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Abstract

Carbon isotopes have attracted great interest and have been important subjects

in nuclear physics as they exhibit a rich variety of cluster phenomena. The Hoyle

state, the 0+2 state of 12C, has a very interesting clustering aspect; Bose-Einstein

condensate (BEC) of the three α particles. In the recent two decades, the structure

of the Hoyle state and its analogous states in neighboring nuclei have been a major

topic. 13C is one of the particularly important nuclei as the system can be described

as three α particles (bosons) with a valence nucleon (fermion). The BEC of the

three α particles with a neutron as an impurity, which is referred to as the Hoyle-

analog state, and the predominant α cluster states in 13C are the main interests. For

example, 13C as the 3α+n system exhibits the evidence of the triangular symmetry

of the 3α particles with the spinor effect accompanied by the valence neutron, in

which the triangular symmetry successfully predicted rotational bands and excited

states in 12C.

In my thesis, the band structures and resonance states of 13C are studied. The

real-time evolution method (REM), which uses the equation-of-motion of clusters,

has been applied. First, the symmetry of 13C is investigated in comparison with

the study by Bijker et al. [Phys. Rev. Lett. 122, 162501 (2019)], which explained

the rotation-vibration spectrum of 13C by assuming a triangular nuclear shape of

3α particles with a neutron. REM is a full microscopic nuclear model that does not

assume any nuclear shape. As a result, REM described the low-lying states more

accurately than the previous studies. The wave functions are analyzed to understand

the shape of each state and showed that the ground band has a triangular symmetry,
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while the other excited bands do not.

In subsequent, the Hoyle-analog state in 13C, the three α plus one neutron con-

densate, is investigated. It is still under debate which state is the Hoyle-analog

state in 13C. Several experimental studies showed that the 1/2− states exhibit

strong cluster aspects that can be the Hoyle-analog state, while other theoretical

studies concluded that there is no Hoyle-analog state in the 1/2− states. In order to

figure out the Hoyle-analog state and deal with the resonance states located around

the 3α+ n threshold, the analytic continuation in the coupling constant (ACCC) is

introduced. ACCC with REM properly estimated the resonance states of the 1/2−

states together with their characteristics such as the radii and monopole transition

probabilities. This study suggests that the 1/2−4 state can be the possible candidate

for the Hoyle-analog state in 13C revealing large spatial excitation and transition

strength as the signature of the Hoyle state.
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Chapter 1

Introduction

1.1 α clustering in light nuclei and the Hoyle state

There are several astrophysical reaction scenarios in the universe that explain how

and where the elements are made. One of the most important reactions is the triple-

α process occurring in stars. In this process, the fusion of two α particles is followed

by the capture of another α particle to form the resonance state in 12C. This 3α

state decays into the ground state of 12C, and it explains the abundance of 12C in the

universe. The resonant 3α state is an excited state of 12C which was first predicted

by Fred Hoyle [1] and hence, called the Hoyle state. The Hoyle state is an α cluster

state which cannot be explained by the traditional shell model calculations as shown

in Figure 1.1. The first column shows the experiment and the others are the shell

model calculations. The blue state is the Hoyle state (the second 0+ state of 12C)

and the shell models cannot reproduce it as shown in the red-dashed blank area.

The Hoyle state is a key state in other reactions to explain how heavier elements

are made. Thus, it is essential to investigate the properties of the Hoyle state. To

date, there are two different ways that explain the structure of the Hoyle state.

One is that the Hoyle state can be regarded as a Bose-Einstein condensate (BEC)

of 3α particles [2]. Figure 1.2 would provide an illustrative understanding of the

Hoyle state as a BEC. The 3α particles occupy the same S orbit within the dilate
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Figure 1.1: The 12C energy spectrum. The first column shows the experiment and
the others are the shell model calculations. The blue state is the Hoyle state and
the shell models cannot reproduce it. The figure was taken from Ref. [3].

harmonic oscillator potential. Meanwhile, the two protons and two neutrons are

strongly bound as an α particle occupying the same s orbit within the α particle.

This Hoyle state as a BEC exhibits some particular signatures such as a very large

radius (>3.4 fm) compared to the ground state (2.4 fm) as a dilute nature and a

strong monopole transition probability to the ground state.

This novel α cluster phenomenon triggered great interest. For example, the

studies have been extended to BEC in many α particle systems such as 4α and 5α

condensation in 16O [4, 5] and 20Ne [6]. Also, the analogous states of the Hoyle state

in neighboring nuclei have been one of the major topics. For example, in the highly

excited energy region of carbon isotopes, a different type of clustering that is the

linear-chain of alpha particles has also been actively discussed [7–12].

Among the carbon isotopes, 13C is one of the particularly important nuclei as

the system can be described as three α particles (bosons) with a valence nucleon

(fermion). The BEC of the three α particles with a neutron as an impurity, which

6



Figure 1.2: The Hoyle state where the α particles occupy the same S orbit within
the dilate harmonic oscillator potential B, while the two protons and two neutrons
are bound as an α particle occupying the same s orbit within the α particle oscillator
b. The figure was taken from Ref. [19].

is referred to as the Hoyle-analog state, and the predominant α cluster states in 13C

are the main interests in this work [13–18].

1.2 Resonance and Hoyle-analog state in 13C

The Hoyle-analog state is a condensate state of the Hoyle state with other particles

such as neutrons and protons. In 13C, the Hoyle-analog state is a 3α+n condensate

state. Since the Hoyle state is the 3α particle state occupying the same S orbit,

the Hoyle-analog state in 13C is expected to have the lowest orbits of the valence

neutron coupled to the Hoyle state:

12C(0+2 )⊗ s-wave neutron → 13C(1/2+), (1.1)

12C(0+2 )⊗ p-wave neutron → 13C(1/2−, 3/2−). (1.2)

It is still under debate which state is the Hoyle-analog state in 13C. Several experi-

mental studies showed that the 1/2− states exhibit strong cluster aspects that imply

the Hoyle-analog state [18, 20] while other theoretical studies concluded that there is

no Hoyle-analog state in the 1/2− states. The antisymmetrized molecular dynamics

(AMD) [17] and the orthogonality condition model (OCM) [21] calculations argue

that the Hoyle-analog state is in the 1/2+ states. In order to figure out which state
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Figure 1.3: Schematic illustration of wave functions of the bound state, continuum
state, and resonance state. The figure was partially reproduced from Ref. [23].

and where is the Hoyle-analog state in 13C, the excited energy region around the

3α + n threshold is focused as suggested by K. Ikeda et al. [22], in which a cluster

formation in a nucleus appears around the threshold of its cluster units. However,

there are several thresholds below the 3α + n threshold in 13C such as the 12C + n

and 9Be + α thresholds. They make the bound state approximation not applicable

to the calculated excited states due to the contamination of the continuum states.

Figure 1.3 shows schematic concepts of the bound state, continuum state, and

resonance state in a potential. The wave function of a bound state is drawn as green

curve. In the bound states, nucleons are interacting with each other, and they are

confined in the interacting area in which the wave function has a large amplitude.

The continuum states appear above the particle decay thresholds, and their wave

function is spread out in whole space in the time-independent formalism of quantum

mechanics. The resonance states exist in the continuum region, but the particles

are interacting with each other like the bound states. They have complex energies

where the imaginary parts represent decay widths, so their amplitudes of the time-

dependent wave function decrease with time. This decay property is drawn as the

amplitudes outside of the interacting area. It makes the resonance states difficult to

study because the wave functions resemble the continuum states and thus are easily

contaminated by the continuum states.

