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Abstract

The cluster structure is an essential ingredient to describe nuclear structure, in which nuclear

systems are composed of some subunits of several nucleons. 4He cluster, called α cluster is

one of the most basic clusters which has extraordinarily large binding energy and the excited

states are located in comparably high energy region. In particular, 12C has been investigated

as a three-α system for a long time because of its first Jπ = 0+ excited state, the Hoyle

state, in which three α clusters are well developed. The Hoyle state plays a crucial role in

the triple-α reaction process where an α particle sequentially captures two more α particles

and finally 12C is synthesized. There are mainly two remarkable points. One is that recently,

the rotational excited states series of the Hoyle state, the Hoyle band, was proposed and the

structure of the first Jπ = 2+ excited state has been paid attention. However, the structure of

the 2+2 state, especially for its geometric three-α structure is still unclear. The other point is

that the triple-α process usually occurs in astrophysical environments e.g., X-ray bursting of

an accreting neutron star, where three α particles have background of neutron matter. Thus,

it is necessary to consider the effect to the Hoyle state from the neutron matter.

To settle these points, we comprehensively investigate three-α cluster structure of 12C,

using precise three-α cluster wave function obtained by the stochastic variational method

and the correlated Gaussian basis. In the three-α cluster model, α clusters are treated as

structureless charged particles (macroscopic cluster model) and the orthogonality condition

to the Pauli forbidden states between α particles is imposed which is called the orthogonality

condition model (OCM). For the former, we introduced the confining potential to obtain the

wave function in the square integrable form, allowing an analysis of the density distributions of

three-α particles. It is concluded that the 2+2 state is not a simple rigid rotational excited state

of the Hoyle state because the 8Be+α component of 2+2 state is 2/3 of that of the Hoyle state.

For the latter, to evaluate the effect from dilute cold neutron matter, a polaron picture of α

particle is introduced, where the impurity α particles polarize the majority neutron matter

via interaction between α and neutrons. It is concluded that the Hoyle state in the neutron

matter stabilizes and shrinks, which may impact the reaction rate for the nucleosynthesis. It

is interesting to extend discussion of α cluster structure to heavier nuclear systems such as
16O, 20Ne, and 24Mg. However, the macroscopic OCM is difficult for these nuclei because the

numerical calculations become instable. Finally, we propose a novel approach to overcome

the numerical instability toward applications to the heavier nuclear systems.





Chapter 1

Introduction

1.1 Clustering in nuclei

A nucleus is a many-body quantum system consisting of finite number of neutrons and protons

correlating via nuclear interaction. The nuclear interaction has a strong attraction with a

range of few fm1), which overwhelms the Coulomb repulsion between protons. The range of

the interaction is comparable to the size of the nuclear systems and, therefore, nuclei have

the saturation property for its density and the energy per nucleons. The saturation density

and energy per nucleon are known to be approximately 0.16 ∼ 0.17 fm−3 [1] and 8 MeV2),

respectively. The independent nucleon model is the basic description, particularly in the

ground state, in which a nucleon occupies a single particle orbit in the mean field formed by

the strong interactions of nucleons. This structure is called shell structure as a analogous of

the atomic shell model of electrons.

In addition to the shell structure, based on the analogy of atomic molecules, cluster struc-

ture is essential to describe nuclear system, in which a nuclear system are composed of some

subunits of several nucleons, clusters. The cluster structure can be considered to appear in the

condition where correlations of nucleons in the clusters are much stronger than correlations

between clusters, and then they are localized. In particular, the 4He cluster, the α cluster,

is the most basic cluster, which is made by the highly symmetric four nucleons, two protons

and two neutrons. The α cluster has extraordinary large binding energy, and the first excited

state is located at comparably high energy, ∼ 20 MeV above the ground state [2], wheres the

first excited states of normal nuclei are located at few MeV. Hence, α clusters often appear in

the nuclear structure. The excited states of the self-conjugate nuclei of mass number A = 4n

n ∈ N with proton number Z = 2n and neutron number N = 2n are particularly characterized

by the α clusters.

It is noted that these cluster structure generally appear in the vicinity of the thresholds

where the nuclei break up into constituent clusters. For example, 8Be namely two-α system,

has the unstable ground state near the two-α threshold. Following this fact, one can consider

the “rule” for cluster structure of the light nuclei, especially the self-conjugate 4n nuclei, which

is called the Ikeda diagram [3] shown in the Fig. 1.1. The Ikeda diagram presents the possible

cluster structures with threshold energy as a function of n of the self-conjugate 4n nuclei.

The diagonal elements except for 8Be represent the ground state that has the shell structure.

1)fm= 10−15 m
2)MeV= 106 eV

7
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The clusters start to appear near the corresponding threshold energies, and they are finally

all the minimum unit, α clusters (small circle symbols in the diagram). The diagram implies

the possibility of systematic appearance of cluster structures in the nuclei, which makes the

nuclear structure rich in variety.

Figure 1.1: Ikeda diagram. The figure is taken from Ref. [3].

Not only the clustering in light nuclei, the clustering in medium-heavy mass nuclei is also

paid attention recently. Typel [4] investigates the α cluster formation on the surface of the

heavy nuclei by the generalized relativistic mean-field model with explicit cluster degree of

freedom. According to the investigation, it is concluded that the α clustering happens in the

low density neutron matter, approximately 1/10 of the nuclear saturation density. Motivated

by this study, Tanaka et al. [5], conducted the experiment for α clustering phenomena in the

surface region of Sn isotopes by the α knockout reaction and concluded the existence of α

clusters in the nuclear surface. This α clustering in the neutron matter background is strongly

related with the structure of neutron stars [6].
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1.2 Hoyle state

1.2.1 α cluster structure in the Hoyle state

The first excited Jπ = 0+ state, Hoyle state [7] is one of the most important states in terms of

cluster structure, which is located at 0.38 MeV above three-α threshold. Some studies on the

Hoyle state by the shell model approach have been conducted, and found that describing the

Hoyle state within the shell model is not easy [8]. We note that, very recently, the Hoyle state

has been investigated by the Monte Carlo Shell Model approach by utilizing supercomputers

in which the crossover picture of the shell structure and the cluster structure is presented [9],

which is known as the duality [10,11].

In 1950s, the linear chain like structure of the α clusters are suggested by Morinaga [12,13].

However, in 1970s and 80s, theoretical studies based on the cluster model gave negative

results on the linear chain structure in the Hoyle state. On the contrary to the shell model

calculation, the cluster model calculations such as the resonating group method (RGM) [14],

generator coordinate method (GCM) [15], and orthogonality condition model (OCM) [16–18]

successfully reproduce observed values [19–23] e.g., energy, α decay width, electromagnetic

transition probabilities. In conclusion of these theoretical studies, well developed three α

clusters are weakly coupled in the S orbit in the Hoyle state with significant amount of the
8Be(0+) + α configuration according to the analysis of α reduced width amplitude.

Inspired by the possibility for the Bose-Einstein condensation of α particles in a dilute

symmetric nuclear matter [24, 25], Tohsaki et al. investigated the posibility of the same

phenomena in a finite nuclear system, called α condensation in 12C and 16O [26]. In their

investigation, the α condensation wave function for the Nα cluster model within nucleons

degree of freedom was newly suggested in which α particles are moving in the common mean-

field,

|ΦTHSR
Nα ⟩ =

(
C+
α

)N |vacuum⟩ , (1.1)

⟨r1 · · · rN |ΦTHSR
Nα ⟩ ∝ A

[
exp{−ν(r21 + · · ·+ r2N )}ϕ(α1) · · ·ϕ(αN )

]
, (1.2)

where C+
α is the α particle creation operator, ϕ(αi) is the internal wave function of ith α

cluster describing by the four nucleons occupying the 0s harmonic oscillator, ri is the center-

of-mass coordinate of the ith α particle, and A is the antisymmetrizer for all exchanges of

nucleons. The relative motion of Nα particles are described by the 0S harmonic oscillator

with the size parameter ν. When ν is compact comparable to the size of α clusters, the Nα

cluster structure is melt and configure into the shell structure, which is consistent with the

ground state property. On the other hand, when ν are large relative to the size of α clusters,

α clusters occupy in the single orbit, indicating the α condensation. This kind of wave

functions are named Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function after the initials

of authors [26–28]. THSR wave function has been confirmed to have almost 100% overlap with

the conventional wave functions which do not assume the α condensation [19–21]. Therefore,

the α cluster structure in the Hoyle state is concluded to be the dilute α condensate state as

a weakly interacting gas-like structure.

Besides the gas-like structure, geometric configuration of three-α system has been consid-

ered within the algebraic cluster model (ACM) [29–31]. In the ACM, three-α state is obtained

from a group-theoretical construction of rotational and vibrational excitations of an equilat-

eral triangle where the α particles are at the vertices. The Ref. [30] has investigated the
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Figure 1.2: The table listing possible three-α geometric configurations based on the point

group symmetry and its characteristic vibration modes, which is taken from the Ref. [32].

spectrum and the form factors of 12C by the ACM and concluded that they are reasonably

reproduced. Based the ACM, all possible configurations of three molecules can be listed [32]

in Fig. 1.2. Using the idea of the ACM, Vitturi et al. [33] have investigated the performance

of the simple geometric α-cluster model in which three α particles are set up in the equilat-

eral triangle and transition densities are constructed according to the point-group symmetry.

They found the nice agreement with the 12C(α, α′) scattering data, especially for the cross

section of the transition from the ground state to the Hoyle state.

It is interesting to mention about Jπ = 2+2 state of 12C which is the excited state of the

Hoyle state. Owing to the recent great development of the experimental technics, 2+2 state has

been attracted, which has been confirmed [34–37] at 2.59(6) MeV above the three-α threshold

with the decay width of 1.01(15) MeV [38]. The 2+2 state is controversial as the candidate of

the rotational excited state of the Hoyle state. The RGM and GCM calculations have found

that 8Be + αl=2 configuration is dominant in the structure of 2+2 state, thus it is rotational

excited state of the Hoyle state [20, 21]. Freer et al. newly observed J+ = 4+ state locating

at 13.3 MeV above the three-α threshold. They considered the rotational band consisting

of the Hoyle state, the second 2+ state, and newly observed 4+ state, which is called the

“Hoyle band” [39]. In the theoretical point of view, the Hoyle band still has not been well

understood, even whether it exists or not. In the ACM context, the 2+2 state and the 4+2 state

are obtained as the rotational band members under the A symmetry which is interpreted as

the symmetry of the breathing vibration. Mart̀ın-Lámbarri et al. see the agreement of the

energy spectrum of 12C between the ACM and experimental data, and finally concluded it

is the evidence of the D3h symmetry for three-α system and the Hoyle band [40]. On the
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Figure 1.3: Schematic picture of the triple alpha process.

contrary, the theoretical study on 2+2 using the THSR wave function by Funaki [41] concluded

that the Hoyle band is considered to be neither the simple rigid rotor nor the 8Be+α rotation

due to the specific condensation structure of the Hoyle state and strong coupling to the broad

0+3 state with 8Be+α structure.

1.2.2 Hoyle state in the nucleosynthesis

The Hoyle state plays crucial role in the nucleosynthesis in the universe [7]. The abundance

of the 12C is explained via the triple alpha process whose schematic picture is described

in the Fig 1.3. In the triple alpha process, especially the sequential process, an α particle

sequentially captures two more α particles: two α particles form the resonant ground state

of 8Be which has a short life time, then one more α particle captured and the Hoyle state

is formed. The Hoyle state very rarely decays to the ground state of 12C with the γ-ray

emission, which is rate-determining for the carbon synthesis. Hence, the abundance of the
12C is mainly determined by the γ-decay rate of the Hoyle state. Through the triple alpha

process, the nucleosynthesis can go heavier mass nuclei over the mass number A = 5, 8 where

no stable nuclei exited. Therefore, the Hoyle state in the triple alpha process is important for

the nucleosynthesis.

The triple alpha process usually occurs in normal stars where the temperature is about

108 ∼ 109 K and helium, created through the proton-proton chain reaction or the CNO

cycle, are condensed enough to make a helium plasma. If the temperature in a star is rather

higher than 109 K, contributions from the higher excited states than the Hoyle state such as

Jπ = 2+2 and 3−1 are not negligible [42]. These contributions other than the Hoyle state have

been recently deduced by the advance experiments [37], however it still has uncertainties.

The condensed helium plasma is also appeared in the outer layer of an X-ray bursting of

the accreting neutron star [43] with lower temperature ∼ 108 K in which helium is burned

through the triple alpha process. In this helium plasma, the Coulomb repulsion is screened

off at large distance due to a spherically symmetric polarization of surrounding degenerate

electrons and nuclei [44], which can affect the triple reaction rate. Lai Hnin Phyu et al.,

investigated the Coulomb screening effect to the structure and energy of the Hoyle state by

using the three-α cluster model [45, 46]. The Coulomb screening was treated by correction

to the Hamiltonian within the Debye-Hückel approximation. The correction of the Coulomb
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screening effect results in changing of the Coulomb potential as follows:

VCoul. → VCoul. exp (−Cr) , (1.3)

where VCoul. is the Coulomb potential in vacuum, C is the inverse of the Coulomb screening

length, and r is distance between α particles. In their conclusion, the Hoyle state become

stable and compact because of the Coulomb screening effect. Moreover, the Q value of the

triple alpha process shifts proportionally to the Coulomb screening length C, which is con-

sistent with the conventional evaluation assuming point charged particles. It is interesting to

consider the Hoyle state in different environment, e.g., dilute or condensed neutron matter

medium in the same way.

