even if n ∈ 3Z.
In the class (iii), we can obtain

G0 =

{
< α̃, α̃′, β̃|β̃3 = e, β̃α̃β̃−1 = α̃α̃′, β̃α̃′β̃−1 = α̃−3α̃′−2 >= (Zn × Zn/3)⋊ Z3 (n ∈ 3Z)
< α̃, α̃′ >= Zn × Zn (otherwise)

,

(C.75)

G/G0 ≃ ZN = Z3 =< gβ|g3β = ge >, ∀n, (C.76)
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where β̃ ≡ α−1β, gβ ≡ G0β. Here, since the relations between α̃ and α̃′ are same as Eq. (C.72),

we omit them. Then, since β3 = β̃3 = e, G = ∆(3n2) can be written as

∆(3n2) = G ≃ G0 ⋊ Z3

≃
{

(D(∆(3n2))⋊ Z3)⋊ Z3 (n ∈ 3Z)
D(∆(3n2))⋊ Z3 (otherwise)

≃
{

((Zn × Zn/3)⋊ Z3)⋊ Z3 (n ∈ 3Z)
(Zn × Zn)⋊ Z3 (otherwise)

,

(C.77)

where the last Z3 semidirect product for n ∈ 3Z comes from the relations, βα̃β−1 = α̃α̃′,

βα̃′β−1 = α̃−3α̃′−2, ββ̃β−1 = α̃−1α̃′−1β̃. One of the examples is G = A4 ≃ ∆(12). In this

case, the A4 flavor model can be classified as either the class (iii), G0 = D(G) = Zn × Z′
n,

G/G0 ≃ ZN = Z3, or the class (i), G0 = G = A4. Indeed, the A4 symmetry has four

irreducible representations, 1 (detρ1(β) = 1), 1′ (detρ1′(β) = e2πi/3), 1′′ (detρ1′′(β) = e4πi/3),

and 3 (detρ3(β) = 1) [6, 7]. Then, the whole A4 symmetry is anomaly free in flavor models

in which proper numbers of 1′ and 1′′ are included. Otherwise, the Z3 subsymmetry can be

anomalous. Note that, in the double covering group T ′, there is no modification from A4 case

except the double covering.

Step 3 (G ≃ KG ⋊ ZB)
All of discrete groups discussed in the steps 1 and 2 are specific cases of G ≃ KG ⋊ ZB type.

Now, we study a more generic case, G ≃ KG⋊ZB. Since G/KG ≃ ZB, we find thatD(G) ⊆ KG.

Then, we can find that

G/D(G) ≃ (KG/D(G))× ZB, (C.78)

from the following proof.

Proof

We can prove Eq. (C.78).

(I) From the isomorphism theorem 3 in subsection C.5.1, we obtain

ZB ≃ G/KG ≃ (G/D(G))/(KG/D(G)). (C.79)

(II) Since G ≃ KG ⋊ ZB, ZB is a subgroup of G and the relation KG ∩ ZB = {e} is satisfied.
Then, the relation (KG/D(G))∩ZB = {e} is also satisfied. Hence, we can writeG/D(G) ≃
(KG/D(G))⋊ ZB.

(III) In particular, since G/D(G) is Abelian, G/D(G) ≃ (KG/D(G))× ZB.

In the class (iii), the order N of ZN ≃ G/G0 can be calculated as the least common multiple

of all orders of cyclic groups in G/D(G).
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One of the example which is not mentioned in the steps 1 and 2 is G = Sn ≃ An⋊Z2 (n ≥ 5).

Then, it should be satisfied that D(G) ⊆ An. On the other hand, since An (n ≥ 5) is a perfect

group, An should be included in D(G), An ⊆ D(G). Hence, we find that D(G) = An. In

this case, the Sn flavor model can be classified as either the class (iii), G0 = D(G) = An,

G/G0 ≃ ZN = Z2, or the class (i), G0 = G = Sn.

Step 4 (General G ≃ KG ⋊G(1))

Finally, we study general case G ≃ KG⋊G(1). We note that the case that G(1) is Abelian comes

down to the step 3 by applying the fundamental structure theorem of finite Abelian group in

subsection C.5.3 and Eqs. (C.94)-(C.95) in subsection C.5.2. In this case, we can generally

obtain

G/D(G) ≃ (KG/D(G))×G(1)(Abelian). (C.80)

Now, let us consider the case that G(1) is non-Abelian. Since G/KG ≃ G(1) and G(1) ▷

D(G(1)) ≠ {e}, by applying the correspondence theorem in subsection C.5.1, we find that

KG ⊂ D(G) ⊆ G0. Here, similar to G0, we define G
(1)
0 ≡ {g

(1)
0 ∈ G(1)|detρ(g(1)0 ) = 1}, and then

we find D(G(1)) ⊆ G
(1)
0 . By applying the isomorphism theorem 3 in subsection C.5.1, we can

find that

ZN ≃ G/G0

≃ (G/D(G))/(G0/D(G))

≃ [(G/KG)/(D(G)/KG)]/[(G0/KG)/(D(G)/KG)]

≃ (G(1)/D(G(1)))/(G
(1)
0 /D(G(1)))

≃ G(1)/G
(1)
0 .