In order to identify the resonant states from the non-resonant continuum states,
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the analytic continuation in the coupling constant (ACCC) [24, 25] is introduced.

The resonant states are analytically continued from the bound states which are

calculated with the Hamiltonian including an attractive potential. In this study,

ACCC is combined with the real-time evolution method (REM) [26] as explained in

Chapter 2. In Chapter 3 the benchmark calculations are performed to confirm the

validity of ACCC with REM. Then, the framework of ACCC with REM is applied

to the resonance states in 13C.

1.3 Symmetry of nuclear shape in light nuclei

Apart from the studies of α condensation, symmetry is another interpretation of the

α clustering in light nuclei. Symmetry plays an important role in respect of the law

of physics. Some simple symmetry structures of α particles and their vibrations are

shown in Figure 1.4: 8Be as a dumbbell shape and 12C as a triangle shape. The

excited states of the nuclei with such symmetry assumption are explained by the

vibration modes as depicted with arrows in the figure and their rotations.

For example, a study of 12C applying the algebraic cluster model (ACM) [27–29],

which assumes a triangular shape of 3α particles, explained excited states by the

rotation of different vibrational modes of the triangle. The ground state (0+1 ) is a

compact 3α particle structure and the excited states that can be explained by the ro-

tation of this structure are classified into the ground state rotational band as shown

in Figure 1.5. The horizontal axis is J(J + 1) with the angular momentum J . The

energy is proportional to J(J + 1) and the inverse of the gradient is related to the

moment of inertia. This symmetry model predicted that the 4+ state in the ground

state band is degenerate parity doublet states with the 4− state and predicted a

new member to be the 5− state in the ground state band [27]. These predictions

were confirmed by the experiment [30]. This triangle shape also explained the ex-

perimentally measured strong electric quadrupole (E2) transition probability of the

2+1 state to the ground state, which indicates the same structure in the rotational

band. From such pieces of evidence, the ground state band can be interpreted as a
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Figure 1.4: Simple symmetry structures of 2α and 3α particles and their vibrations
are shown.

compact 3α particle structure, in which the member states can be approximated by

a single basis wave function.

ACM also explained the Hoyle state as a vibration of 3α particles and classified

some other excited states as the Hoyle state rotational band having the same vibra-

tion mode as the Hoyle state. However, they failed to explain the strong monopole

transition probability of the Hoyle state (0+2 ) and it is understandable when the

Hoyle state is interpreted as a BEC state. The Hoyle state is a superposition of

many different configurations of 3α particles and thus the symmetry model assum-

ing a specific nuclear shape deviates from the nature of the Hoyle state.

The study of the triangular symmetry in 12C was extended to 13C where the

triangular symmetry of 3α particles with an additional neutron was assumed [31].

In Figure 1.6, the ground state (1/2−) rotational band (blue bands) with the other

two bands, which have the same rotation structure, was proposed together with the

1/2+ rotational band (black band) having a different structure with the valence neu-

tron as shown. They compared their calculated energy spectrum with the available

experimental data and reproduced some measured strong E2 transition probabili-

ties in the ground band as in the 12C case, and hence, they argued that 13C shows

triangular symmetry of 3α particles with a single neutron.

Such triangular symmetry suggests an interesting insight into the structure of

carbon isotopes, which contradicts the BEC interpretation of the Hoyle state and its
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Figure 1.5: Ground band and Hoyle band in 12C explained by triangular symmetry
of 3α particles. The figure was taken from Ref. [30].

analogous states. However, it must be tested if symmetry in 13C, which is considered

to be hindered by the motion of the valence neutron, is exhibited in reality by

the microscopic models without any assumption of the nuclear shape [32]. The

symmetry model presumes a nuclear shape so that it naturally cannot examine the

symmetry structures and the deviation from them. Indeed, the 13C energy spectrum

calculated by ACM shows several overestimated states in the high spin states.

1.4 Purpose

The real-time evolution method (REM) recently proposed by Imai et al. [26] is one

of the microscopic cluster models which can examine the shape of nuclei without any

assumption of symmetry. It generates basis wave functions with various cluster con-

figurations as time evolves by using the equation-of-motion (EOM) of the Gaussian

wave packets. A benchmark calculation showed that REM precisely describes the

3α system including the Hoyle state as shown in Figure 1.7. It is noted that REM

superposes a massive number of the basis wave functions to describe the cluster

systems, and it does not introduce any assumption about the symmetry of nuclear

shape and cluster configurations. Therefore, REM is a suitable nuclear model to test
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Figure 1.6: Rotation-vibration band structure in 13C explained by triangular sym-
metry of 3α + n. The figure was taken from Ref. [31].

if there exists any symmetry in nuclei as well as to describe various configuration

superposed states like the Hoyle state.

The first aim of this work is to verify the triangular symmetry in 13C as the

3α + n system. For this purpose, the electric quadrupole transition probabilities

between the states in the energy spectrum calculated by REM are investigated since

a strong E2 transition can be evidence of band structures. In addition, each state

in the spectrum is analyzed by overlapping with a single-basis wave function to see

which configuration is the representative shape for each state.

In subsequence, the resonance states in 13C are investigated to search for the

Hoyle-analog state using ACCC with REM as explained in Section 1.2. Some candi-

dates for the Hoyle-analog state in 13C were roughly reported in the highly excited

region within the REM framework (Figure 1.8) [33]. Therefore, the second aim is to

identify the resonance states in 13C and figure out which state can be regarded as the

Hoyle-analog state from them. The 1/2− states are mainly studied because several

experimental studies reported that there are well-developed cluster states implying

one of them could be the Hoyle-analog state by measuring the isoscalar monopole
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Figure 1.7: Energy spectrum of 12C compared with the experiment and other theo-
retical models. The figure was taken from Ref. [26].

(IS0) transition probabilities. Thus, the IS0 transitions are investigated within the

framework of ACCC with REM, in which the strong transition probability is the

signature of the Hoyle state, together with investigating the radii of each state to

confirm a large radius as the dilute nature of the Hoyle state.

This thesis is organized as follows. In Chapter 2, the theoretical frameworks to

study 13C are elucidated. The results are shown and discussed in Chapter 3. Firstly,

the α cluster structures of the low-lying states are discussed with the comparison

of rotation bands and their intrinsic shapes. Secondly, the resonance states are

discussed with the practical development of the ACCC method combined with REM.

The candidate of the Hoyle analog state is finally proposed. In the final chapter,

the study on 13C is summarized.
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Chapter 2

Theoretical framework

2.1 Basis wave function for Nα+1 particles system

and Hamiltonian

In this section, we first see the Hamiltonian and the framework of the Nα + 1

microscopic cluster model. The Hamiltonian for the Nα+1 nuclear system is given

as,

Ĥ =
4N+1∑
i=1

t̂i − t̂cm +
4N+1∑
i<j

v̂N(rij) +
4N+1∑
i<j

v̂C(rij), (2.1)

where t̂i and t̂cm denote the kinetic energies of the ith nucleon and the center-of-

mass, respectively. The v̂N and v̂C are the effective nucleon-nucleon interaction and

Coulomb interaction. The nucleon-nucleon interaction v̂N includes the central force

of Volkov No. 2 [34] and the spin-orbit interaction of the G3RS force [35] as,

v̂N =
2∑

n=1

vne
−r2ij/α

2
n(W +BPσ −HPτ −MPσPτ )

+
2∑

n=1

une
−βnr2ij l · sP (3O), (2.2)

P (3O) =
1 + Pσ

2

1 + Pτ

2
, (2.3)
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in which the Majorana parameter is M = 0.6 with W = 0.4, B = H = 0.125

and the parameter v1 = −60.65, v2 = 61.14 MeV and α1 = 1.80, α2 = 1.01 fm2.