1.3 Macroscopic cluster models

In this dissertation, three-α cluster model in the macroscopic framework is employed, in which

the α clusters treated as structureless charged particles are degrees of freedom. The macro-

scopic cluster model have been employed for a long time because it has several advantages.

First is that one can easily evaluate resonance states in proper way such as the complex scaling

method (CSM) [47–49] and the analytic continuation of the coupling constant (ACCC) [50–52]

because the dimension of freedom to be considered is small. Second is that one can extend to

more complex multi-cluster systems such as 16O+α+α or more-α systems if the Pauli principle

between clusters are effectively taken into account. There mainly two types of macroscopic

three-α model: one is the OCM and the other is the effective potential model. The difference

between these two models is treatment of the Pauli principle of clusters. This section provides

detail explanations of these models.

1.3.1 Orthogonality condition model

The OCM was originally introduced as the approximation for the treatment of the Pauli prin-

ciple from the microscopic framework. Let the microscopic n-cluster wave function written as

the antisymmetirzed multiplication of wave functions of internal-cluster and the their relative

motion in the case where clusters are configured in the single spherical channel:

Ψmicro = A

[
χ(x)

n∏
i=1

ϕ0(Ci)

]
, (1.4)

where x = (x1, . . . ,xn−1) is the relative coordinate of the cluster center-of-mass, χ is the

wave function of the relative motion, and ϕ0(Ci) is internal wave function of the ith cluster.

Note that the intrinsic relative coordinate for center-of-mass motion in n-cluster system is set

of (n− 1) point vectors.3) The Ψmicro can be rewritten as the linear combination of amplitude

χ and, as a basis function, the test function Φ(t,x) which pins clusters down to the specific

coordinate t = (t1, . . . , tn−1),

Ψmicro =

∫
dtχ(t)Φ(t,x), (1.5)

Φ(t,x) = A

n−1∏
i=1

δ(xi − ti)
n∏

j=1

ϕ0(Cj)

 . (1.6)

3)The relative coordinate is explained in 2.1 in detail.
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Let us orthonormalization of the test functions by diagonalizing norm kernel N(t, t′) ≡
⟨Φ(t,x)|Φ(t′,x)⟩,

Nχk(t) = µkχk(t), (1.7)

Nχk(t) ≡
∫
dt′N(t, t′)χk(t

′), (1.8)

where µk is eigenvalue which is always more or equal to 0 and χk is corresponding eigen

function satisfying ⟨χk|χk′⟩ = δkk′ . When µk = 0, the wave function is obviously vanished,∫
dtχkΦ(t,x) = 0. Such states are called the Pauli forbidden states. According to the

orthonormality of the Ψmicro,

⟨Ψmicro|Ψ′
micro⟩ =

∫∫
dt dt′χ∗(t)Nχ′(t′) = 0 or 1, (1.9)

the orthonormalized multi-cluster wave function in the OCM is approximately taken as

ΨOCM = N 1/2χ [18]. It is noted that the ΨOCM does not contain the Pauli forbidden states.

The Pauli forbidden states ϕf are usually taken as the wave function of the harmonic

oscillator with the common size parameter.4) If the internal wave function of clusters are

described by the harmonic oscillator, relative wave function also can be described by the

harmonic oscillator, which is the eigen function of N in eq. (1.8). Considering the shell

structure of clusters in which nucleons move within the harmonic oscillator mean-field, total

quanta is N = 2n+l+
∑

iN(Ci), where N(Ci) is the harmonic oscillator quanta of ith cluster.

On the other hand, the lowest Nmin is obtained from ground state shell configuration. Thus,

the forbidden harmonic oscillator orbit is derived in the condition, N > Nmin. For example,

the inter-α case, total quanta is N = 2n+ l+N(α)+N(α), where N(α) = 0 because the shell

configuration of α is assumed to be (0s)4. The lowest quanta of two-α system is Nmin = 4

because the shell configuration of two-α system is (0s)4(0p)4. Then 0s, 1s, and 0d orbits

which do not satisfy the condition 2n+ l > 4 are found to be forbidden.

In the macroscopic framework, OCM calculation is dedicated for obtaining wave function

of the relative motion ΨOCM under the condition with Pauli forbidden states, ϕf orthogonal

to the ΨOCM, ⟨ϕf |ΨOCM⟩=0. This can be archived in straightforward way by introducing the

exclusion operator defined as

Λ = 1−
∑
i∈f

|ϕi⟩ ⟨ϕi| , (1.10)

that projects the total wave function on the Pauli allowed space. However, the practical

calculations become required large calculation cost in the case of more than three-cluster

system because one must apply this projection operator for all inter-cluster pairs and number

of terms is very large. For the feasible calculations, Kukulin and Pomenertsev suggested the

pseudopotential [54] defined as

Γ = γ
∑
i∈f

|ϕi⟩ ⟨ϕi| . (1.11)

By taking γ large number, projected Pauli forbidden states can be excluded numerically. γ is

usually taken as 104 ∼ 105 MeV. However, it usually causes numerical instability. The OCM

has been employed for the three-α system [53,55–57] and the four-α system [58,59], although

OCM calculations for five- or more-α systems has not been reached yet due to the numerical

instability due to the Γ.

4)Choices of the Pauli forbidden states are discussed in the Ref. [53].



CHAPTER 1. INTRODUCTION 14

1.3.2 Shallow potential model

On the contrary of the OCM, there is phenomenological cluster model, called shallow potential

model, in which the Pauli principle is effectively described as the core repulsion [60]. To

reproduce the α-α phase shifts for inter-α angular momentum l = 0 and 2, the potential

between α particles are local but l-dependent. Numerical calculations with this model are

more stable than the OCM. However, it is known that the internal behavior of the wave

function is different from that of the OCM, which may affect the physical values [56].

1.4 Aim of this dissertation

We mentioned overviews of background of 12C in this chapter. In this dissertation, the 12C

is comprehensively studied by precise three-α cluster model wave functions with three topics,

three-α structure of 12C, the Hoyle state in astrophysical environment, and the new method

to overcome the numerical instability of the OCM calculations toward extended investigations

from 12C. In the next chapter 2, we explain how to obtain the precise few-body wave functions.

At the end of this chapter, we describe motivations and aim of these three investigations for
12C.

In chapter 3, we describe the analysis of three-α cluster structure in the spectrum of
12C within the OCM. According to the ACM, geometrical configurations of three-α can be

classified under the D3h point group symmetry as we mentioned in 1.2. This motivate us

to investigate density distributions of three-α system, such as one-body density and two-

body density which visualizes the geometric structure directory. Together with other physical

analysis, for example harmonic oscillator quanta of inter-α motions, momentum distribution,

and partial wave component, we discuss the three-α structure. To extend the discussion to

the resonant states, e.g., the Hoyle state and 2+2 state, one need to obtain those wave functions

with a square integrable form. We evaluated these states by introducing a confining potential.

A study of controversial Hoyle band is also the motivation of this investigation, which

has not reached consensus on its existence both theoretically and experimentally. Recently,

Smith et al., deduced the a limit for the direct decay branching ratio of the Hoyle state under

the assumption that the intrinsic structure of 0+2 and 2+2 are the same, which is related to

the direct triple alpha process. This assumption is reasonable within the ACM description.

However, investigation by the THSR wave function, as mention in 1.2, concluded that 2+2 is

not a simple rigid rotor of the Hoyle state with keeping its intrinsic structure. To settle this

deviation, we analyze the wave functions of the Hoyle state and 2+2 state that is not assumed

D3h symmetry.

In chapter 4, we describe the study of three-α system in the cold dilute neutron matter.

In 1.2.2, we mentioned the Coulomb screening effect on the Hoyle state in the astrophysical

environment where the degenerate electron plasmas are surrounded. This environment might

be realized in the X-ray bursting of a accreting neutron star. In the same way, the environment

where α particles are immersed in the cold dilute neutron matter might be realized in the core

collapse supernovae [61] and neutron star mergers, which has been recently observed through

the gravitational wave [62]. This motivates us to study the Hoyle state in cold dilute neutron

matter, which can impact on the astrophysical modeling [63]. The three-α system immersed

in the dilute neutron matter is interesting for not only the astrophysics but also the clustering

phenomena of medium-heavy mass nuclei. It is related to the experiments exploring α clusters
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in the Sn isotope by the alpha knockout reaction [5].

In chapter 5, we propose a novel macroscopic cluster model approach. As mentioned

in 1.3.1, the Pauli principle in the OCM calculation is carried out by the pseudopotential

Eq.(1.11), which makes numerical calculations unstable. This numerical instability prevents

us from reaching more complex or heavier multi-cluster system. In fact, only two OCM

studies for the four-α system have been reported [58, 59] and one of them could not reach

the converged result. To overcome this instability, we proposed the novel basis function for

macroscopic cluster model, starting with the microscopic cluster wave function. We show the

novel basis function is efficient and calculation cost for the three-α system drastically reduced.

Possibilities for the more complex multi-cluster systems are indicated.

Finally, we summarize these works and conclude the dissertation as the comprehensive

study of the 12C by the precise three-α cluster model wave functions in chapter 6.





Chapter 2

Stochastic variational method

In this chapter, the methodology to obtain precise few-body wave functions. Basically, the

motion of the isolated quantum few-body system is governed by the Hamiltonian, for example,

the Hamiltonian for intrinsic motion of a N -body system is generally written as

H =

N∑
i=1

p2
i

2mi
− Tcm +

N∑
i>j=1

Vij , (2.1)

where pi, mi Tcm, and Vij are momentum operator of the ith particle1), mass parameter

of the ith particle, the center-of-mass motion, and an interaction between the ith and jth

particle. One can obtain the eigen states of the considering few-body system by diagonalizing

its Hamiltonian within some specific space spanned by the basis functions.

According to the variational principle or the Ritz theorem, the “exact” solution of the

Schrödinger equation can be obtained virtually by the variational method. Let Ψ(X) the

wave function of the N -body system where the X represents a set of all degrees of freedom to

specify the motion of the system. Ψ(X) is expressed as the linear superposition of the basis

functions characterized by the set of variational parameters αi, ψ(X, αi):

Ψ(X) =

K∑
i=1

Ci ψ(X;αi). (2.2)

The set of the coefficient {Ci} is determined by solving the generalized eigenvalue problem,

K∑
i=1

(Hij − EBij)Cj (i = 1, . . . ,K), (2.3)

where the matrix elements Hij and Bij are defined as

Hij = ⟨ϕ(αi;X)|H|ϕ(αj ;X)⟩ (2.4)

Bij = ⟨ϕ(αi;X)|ϕ(αj ;X)⟩ . (2.5)

The set of the basis functions is not necessary to be orthogonal each other: the overlap matrix

Bij is not always the identity matrix.

1)Hereafter, spatial vectors are descried in a bold.

17
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2.1 Coordinate

Let us define the coordinate for the N -body system. It is important to take care of the

separation of center-of-mass motion from the intrinsic motion when one defines the coordinate.

The relative coordinate and the center-of-mass coordinate are convenient for description of

the intrinsic motion, which is written as x̃ = (x1, . . . ,xN )2) xN is taken as the center-of-

mass coordinate here. In general, the relative coordinates are related to the single particle

coordinate r̃ = (r1, . . . , rN ) by the linear transformation,

xi =
N∑
j=1

Uijrj , ri =

N∑
j=1

(
U−1

)
ij

(i = 1, . . . , N), (2.6)

where Uij is a N ×N matrix. There are several choices of the Uij . Among them, the relative

Jacobi coordinate is useful, in which Uij is defined as

U =


1 −1 0 · · · 0
m1
m12

m2
m12

−1 · · · 0
...

...
m1

m12···N−1

m2
m12···N−1

· · · · · · −1
m1

m12···N
m2

m12···N
· · · · · · mN

m12···N

 , (2.7)

where m12···i = m1 +m2 + · · ·+mi.

The single particle momentum pi is also described as the linear transformation of U to

the momentum of relative motion, πj = −i~∂/∂xj , conjugate to the coordinate xj :

pi =
N∑
j=1

Ujiπj , πi =
N∑
j=1

(
U−1

)
ji
pj (i = 1, . . . , N). (2.8)

In this way, the center-of-mass motion is naturally expressed as Tcm = π2
N/(2m12···N ). Then

the kinetic energy of the intrinsic motion is described as

N∑
i=1

p2
i

2mi
− Tcm =

1

2

N−1∑
i=1

N−1∑
j=1

Λijπi · πj , (2.9)

where Λij is the reduced mass matrix defined as

Λij =
N∑
k=1

UijUjk
1

mk
(i, j = 1, . . . , N − 1). (2.10)

It is convenient to express the single particle coordinate relative to the center-of-mass

coordinate ri−xN , the inter-particle coordinate ri−rj , and the momentum difference pi−pj

in terms of x and π.

ri − xN =
N−1∑
k=1

(U−1)ikxk ≡ w̃(i)x, (2.11)

ri − rj =
N−1∑
k=1

(
(U−1)ik − (U−1)jk

)
xk ≡ w̃(ij)x, (2.12)

1

2
(pi − pj) =

1

2

N−1∑
k=1

(Uki − Ukj)πk ≡ ζ̃(ij)p, (2.13)

2)The tilde symbol stands for a transpose of a matrix if unless otherwise noted.
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where w(i), w(ij), and ζ(ij) are (N − 1)× 1 vectors. These short notations are useful when one

considers the matrix elements of the Hamiltonian or physical operators, such as a two-body

potential and correlation functions.