(C.81)

Therefore, in this case, the structures of D(G), G/D(G), G0, and G/G0 depend on D(G(1)),

G(1)/D(G(1)), G
(1)
0 , and G(1)/G

(1)
0 , respectively.

For example, let us see G = ∆(6n2),

∆(6n2) ≃ (Zn × Z′
n)⋊ S3 ≃ (Zn × Z′

n)⋊ (Z3 ⋊ Z2)

≃ ((Zn × Z′
n)⋊ Z3)⋊ Z2 ≃ ∆(3n2)⋊ Z2,

(C.82)

where we use Eqs. (C.94) and (C.95). Then, we can find that Zn×Z′
n ⊂ G0 and ZN ≃ S3/G

(1)
0 .

In addition, since S3 ≃ A3⋊Z2 ≃ Z3⋊Z2, we obtain G
(1)
0 ⊇ A3 ≃ Z3. Thus, in this case, ∆(6n2)

flavor model can be classified as either the class (iii), G0 = D(G) = ∆(3n2), G/G0 ≃ ZN = Z2,

or the class (i), G0 = G = ∆(6n2). One of the examples is G = S4 ≃ ∆(24) ≃ ∆(12) ⋊
Z2 ≃ A4 ⋊ Z2. Indeed, the S4 group has five irreducible representations, 1 (detρ1(β) = 1),

1′ (detρ1′(β) = −1), 2 (detρ2(β) = −1), 3 (detρ3(β) = −1), and 3′ (detρ3′(β) = 1) [6, 7].

Then, the whole S4 symmetry is anomaly free in flavor models in which even numbers of 1′, 2,

and 3 are included. Otherwise, the Z2 subsymmetry can be anomalous.
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So far, we have seen the detailed structure of the anomaly-free subgroup G0 and the anoma-

lous part G/G0 ≃ ZN for various typical discrete groups G from the structure of the derived

subgroup D(G) and its residue class group G/D(G). Here, we list D(G) and G/D(G) for those

typical discrete groups G in Table C.1. We note again that no matter what representations

of G our model has, the derived subgroup D(G) automatically becomes the subgroup of the

anomaly-free group G0. Then, in the case of G = Sn ≃ An⋊Z2 and G = ∆(6n2) ≃ ∆(3n2)⋊Z2,

in particular, we can find that G0 ⊇ An and G0 ⊇ ∆(3n2) at least, respectively.

G D(G)(⊆ G0) G/D(G)

Zp {e} Zp
(A3 ≃ Z3) ({e}) (Z3 ≃ A3)

Dn ≃ Zn ⋊ Z2

{
Zn/2 (n ∈ 2Z)
Zn (n ∈ 2Z+ 1)

{
Z2 × Z2 (n ∈ 2Z)

Z2 (n ∈ 2Z+ 1)

(S3 ≃ D3 ≃ A3 ⋊ Z2) (Z3 ≃ A3) (Z2)

Tpk ≃ Zpk ⋊ Z3 (p ̸= 3) Zpk Z3

Σ(2n2) ≃ (Zn × Zn)⋊ Z2 Zn Zn × Z2

Σ(3n3) ≃ (Zn × Zn × Zn)⋊ Z3 Zn × Zn Zn × Z3

∆(3n2) ≃ (Zn × Zn)⋊ Z3

{
Zn × Zn/3 (n ∈ 3Z)
Zn × Zn (otherwise)

{
Z3 × Z3 (n ∈ 3Z)

Z3 (otherwise)

(A4 ≃ ∆(12)) (Z2 × Z2) (Z3)

∆(6n2) ≃ (Zn × Zn)⋊ S3

≃ (Zn × Zn)⋊ (Z3 ⋊ Z2)

≃ ((Zn × Zn)⋊ Z3)⋊ Z2

≃ ∆(3n2)⋊ Z2

∆(3n2) Z2

(S4 ≃ ∆(24)

≃ ∆(12)⋊ Z2

≃ A4 ⋊ Z2)

(∆(12) ≃ A4) (Z2)

PSL(2,Zp) (p ̸= 2, 3) PSL(2,Zp) (p ̸= 2, 3) -

An (n ≥ 5) An (n ≥ 5) -

Sn ≃ An ⋊ Z2 (n ≥ 5) An (n ≥ 5) Z2

Table C.1: The derived subgroup D(G) and its residue class group G/D(G) for various typical

discrete groups G.

Finally, we summarize the important points in this section again.