The strength of the spin-orbit interaction is u1 = −u2 = 2000 MeV with β1 = 5.0,

β2 = 2.778 fm2. P (3O) is the projector onto the triplet state where Pσ and Pτ are

spin and isospin exchange operators, respectively. The Majorana parameter and the

spin-orbit strength will be changed when the resonance states of 13C are discussed

and their values are detailed later.

As for the wave function of the N +1 particles system composed of Nα particles

and a valence neutron, we use the Brink-Bloch wave function [36], which describes

an α particle having (0s)4 configuration and the valence nucleon,

Φ(Z1, ...,ZN+1) = A{ Φα(Z1) · · ·Φα(ZN)ϕn(ZN+1) } , (2.4)

Φα(Z) = A{ ϕ(r1,Z)χp↑ · · ·ϕ(r4,Z)χn↓ } , (2.5)

Φn(Z) = ϕ(r,Z)χn↑, (2.6)

ϕ(r,Z) =

(
2ν

π

)3/4

exp {−ν (r −Z)2 } , (2.7)

in which Φα(Z) and Φn(Z) represent the wave packets of the α cluster and the

valence nucleon located at Z, respectively. In this study, we set the spin down

fixed for the last neutron in Eq. (2.6). The set of the three-dimensional vectors

{Z1, ...,ZN+1} is complex numbered and each set describes the 3α + n cluster po-

sitions by the real numbers and their momenta by the imaginary numbers in the

phase space. Here, one α particle consists of four nucleons, which are assumed to be

located at the same position Z, so it is easy to treat the nuclear system as a cluster

structure. The α particle width parameter ν = 1/(2b2) is fixed to have b = 1.46 fm

[37] for 13C.
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Figure 2.1: Schematic of the 3α + n system of REM.

2.2 Generator coordinate method

The generator coordinate method is a method superposing generating functions

Φ(a). The real or complex parameters {a|a = a1, a2, ..., ai, ...} denote the particle

coordinates and are called generator coordinates. The GCM wave function Ψ is

constructed by a linear superposition of the generating functions [38],

Ψ =

∫
daf(a)Φ(a), (2.8)

where f(a) is a weight function. It is noted that generating wave functions are

usually not orthogonal to each other. We obtain the GCM wave function by super-

posing the intrinsic wave functions with different sets of {Z1, ...,ZN+1} of various

configurations after the parity and angular momentum projection. The GCM wave

function for the Nα + 1 particles system will be the form of

ΨJπ
M =

∑
K

∫
d3Z1...d

3ZN+1fK(Z1, ...,ZN+1)P̂
Jπ
MKΦ(Z1, ...,ZN+1), (2.9)

where Φ is the Brink wave function of Eq. (2.4) and fK(Z1, ...,ZN+1) is the superpo-

sition amplitude. P̂ Jπ
MK is the parity and the angular momentum projection operator
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of the form

P̂ π =
1 + πP̂x

2
, π = ±, (2.10)

P̂ J
MK =

2J + 1

8π2

∫
dΩDJ∗

MK(Ω)R̂(Ω). (2.11)

In our numerical calculations, Eq. (2.9) is approximately discretized by a sum of the

finite number pmax of the basis wave functions,

ΨJπ
M =

pmax∑
p=1

J∑
K=−J

fpKP̂
Jπ
MKΦ(Z

(p)
1 , ...,Z

(p)
N+1), (2.12)

where the pth set of the vectors {Z1, ...,ZN+1} is denoted as Z
(p)
1 , ...,Z

(p)
N+1 and the

amplitude fpK and the energies are determined by the Hill-Wheeler equation [39],

∑
p,K

HJπ

p′K′pKfpKn = EJπ

n

∑
p,K

NJπ

p′K′pKfpKn, (2.13)

HJπ

p′K′pK ≡ ⟨P̂ Jπ

MK′Φ(Z
(p′)
1 , ...,Z

(p′)
N+1)|Ĥ|P̂ Jπ

MKΦ(Z
(p)
1 , ...,Z

(p)
N+1)⟩, (2.14)

NJπ

p′K′pK ≡ ⟨P̂ Jπ

MK′Φ(Z
(p′)
1 , ...,Z

(p′)
N+1)|P̂

Jπ

MKΦ(Z
(p)
1 , ...,Z

(p)
N+1)⟩. (2.15)

To describe complicated cluster structures, superposing a large number of various

configurations is required. This becomes more difficult when the number of clusters

increases. If we have a large enough number of pmax, the GCM wave function

Eq. (2.12) would depict the multi-cluster systems close to the real system. Then,

it is essential to efficiently produce each pth set of the vectors which can make

the computational time much less to superpose with as few numbers of basis as

possible. For this reason, we exploit the REM [40] which generates wave functions

in an efficient and natural way.
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2.3 Real-time evolution method

In this section, we explain the framework of the real-time evolution method. It

generates the pth set of the wave function as generating functions in Eq. (2.12) using

the equation-of-motion (EOM). We apply the time-dependent variational principle

with the wave function Eq. (2.4),

δ

∫
dt
⟨Φ(Z1, ...,ZN+1)|ih̄ d/dt− Ĥ|Φ(Z1, ...,ZN+1)⟩

⟨Φ(Z1, ...,ZN+1)|Φ(Z1, ...,ZN+1)⟩
= 0, (2.16)

which leads to the EOM for the Nα + 1 cluster centroids Z1, ...,ZN+1,

ih̄
N+1∑
j=1

∑
σ=x,y,z

Ciρjσ
dZjσ

dt
=
∂Hint

∂Z∗
iρ

, (2.17)

Hint ≡
⟨Φ(Z1, ...,ZN+1)|Ĥ|Φ(Z1, ...,ZN+1)⟩
⟨Φ(Z1, ...,ZN+1)|Φ(Z1, ...,ZN+1)⟩

, (2.18)

Ciρjσ ≡ ∂2ln⟨Φ(Z1, ...,ZN+1)|Φ(Z1, ...,ZN+1)⟩
∂Z∗

iρ∂Zjσ

, (2.19)

where the j in the sum runs from 1 to N + 1 in Eq. (2.17), which denotes each

centroid of the 3α + n cluster. The set of the vectors {Z1, ...,ZN+1} is obtained

from the EOM as function of the real-time t, which denotes the wave function

Φ(Z1(t), ...,ZN+1(t)) at each time t corresponding to the pth set in Eq. (2.12). Here,

the time-averaged expectation value of the wave functions Φ(Z1(t), ...,ZN+1(t)) is

equivalent to the canonical ensemble at the same excitation energy, which shows an

ergodic property [41]. Also, the generated set of the wave functions follows quantum

statistic although the motion of the wave packet centroids is classical [42].

We impose a rebound condition because the particles can move the unphysical

region if they are not bound within some specific area during the time-evolving with

a high excited intrinsic energy. The rebound condition we used is the quadratic
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potential well [43] with the radius from the center of mass of the form

k
∑
i

f(|Di −Dc.m.|), (2.20)

f(x) = (x− a)2θ(x− a), (2.21)

Dc.m. =
4

N + 1

N∑
i

Di +
1

N + 1
DN+1, (2.22)

where θ(x − a) is a step function with Di = ReZi, and k = 1.5 MeV/fm2. The

rebound radius a is set to make the farthest two particles 20 fm for the 2-body

systems of 8Be and 5He. However, the rebound radius is set to 10 fm for 13C. It

is smaller than the cases of 8Be and 5He and the reason is that we do not treat

the s-wave resonance states in this study, which requires a very large model space

to describe the wave function, but it is large enough to treat the p-wave resonance

states. Additionally, it does not affect confirming the band structures in 13C with

being confirmed that 8 and 12 fm of the rebound radii did not give any deviation

to establishing the low-lying states and their band structures. Finally, we perform

the GCM calculation with the generated basis set Φ(Z1(t), ...,ZN+1(t)),

ΨJπ
M (Tmax) =

∫ Tmax

0

dt
J∑

K=−J

P̂ Jπ
MKfK(t)Φ(Z1(t), ...,ZN+1(t)), (2.23)

where we integrate from the initial time to the total propagated time Tmax.