The relative Jacobi coordinate can be easily One of the most advantages of the relative

Jacobi coordinate

2.2 Correlated Gaussian with the global vector

Choice of a basis function is important for the variational calculation. If the basis function

is appropriately chosen, the practical calculation is efficient and precise in a numerical way.

There three conditions to impose the basis function for the few-body systems: the first is that

spatial behavior and correlations between particles are well described, the second is that the

angular part of the basis function is good to the arbitrary total angular momentum, and the

third is that the matrix elements can be analytically evaluated.

As the best choice of the basis function, I introduce the correlated Gaussian basis function

(CG) with the global vector [64] defined as

ψ(x;A, u) = exp

(
−1

2
x̃Ax

)
YLM (v) v = ũx, (2.14)

where A is a positive definite symmetric (N − 1)× (N − 1) matrix, YLM is the solid spherical

harmonics of the total angular momentum L and its z-projection M , YLM (v) = |v|LYLM (v̂).

x̃Ax is the quadratic form, which is a short writing of
∑N−1

i=1

∑N−1
j=1 Aijxi ·xj . u is the (N−1)

vector, so called the global vector, and practically taken as the variational parameters with

its length unity at random.

The CG is good spacial description for N -body systems, which is extended from the

normal Gaussian. Notably, the CG explicitly describes the correlations between particles via

the off-diagonal part of the A. This can be easily shown by the expansion of the CG,

exp (−Aijxixj) =

∞∑
n=0

(−Aij)
n

n!
(xi · xj)

n (2.15)

(xi · xj)
n =

∑
2k+n=n

4π(2k + l)!

2kk!(2k + 2l + 1)!!
x2k
i x2k

j (−1)l
√
2l + 1 [Yl(xi)× Yl(xj)]00 , (2.16)

in which ith and jth particle are correlated with all possible angular momenta. The angular

motion of the few-body system is properly described by the solid spherical harmonics with

the global vectors. This can be shown by the expansion of the solid spherical harmonics

with global vector in terms of the tensor coupling of the spherical harmonics of the single

coordinate, for example of three-body system:

YLM (u1x1+u2x2) =

L∑
l=0

√
4π(2L+ 1)!

(2L+ 1)!(2L− 2l + 1)
u2k+l
1 u2k+l

2 [Yl(x1)× YL−l(x2)]LM . (2.17)

The solid spherical harmonics of the arbitral N -body system also can be expanded in the

same way. Therefore, the CG with the global vector expression is suitable for description of

the spatial motion of the N -body system having the arbitral angular momentum.3)

3)The expression with the single global vector can describe only natural party state, e.g., 0+, 1−, and 2+.

To extend to the unnatural party states, e.g, 0−, 1+, and 2−, double or triple global vectors expression is

implemented [65,66].
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The matrix elements of the CG with the global vector can be analytically evaluated. By

using the generating function of the CG, evaluation of the matrix elements becomes simpler

and systematic. The generating function of the CG, g, is realized with an auxiliary vector

s = (s1, . . . , sN ) in the form as

g(x;A; s) = exp

(
−1

2
x̃Axs̃x

)
. (2.18)

The CG and the generating function are related with the integral as following:

exp

(
−1

2
x̃Ax

)
YLM (v) =

2kk!(2k + 2l + 1)!!

4π(2k + l)!

∫
deYLM (e)

(
dL

dλL
g(x;A;λeu)

)
λ=0,|e|=1

(2.19)

Following this equation, one can evaluate matrix elements of the operator O from the element

⟨g(x;Ai;λieiui)|O|g(x;Aj ;λjejuj)⟩. Evaluations of matrix elements for concrete operators

are described in the Appendix.

The CG is easily symmetrized or antisymmetrized for the changing of identical parti-

cles to satisfy the bosonic and fermionic properties. In the relative Jacobi coordinate, the

(anti)symmetrization can be easily achieved by the linear transformation of permutation op-

eration,

P =

(
1 2 · · · N

p1 p2 · · · pN

)
(2.20)

which transforms the ith single-particle coordinate to the pith single particle coordinate,

ri → rpi as Px = TPx, where the transformation matrix of the permutation P is defined as:

(TP )ij =
N∑
k=1

Uik

(
U−1

)
pkj

(i, j = 1, . . . , N − 1). (2.21)

Using this linear transformation, one can define the symmetrizer S and the antisymmetrizer

A as:

S =
1

N !

∑
P

P, (2.22)

A =
1

N !

∑
P

sgn(P )P, (2.23)

where sgn stands for the parity of the permutation.

2.3 Stochastic Variational Method

To obtain the precise wave function, one needs to optimize the variational parameters in

the basis functions. The A has the N(N − 1)/2 variational parameters and u has N − 2

variational parameters. In particular, optimization of the A is essential for the numerical

calculation. Here, I introduce two ideas for a parameter optimization. One is called the

geometric progression method in which the variational parameters in the A are taken as the

series of the geometric progression, e.g., Aij = (r0r
k−1)−2, where initial value r0 (length unit)

and the ratio r. Note that the geometric progression series are in the length unit. When the

length of the geometric progression series is taken to be k = 1, . . . ,m for every matrix element
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in the A, the dimension of basis function becomes mN(N−1). The initial value and the ration

are usually empirically determined to obtain the minimum energy. The geometric progression

method is advantageous for spanning space entirely.

The other is called the stochastic variational method [67] in which the variational param-

eters are optimized by the competitive selection. If A1, . . . Ak−1 have been already optimized,

competitive selection for optimization of Ak is performed by following steps:

1. Generating n different candidates for the kth variational parameter (A1
k, . . . , A

n
k) ran-

domly.

2. Solving k-dimensional generalized eigenvalue problem including candidates (A1
k, . . . , A

n
k)

and corresponding eigen-energies (E1, . . . , En) are determined.

3. The Ak that reproduce the lowest energy among (E1, . . . , En) is selected as the kth

variational parameter.

4. Moving to the k + 1th variational parameter.

There are several methods to generate candidates of Ak, I introduce two good methods. One

is the method that the candidates of the Ak is generated from the inter-particle parameter

aij ,
N∑

j>i=1

aij(ri − rj)
2 = x̃

 N∑
j>i=1

aijw
(ij)w̃(ij)

x = x̃Akx. (2.24)

In this method, once aij is randomly generated, then Ak is determined. The other method

is by using rotational operator R. The candidate of Ak is generated via following steps:

generating a diagonal matrix Adiag
k randomly and operating rotational transformation in (N−

1) dimensional space, Ak = RAdiag
k . The former method is easy to apply for arbitral-body

systems. The latter method can cover wide model space in equally likely way, especially for

the three-body system.





Chapter 3

Geometric configuration in the

spectrum of 12C

We investigate geometric configurations of α clusters in the spectrum of 12C within three-α

OCM. In particular 2+2 is analyzed in detail, which has been discussed as a rotational band

member of the Hoyle state. The ground and excited 0+ and 2+ states are described by a

three-α cluster model. The three-body Schrödinger equation with orthogonality conditions is

accurately solved by the stochastic variational method with correlated Gaussian basis func-

tions. To analyze the geometric configuration in a convenient form, we introduce a confining

potential. The two-body density distributions together with the spectroscopic information

clarify the structure of these states. We find that main configurations of both the second 0+

and 2+ states are acute-angled triangle shapes originating from the 8Be(0+)+α configuration.

However, the 8Be+ α components in the second 2+ state become approximately 2/3 because

the 8Be subsystem is hard to excite, indicating that the state is not an ideal rigid rotational

band member of the Hoyle state.

3.1 Background of the structure of 12C

The background of the structure of 12C, especially for the Hoyle band, is described again

in this section. A lot of theoretical studies for the structure of 12C have been conducted,

using the various model. According to the OCM calculation by Yamada and Schuck [57] the

ground state and 2+1 states are understood shell-like structure having SU(3) symmetry. In the

SU(3) symmetry shell structure, the partial wave component of the ground state is equally

distributed to l =0,2, and 4 inter-α partial waves. Following this three-equal distributions,

the momentum distribution has three peaks with same amplitudes. Related with this, the

density distributions have the nodal behavior in the internal region.

On the other hand, the Hoyle state could not explained by the shell model [8]. For

more than half a century, the Hoyle state has been studied by cluster models, which could

reproduce experimental energy [22]. As the state has a significant amount of the 8Be(0+)+α

configurations [19, 20, 22, 23], the Hoyle state decays dominantly via sequential decay process
8Be(0+)α → 3α [68]. In addition to the 8Be+α structure, Ref. [26] claimed that the Hoyle

state has the α-condensate like character, where three α bosons occupy in the same S orbit.

The structure of the Hoyle state has also been discussed in terms of geometric configurations

of three-α particles based on the algebraic cluster model (ACM) [30,32,33]. Fully microscopic

23
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calculations predicted a significant amount of α cluster configurations in the Hoyle state [69,

70]. Very recently, prominent three-α cluster structure configurations were confirmed in the

Monte Carlo Shell Model approach [9].

The search for other excited cluster states with some analogy to the Hoyle states has

attracted interest. The structure of second Jπ = 2+ state is controversial as it can be a

candidate of a rotational excited state of the Hoyle state forming the “Hoyle band” [39].

Experimentally, the 2+2 state was confirmed [34–37] at 2.59(6)MeV above the three-α threshold

with the decay width of 1.01(15)MeV [38]. The idea of the Hoyle band has attracted attention.

Ref. [71] deduced a limit for the direct decay branching ratio of the Hoyle state under the

assumption that the intrinsic structure of 0+2 and 2+2 are the same. Theoretically, the 2+2
state has only been recognized as having dominant 8Be(0+) + α configurations, in which its

intrinsic structure is a weakly-coupled 8Be plus an α particle with the angular momentum of

2 [?, 19, 70]. In analogy to the Hoyle state, the α-mean field character in the 2+2 state can be

considered, in which one α particle is excited to the D orbit [57,72] but Ref. [41] argued that

the 2+2 state is not a simple rigid rotational excited state based on the analysis of the energy

levels obtained by the microscopic three-α cluster model. In the context of the ACM, the 2+2
state is interpreted as the rigid rotational excited state of the Hoyle state in which three α

particles geometrically form an equilateral triangle and vibrate with the D3h symmetry [31].

To confirm whether this state belongs to the Hoyle state, a certain degree of similarity in

the intrinsic structure should be observed. This motivates us to conduct a detailed study to

clarify the extent of similarity between the structure of the second 0+ and 2+ states.

To settle this argument, in this chapter, we study geometric configurations of three-α

particles in the second 2+ state and compare its structure with the second 0+ Hoyle state

using accurate three-α wave functions. 8Be+α components are analysed to clarify the origin

of these configurations.

In this chapter, the four physical states, Jπ = 0+1 , 0
+
2 , 2

+
1 and 2+2 of 12C are studied within

the three-α cluster model. In the next section, we explain our approach. Fully converged so-

lutions are obtained by correlated Gaussian expansion with the stochastic variational method

which is explained in the Chapter 2. Geometric configurations of the α particles are visualized

by calculating two-body density distributions as well as other physical quantities. To evaluate

these physical quantities of the state with rather wide decay width such as the second 2+

state, we introduce a confining potential. The details are given in Sec. 3.2.2. In Sec. 4.3, we

show the numerical results and analysis. Finally, we conclude the structure of the 2+2 state in

Sec. 3.4.

3.2 Method

3.2.1 Three-α cluster model

The wave functions of 12C are obtained by the SVM with fully symmetrized CG to take into

account bosonic property of the α particles. The three-α Hamiltonian reads

H =
3∑

i=1

Ti − Tcm +
3∑

i>j=1

(V ij
2α + V ij

Coul.) + V3α, (3.1)

where Ti is the kinetic energy of the ith α particle. The kinetic energy of the center-of-mass

motion Tcm is subtracted. The mass parameter in the kinetic energy terms and the elementary
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charge in the Coulomb potential (VCoul.) are taken as ~2/mα = 10.654 MeVfm2 and e2 = 1.440

MeVfm, respectively. Two-α interaction V2α is taken as the same used in Ref. [73], which is

derived by a folding procedure using an effective nucleon-nucleon interaction. We employ the

three-alpha interaction V3α depending on the total angular momentum Jπ reproducing the

binding energies as was used in Ref. [55]. Here we adopt the OCM which is explained in 1.3.1.

To impose the orthogonality condition to the Pauli forbidden states (f.s.), we introduce in the

Hamiltonian the pseudopotential eq. (5.1) for all inter-α pairs:

VP =
3∑

i>j=1

Γij . (3.2)

We adopt the harmonic oscillator wave functions for the forbidden states with the size pa-

rameter ν = 0.2575 fm−2 [73] reproducing the size of the α particle. In this chapter, we take

γ = 105 MeV. The forbidden state components of the resulting wave functions are found to be

in the order of 10−5. For the detail numerical settings, reader is referred to the Refs. [45,110].