• The derived subgroup of G, D(G), defined in Eq. (C.12), is always included in G0, i.e.,

D(G) ⊆ G0 (D(G) ◁ G0), even if we have any representations of G. In addition, G/D(G)

becomes Abelian as in Eq. (C.14) and each cyclic groups can be anomalous, while G/G0 ≃
ZN . The order N is given by the least common multiple of orders of the anomalous cyclic

subgroups (which is a divisor of the least common multiple of orders of all cyclic subgroups
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of G/D(G)). Therefore, D(G) is important to explore the structure of the anomaly-free

subgroup G0 and the anomalous part G/G0 ≃ ZN .

• The detailed structure of D(G) depends on the structure of G. In particular, when

G can be written by semidirect product, i.e. G ≃ KG ⋊ G(1), we can obtain some

information as discussed in the above step 4; we can obtain D(G) ⊆ KG and G/D(G) ≃
(KG/D(G))×G(1) in the case that G(1) is Abelian, while we can obtain KG ⊂ D(G) ⊆ G0

and G/D(G) ≃ G(1)/D(G(1)) in the case that G(1) is non-Abelian. For example, in the

case of G = Sn ≃ An ⋊ Z2 and G = ∆(6n2) ≃ ∆(3n2) ⋊ Z2, in particular, we find that

G0 ⊇ An and G0 ⊇ ∆(3n2) at least.

C.4 Comment on generic theories with P > 1

Here, we extend our analysis to the theory with
∑

R 2T2(R) = P > 1 and anomaly-free

condition (detρ(g))P = 1.

Suppose that the representation of any element ∀g ∈ G satisfies (detρ(g))N = 1. In this

case, the representation of the anomaly-free element gn, which satisfies (detρ(gn))
P = 1, also

satisfies (detρ(gn))
n = 1 with n = gcd(N,P ). Namely, the determinant can be written as

detρ(gn) = e2πiQ
′′(gn)/n. Here, we define the subset of G,

Gn ≡ {gn ∈ G|detρ(gn) = e2πiQ
′(gn)/N = e2πiQ

′′(gn)/n}, (C.83)

where Q′(gn)(= Q(gn)N/N(gn)) = Q′′(gn)N/n. Similar to G0, we find that Gn is also a normal

subgroup of G, Gn ◁ G. We note that G0 is included as the normal subgroup of Gn, G0 ◁ Gn.

Then, we can similarly find that G/Gn ≃ ZN/n and Gn/G0 ≃ Zn. Indeed, by applying the

isomorphism theorem 3 in subsection C.5.1, we obtain

G/Gn ≃ (G/G0)/(Gn/G0) ≃ ZN/Zn ≃ ZN/n. (C.84)

Therefore, in the theory, the subgroup Gn is anomaly free while G/Gn ≃ ZN/n can be anoma-

lous. We notice that the anomalous symmetry becomes the single cyclic group. Furthermore,

if there exists ∃g ∈ G with N(g) = N/n and gcd(Q(g), N(g)) = 1, G can be decomposed as

G ≃ Gn ⋊ ZN/n. (C.85)

It means that the anomaly-free and anomalous parts of G can be separated.

There is an interesting example. When P is a multiple of N , the whole G symmetry is

anomaly free. As the example, let us suppose that our particle theory has E6 gauge symmetry7

and all chiral fermions in the theory transform as 27i representation under E6 transformation,

where i denotes the flavor index. (For example, the i th generational standard model quarks

7E6 gauge symmetry is automatically anomaly free.
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and leptons are embedded in 27i representation.) Furthermore, we also suppose discrete G

flavor symmetry for those chiral fermions at least at classical level. In this case, we obtain

P = 2T2(27) = 6. Then, from Eq. (C.26), when G corresponds to either of the groups listed in

Table C.1 except Σ(2n2) and Σ(3n2), at least, we can find that whole G flavor symmetry can

be automatically anomaly free no matter what representations of G the fermions have.

C.5 Property of group theory

C.5.1 Isomorphism Theorems

We give the fundamental homomorphism and then the isomorphism theorems as well as the

correspondence theorem.

Fundamental homomorphism theorem

LetK be a normal subgroup of G, K◁G. Then there is a natural homomorphism π : G→ G/K.

In addition, let f : G→ G′ be a group homomorphism. Then, Ker(f) ◁ G and we can consider

G′ = Im(f) without loss of generality. If K is a subset of Ker(f), K ⊆ Ker(f), there exists a

unique homomorphism F : G/K → G′ such that F ◦ π = f .

Isomorphism theorem 1

In particular, if K = Ker(f), F : G/K → G′(= Im(f)) becomes a isomorphism;

G/Ker(f) ≃ Im(f). (C.86)

This is always satisfied whenever we consider f : G→ G′.