2.4 Multipole transitions and Weisscopf estimate

In this study, several observables with their operators are calculated. Firstly, the

root-mean-square (r.m.s.) radius of the Nα + 1 system is given as,

R = ⟨ΨJπ| 1
A

A∑
i=1

(ri − rc.m.)
2|ΨJπ⟩1/2. (2.24)
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Similarly, the matrix element of the isoscalar monopole (IS0) transition strength is,

M(IS0; Jπ
i → Jπ

f ) = ⟨Jπ
f |

A∑
i=1

(ri − rc.m.)
2|Jπ

i ⟩. (2.25)

In the shell model, excited states are explained by the particle-hole excitation. Thus,

the monopole excitation is estimated from the single-particle excitation. However,

the cluster state is described by superposing many particle-hole excitation config-

urations, so one particle-hole excitation would be very small. The large monopole

transition strength is a signature of the cluster state [44]. Also, as the radius and

IS0 transition operator have the same form, a large transition strength implies that

the excited state Jπ
n could be a gas-like state. This will be exploited to investigate

the Hoyle-analog state in Section 3.2.

Secondly, the electric quadrupole transition probabilities B(E2) are calculated

to prove the shape of each state, in which B(E2) is sensitive to the deformation of

nuclei. In particular, a rotational band is formed by a rotation of a rigid body, so the

states in a rotational band show the same geometrical structure and are connected

by the strong E2 transitions as explained in Ref. [30]. The transition probabilities

B(E2) with the transition operator is defined as,

B(E2; Ji → Jf ) =
∑
Mfµ

|⟨JfMf |e
A∑
i=1

(ri − rc.m.)
2Y2µ( ˆri − rc.m.)

1 + τz
2

|JiMi⟩|2.

(2.26)

Thus-calculated transition probabilities are compared with the Weisscopf estimate

that is calculated as,

B(EL) =
(1.2)2L

4π

( 3

L+ 3

)2

A2L/3 e2fm2L, (2.27)

for a multipole L transition. This comparison provides information on whether a

single particle participated in the transition. For example, the transition is accom-

panied by the collective motion rather than the single particle motion if the B(E2)
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value is larger than the Weisscopf estimate.

2.5 Overlap between the single and GCM wave

function

Since REM provides wave functions without any presumed spatial symmetry, it is

worth evaluating if an arbitrary state exhibits triangular symmetry. In this study,

the GCM wave function is formed by the superposition of a set of generated REM

wave functions, in which each REM wave function has a different configuration. To

measure the intrinsic structure of each eigenstate, we introduce the overlap between

the superposed GCM wave function and the single basis wave function defined as,

Oi =
∑
KK′

⟨ΨJπ
M |P Jπ

MKΦi⟩B−1
KK′ ⟨P Jπ

MK′Φi|ΨJπ
M ⟩ , (2.28)

where B−1 is the inverse matrix of B which is the overlap of projected basis wave

functions,

BKK′ = ⟨P Jπ
MKΦi|P Jπ

MK′Φi⟩ . (2.29)

This overlap would provide which configuration is dominant. In addition, since

the GCM wave function ΨJπ
M is a superposition of Φi [Eq. (2.12)], ΨJπ

M can be

approximated by a single basis wave function Φi if the overlap Oi is large. Therfore,

a state having a large overlap with a single basis wave function can be regarded as

a rigid body state, so it is a good way to prove symmetry in nuclear systems.

2.6 Analytic continuation in the coupling constant

Here, we explain the ACCC method. The ACCC Hamiltonian H ′ is comprised as,

H ′(λ) = H + λHa, (2.30)
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where H is the original Hamiltonian of the physical system and Ha is an auxiliary

potential multiplied by the coupling constant λ. The Hamiltonian H ′, which is a

function of the coupling constant λ, makes the resonance states unphysically bound

with a large λ. Then, we extrapolate the original resonance states, where H ′(0) =

H, based on the momenta of their bound states. The resonance momentum kl is

estimated by the Padé series,

kl(x) = i
PN(x)

QM(x)
= i

p0 + p1x+ p2x
2 + · · ·+ pNx

N

1 + q1x+ q2x2 + · · ·+ qMxM
. (2.31)

λ

E

λ00
H ′(0) = H

ΨGCM
1st

ΨGCM
2nd

Resonance

Figure 2.2: Scheme of ACCC

A schematic illustration of how ACCC works is shown in Fig. 2.2. The GCMwave

functions treat resonance states using bound state approximation, and therefore, the

GCM eigenstates above the threshold are usually contaminated with the continuum

states. In the ACCC method, the resonance states become bound states by the

attractive potential. The first state ΨGCM
1st is almost a continuum state at λ = 0,

so it shows a horizontal line where λ is near 0. The second state ΨGCM
2nd consists of

mainly resonance state, so it starts to decrease as λ gets larger from 0. There is a

cross point where two states are close to each other, and after that, the resonance

state and the continuum state are separated. The continuum state remains the

horizontal line, in which the auxiliary potential does not affect the system since

there is no interaction among the constituent particles. However, the resonance

state is continuously decreasing as the potential is stronger with large λ and finally

becomes a bound state when λ > λ0. The bound states of the resonance have pure

imaginary momenta, in which they can construct the Padé series as in Eq. (2.31).
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The resonance state at λ = 0 is approximated by the thus-made analytic function

shown as the red dashed line.

The variable x in Eq. (2.31) is defined following the behavior of the momentum

as,

x =
√
λ− λ0 with kl(λ0) = 0. (2.32)

The branch point λ0 is the point of the coupling constant where the energy becomes

0, the threshold, for the l > 0 case. The Padé series in eq. (2.31) has the N +M +1

coefficients and they are real since the function is constructed with the bound states.

Then, the momentum kl is to be the complex when λ < λ0. As for the l = 0 case,

λ0 is not defined as the threshold, k0(λ0) ̸= 0. The k0 trajectory passes the negative

imaginary axis, and the branch point is determined where k0(λ0) = −ik, the kink

point, and k0 becomes to move on the fourth quadrant when λ < λ0. An example

of the l = 0 state can be found in Figure 3.6. Then, the resonance momentum kl

has the form as,

kl = kr − iki, kr > 0, ki > 0, (2.33)

and from the resonance momentum kl, the resonance energy ER and the decay width

Γ have following relations with the reduced mass m,

E =
h̄2k2l
2m

≡ ER − iΓ/2, ER =
h̄2

2m
(k2r − k2i ), Γ =

2h̄2

m
krki. (2.34)

The resonance state and bound state are illustrated on the complex momentum

plane in Figure 2.3. Resonance states are on the fourth quadrant having both real

and complex numbers while bound states are on the positive imaginary axis that

gives minus energies. However, resonance states with complex momentum would

also have complex energies.