3.2.2 Confining potential

We treat resonant 0+2 and 2+2 states as a bound state. This is the so-called bound-state ap-

proximation and works well for a state with a narrow decay width such as the 0+2 state (Expt.:

Γ = 8.5 × 10−3 MeV [74]), while for 2+2 it is hard to obtain the physical state with a simple

basis expansion [75] as it has somewhat large decay width (Expt.: Γ = 1.01(15) MeV [36]).

To estimate the resonant energy, the analytical continuation in the coupling constant [76]

is useful but does not provide us with the wave function. Nevertheless, a square-integrable

wave function of resonant states is useful to analyze its structure. A confining potential (CP)

method [77, 78] is suitable for this purpose, as we can treat a resonance state as a bound

state inside of the CP. To get a physical resonant state in the bound-state approximation, we

introduce a confining potential in the following parabolic form [77] as

VCP =
3∑

i=1

λΘ(|ri − x3| −R0)(|ri − x3| −R0)
2, (3.3)

where Θ(r) is the Heaviside step function,

Θ(x) =

{
1 (x > 0)

0 (x < 0)
, (3.4)

which is shown in Fig. The strength λ and range R0 parameters of the confining potential

are real numbers and have to be taken appropriately.

Here we investigate the stability of the energies as well as root-mean-square (rms) radii

Rrms =
√

⟨ΨJM |(r1 − x3)2|ΨJM ⟩ of the 0+1 , 0+2 , 2+1 states against changes of λ and R0.

Figure 3.2 shows the energies and rms radii of the 0+1 , 0
+
2 , 2

+
1 and 2+2 states with different

R0. The strength of the confining potential is set to be λ = 100 MeV/fm. Since the R0 value

is taken large enough, the energies and the rms radii of the bound states, 0+1 and 2+1 , do not

depend too much on these parameters. Even for the resonant 0+2 and 2+2 states, we find that

the fluctuations of the energies are small about 0.1 MeV and 0.6 MeV, respectively, in the

range of R0 = 8–10 fm. This is reasonable considering the facts that the 0+2 state has quite

small decay width and the 2+2 state has larger decay width. The magnitude of the radius
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Figure 3.1: The plots of the confining potential with parabolic form in eq. (3.3).

Table 3.1: Calculated energies measured from the three-α threshold and rms radii of the 0+1 ,

0+2 , 2
+
1 , and 2+2 states.

Jπ E (MeV) Rrms (fm)

0+1 −7.25 1.71

0+2 0.84 3.44

2+1 −2.92 1.93

2+2 2.32 3.50

fluctuation against to the changes of R0 is about ≈ 0.3 fm for the 0+2 state and ≈ 0.5 fm for

the 2+2 state. We also made the same analysis by strengthening the strength λ by 10 times and

a similar plot was obtained. Hereafter, we use the results with R0 = 9 fm, λ = 100 MeV/fm2.

Table 3.1 lists the calculated energies and rms radii. These energy values can be com-

pared with the real parts of the complex energies obtained by the complex scaling method

(CSM) [55]. The energies are 0.75 and 2.24 MeV for 0+2 and 2+2 states, respectively, which

are in good agreement with our results. Finally, we obtain the rms radii of the 0+2 and 2+2
states using these obtained wave functions. They are found to be similar and significantly

large compared to the 0+1 and 2+1 states.
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Figure 3.2: R0 dependence in the CP. Energies and rms radii of the 0+1 , 0
+
2 , 2

+
1 , and 2+2 states

with R0 = 8, 9 and 10 fm are plotted. The strength of the confining potential λ is set to be

100 MeV/fm2. See text for details.

3.3 Results

3.3.1 One-body density and momentum distribution

Shell structure and the condensate structure of three-α can be seen by the one-body density

and momentum distributions which are defined as

ρ(r) = ⟨Ψ|δ(|r1 − x3| − r)|Ψ⟩ , (3.5)

ρ(k) = ⟨Ψ|δ(|k1 − kcm| − k)|Ψ⟩ , (3.6)

where k1 is the conjugate momentum of r1 and kcm is the momentum of the center-of-mass

motion. Figure 3.3 shows the one-body density distribution and momentum distribution of

the 0+1 , 0
+
2 , 2

+
1 , and 2+2 states. For the momentum distributions of 0+1 , as expected, there are

three or two peaks with almost equal amplitude, which represent that three α particles are

occupying three orbits not to violate Pauli principle in 0+1 . This is nothing but the property

of the shell structure. The momentum distribution of 2+1 has two peaks: one is located at the

momentum near the middle peak of 0+1 with larger amplitude and the other is located at the

largest momentum of peaks of 0+1 with almost same amplitude. This indicates that the 0+1 is

rotationally excited to the 2+1 state by the center-of-mass. On the contrary, for both 0+2 and

2+2 , the momentum distributions are concentrated at k ∼ 0.2 fm−1, which is the characteristic

behavior of condensation state. Following the three or two peaks structure of the momentum

distributions of 0+1 and 2+1 , the one-body density distributions of those states also have three

or two peak structure to be orthogonal to the Pauli forbidden states. In the same way, the
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Figure 3.3: The one-body density distribution (left) and momentum distributions (right) of

the 0+1 , 0
+
2 , 2

+
1 , and 2+2 states.

one-body density distributions of 0+2 and 2+2 state widely spread with dilute density, which is

consistent with the previous OCM study [57].

3.3.2 Three-α configurations: Two-body density

To discuss the geometric configurations of the three-α systems, it is intuitive to see the two-

body density distributions with respect to the two relative coordinates, x1 and x2, defined

by

ρ(r,R) = ⟨Ψ|δ(|x1| − r)δ(|x2| −R)|Ψ⟩ , (3.7)

Note that the distribution is normalized as
∫∞
0 dr

∫∞
0 dR ρ(r,R) = 1. Figure 3.4 plots the two-

body density distributions of the Jπ = 0+1 , 0
+
2 , 2

+
1 , and 2+2 states. For a guide to the eyes, the

specific r/R ratios are indicated by the dashed lines and their corresponding geometric shapes

are depicted by inset figures. We remark that the two-body density distributions were already

discussed for the Jπ = 0+ states in detail by using the shallow potential models [68,79]. Here

we present the results with the OCM. The preliminary results for the 0+ states were already

discussed in Ref. [56] but we repeat it to remind the characteristics of the two-body density

distributions and to compare it with the 2+ state.

The two-body density distributions of the 0+1 and 2+1 states have similar peak structures;

the most dominant peak is located on the equilateral triangle configuration at r ∼ 3 fm and

some other peaks come from the nodal behavior of wave function due to the orthogonality

to the forbidden states. We see different fine structures when a shallow potential model is

employed. See Ref. [56] for detailed comparison.

In contrast to the compact ground state, the two-body density distribution of the 0+2
state is widely spreading. The most dominant peak of the 0+2 state distribution is located

at the acute-angled triangle configuration, which comes from the 8Be(0+) + α structure [56].

For the 2+2 state, likely to the 0+2 , the two-body density distribution spreads and the most

dominant peak is located at the acute-angled triangle configuration. However, we find that

the amplitude is significantly smaller than the 0+2 state and less small peaks in the internal

regions. The difference of these peak structures between the 0+2 and 2+2 states implies different

intrinsic structure, which will be discussed in the next subsection.
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Figure 3.4: Two-body density distribution ρ(r,R) of the (a) Jπ = 0+1 , (b) 0+2 , (c) 2+1 , and

(d) 2+2 states. Contour intervals are 0.025 fm−2 for 0+1 and 2+1 and 0.0025 fm−2 for 0+2 and

2+2 . Specific r/R ratios are indicated by dashed lines and their geometric configurations are

illustrated in small panels, e.g., the diagonal dashed line indicates the equilateral triangle

configurations.
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3.3.3 Partial-wave and 8Be components in the three-α wave functions

In this subsection, we discuss more detailed structure of these three-α wave functions. For

this purpose it is convenient to calculate the partial-wave component and 8Be spectroscopic

factor, which are respectively defined by

Pl1l2 =
3!

2!1!
|⟨ [Yl1(x̂1)Yl2(x̂2)]JM |ΨJM ⟩|2 , (3.8)

Sl1l2 =
3!

2!1!
|⟨ϕl1(x1)[Yl1(x̂1)Yl2(x̂2)]JM |ΨJM ⟩|2 , (3.9)

where ϕl is the radial wave functions of 8Be with the relative angular momentum l = 0, 2, or

4, which correspond to physical resonant states with Jπ = 0+, 2+ or 4+, respectively, obtained

by solving the two-α system using the same two-α potential adopted in this chapter. The

Pl1l2 value is the probability of finding (l1, l2) component in the three-α wave function, while

the Sl1l2 value can be a measure of the the 8Be+α clustering. Note that given l1 and l2, Sl1l2
is a subspace of Pl1l2 , hence Sl1l2 ≤ Pl1l2 always holds.

Table ?? lists the Pl1l2 and Sl1l2 values for the 0+ and 2+ states. The 0+1 state has almost

equal Pl1l2 values for l1 = l2 = 0, 2, and 4, which can be explained by reminding that the state

has the SU(3)-like character [57]. The higher partial-wave components is found to be ≈ 5%.

The 0+1 wave function has about 50% of the 8Be + α component. The 2+1 state is mainly

composed of (l1, l2) = (2, 2) and (4,4) components, P22 and P44, reflecting SU(3) character as

like the 0+1 state [57] and also contains about half of the 8Be + α component. Consequently,

the structure of the 2+1 state can be interpreted as a rigid rotational excited state of the 0+1
while keeping its geometric shape as was shown in Fig. 3.4.

On contrary, the Pl1l2 values of 0+2 concentrate only on the l1 = l2 = 0 channel about 70%,

which is consistent with the microscopic cluster model calculations [57,80]. This characteristic

behavior is often interpreted as the bosonic condensate state of the three-α particles [26, 57].

This (l1, l2) = (0, 0) channel mostly consists of the 8Be(0+)+α component shown in Table ??,

forming the acute-angled triangle shape in the two-body density distribution [56].

For the 2+2 state, dominant partial-wave components are the (l1, l2) = (0, 2) and (2,0)

channels. The 8Be(0+) + α component is dominant in the (l1, l2) = (0, 2) channel, while few
8Be(2+)+α component is found in the (l1, l2) = (2, 0) channel, which is in contrast to the 0+2
state mainly consisting of the 8Be+α configuration. This strong suppression can naturally be

understood by considering the fact that the excitation energy of 8Be(2+) is rather high 3.26

MeV (Expt.: 3.12 MeV [81]), compared to the calculated energy spacing between 0+2 and 2+2 ,

≈ 1.4 MeV.

3.3.4 Spectroscopic amplitude

To discuss the role of the dominant channels in the geometric configurations in the 0+2 and

2+2 states, it is useful to evaluate the 8Be spectroscopic amplitude (SA)

θl1l2(R) =

√
3!

2!1!

1

R2

×
〈
ϕl1(x1) [Yl1(x̂1)Yl2(x̂2)]JM δ(|x2| −R)

∣∣ΨJM

〉
. (3.10)

Note that
∫∞
0 dR [Rθl1l2(R)]

2 = Sl1l2 . For practical calculations, see Appendix A of Ref. [82],

where an explicit formula of the SA with the correlated Gaussian basis function was given.
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Table 3.2: Partial-wave component and the 8Be spectroscopic factor of the Jπ = 0+ and 2+

states. Note that the rms distances of two-α system, 8Be, is 5.32 fm for 0+, 6.12 fm for 2+,

and 4.87 fm for 4+. See text for details.

0+1 2+1
(l1l2) Pl1l2 Sl1l2 Dl1l2 Pl1l2 Sl1l2 Dl1l2

(00) 0.352 0.193 3.06 – – –

(02) – – – 0.096 0.058 3.23

Subtotal (l1 = 0) 0.352 0.193 3.06 0.096 0.058 3.23

(20) – – – 0.095 0.054 3.19

(22) 0.351 0.175 2.67 0.483 0.268 2.92

(24) – – – 0.006 0.003 2.49

Subtotal (l1 = 2) 0.351 0.175 2.67 0.584 0.325 2.96

(42) – – – 0.007 0.003 2.73

(44) 0.285 0.100 2.10 0.299 0.114 2.18

(46) – – – ∼ 10−4 ∼ 10−5 3.88

Subtotal (l1 = 4) 0.285 0.100 2.10 0.306 0.117 2.20

Total 0.988 0.468 2.73 0.986 0.500 2.84

Figure 3.6 shows the SA with (l1, l2) = (0, 0) for the 0+2 state and (0,2) for the 2+2 state,

which respectively correspond to the dominant configurations for each state. The SA of the

2+2 state is smaller than that of the 0+2 state reflecting the magnitudes of the Sl1l2 values.