Correspondence theorem

It can be applied even if K ⊂ Ker(f). In this case, we obtain G/K ▷Ker(F ) ̸= {e} and then

(G/K)/Ker(F ) ≃ G′ ≃ G/Ker(f). (C.87)

Here, K ⊂ Ker(f) = Ker(F ◦ π) = π−1(Ker(F )) ◁ G. Furthermore, there exists a group

homomorphism ϕ : G → G′′ such that Ker(ϕ) = K, and then G′′ ≃ G/K. Accordingly, there

exists K̃ ′′ ◁ G′′ such that K̃ ′′ ≃ Ker(F ). Thus, for ϕ : G→ G′′, we obtain

G/K̃ ≃ G′′/K̃ ′′, (C.88)

in general, where K̃ ′′ ◁ G′′ and K̃ ≡ ϕ−1(K̃ ′′)(⊃ Ker(ϕ)) ◁ G. This is often called the corre-

sponding theorem.

Isomorphism theorem 2

Let K be a normal subgroup of G, K ◁G. Let H be a subgroup of G, H ⊂ G. In this case, K

is also a normal subgroup of KH. In particular, H ∩K is also a normal subgroup of H. When

we consider ϕ : KH → H, we obtain ϕ(K) = H ∩K and then

KH/K ≃ H/(H ∩K). (C.89)
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Isomorphism theorem 3

Let both K1 and K2 be normal subgroups of G with K1 ⊂ K2. In this case, K1 ◁ K2 and

K2/K1 ◁ G/K1. By applying the corresponding theorem, we obtain

G/K2 ≃ (G/K1)/(K2/K1). (C.90)

C.5.2 Semidirect Product

We comment on semidirect product. If a normal subgroup of G, KG, and a subgroup of G, G(1)

satisfy the following conditions,

G = KGG
(1), KG ∩G(1) = {e}, (C.91)

G can be written by KG and G(1) as

G ≃ KG ⋊G(1). (C.92)

In particular, if any elements inG(1) commute all elements inKG, G can be written asG ≃ KG×
G(1). Applying the second isomorphism theorem in subsection C.5.1, we find that G/KG ≃ G(1).

Note that G cannot be always decomposed as G ≃ KG ⋊ G(1) just because G/KG ≃ G(1). If

this G(1) is actually a subgroup of G, Eq. (C.91) can be satisfied and then G can be written as

Eq. (C.92). In terms of group elements in Eq. (C.92), since KG is the normal subgroup of G,

the following relation,

g1kg
−1
1 = k(g1) ∈ KG, (C.93)

should be satisfied, where k, k(g1) ∈ KG and g1 ∈ G(1).

Now, let us consider the case that G(1) can be further decomposed as G(1) ≃ KG(1) ⋊ G(2).

In this case, G can be written as

G ≃ KG ⋊G(1) ≃ KG ⋊ (KG(1) ⋊G(2)), (C.94)

⇒ G ≃ (KG ⋊KG(1))⋊G(2) ≃ K ′
G ⋊G(2). (C.95)

This can be found, in the following, by considering relations among their elements: k, k(k1),

k(g2), k(g2→k1) ∈ KG, k1, k
(g2)
1 , k

(g2→k)
1 ∈ KG(1) , and g2 ∈ G(2). In the case of Eq. (C.94),

k1kk
−1
1 = k(k1), g2kg

−1
2 = k(g2), g2k1g

−1
2 = k

(g2)
1 , (C.96)

are satisfied, while in the case of Eq. (C.95),

k1kk
−1
1 = k(k1), g2kg

−1
2 = k(g2)k

(g2→k)
1 , g2k1g

−1
2 = k(g2→k1)k

(g2)
1 , (C.97)

are satisfied. Thus, Eq. (C.96) is a sufficient condition for Eq. (C.97), but Eq. (C.97) does not

always satisfy Eq. (C.96).
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C.5.3 Finite Abelian Groups

We give several theorems of finite Abelian groups.

Fundamental structure theorem of finite Abelian group

Every finite Abelian group G with the order |G| = pA1
1 · · · pArr =

∏r
i=1 p

Ai
i can be written as

G ≃ (Z
p
a1,1
1
× · · · × Z

p
a1,n1
1

)× · · · × (Z
p
ar,1
r
× · · · × Zpar,nrr

), (C.98)

where each pi is a distinct prime number and ai,j satisfy

Ai =

ni∑
j=1

ai,j, ai,j ≥ ai,j+1. (C.99)

Note that ai,j is uniquely determined by G.

Here, in the above theorem, the following theorem is applied.

The Chinese remainder theorem

When m and n are coprime to each other, it is satisfied that

Zmn ≃ Zm × Zn. (C.100)

Note that, by using this theorem, the following relation,

Zm × Zn ≃ Zgcd(m,n) × Zlcm(m,n), (C.101)

is generally obtained.
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