Furthermore, the matrix elements of various observables explained above can be
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Re[k]

Im[k]

0

Resonance state

Bound state

Figure 2.3: Concept of the bound state and the resonance state on the complex
momentum plane.

also calculated within the ACCC framework [24],

(Φ|Ô|ψ⟩ = Cont
λ→1

∫ ∞

0

Φ∗(kl(λ), r)Oψ(r)dr, (2.35)

where the round bra and angled ket denote the resonance and bound states, respec-

tively. From the matrix elements calculated with the bound states (λ > λ0), one can

construct the Padé series and estimate in the same manner. The sign ‘Cont’ means

the continuation of the coupling constant λ to the physical point. In this process,

the normalization of the wave functions of the resonance states can be explained

by Zel’dovich regularization, which mathematically redefines the overlap of two res-

onance wave functions, but leads to the same result with conventional integration

[24].
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Chapter 3

Results and discussion

3.1 Band Structure and Shape of 13C

3.1.1 Time evolution of the 3α + n system

The numerical calculations were performed according to the following procedure.

First, using pure imaginary-time τ = it in Eq. (2.17), we calculate the minimum

intrinsic energy, that is found to be −83.1 MeV. Then, we generate the wave func-

tions with the intrinsic excitation energy E∗
int using the same equation. We have

tested several excitation energies and used E∗
int = 30 MeV in this work as it gives

the best convergence of the GCM calculation. Using these wave functions as the

initial condition at t = 0, we calculate the time evolution of the 3α+n system. The

total propagation time was set to 10,000 fm/c, and the wave functions are recorded

at every 33 fm/c. Consequently, an ensemble of the 300 wave functions is generated.

By using different inital wave functions at t = 0, we generated two ensembles which

we call set 1 and 2.

Several snapshots of the wave functions from these ensembles are shown in

Fig. 3.1. Note that the wave functions of set 1 and 2 at t = 0 fm/c have differ-

ent momenta of clusters, although they have almost the same spatial distributions.

Consequently, the set 1 and 2 show the different results of the time evolution. We

also note that various nuclear shapes with different cluster configurations naturally
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Figure 3.1: The snapshots of the intrinsic density distributions obtained by the real-
time evolution. The top (bottom) panels show the wave functions from the ensemble
set 1 (set 2).

emerge from the EOM. In some cases 3α particles are close to each other and the

valence neutron is apart from them. In other cases, 2α particles and the valence

neutron are close to each other, and an α particle is apart from others describ-

ing 9Be∗ + α like configurations. In this manner, the ensembles of the basis wave

functions were prepared without any assumption of the spatial symmetry.

3.1.2 The calculated full spectrum

The generated wave functions are superposed to diagonalize the Hamiltonian. To

confirm the convergence of the calculation, Fig. 3.2 shows the energies and radii of

the 1/2−1 and 5/2+1 states, which are the lowest negative- and positive-parity stats,

as functions of the propagation time Tmax. The energy and radius of the ground

state (1/2−1 state) show fast convergence and both sets reach almost the identical

values. Thus, the obtained GCM wave functions are converged well independent of

the initial wave functions. The figure also shows that REM yields approximately 1

MeV deeper binding energy of the 1/2−1 state than the previous study by Furutachi
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Figure 3.2: The energies and radii of the 1/2−1 and 5/2+1 states obtained from set 1
and 2 as a function of the total propagation time Tmax. The strength of the spin-
orbit potential uls = 2000 MeV was adopted. The result for the 1/2−1 state obtained
in Ref. [15] are denoted by blue lines.

et al. [15] who used the same Hamiltonian. This clearly shows that REM can

describe the 3α+n system more accurately. It is interesting to note that REM gives

the larger radius of the ground state despite the deeper binding energy. This means

that REM yields more stretched and long-ranged wave function. It is also noted that

good convergence of the 5/2+1 state was also achieved by using the same ensembles.

The left half of Fig. 3.3 compares the full spectrum obtained by REM and the

negative-parity states calculated by Furutachi et al. [15]. Because two calculations
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Figure 3.3: The energy spectrum of 13C calculated by using the strength of the
spin-orbit potential uls=2000 and 1000 MeV. The energy is measured relative to
the 3α + n threshold. The spectrum is compared with that obtained by Furutachi
et al. [15] using the same Hamiltonian with uls=2000 MeV. Experimental data are
taken from Ref. [45].

use the same Hamiltonian, deeper binding energy means a better description of the

bound states below the neutron threshold. Obviously, the present calculation gives

deeper energies to all the negative-parity states below the threshold (1/2−1 , 3/2
−
1 and

5/2−1 ). It also gives deeper binding energy to the 7/2−1 state located just above the

threshold, to which the bound-state approximation may be validated. Thus, REM

offers a better description of the bound states than ordinary GCM calculations.

However, the situation is different for the negative-parity resonances above the

neutron threshold to which variational principle is not applicable and the bound-

state approximation does not guarantee the energy convergence. In fact, two cal-

culations disagree in the highly excited negative-parity states. It is noted that the

model space of REM is much larger than that of the GCM by Furutachi et al. [15].

As a result, we found that most of the negative-parity resonances are coupled with

the non-resonant continuum which makes it difficult for us to identify resonant so-

lutions from many other non-resonant solutions. Therefore, we have not shown the

negative-parity states above the neutron threshold in Fig. 3.3. On the contrary,

although we cannot tell the reason clearly, we found that the coupling is not strong

in the positive-parity states, and stable solutions are obtained which are plotted as
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Figure 3.4: The band-assignment based on the calculated E2 transition strengths
compared with that from the algebraic cluster model (ACM) [31] and the experimen-
tal assignment which was also tentatively proposed in Ref. [31]. The filled (open)
symbols show the positive-parity (negative-parity) states.

resonances in the figure.

The spectrum obtained by the spin-orbit strength uls = 2000 MeV does not

reproduce the order of the ground band spectrum. It underestimates the excitation

energy of the 5/2−1 state and the spectrum deviates from the observed rotational

pattern. This may affect the assignment of the rotational bands and the discussion of

the intrinsic shape. Therefore, we performed an additional calculation using weaker

spin-orbit strength uls = 1000 MeV to check the interaction dependence of the

spectrum. As seen in Fig. 3.3, the weaker spin-orbit strength yields the correct order

of the ground band member states (1/2−1 , 3/2
−
1 , 5/2

−
1 and 7/2−1 states), although it

still overestimates the moment-of-inertia of the ground band. The side effect of the

weaker spin-orbit interaction is the overestimation of the excitation energies of the

positive-parity states. This may be due to the overestimation of the 9Be+α threshold

energy. If we measure them relative to the 9Be+α threshold, the excitation energies

of many positive-parity states get closer to the observed values. This implies that

many positive parity-states have 9Be+α structure [13, 14].