For the sake of comparison, we also plot the radial wave function of 8Be(0+), ϕ0(r). The

peak position of rϕ0(r) is located at 3.68 fm, while the SA has the largest peak at 4.97

fm for the 0+2 state and 6.20 fm for the 2+2 state. These are consistent with the fact that

the highest peak of the two-body density distribution is located at (r,R) = (3.9, 5.1) fm for

the 0+2 state and (r,R) = (3.9, 5.3) fm for the 2+2 state, exhibiting the acute-angled triangle

configuration as shown in Fig. 3.4. SAs for other l1 channels are also shown in Fig. 3.6,

summed up for all l2 and compared with the partial wave component defined as ⟨Ψ|P̂ (r)|Ψ⟩
where P̂ (r) = δ(|x2| − r) |l1⟩ ⟨l1| and |l1⟩ is all channel having l1.

We also evaluate the rms radii of the SA defined by Dl1l2 =
√∫∞

0 dRR2[Rθl1l2(R)]
2/Sl1l2 ,

listed in Table 3.2 and Table 3.3. The SA radii of the dominant channel of the 0+2 and 2+2 states

are 5.84 fm with (l1, l2) = (0, 0) and 7.38 fm with (l1, l2) = (0, 2), respectively. Remanding

that the rms distance of the 8Be wave function is 5.32 fm, the 8Be + α configuration induces

an acute-angled triangle geometry.

3.4 Conclusion

How similar is the structure of the 2+2 state in the 12C as compared to the Hoyle state? We

have made comprehensive investigations of the structure of 12C with a special emphasis on

the geometric configurations of α particles. The 0+ and 2+ states of 12C are described by a

three-α cluster model with the orthogonality constraint. Precise three-α wave functions are

obtained by using the correlated Gaussian expansion with the stochastic variational method.

We introduce a confining potential to obtain a physical state, allowing us to visualize the

three-α configuration by using square integrable basis functions.
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Figure 3.5: Square of 8Be spectroscopic amplitudes, θl1l2(R) with (a) (l1, l2) = (0, 0) and (b)

(l1, l2) = (0, 2) for the 0+2 and 2+2 states. The radial wave function of the 8Be(0+) state ϕ0(r)

is also compared.
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Table 3.3: Same as the Tab. 3.2 but for 0+2 and 2+2 .

0+2 2+2
(l1l2) Pl1l2 Sl1l2 Dl1l2 Pl1l2 Sl1l2 Dl1l2

(00) 0.786 0.668 5.84 – – –

(02) – – – 0.451 0.419 7.38

Subtotal (l1 = 0) 0.786 0.668 5.84 0.451 0.419 7.38

(20) – – – 0.374 0.021 4.60

(22) 0.112 0.027 4.00 0.044 0.011 5.45

(24) – – – 0.020 0.007 5.17

Subtotal (l1 = 2) 0.112 0.027 4.00 0.438 0.039 4.96

(42) – – – 0.029 0.007 5.10

(44) 0.060 0.013 4.75 0.017 0.008 5.15

(46) – – – 0.006 0.004 5.49

Subtotal (l1 = 4) 0.060 0.013 4.75 0.052 0.019 5.20

Total 0.958 0.708 5.76 0.941 0.477 7.13

In comparison of the two-body density distributions of the 0+2 and 2+2 state, the main

three-α configurations are found to be the same; the acute-angled triangle shape coming from

the 8Be(0+) + α component. However, the magnitude is significantly small for the 2+2 state

compared to the 0+2 state. We find that the 2+2 state can be mainly excited by the relative

coordinate between 8Be and α consistently with the interpretation given in Refs [19, 20, 70].

The 8Be cluster in the 0+2 state is hardly excited because the excitation energy of the 8Be(2+)

is higher than the energy difference of 2+2 state from the Hoyle state. Therefore, we conclude

that the 2+2 state is not an ideal rigid Hoyle band but could be interpreted as a partially

rotational excited state of 0+2 . It is interesting to study the 4+2 state, which is observed

recently [39] and considered also as a candidate of the Hoyle band member.





Chapter 4

Three-alpha system in dilute

neutron matter

We investigate two and three α particles in cold neutron matter by focusing on an analogy be-

tween such α systems and Fermi polarons realized in ultracold atoms. We describe in-medium

excitation properties of an α particle and neutron-mediated two- and three-α interactions us-

ing theoretical approaches developed for studies of cold atomic systems. We precisely solve the

few-body Schrödinger equation of α particles within OCM with evaluated in-medium proper-

ties of α particles. We point out that the two-α ground state and three-α first excited state,

which are 8Be and the Hoyle state, respectively, known as main components in the triple-α re-

action, can become bound states in such a many-neutron background although these states are

unstable in vacuum. Our results suggest a significance of these in-medium cluster states not

only in astrophysical environments such as core-collapsed supernova explosions and neutron

star mergers but also in neutron-rich nuclei.

4.1 Background of the Hoyle state in medium

In light N = Z nuclei, the threshold energy for α particle disintegration becomes low and even

comparable to the one-α separation energy, which helps the α cluster structure to emerge in

the spectrum of such light nuclei as predicted by the Ikeda diagram [3].

As introduced in the chapter 1.2, one of the most famous examples of the α cluster

structure is the first excited Jπ = 0+ state of 12C, which was originally predicted by Fred

Hoyle [7], This state is known to have a well-developed three-α cluster structure [69,70]. The

existence of such cluster states plays a role in enhancing the reaction rate at extremely low

energies near the Gamow window. The 12C element forms dominantly through a sequential

reaction in which a resonant two-α system, the ground state of 8Be, absorbs another α particle

via radiative capture process [83]. The accurate description of such α induced reactions can

impact astrophysically important explosive phenomena [63], such as core collapse supernovae

and neutron star mergers, which have recently started to be measured through gravitational

waves [62].

α clusters is also important in many-nucleon systems such as medium-heavy nuclei and

nuclear matter. The role of α particles in supernova explosions has attracted attention [61],

which is related with its equation of state. Very recently, an interesting indication that α

clusters emerge in a surface region of medium-heavy mass nuclei have been obtained by a

35
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Figure 4.1: Schematic picture of the polaron in atomic physics. The figure of the atom crystals

and electron is taken from the wikipedia (https://en.wikipedia.org/wiki/Polaron)

systematic measurement via the α knockout reactions [5]. These backgrounds motivate us to

study the formation and structure of an α particle in dilute neutron-rich matter. In Ref. [84],

the static properties of an α particle in cold dilute neutron matter has been discussed. The

effective mass of the in-medium α particle is enhanced by the interaction with the neutron

matter, implying the possibility of binding the ground state resonance of 8Be and the Hoyle

state in such an extreme environment. If these ingredients become stable, they should be

incorporated explicitly as ingredients of simulations of astrophysical nuclear processes [85],

which may affect the local abundance of the chemical elements.

In the theoretical side, it is challenging to evaluate how impurity particles behave and are

affected in many-body backgrounds like a Fermi sea due to infinitely large degrees of free-

dom. Nevertheless, this problem has been approached in ultracold atoms theoretically and

experimentally in terms of Fermi polarons [86–88]; an impurity atom is dressed by excitations

of majority Fermi atoms via interspecies interactions. For example in Fig. 4.1, an impurity

electron is moving in the majority atom crystals. The moving electron is dressed by the

phonon cloud by the excitations via interaction with the atoms, which is treated as a quasi-

particle, polaron. This picture can be extended to impurity α clusters in the majority cold

dilute neutron matter as shown in Fig. 4.2. Quasiparticle properties of a single polaron such

as the effective mass have precisely been measured in experiments [89–97] and successfully

described by various theoretical frameworks such as a variational method [98] and a T -matrix

approximation [99]. Moreover, fermion-mediated interactions between polarons have also been

observed experimentally [100,101].

In this work, we investigate the structure of two- and three-α systems in dilute neutron

matter of density lower than about 1/100 of the saturation density ∼ 0.01ρ0 at zero tempera-

ture. We discuss their medium-induced stabilization by regarding each α particle as a moving
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Figure 4.2: Schematic picture of the polaron of α cluster in the cold dilute neutron matter.

impurity immersed in the neutron medium. Analogy with Fermi polarons in ultracold atoms

allows us to utilize the results obtained for quasiparticle properties of a single α particle in

neutron matter [84] by using Chevy’s variational ansatz which gives a quantitative descrip-

tion of Fermi atomic polarons. To incorporate in-medium effect to two- and three-α particles

immersed in neutron matter, moreover, we derive medium-induced two- and three-body in-

teractions among polarons using a diagrammatic approach. These quasiparticle properties

modify the few-α Hamiltonian in vacuum to the one in the neutron medium. Once the ef-

fective Hamiltonian is set, the structure of the in-medium two- and three-α systems can be

accurately obtained from the solution of the corresponding few-body Schrödinger equation by

utilizing the SVM explained in chapter 2. This study offers the first quantitative evaluation

of the energy and the pair density distribution of two and three-α systems in cold neutron

matter.

This chapter is organized as follows. The next section describes models of the in-medium

multi-α systems. Section 4.2.1 is devoted to the derivation of induced two- and three-α

interactions in a neutron Fermi sea. Section 4.2.2 gives the effective Hamiltonian for the

multi-α systems in the cold neutron matter. The two cluster models employed in this study

are briefly described in Sec. 4.2.3. Section 4.3 presents our results. The possibility of the

medium-induced stabilization of the two- and three-α systems is discussed. The conclusion

and future prospects are given in Sec. 4.4.

4.2 Models of in-medium two- and three-α systems

Let us proceed to construct models for the systems of two and three α particles of bare mass

M in a dilute gas of neutrons of bare mass m at zero temperature. Since we are interested in

α particles in astrophysical environments where the temperature is higher than the neutron
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superfluid critical temperature [63], we can safely assume that the neutron gas is in a normal

state. We also ignore the neutron-neutron interaction for simplicity. Although we employ the

zero-temperature results for the induced interactions among α particles and the α effective

mass as will be discussed below, such zero-temperature treatment can be justified when the

temperature is below both the neutron Fermi temperature TF =
~2k2F
2m and the cutoff energy

scale ~2
mrr20

≃ 25 MeV of the neutron-α interaction with the effective range r0 = 1.43 fm [84].

We finally remark that at sufficiently high neutron densities corresponding to kF ≳ 0.3 fm−1,

a p-wave resonance (5He) could be stabilized by the Pauli blocking effect and emerge as a

nuclear ingredient [84,85]. This possibility is another issue to be tackled with, but is beyond

the scope of this work.

4.2.1 Derivation of induced two- and three-body interactions in cold neu-

tron matter

We start with diagrammatic derivation of the medium-induced two- and three-body interac-

tions among α particles in a neutron Fermi sea. As depicted diagrammatically in Fig. 4.3(a),

the induced two-body interaction between two α particles can be obtained up to leading order

in a as [102]

V
(2)
eff (q, iνℓ) = −

(
2π~2a
mr

)2
kBT

~2
∑
σ=↑,↓

∑
p,ωn

Gσ(p+ q, iωn + iνℓ)Gσ(p, iωn),

where kB is the Boltzmann constant, (q, iνℓ) = (k − k′, iνs − iνs′) is the transferred four-

momentum, νℓ = 2ℓπkBT/~ is the bosonic Matsubara frequency [103], Gσ(p, iωn) = (iωn − ξp)
−1

is the thermal Green’s function of a neutron with energy ξp = p2

2m −εF relative to the neutron

Fermi energy εF , and mr = (m−1 +M−1)−1 is the reduced mass. a = 2.64 fm is the s-wave

neutron-α scattering length [84]. Taking the summation of the fermionic Matsubara frequency

ωn = (2n+ 1)πkBT/~ [103], we obtain the induced two-body interaction as

V
(2)
eff (q, iνℓ) = 2

(
2π~2a
mr

)2∑
p

f(ξp)− f(ξp+q)

i~νℓ + ξp − ξp+q
. (4.1)

In the low-energy limit νℓ = 0 at T = 0, Eq. (4.1) reduces to

V
(2)
eff (q, 0) = − mkF

2π2~2

(
2π~2a
mr

)2 [
1 +

kF
q

(
1− q2

4k2F

)
ln

∣∣∣∣q + 2kF
q − 2kF

∣∣∣∣] .
Note that in the long wavelength limit (q → 0), Eq. (4.2) can be expressed by the com-

pressibility κ = 1
ρ2

(
∂ρ
∂µ

)
of neutron matter as V

(2)
eff (q → 0, 0) = −

(
2π~2a
mr

)2
ρ2κ. By taking

the inverse Fourier transformation of Eq. (4.2), we obtain the well-known Ruderman-Kittel-

Kasuya-Yosida (RKKY) form of the induced two-body interaction in the coordinate space

as [104–108]

V
(2)
eff (r1, r2) =

m

8π3~2

(
2π~2a
mr

)2
(2kF r) cos(2kF r)− sin(2kF r)

r4
,

where r = |r1 − r2|.
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In addition to this, as diagrammatically drawn in Fig. 4.3(b), the induced three-body

interaction up to leading order in a is given by [109]

V
(3)
eff (k, q, iνℓ, iνu) = 2

(
2π~2a
mr

)3

× kBT

~3
∑
σ=↑,↓

∑
p,ωn

Gσ(p, iωn)Gσ(p+ k + q/2, iωn + iνℓ)

×Gσ(p+ k − q/2, iωn + iνℓ − iνu), (4.2)

where k = k1 − k2, q = q1 − q2 iνℓ = iνs1 − iνs2 , and iνu = iνj1 − iνj2 are the transferred

four-momenta. In the low-energy limit (iνℓ = iνu = 0), the induced three-body interaction in

the coordinate space can be obtained as

V
(3)
eff (r1, r2, r3) =

∑
k,q

V
(3)
eff (k, q, 0, 0)e−ik·x1+iq·x2 , (4.3)

where x1 = r1 − r2 and x2 = r3 − (r1 + r2)/2. For simplicity, we employ the contact-type

three-body interaction whose coupling constant is given by

V
(3)
eff (0,0, 0, 0) = 2

(
2π~2a
mr

)3
kBT

~3
∑
σ

∑
p,iωn

[Gσ(p, iωn)]
3

=
m2

π2~4kF

(
2π~2a
mr

)3

. (4.4)

Thus, we obtain

V
(3)
eff (r1, r2, r3) =

m2

π2~4kF

(
2π~2a
mr

)3

δ(x1)δ(x2). (4.5)

Note that to adopt the contact interaction (4.5) is equivalent to the local density approxima-

tion.

4.2.2 Hamiltonian for two- and three-α particles in cold neutron matter

A single α particle immersed in cold neutron matter has its mass M changed into the effective

massM∗ by the interaction with neutrons in the medium. This particle, dressed with neutron

excitations, can be regarded as a polaron. As a natural extension of the previous study on

this polaron [84], we consider two- and three-α systems immersed in cold neutron matter. As

we shall see, the mass enhancement through M∗ acts to increase binding of these systems.

The explicit form of the Hamiltonian of the three-α system in cold neutron matter is

H =
3∑

i=1

p2
i

2M∗ − Tcm +
3∑

i<j=1

[
U

(2)
ij + V

(2)
eff;ij

]
+ U (3) + V

(3)
eff ,

where the center-of-mass kinetic energy term Tcm is subtracted, U (x) (x = 2, 3) denotes the

xα potential in vacuum including the Coulomb term, and V
(x)
eff is the induced xα interaction

in the neutron medium with the Fermi momentum kF . Note thatM
∗ and V

(x)
eff depend on kF .

The kF dependence of M∗/M is taken from Ref. [84]. We take the neutron mass as ~2/m=

41.47 MeV fm2 and M = 4m to keep the consistency of the parameters given in Ref. [84].
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Figure 4.3: Feynman diagrams that represent the induced (a) two-body interaction V
(2)
eff (q, iνℓ)

and (b) three-body interaction V
(3)
eff (k, q, iνℓ, iνu) among α particles immersed in neutron

matter. For V
(2)
eff (q, iνℓ), the incoming (outgoing) momenta of α particles are given by k and

−k (k′ and −k′). For V
(3)
eff (k, q, iνℓ, iνu), the incoming (outgoing) momenta of α particles are

given by k1 + q1/2, −k1 + q1/2, and −q1 (k2 + q2/2, −k2 + q2/2, and −q2). The internal

solid lines denote the thermal Green’s function of a neutron. This figure is taken from the

Ref. [110].

Here we incorporate V
(2)
eff and V

(3)
eff derived in the previous subsection into the Hamiltonian.

The original RKKY potential (4.2) behaves as ∼ r−1 at small r and hence has a singularity

at the origin. This is regularized by folding the harmonic oscillator type form factor of the α

particle associated with the nuclear force,
(
8ν
3π

) 3
2 e−

8
3
νu2

, which leads to

V
(2)
eff (r) = VRKKY(r)erf

(
4

3

√
νr

)
, (4.6)

where ν is also taken as 0.2675 fm−2 in a way that is consistent with the width parameter of

the α particle [73]. Note that this range is shorter than the α-n scattering length a and 1/kF
considered in this work. It is reasonable to take the range of the induced three-body force as

the same as the one for the induced two-α interaction, which leads to

V
(3)
eff (R) =

m2

π2~4kF

(
2π~2a
mr

)3

Nνe
− 16

9
νR2

(4.7)

with the normalization constant of the form factor Nν =
(
16ν
3π

)3
. Note that R2 = (r1 −

r2)
2 + (r2 − r3)

2 + (r3 − r1)
2 = 3

2x
2
1 + 2x22, which is symmetric in any particle exchange.



41 4.2. MODELS OF IN-MEDIUM TWO- AND THREE-α SYSTEMS

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0  2  4  6  8  10  12  14

V
ef

f
(2

)  (
M

eV
)

r (fm)

kF=0.072 fm-1

0.144 fm-1

0.252 fm-1

0.360 fm-1

Figure 4.4: Induced two-body interaction V
(2)
eff (r) as a function of the α-α distance r for

various values of the Fermi momenta kF of cold neutron matter. The thin horizontal line

indicates zero. This figure is taken from the Ref. [110].

Since a is positive, the induced three-α potential is always repulsive; its strength is inversely

proportional to kF .

Figure 4.4 plots the kF dependence of the induced two-α potential, Eq. (4.6). At short

distances, this two-α interaction is attractive, leading to more stability of multi-α systems.

The range of such attraction increases with kF , while, for sufficiently large kF , some oscillatory

behavior appears, a feature reflecting the Friedel oscillation associated with the presence of the

neutron Fermi surface. The induced three-α interaction, on the other hand, is repulsive and

weakens as kF increases. The optimal stability of the three-α system can thus be realized at a

certain kF that is determined in balance with the purely repulsive induced three-α potential.

The difference of the effective mass from the bare mass, together with the induced inter-

actions, can crucially affect the relative motion between α particles. In this work, we consider

each α particle to be a structureless particle but treats the Pauli principle in the interaction

between α particles in two different ways. Both potential models well reproduce the empirical

α-α scattering phase shift. Although it is difficult to obtain empirical information on the

closest motion, they are known to give different results for the internal region of the relative

wave function. See, e.g., [56, 111, 112] for some examples in light cluster systems. We utilize

such two potential models to evaluate the uncertainty that comes from model choice.

4.2.3 Multi-α cluster models

We employed two standard types of α cluster model OCM and the shallow potential model to

see the model dependence. As the shallow potential model, we employ the Ali-Bodmer (AB)

potential [?] (Set a′ [113]), which reproduces the α-α scattering phase shift and produces the

S-wave 8Be (0+1 ) resonance position with 0.093 MeV, a value close to the empirical one 0.092
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MeV [81]. Note that we get 0.086 MeV in the present calculation because of the use of the

different mass parameter of an α particle (M = 4m). The AB potential is l-dependent and

its explicit form is

UAB(r) =
(
125P̂l=0 + 20P̂l=2

)
exp

(
− r2

1.532

)
− 30.18 exp

(
− r2

2.852

)
,

where the energy and length are given in units of MeV and fm, and P̂l is the projection

operator onto the relative angular momentum l. This potential is so shallow that no bound

state appears. The Pauli principle in the interaction between α particles is simulated by

the first repulsive term of the potential. It is known that the empirical energies of states

close to the threshold energy of the three-α system are not well reproduced by the two-body

interaction alone [114]. Then, one often introduces a phenomenological three-α potential as

U (3), which only has a single Gaussian attractive term [115]. Because of such simplicity,

a similar sort of potential model has often been used to describe astrophysically important

reactions [45,46,115–118]. This three-α interaction, together with the two-α one, leads to the

Hoyle state energy of 0.38 MeV with respect to the three-α threshold, which perfectly agrees

with the empirical Hoyle state energy [74].

As the OCM, in the present study, we employ a folding-type two-α potential that was based

on the effective nucleon-nucleon interaction [120] and readjusted in Ref. [73]. This potential is

expressed in a single Gaussian form that only includes attractive term. The calculated energy

of 8Be is 0.095 MeV, reproducing the empirical energy. The explicit form of the potential is

a simple Gaussian form:

UOCM(r) = −106.1 exp

(
− r2

2.232

)
. (4.8)

This potential is apparently much deeper than the AB potential of Eq. (??), and produces

the three redundant forbidden states, which should be removed from all the pairwise wave

functions in the three-α systems. The present Hamiltonian makes the ground- and Hoyle

states overbound only with the two-α interaction, and hence a repulsive phenomenological

three-α potential is often introduced to adjust these energies to the empirical values. Some

applications with this potential set are given in Refs. [?, 121, 122]. Because the calculated

Hoyle state energy amounts to no less than 0.78 MeV, here we newly parametrize a three-α

potential better able to reproduce the empirical Hoyle state energy 0.38 MeV [74] for a fair

comparison with the AB result. The explicit form of the potential in MeV is

U (3)(R) = 77.0 exp(−0.12R2)− 10.0 exp(−0.03R2). (4.9)

The calculated Hoyle state energy is 0.34 MeV, which is close to the empirical energy of the

Hoyle state. Within these two models, we numerically obtained the precise wave functions

by using the SVM and the the fully symmetrized correlated Gaussian basis as explained in

chapter 2.

4.3 Results and discussions

In neutron matter, the effective mass M∗ of an α particle as well as the induced two- and

three-α interactions, changes with kF [84]. Here we discuss the influence of these medium

effects on the binding energy of the two- and three-α systems. More specifically, we analyze
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Figure 4.5: Energies of the three-α system in neutron matter calculated as a function of

the neutron Fermi momentum with different potential models, (a) AB and (b) OCM. The

calculations including the effective mass alone as medium effects are denoted by M∗, while

those additionally including the induced two-body force and also the induced three-body force

are denoted by M∗ + 2b and M∗ + 2b+3b, respectively. The results for the two-α system

(8Be) are also plotted for comparison. The lines are guide for the eye. This figure is taken

from the Ref. [110]

the ground state of the two-α system, i.e., 8Be, and the first excited state of the three-α

system, i.e., the Hoyle state of 12C, both of which exhibit a resonance in vacuum. We shall

show that both the 8Be and Hoyle states become bound in the neutron medium of sufficiently

large kF .

Figure 4.5 shows the energies of the three-α systems relative to the three-α threshold,

calculated for AB and OCM as a function of the Fermi momentum of the neutron medium

kF . To see the contributions of the induced interactions, we compare the energies including the

two-body and/or three-body induced interactions with the one in the absence of the induced

interactions. In general, each energy thus calculated gains as kF increases except for the Hoyle

state energies only with M∗ for AB. Note that M∗ increases with kF [84], leading to further

localization near the potential minima. In fact, the results only with M∗ contribution clearly

reflect the properties that the OCM potential only have an attractive component while the

AB potential has repulsive and attractive components at short and intermediate distances,

respectively.

For the same reason, α particles of larger M∗ come closer to each other once the induced

two-α interaction, which is attractive at short distances as shown in Fig. 4.4, is taken into

account. Then, the induced two-body interaction always plays a role in gaining the binding

energy, which can be seen in the results allowing for the induced two-body interaction (M∗ +

2b). On the other hand, the induced three-α interaction is always repulsive, which leads to

increase in the energy denoted byM∗+2b+3b as compared with the one denoted byM∗+2b.

The result of OCM (M∗ +2b+3b) with kF = 0.036 fm−1 is not shown because no physically

stable state is obtained due to too strong repulsion of the induced three-α interaction.
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While all the above-mentioned tendencies apply to the two cluster models, quantitative

details look very different. For AB, virtually no contribution from the induced three-body

interaction is found because there is only a negligible wave function amplitude in the internal

region due to the repulsive component of the AB potential, which will be shown in the next

paragraph. The ground state of 8Be become bound at kF ≳ 0.11 fm−1 for AB and ≳ 0.08

fm−1 for OCM. The Hoyle state becomes bound, i.e., the energy is located below the 8Be

energy, at kF ≳ 0.22 fm−1 for AB and ≳ 0.16 fm−1 for OCM. In the OCM case, the condition

for binding of the Hoyle state is determined by a subtle competition between the attractive

and repulsive contributions from the induced two- and three-body interactions, respectively.

Incidentally, one can safely ignore the excited states and dissociation of an α particle because

the excitation energy to the first excited state in vacuum is far larger than the neutron Fermi

energy at neutron densities of interest here. Also, we ignore possible increase in the kinetic

energy of the two- and three-α systems due to the Pauli blocking effect, which, in the case of

dissolution of α clusters, would become significant when the density of the nuclear medium

exceeds 0.03 fm−3 [85], again far higher than the medium density considered here.
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Figure 4.6: Pair density distributions ρpair(r) of the three-α system in cold neutron matter of

various kF with (a) AB and (b) OCM.