30



Table 3.1: The calculated intra- and inter-band E2 transition probabilities in
the unit of e2fm4. The transitions larger than the Weisskopf estimate (1W.U. =
1.8 e2fm4) are shown. The numbers in the parenthesis are the experimental values.

band Kπ
i → Kπ

f Ji Jf B(E2; Ji → Jf )

1/2− → 1/2− 1/2−1 3/2−1 17.4 (12.7)
5/2−1 17.1 (16.9)

3/2−1 5/2−1 2.4
7/2−1 17.8

5/2−1 7/2−1 2.0
5/2+ → 5/2+ 5/2+1 7/2+1 13.8

9/2+1 10.9
7/2+1 9/2+1 12.0

7/2+ → 7/2+ 7/2+2 9/2+3 12.9
1/2+ → 1/2+ 1/2+1 3/2+1 16.7

5/2+2 20.1
3/2+1 5/2+2 5.0

7/2+4 7.6
5/2+2 9/2+2 9.9

3/2+ → 3/2+ 3/2+2 5/2+3 10.0
7/2+3 8.7

5/2+3 7/2+3 9.8
5/2+ → 7/2+ 7/2+1 7/2+2 4.3
1/2+ → 5/2+ 1/2+1 5/2+1 6.7 (9.0)

5/2+2 5/2+1 3.6
7/2+1 4.3
9/2+1 3.3

9/2+2 7/2+1 2.2
1/2+ → 3/2+ 3/2+1 7/2+3 2.3

7/2+4 5/2+3 3.0
3/2+ → 5/2+ 3/2+2 5/2+1 2.7

3.1.3 Band assignment and shape of intrinsic states

Figure 3.4 presents the band assignment determined from the calculated E2 transi-

tion strengths listed in Tab. 3.1 and compares it with those from the experiment and

the ACM calculation. The band assignment of the REM results is unambiguous as

the intra-band E2 transitions are clearly stronger than the inter-band transitions.

The Kπ = 1/2− band is built on the 1/2−1 ground state. The intra-band E2

transition strengths are reasonably described and comparable with the experimental

data for the 1/2−1 → 3/2−1 and 1/2−1 → 5/2−1 transitions. Experimentally, the ground
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band terminates at the 9/2−1 state, but we could not identify the corresponding state

in our calculation. This may be due to the high excitation energy of this state which

causes the strong coupling with the continuum and makes it difficult to separate this

state within the bound-state approximation.

For the positive-parity states, we have assigned four rotational bands; Kπ =

5/2+, 7/2+, 1/2+ and 3/2+ which are built on the 5/2+1 , 7/2+2 , 1/2+1 and 3/2+2

states, respectively. Experimentally, the E2 transition strength for the 1/2+1 → 5/2+1

transition has already been measured (9.0 e2fm4) [45] and our calculation gives

comparable value (6.7 e2fm4). However, no other B(E2) data is available, and the

positive-parity band assignment has not been firmly established by the experiments.

In Ref. [31], based on ACM which assumes the 3α + n cluster structure with

triangular symmetry, the authors proposed a band assignment (Fig. 3.4 right panel).

They proposed the Kπ = 1/2−, 5/2+ and 7/2+ bands which share the same intrinsic

structure, and the Kπ = 1/2+ and 1/2− bands with different structure. They also

tentatively classified the observed states into the rotational bands as shown in the

middle panel of Fig. 3.4. Their assignment is similar to the present REM results in

several aspects, but there are some differences as discussed below. First, both models

suggest the ground Kπ = 1/2− band and the excited Kπ = 5/2+ and 7/2+ bands,

but the REM gives much larger moment-of-intertia of these bands while observed

moment-of-inertia looks being in between the REM and ACM results. Second, both

models also suggest Kπ = 1/2+ band, but we again see the disagreement in the

moment-of-inertia. We will examine the structure of these bands in the following.

Finally, the ACM proposed the excitedKπ = 1/2− band as a “hoyle-like band” which

has similar properties to the hoyle state of 12C, but REM does not. This difference

may be due to the bound state approximation made in the REM calculation which

makes difficult to describe weakly interacting dilute resonances like the Hoyle state.

In addition to these four bands, they also pointed out the possible existence of

a pair of the Kπ = 3/2± band approximately at Ex = 10 MeV. Interestingly, the

global structure of the four bands; Kπ = 1/2−, 5/2+, 5/2+ and 1/2+ qualitatively

agrees with the REM results, although there exist several differences, for example,

32



Table 3.2: The calculated overlaps for each state which is defined by Eq. (2.28).
The columns denoted by O(1/2−) and O(1/2+) show the overlap between REM
wave function and the basis wave function which is most dominant in the 1/2−1 and
1/2+1 states, respectively.

Kπ = 1/2− K = 1/2+

Jπ O(1/2−1 ) O(1/2+1 ) Jπ O(1/2−1 ) O(1/2+1 )
1/2−1 0.83 0.12 1/2+1 0.14 0.58
3/2−1 0.83 0.16 3/2+1 0.18 0.56
5/2−1 0.73 0.06 5/2+2 0.25 0.56
7/2−1 0.76 0.13 7/2+4 0.35 0.25

9/2+2 0.35 0.45
Kπ = 5/2+ K = 7/2+

Jπ O(1/2−1 ) O(1/2+1 ) Jπ O(1/2−1 ) O(1/2+1 )
5/2+1 0.50 0.45 7/2+2 0.74 0.15
7/2+1 0.54 0.42 9/2+3 0.55 0.19
9/2+1 0.58 0.43

Kπ = 3/2+

Jπ O(1/2−1 ) O(1/2+1 )
3/2+2 0.45 0.40
5/2+3 0.46 0.26
7/2+3 0.35 0.28

the order of the bands are different and several bands are missing. It is also noted

that REM shows quantitatively better agreement with the experiment.

To confirm the intrinsic structure, the calculated overlaps by Eq. 2.28 are sum-

marized in Tab. 3.2. The ground state has the maximum overlap, which is as large

as 0.83, with the basis wave function shown in Fig. 3.5 (a). Note that the density

distribution clearly shows the triangular configuration of 3α particles with a valence

neutron where the lengths of the triangle are 3.31, 3.30 and 3.02 fm. Furthermore,

we found that all the member states of the ground band have large overlaps no

less than 0.70 with the same basis wave function. Therefore, we consider that the

ground band is reasonably interpreted as the rotational band having a common in-

trinsic structure with a triangular symmetry as asserted by Bijker et al. [31]. They

also argued that the Kπ = 5/2+ and 7/2+ bands have the same intrinsic structure

and are classified as the “ground band”. Indeed, we found that these bands have

non-small overlap with the same basis wave function shown in Fig. 3.5 (a). However,
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Figure 3.5: Panel (a): the density distribution of the basis wave functions which
have the maximum overlap with the 1/2−1 state. Panel (b): Same as panel (a) but
for the 1/2+1 state. Contours show the density of 3α particles and color plots show
the density distribution of the valence neutron wave function.

our results show a deviation from a rigid shape. The magnitudes of the overlaps

between these bands and the basis wave function shown in Fig. 3.5 (a) are reduced

less than 0.60 except for the 7/2+2 state. Furthermore, these bands have non-small

overlaps with other configurations. For example, the Kπ = 5/2+ band has large

overlap with the dominant basis wave function of the 1/2+1 state, which is discussed

below. Thus, the Kπ = 5/2+ and 7/2+ bands look similar to the Kπ = 1/2− band,

but the deviation from the rigid shape is not small.

In Ref. [31], the Kπ = 1/2+ band was assigned as a rotational band which

also has a triangular arrangement of 3α particles but has the valence neutron in

a different single-particle orbit. In the present calculation, we also found that the
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band-head state (1/2+1 state) has the maximum overlap with a different basis wave

function whose density distribution is shown in Fig. 3.5 (b), but has small overlap

with the dominant configuration of the ground band [Fig. 3.5 (a)]. Apparently, the

position of the wave packets of the valence neutron is different from that of the 1/2+1

state, and α particles deviate from equilateral triangular arrangement as the lengths

of the triangle are 3.55, 3.51 and 2.67 fm. This confirms that the Kπ = 1/2+ band

has a different intrinsic structure. However, we again note that the magnitude of the

maximum overlap is not as large as that of the ground band, and the member states

of this band show the increasing mixture of other contributions as the excitation

energy and angular momentum increase. In particular, the 7/2+4 state has rather

small overlap with the intrinsic state of its band head (1/2+1 state) despite the strong

E2 transition to other band member state (3/2+1 ). This indicates that the structure

of the Kπ = 1/2+ band is not as simple as a rigid rotor. Finally, we also found the

strongest admixture of the various configurations in the Kπ = 3/2+ band which is

a candidate of the band proposed in Refs. [13, 31]. This may be due to the highest

high excitation energy of this band. We note that the use of the stronger spin-

orbit interaction (uls = 2000 MeV) strength does not change most of the analysis

discussed above. The only change caused by stronger spin-orbit interaction is the

nature of the Kπ = 1/2+ band. As seen in Fig. 3.3, the 1/2+1 state is more deeply

bound by the stronger spin-orbit interaction, and hence, it tends to have more

compact structure. Consequently, the overlaps O(1/2+1 ) of the K
π = 1/2− and 7/2+

bands become larger. For example, the overlap between the 1/2−1 (7/2+2 ) state and

1/2+1 state increases to 0.57 (0.56). This indicates the K = 1/2+ band structure

approaches rigid-body due to deeper binding.

In short, the REM calculation confirmed that the ground band can be interpreted

as a rigid-body rotational band which manifests the triangular symmetry. It also

shows that ACM looks explaining the general trend of the excited bands. However,

we found that all the excited bands have non-small admixture with other configu-

rations and deviate from the rigid-body interpretation. One of the signature of this

mixing is the non-small E2 transitions between the bands with different intrinsic
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structures. Therefore, the experimental data for these transitions will provide us an

important insight into the cluster structure of 13C.

3.2 Resonance States of 13C

3.2.1 Benchmark calculations of ACCC with REM

We first confirm the validity of combining the ACCC method with REM by perform-

ing benchmark calculations. As simple two-body systems, 8Be(α+α) and 5He(α+n)

are compared with the preceding ACCC result by Tanaka et al. [25]. For the purpose,

we employ the Minnesota force [46] and Reichstein and Tang spin-orbit interaction

[47]. The Minnesota parameter for the physical system is chosen as u = 0.94 for

8Be and u = 0.98 for 5He and the α width parameter ν = 0.26 is used following

Tanaka et al. [25]. The zero-range limit for the spin-orbit interaction is taken, and

the spin-orbit strength parameter Jls = 50 MeV·fm2 is introduced for the physical

system. For the REM conditions, we use the intrinsic energies Hint = 13.8 and 18

MeV for 8Be and 5He, respectively. These intrinsic energies make the constituent

particles move all the physical model space, but not to highly excited so that they

can give a good convergence of the GCM calculation. The superposed number of

wave functions are 75(90) for 8Be(5He).

In this benchmark calculations, the Minnesota parameter u is exploited as the

coupling constant λ. When u gets larger than the physical points, then the Min-

nesota force is subsequently introduced as the auxiliary potential in ACCC, which

makes the resonance states bound. It is noted that we use an α cluster model and

increasing u as λ does not affect the structure of the α particle.

Their results are listed in Table. 3.3. The 0+ and 2+ states of 8Be are consistent

with the results of Tanaka et al. [25], and we additionally tested the 4+ state that is

comparable to the experimental value. As for the 5He case, the spin-orbit interaction

is included in the Hamiltonian so that the p-wave state is split and their splitting

is also well reproduced in our framework. The s-wave state of 5He, which has very
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large width, is also properly described compared to the preceding ACCC result

although the calculation of the Padé approximation to the s-wave state is naturally

unstable. The exceptional kink point of the s-wave state is depicted in Fig. 3.6. The

momentum trajectory moves on the positive imaginary axis for the bound states and

it goes further to the negative imaginary axis for a while then it starts to have both

the real and imaginary components from where we call the kink point. In the fourth

quadrant, it first passes the kr < ki region, which is unphysical since ER < 0, and

it finally becomes the physical resonance at u = 0.98. On the other hand, the

trajectory simply goes to the fourth quadrant from the threshold point for l > 0

cases.
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Figure 3.6: The momentum trajectory of the 1/2+ resonance of 5He.

From the comparison of the simple two 2-body systems, we have confirmed the

nucleon-nucleon and the spin-orbit interactions working in our ACCC calculation

based on the REM framework. Furthermore, we adopt the spin-orbit interaction as

the auxiliary potential, which is a new methodological trial of ACCC. In this case,

the spin-orbit strength Jls is selected as the coupling constant. It was applied to

5He and the resonance parameters of the 1/2− and 3/2− states were obtained as

follows: 0.77 − i0.22 and 2.00 − i2.52, respectively. The comparison between the
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Table 3.3: Benchmark calculations of the resonance energy ER and the decay width
Γ of 8Be and 5He obtained by the ACCC method compared with the previous study.
Units are in MeV.

REM Tanaka et al. EXP
Jπ ER Γ ER Γ ER Γ

8Be 0+ 0.224 0.001 0.208 0.003 0.09184 5.57 ± 0.25 eV
2+ 2.87 1.42 2.85 1.44 3.1218 1.513 ± 0.015
4+ 11.77 4.82 11.44 ≈ 3.5

5He 3/2− 0.78 0.66 0.77 0.64 0.735 0.648
1/2− 1.98 5.62 1.98 5.4 2.005 5.57
1/2+ 12.7 163 12 180

cases of central force and spin-orbit interaction as an example of the 3/2− state is

shown in Fig. 3.7. One can see that within the same energy region, the GCM result

slowly starts to bound and then sharply increase the binding energy in the spin-orbit

interaction case. Although the different choices of the auxiliary potential result in

the different shape of the Padé function, we can reach the reasonable results in

both cases. We expect that this novel way using a spin-orbit interaction will make

the systems simpler when we want to treat the nuclear systems with non-spin-orbit

interacting core.
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Figure 3.7: 3/2− state of 5He using different interaction as an auxiliary potential.
Panel (a) and (b) are the results with the central force (Minnesota parameter u as
λ) and the spin-orbit interaction (strength parameter Jls as λ), respectively.
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3.2.2 Resonance states of the 1/2− states in 13C

13C is described as the 4-body system of 3α+n in the REM framework. If we adopt

the central force as the auxiliary potential for the ACCC calculation, 13C becomes to

bound than 12C with very large coupling constant λ because 12C is also getting large

binding energy among the α particles as λ being larger. Consequentially, the energy

difference between the bound state of the resonance and 12C is too small to construct

the Padé approximation. However, as we proposed and demonstrated above, we use

the spin-orbit interaction as the attractive potential, which makes 13C a simple 2-

body system of 12C + n. In this case, the energy of 12C remains constant and the

ground state of 12C is set to the threshold for the ACCC calculation. Then, the

resonance parameters are determined to the 12C+n decay channel. The momentum

is calculated as kl =
√
E(13C)− E(12Cg.s.) and thus-obtained resonance energy and

width are relative to the 12C + n threshold, but we will calculate other physical

quantities such as radii and monopole transitions using the ACCC method that are

not affected by the threshold so that we can rather easily investigate the Hoyle-

analog state with the new approach. Such quantities will be calculated as explained

in Eq. (2.35).

The Volkov No.2 and G3RS interactions are used for 13C following our previous

13C study in the previous section. The Majorana parameter M is fixed to 0.592 for

the physical system in this work, which reproduces the excitation energy of the Hoyle

state as 7.68 MeV (experimentally 7.65 MeV). The α width parameter is defined as

ν = 1/2b2 and we set b = 1.46 fm, which gives the observed α particle’s size and

used also in our previous work. As for the REM conditions, two intrinsic energies

are used for 13C, Hint = 30 and 40 MeV, to cover the various configurations of the

resonance states of 13C because 30 MeV, which was used in our previous work, gave

good convergence and configurations for the low-lying states but it was not enough

for the highly excited resonance states. We prepared 300 wave functions of each

intrinsic energy in a total of 600 to be superposed.