This model dependence of the system energy comes from the difference of the internal

structure of the relative wave function between α clusters. To see such difference explicitly

we calculate the pair density distributions defined by

ρpair(r) =

〈
δ(|r1 − r2| − r)

4πr2

〉
, (4.10)

where the bracket denotes the expectation value with the first excited state wave function

of the three-α system and 4π
∫∞
0 r2ρpair(r)dr = 1. Figure 4.6 compares the results for the

pair density distribution obtained at various kF . For AB, the amplitude of the wave function

is strongly suppressed due to the repulsive potential component at short distances, ≲ 2 fm,

while the peak of the amplitude, located near the potential minimum that arises from U (3),

naturally increases with kF or M∗. In the OCM results, on the other hand, an oscillatory

behavior is found at distances ≲ 3 fm due to the orthogonality condition to the Pauli forbidden
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states. Since a significant amount of amplitude is present in such an internal region, the wave

function in this region is strongly modified as the Hamiltonian changes. For larger kF or

M∗, the amplitude of the internal wave function becomes larger, which is natural considering

that heavier α particles are more difficult to move near the OCM potential minimum of zero

separation.
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Figure 4.7: Decomposition of the total three-α energy into the kinetic term (a), the direct

potential term (b), and the induced interaction term (c), which are calculated with AB and

OCM as a function of the neutron Fermi momentum. See text for details. The thin horizontal

line in the panel (c) indicates zero. This figure is taken from the Ref. [110]

We conclude this section by examining how the difference in the pair density distribution

between AB and OCM is reflected in the expectation values of the Hamiltonian terms. Fig-

ure 4.7 displays decomposition of the total energy into the contributions of the kinetic, direct

interaction, and induced interaction terms. Since the OCM wave function has its internal

amplitude disturbed drastically by the medium, the expectation value of the kinetic energy

rapidly increases as the kF increases for OCM, as can be seen from Fig. 4.7 (a). This energy

cost is dominated by the energy gain from the direct term
〈∑

ij U
(2)
ij + U (3)

〉
as plotted in

Fig. 4.7 (b), which is in turn controlled by the two-body OCM potential responsible for the

zero-separation potential minimum. For the AB model, the same kind of behavior of both

terms occurs, but the medium effects are suppressed due to the repulsive nature of the AB

potential at short distances. Finally, Fig. 4.7 (c) compares the sum of the expectation val-

ues from the induced two- and three-body interactions
〈∑

ij V
(2)
eff;ij + V

(3)
eff

〉
(denoted by Vind)

between AB and OCM. In either case, the contribution of the induced three-body force is

about one or two orders of magnitude smaller than that of the induced two-body force. The

model dependence of the induced interaction term is appreciable at large kF , a feature that

stems from the difference in the amplitude of the wave function near zero separation via the

induced two-body force. At small kF , the expectation values of the induced two and three-α

interactions become positive, where the magnitude of the repulsive induced three-α interac-

tion is larger than that of the induced two-α interaction. This confirms why we do not find

any stable Hoyle state for the OCM result with kF = 0.036 fm−1.

The decomposition in the absence of the induced two- and three-body interactions is also

plotted in Figs. 4.7 (a) and (b) as denoted by M∗. We see that both the kinetic and direct

interaction terms almost follow the full calculations. Since the contributions from the induced

interactions are minor, i.e., one order of magnitude smaller than the expectation values of the
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kinetic and direct interaction terms, the kF dependence is predominantly determined by the

Hamiltonian in the absence of the medium effects except the effective mass correction. The

modeling of the α cluster structure is more essential than the medium-induced interactions to

describe the kF dependence of the properties of the three-α system in cold neutron matter.

4.4 Conclusion and future prospective

The possibility that normally resonant two- and three-α systems become bound in cold neutron

matter has been pointed out for the first time by combining precise quantum-mechanical

calculations with a polaron picture of α particles. We have examined two standard α-cluster

models that take into account the Pauli principle in a different way, i.e., via the Pauli potential

and the orthogonality condition to the Pauli forbidden bound states. We have shown that the

ground state of 8Be and the Hoyle state can be bound at kF ≳ 0.08–0.11 fm−1 and kF ≳ 0.16–

0.22 fm−1, respectively, for the two models. The presence of these light nuclear ingredients

as bound states would give a significant impact on the modeling of matter in stellar collapse

and neutron star mergers and also affect reaction rates for nucleosynthesis therein.

Figure 4.8: The schematic figure shows that the in-medium effects of the neutron matter to

the α cluster systems are realized in the finite neutron system.

It is interesting to note that the in-medium attraction discussed in this work has to be

realized in finite nuclear systems (schematically depicted in the Fig. 4.8), e.g., Be and C

isotopes, where the α cluster structure is well developed. See, e.g., Ref. [123] and references

therein. Isotope dependence of the structure of 2α+Xn and 3α+Xn systems would drop a

hint at the stability of α clusters in cold neutron matter. As this is just the first evaluation,

for simplicity, we ignore the distortion of an α particle and the Pauli constraint of the relative

wave function of α particles by the surrounding neutron matter. The latter contribution would

work as repulsion and might counteract the stability of the ‘bound’ 8Be and Hoyle states. α

particles and neutron are usually correlated in p-wave due to the Pauli principle. Recently,

the p-wave polaron picture of α particles and neutron matter has been developed [124]. In

that study, it is shown that the α particle and neutron, 5He possibly become bound state,

while the ground state of the 5He is known as the resonance state in vacuum. This fact might

change our results drastically.

Moreover, finite temperature effects would be important in core-collapse supernovae and

neutron star mergers. Although we use the zero-temperature results for in-medium excitation

properties of a single α particle and induced two- and three-α interactions, the description of
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such in-medium properties can be extended to the finite-temperature case along the theoretical

developments in cold atom physics [125–127].





Chapter 5

Novel approach to the removal of

the Pauli forbidden states in the

multi-α systems

I propose the new forbidden free basis function of multi cluster systems in which anti-

symmetrization are analytically implied by the Slater determinant. Comparing with the

conventional method, i.e., the orthogonal condition model (OCM) and Kukulin’s projection

operator that numerically exclude forbidden states, I demonstrate efficiency of the new basis

function with the 12C, three-alpha system. I see that the strong 8Be correlation in the Hoyle

state originated from the orthogonality between alpha clusters.

5.1 Introduction

A cluster is an essential aspect of nuclear structure, particularly to understand the low lying

state of light nuclei. One of the most important cluster is 4He, α cluster, which is a tightly

bound system [3]. In particular the 12C has been studied actively by the three-α cluster model

because of its first excited state of Jπ = 0+ known as the Hoyle state [7] located at slightly

above the three-α threshold in which well developed three α clusters have gas-like structure

and bosonic condensation state in the S orbit [26, 27]. It is also known that, in the Hoyle

state, the 8Be(0+) + α configuration is significantly large [?, 19, 22, 23]. Consequently, the

three α clusters in the Hoyle state configure in the acute-angle isosceles triangle [110].

It is interesting to ask the question, from what does the 8Be(0+) + α structure emer-

gence comes? To give answer this question, I need to discuss the origin of the structure of

the Hoyle state. If its origin is universal to the same-mass multi cluster systems, the dis-

cussion of the three-α structure naturally can be extended to 4α, 5α, and more-α systems

which are also candidate of the α condensation discussed in theoretically [?,?,?, 26, 58] and

experimentally [128,129].

The structure of the Hoyle state has been well understood by the microscopic calculations

in which the nucleons are degree of freedom and the Pauli principle is properly taken into

account by the antisymmetrization. The Nα-cluster condensate type microscopic wave func-

tion [26], so called “THSR” wave function has been proposed, which describes the α clusters

occupying the same S orbit. This Nα condensate wave function has been confirm to be al-

most equivalent to the full microscopic three-α wave function by Uegaki et al. [19, 20], and

49



CHAPTER 5. NOVEL APPROACH TO THE REMOVAL OF THE PAULI FORBIDDEN STATES IN
THE MULTI-α SYSTEMS 50

Kamimura [21]. Moreover, in the Ref. [27], the “THSR”-type wave function orthogonal to

the lowest energy state has been shown to perfectly reproduce the wave function by Uegaki

et al. [19,20], and Kamimura [21]. In their conclusion the Hoyle state has a gas-like structure

with three-α Bose condensation. The “THSR”-type wave function has been also applied to

the more-alpha systems, e.g., 16O [26], 20Ne [?].

On the contrary, in the macroscopic framework where the clusters are treated as struc-

tureless point particles, multi-cluster systems have been studied mainly by the orthogonality

condition model (OCM) [16–18]. In the OCM, the Pauli forbidden states [?] are numerically

excluded by the projection operator [54] having the large strength λ MeV defined as

Λ = λ
∑

nlm∈f.s.
|ϕnlm⟩ ⟨ϕnlm| . (5.1)

However, calculations using the projection operator become unstable and inefficient [59], which

makes calculation of more-alpha systems difficult. So far, only four-α OCM calculation by

the Funaki et al. [58] has been reported and 5α OCM calculation has not been reached yet.

To overcome the difficulties in the macroscopic calculation for cluster model, in this paper,

I propose the novel macroscopic forbidden free basis function derived from the microscopic

multi-cluster wave function and present its efficiency by calculating three-α system, 12C. Using

the novel basis function, I see the agreement on the Hoyle state structure with the microscopic

wave function, namely THSR wave function.

In the next section, I will describe the derivation of the novel basis function and the

macroscopic three-α model. In the Sec. 5.3, I will demonstrate the efficiency of the novel

basis function by comparing with conventional basis function. Considering the “THSR”-type

wave function in the macroscopic framework , I discuss the three-α structure in the Hoyle state

by the density distributions. In the end, Sec. 5.4, I summarized strong points and possibilities

of the novel basis function.

5.2 Formalism

5.2.1 Forbidden free correlated Gaussian

For a stable calculation of multo-cluster systems in the macroscopic framework, I introduce

the novel forbidden free basis function in this section. Here, I only focus on the Nα-cluster

systems. An application for the arbitral cluster systems is straightforward. Starting from

a microscopic wave function, I consider the spectroscopic amplitude (SA) of the constituent

clusters as the novel macroscopic basis function which properly satisfies the Pauli principle.

By using this basis function, one can avoid numerically unstable calculation, particularly the

pseudo-potential projecting onto the Pauli forbidden states.

Generally, a microscopic wave function of N -cluster system consisted of clusters, C1 . . . CN ,

can be written as an antisymmetrized product of internal wave functions of clusters ϕ(Ci) and

a wave function of relative motion of clusters χ(x1, . . .xN ):

Ψmicro = A [ϕ(C1) · · ·ϕ(CN )χ(x1, . . .xN )] , (5.2)

where A stands for the antisymmetrizer that properly makes the wave function satisfy the
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Pauli principle. A set of relative Jacobi coordinate x̃ = (x1, . . .xN ) is defined by

x1 = R2 −R1 (5.3)

x2 =
R1 +R2

2
−R3 (5.4)

... (5.5)

xN =
R1 +R2 + · · ·+RN

N
,

where the Ri indicate the position vector of the center-of-mass of the ith cluster. I ignore the

center-of-mass motion of the entire system, thus I omit the dependence on the xN from χ in

the followings.

Let us consider the test function Ψt defined as

Ψt = A [ϕ(C1) · · ·ϕ(CN )δ(x1 − t1) · · · δ(xN−1 − tN−1)] (5.6)

which pins clusters down at the specific coordinate t̃ = (t1, . . . , tN−1). Then, the SA can be

described as

g(t) = ⟨Ψt|Ψmicro⟩ (5.7)

=

∫
dt′N(t, t′)χ(t′) ≡ Nχ(t), (5.8)

where N(t, t′) = ⟨Ψt|Ψt′⟩ is the norm kernel. Considering the orthonomality of the micro-

scopic wave function,

⟨Ψmicro|Ψ′
micro⟩ = ⟨χ|Nχ′⟩ = 0 or 1, (5.9)

the properly normalized wave function of relative motion of the clusters in the microscopic

framework should be Ψrel. = N 1/2χ. On the other hand for the macroscopic cluster model,

the orthonomality condition is approximately made by taking only the diagonal part of N :

⟨χN|Nχ′⟩ = 0 or 1. Therefore, the novel basis function in the macroscopic framework is

turned out to be ψ = g/
√
⟨g|g⟩ in which the Pauli principle is properly satisfied.

The SA of the constituent clusters, C1 . . . CN , can be analytically derived if χ is described

by the correlated gaussian (CG) [64]:

G(Ai,x) = exp

(
−1

2
νx̃Aix

)
, (5.10)

where Ai is positive definite (N − 1)× (N − 1) symmetric matrix. x̃Aix is a brief writing of∑
n,mAi,nmxn · xm. In the appendix of Ref. [80], detail steps of calculation for the SA are

explained on the assumption that the internal wave function of all clusters are described with

the same (0s) harmonic oscillator. The parameter ν fm−2 is the size parameter of the (0s)

harmonic oscillator. Following that steps, the novel basis function finally can be written as

ψNB(Ai,x) =
∑
p

Fp

(
det(Q+ Γ)

detMp

) 3
2

× exp

{
−1

2
νx̃(Γ− 4WpM

−1
p W−1

p W̃p)x

}
. (5.11)
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The reduced mass matrix Γ is defined by Γij = 2µiδij , where the reduced mass factors of the

same mass clusters are µi =
4i

i+ 1
(i = 1, · · · , N − 1)

µN = 4N

(5.12)

The (N − 1)× (N − 1) matrices Q and Mp are defined by

Q = Γ(Γ−Ai)
−1Γ− Γ (5.13)

Mp = Q+
1

2
Γ + 2W̃pΓ

−1Wp. (5.14)

The coefficient Fp and (N − 1) × (N − 1) matrix Wp can be determined by the algebraic

manipulations in the calculation of the SA. It is note that the SA also can be described by the

superposition of correlated Gaussian, which is a convenient feature for evaluation of matrix

elements. For example, the case of Nα systems, the practical number of terms in the novel

basis function is 5, 120, and 10147 for 2α, 3α, and 4α, respectively. Derived Fp and Wp are

provided in the supplemental material.