Fig. 3.8 shows the 1/2− states obtained by the Padé approximation. Here, we
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have 2 choices of the physical point of the spin-orbit strength, Vls = 1000 and 3000

MeV. The former reasonably reproduced spin-orbit splitting of 5He and showed

the correct order of the ground band and the lowest positive state in our previous

work. The later can describe all the excited 1/2− states as seen in the figure. The

numerical results of them together with other quantities obtained by Eq. (2.35) are

summarized in Table 3.4 and 3.5.
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Figure 3.8: The 1/2− resonance states obtained by the Padé approximation.

Table 3.4: Numerical results of the 1/2− states are listed. Energies E from the
threshold, widths Γ of resonance states, electric (E0) and isoscalar (IS0) monopole
transition densities, and matter Rm and proton Rp radii with the choice of Vls =
1000 MeV. Energy and width are in MeV, monopole transitions are in (e)fm2, and
radii are in fm.

ACCC EXP
Jπ E Γ M(IS0) M(E0) Rm Rp E Γ M(IS0)
1/2−1 −6.89 - - - 2.42 2.37 −4.95 - -
1/2−2 3.91 0.15 6.1
1/2−3 6.00 1.26 15.26 6.37 3.01 2.88 6.13 <0.004 4.2
1/2−4 7.17 0.57 7.48 3.56 2.87 2.77 7.55 - 4.9
1/2−5 12.69 7.65 5.30 2.43 3.00 2.90
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Table 3.5: Same as Table 3.4 but with the choice of Vls = 3000 MeV.

ACCC EXP
Jπ E Γ M(IS0) M(E0) Rm Rp E Γ M(IS0)
1/2−1 −10.39 - - - 2.38 2.34 −4.95 - -
1/2−2 2.71 0.047 7.56 3.50 2.85 2.70 3.91 0.15 6.1
1/2−3 5.10 0.21 13.61 4.79 2.87 2.51 6.13 <0.004 4.2
1/2−4 6.65 2.41 9.52 4.78 2.78 2.73 7.55 - 4.9

In the case of Vls = 1000 MeV, the 2nd state is not described in our cluster

model, and it might have a shell model structure. The 3rd and 4th resonance

energies are obtained in well agreement with the experiment, but their widths are

orders of magnitude different. It is due to the weak spin-orbit strength, in which

the resonance parameters are determined relative to the 12C and the neutron in

our ACCC framework. Their difference becomes smaller in the Vls = 3000 MeV

case. As for the 5th state, it is too highly excited state in the choice of Vls = 1000

MeV, so we do not discuss in detail here as it is not in our scope to search for the

Hoyle-analog state.

As explained above, the isoscalar monopole (IS0) transitions are obtained within

the ACCC method, and they show the large transition strengths in all the excited

1/2− states as in the experiment. At the same time, the electric monopole (E0)

transitions also have about half times of each IS0 strength, which means the spatial

excitation of protons is almost same as of neutrons and they have clear alpha cluster

structures. All the excited states have large matter and proton radii compared to

the ground state.

In the case of Vls = 3000 MeV, the energies of all the excited states are properly

described with the decay widths reduced to much smaller. The IS0 and E0 tran-

sitions again show large values implying these states are spatially developed. The

radii are smaller than the Vls = 1000 MeV case, and especially, the proton radius of

the 3rd state is much smaller. The matter radius is still large as 2.87 fm, in which

this state could have spatially distributed valence neutron with the 12C core. The

4th state reveals that their matter and proton radii have similar size. If we recall
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the Vls = 1000 MeV case, the 4th state also had similar radii to each other. Fur-

thermore, the radii and monopole transitions of the 4th state are almost consistent

regardless of the choice of Vls. We can regard that this state could be the candidate

of the Hoyle-analog state in the 1/2− states of 13C. Here, it should be noted that

the radius 2.87 fm is smaller than that of the Hoyle state, which is around 3.4 fm,

but it is reasonable when we consider the role of the valence neutron as a glue to

shrink the 3α particles.

The physical point between the two choices of Vls should be the 1000 MeV case

as it gives more natural description for 13C including the ground state and the others

even though the 2nd excited state is missing. however, we could explore detailed

characteristics of the resonance states from Vls = 3000 MeV so that we can suggest

the 1/2−4 state as a new candidate of the Hoyle-analog state, which is located above

the 3α + n threshold with Vls = 1000 MeV. Additionally, the recent experimental

study by Inaba et al. [18] found that there is a bump structure, which is composed

of several states located closely to each other, around 12.5 MeV from the ground

state (the 4th exp. state in our tables), and the bump structure, especially its IS0

transitions, was not described by the shell model calculation. Actually, they thought

it could be the Hoyle-analog state in the beginning, but they concluded that it would

not be the Hoyle-anaolg state due to other theoretical studies of the orthogonality

condition mode (OCM) and the antisymmetrized molecular dynamics (AMD). This

work will provide another possibility to find out the Hoyle-analog state in 13C.
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Chapter 4

Summary

In summary, we have first investigated the structure of the 3α + n system by ex-

tending the REM framework. As a benchmark calculation for the 3α + n system,

REM well reproduced the ground and excited energies where we followed the same

Hamiltonian of the previous study as a comparison. It was also demonstrated that

REM accurately describes the wave functions which yields to the deeper binding

energies.

We have also discussed the rotational band assignment and investigated if they

manifest the triangular symmetry. The proposed band assignment qualitatively ex-

plains the observed data, although the order of several bands disagrees and the

Kπ = 1/2− band is missing in the present result. From the analysis of the overlap

with the basis wave functions, it was found that the ground band can be regarded

as a rigid-body rotational band which manifests the triangular symmetry. We also

have seen that the triangular symmetry approximately explains the general nature

of the excited bands. However, all the excited bands have non-small admixture

with other configurations without symmetry and deviate from the rigid-body in-

terpretation, because of their high excitation energies and angular momenta. The

non-small E2 transitions between different bands are a signature of the configuration

mixing, and we expect that the experimental data for these transitions will provide

us an important information about the underlying symmetry behind the observed
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spectrum.

In subsequent, the resonance states of the 1/2− states in 13C have been investi-

gated. As a benchmark calculations to demonstrate the combination of ACCC and

REM with the employed interactions, 8Be and 5He resonance states were well repro-

duced compared to the preceding ACCC study. In addition, a tactical treatment of

ACCC was introduced, in which the spin-orbit interaction and its strength Vls was

exploited as the attractive potential and the coupling constant λ respectively in the

ACCC framework and tested to the 5He resonance states.

Based on this new treatment, the resonance states of 13C were clearly figured out

from the continuum. The matrix elements of radius and monopole transitions were

also calculated within the ACCC framework, which provides cluster characteristics

of each resonance state. The physical interaction was chosen with the spin-orbit

strength Vls = 1000 that reproduced spin-orbit splitting of 5He and used in the

Hamiltonian of Section 3.1. The 1/2−2 state was not obtained in this study that

means this state is definitely not an α cluster state. After comparison between the

choices of Vls = 1000 and 3000 MeV, the 1/2−3 state was concluded to have a loosely

bound neutron with the 12C core since it showed large neutron radius with relatively

small proton radius. In last, the 1/2−4 state is concluded to be the possible candidate

of the Hoyle-analog state in 13C.
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