5.2.2 Two- and three-alpha model

To demonstrate efficiency of the novel basis function, I adopt the case of the two- and three-α

system. The Hamiltonian is reads

H =

N∑
i=1

Ti − Tcm +

N∑
i>j=1

(
V ij
2α + V ij

Coul.

)
, (5.15)

where Ti is the kinetic energy of ith particle and the kinetic energy of the center-of-mass motion

Tcm is excluded. V2α is the two-α interaction that is the same used in the Ref. [73], which

is derived by a folding procedure with an effective nucleon-nucleon interaction. VCoul. is the

Coulomb interaction that is also taken as used in the Ref. [73]. V3α is the Jπ dependent three-α

interaction taken from Ref. [?] to adjust the three-α threshold, which is introduced for three-α

case. The mass parameter of the α particle and the elementary charge are ~2/mα = 10.654

MeV fm2 and e2 = 1.440 MeV fm2, respectively. I utilize the SVM to obtain wave function

with this new basis function.

5.3 Results

5.3.1 Test convergence

I present numerical efficiency of the novel basis function in this section. Here I take ν =

0.26 fm−2 that reproduces the size of the α particle [80]. I compare the novel basis function

with the fully symmetrized CG: ψCG
i = SG(Ai,x), where the S is a symmetrizer which

makes the CG symmetric under all exchanges of α particles to ensure the bosonic property of

α particles. Note that the fully symmetrized CG is not orthogonal to the forbidden states and

the pseudo-potential Γ defined in the eq. (5.1) is needed to impose the orthogonality condition.

For the fair comparison, the conditions of the SVM is arranged in common: (i) number of the

candidates are 20 for each dimension, (ii) the variational parameter Ai is randomly generated



53 5.3. RESULTS

200 400 600 800
Number of dimension

8

6

4

2

0

2

En
er

gy
 (M

eV
)

0+
1  with New Basis Function

0+
2  with New Basis Function

0+
1  with Symmetrized CG

0+
2  with Symmetrized CG

Figure 5.1: Convergence curve of the Jπ = 0+ states energies calculated by the novel basis

functions (solid and dashed lines) and the fully symmetrized CG and the pseudo potential

defined in the eq. (5.1) (dashed and dash-dot lines). The dotted line are converged energies,

−7.25 MeV and 0.75 MeV for 0+1 and 0+2 states, respectively.

by Ai = R(θ)a, where R(θ) is the rotation matrix and a(b1, b2) is a diagonal matrix defined

as

ai(b1, b2) =

(
1/b21 0

0 1/b22

)
. (5.16)

θ, b1, and b2 are randomly generated in the range of 0 < θ < 2π and b1/
√
ν, b2/

√
ν < 12 fm.

Figure 5.1 plots the energy convergence for the number of basis functions, K. It can be

seen that the number of the basis function for the convergence of energy by the novel basis

function is surprisingly smaller than that by the fully symmetrized CG. The energy calculated

by the fully symmetrized CG is not bound at smaller K ≲ 100 because the CG has the large

Pauli forbidden component in the fully symmetrized CG and need to be orthogonal to them.

On the other hand for the novel basis function which is properly orthogonal to the Pauli

forbidden states, the energy start bound with small K.

5.3.2 Macroscopic “THSR”-type wave function

The novel basis function can describe “THSR”-type wave function in macroscopic framework

if I consider Ai is a diagonal matrix, Ai = ai. In the Fig. 5.2 I show the energy surface of

Jπ = 0+ as a function of the b1 and b2. Energies along b1
√
ν ∼ 1 fm is exceptionally high

because the relative motion between two α particles is forbidden. In the area where b1 and b2
are small, b1/

√
ν ≲ 1 fm and b2/

√
ν ≲ 1 fm, energies are very high because the clusters are

too close to satisfy the orthogonality condition. In the area where 1 fm ≲ b1/
√
ν ≲ 2 fm and
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Figure 5.2: The energy surface calculated with THSR-type wave function. The cross symbol

indicates the lowest energy −4.34 MeV at (b1/
√
ν, b2/

√
ν) = (1.18, 1.08). The black dashed

line shows b2 =
√
3b1/2 line representing the b1 and b2 ratio of the equilateral triangle config-

uration.

1 fm ≲ b2/
√
ν ≲ 2 fm, the three-α system is bound and the lowest energy is −4.34 MeV at

(b1/
√
ν, b2/

√
ν) = (1.18, 1.08) fm, which is consistent location with the Ref. [27].

The right panel of the Fig. 5.3 shows the overlap with the wave function of the Hoyle state

obtained by the full calculation, ⟨ψTHSR|Ψ(Jπ = 0+2 )⟩. Similarly to the energy surface, the

forbidden line along b1/
√
ν ∼ 1 fm can be seen, in which the overlap is difficult to evaluate

numerically due to the cancellation of significant digits where the wave function is Pauli

forbidden.

Dashed line in the Fig. 5.2 is corresponding to the condition b2 =
√
3b1/2 which indicates

that three α particles are configured in symmetric way, indicating the equilateral triangle

same as the Ref. [26]. Along the dashed line, the highest overlap with the Hoyle state is 0.83

at (b1/
√
ν, b2/

√
ν) = (5.32, 4.61) fm.

In the overlap surface, there are mainly two areas having different phases: one is the area

spanned by 1 fm ≲ b1
√
ν ≲ 2 fm and 0 fm ≲ b2

√
ν ≲ 0.8 fm, the other is the area spanned

by b1/
√
ν ≳ 1 fm and b2/

√
ν ≳ 0.1 fm. The former area contains the lowest energy location.

On the other hand, the largest overlap with the Hoyle state is located at (b1/
√
ν, b2/

√
ν) =

(2.30, 7.69) fm in the latter area, in which the distance between two-α particles are smaller

than the distance between the center-of-mass of two-α particles and the left α particle. The

amount of overlap at that point is 0.90 that is consistent with the diagonal element of the

overlap matrix ⟨gi|gj⟩ i, j = 0+1 , 0
+
2 in the Ref. [80].

Furthermore, we can consider two-basis model using two novel basis function mentioned in
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√
ν, b2/

√
ν) =
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Figure 5.4: Two-body density distribution of (a)THSR-type restricted in b2 =
√
3b1/2,

(b)THSR-type, (c)two-basis model, and (d)the Hoyle state by the SVM.

one basis model: the basis function that reproduces the lowest energy and the basis function

that has the largest absolute overlap with the Hoyle state. Note that the wave function of the

0+1 and 0+2 are orthogonal by the diagonalization. Obtained energies of 0+1 and 0+2 are −4.34

MeV and 1. MeV, respectively.

To see the three-α structure of the Hoyle state, I show two-body density distributions

(TBD) of “THSR”-type model, one-basis model, two-basis model, and full calculation in

Fig. 5.4, which is defined as

ρ(r,R) = ⟨Ψ|δ(|x1| − r)δ(|x2| −R)|Ψ⟩ . (5.17)

TBD satisfies the normalization
∫∫

drdR ρ(r,R) = 1. The diagonal dashed line is R =
√
3r/2

representing the equilateral triangle ratio of r and R. For the THSR-type model restricted

in b2 =
√
3b1/2 and THSR-type model, the amplitude of the three α particles are widely

spread with the peak at above the black dashed line representing the equilateral triangle

configuration.

For the two-basis model, nodal behavior in the internal region emerge due to the orthogo-

nality to the ground state. Comparing with the TBD by the full calculation, I see that TBD

by the two-basis model reproduces structure of the Hoyle state except for nodal behavior in

the range of 3 fm ≲ R ≲ 8 fm and 0 fm ≲ r ≲ 2 fm. Structure of the Hoyle state is originated

from the orthogonality condition of the clusters and orthogonality to the ground state, which

is consistent with the analysis by the microscopic THSR-type wave function [26,27].

5.4 Summary

I propose the novel macroscopic basis function for the multi-cluster systems, starting form the

microscopic multi-cluster wave function. Taking 12C, three-α system as an example, I have

presented the efficiency of the novel basis function. The number of basis function that need to

converge eigen energy is surprisingly small, compared with the conventional OCM calculation

by the fully symmetrized CG. Using THSR-type wave function in macroscopic framework, I

also investigate the origin of the three-α configuration in the Hoyle state, which is determined

by the orthogonality condition of the clusters and orthogonality to the ground state. That is

agree with the previous studies by the microscopic cluster model. The calculation with the

novel basis function is numerically stable because the Pauli principle is properly taken into
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account. This advantages might pave the way to the heavier cluster systems, such as 16O,
20Ne, and so on. Further studies will be reported elsewhere.





Chapter 6

Conclusion of this dissertation

We have made comprehensive studies of 12C by precise three-α cluster model wave functions

obtained by the stochastic variational method with the correlated Gaussian basis functions.

For future studies, a novel approach for more complex multi-cluster systems was also imple-

mented.

In chapter 3, I showed the three-α cluster strucutre in the spectrum of 12C by analyzing

three-body wave functions. In the algebraic cluster model, the three-α particles are config-

urated into the equilateral triangle and they are vibrating and rotating. Based on this idea

three-α geometric configurations were discussed through the density distributions, reduced

width amplitudes, and the partial wave components without any geometrical assumptions.

It is conluded that the Jπ = 0+1 and 2+1 states are found to have the equilateral triangle

configuration, on the other hand, 0+2 , the Hoyle state and 2+2 state have isosceles triangles

that indicates 8Be+α structure. These findings are consistent with the previous works. It is

also found that the 2+2 state is mainly excited by the relative coordinate between 8Be and α

as concluded in the Refs [19,20,70]. Due to the higher excitation energy of 8Be(2+) than that

of 2+2 state, 8Be subsystem is hardly exicited and the partial wave component of l1 = 2 is

strongly suppressed. Therefore, I conclude that the 2+2 is not ideal member of rigid rotational

excitations, the Hoyle band, which is contradict to the concept of the ACM. Analysis of 4+2
state is also interesting, which is also a candidate of the Hoyle band member.

In chapter 4, I presented that the energy shifts and the structure chainges of the Hoyle

state in cold dilute neutron matter, which situation may be realized in the astrophysical

explosive phenomena such as core collapse supernovae or the neutron star mergers. The in-

medium effect from the cold dilute neutron matter is evaluated based on the idea of the Fermi

polarons for the first time. I found that the Hoyle state starts to bound in the neutorn matter

having the Fermi momentum kF ≳ 0.16-0.22 fm−1 for the OCM and the AB. 8Be is also

confirmed to be stabilized in the neutron matter. The stabilization of the ingredients of the

nucleosynthesis process, e.g., the triple alpha process, may affect the reaction rate or even

modeling in the astrophysics. It is noted that the presented evaluation of in-medium effects is

rather drastic to simulate realistic situation because, in our model, the α particles couple with

background neutrons via only s wave, although α and neutrons generally couple via p wave

due to the Pauli principle. Recently, to extend the α polaron picutre to the p wave coupling

I investigate the 5He as the n+ α [124]. The ground state of 5He is known as the Jπ = 3/2−

resonant state, which become bound state in the dilute neturon matter because the decay

prosecc is forbidden due to the Pauli principle of background neutrons. These investigation

59
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will show us the possibilities for the new physics that finite nuclear systems in medium are

explicitly described, which is nessesary to be considered for applications to astrophyscis or

clustering phenomena in heavy-mass nuclei.

In chapter 5, I suggested the novel approach for the multi-cluster systems. Started from

the microscopic cluster wave function, the new basis function in macroscopic framework is

implemented, in which the Puali principle is properly taken into account. Taking two- and

three-α system as examples, I showed drastic reduction of number of dimension to obtain

converged results, which shows how the new basis functions are efficient. The new basis

function can simpulate THSR wave function in macroscopic framework. It is confirmed that

the three-α strucutre of the Hoyle state by the new basis function reproduced relsults by the

THSR wave function. The convergence with small basis function is strong advantage for the

four- or more-α systems such as 16O and 20Ne.

In conclusion, I remark the points of the understanding of 12C that become deeper and

extended through these comprehensive studies. First, three-α cluster sturcutre in the 12C

spectrum are systematicallly analyzed with the precise wave functions. Second, new physics of
12C in medium has been developed from the investigation on the Hoyle state in the cold dilute

neutron matter, which may be relaized in the astrophysical environment and the medium-

heavy mass nuclei. Third, the novel approach for multi-cluster systems has been implemented,

which may overcome the difficulties of OCM calculations.



Appendix A

Matrix elements with the correlated

Gaussian basis

Matrix elements with the correlated Gaussians and single global vector are presented. The

calculation method and ideas are based on the Refs. [67, 130] Many body wave function is

expanded by the correlated gaussians.

Ψ =
∑
k

ckϕk (A.1)

ϕk = exp

(
−1

2
x̃Akx

)
|u · x|LYLM (u · x) (A.2)

where the u is the global vector.

u = (u1, . . . , uN−1) (A.3)

A.1 Overlap

The overlap element is

⟨ϕk|ϕk′⟩ =
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

ρL (A.4)

where

B = Ak +Ak′ (A.5)

ρ = ũ′B−1u (A.6)

If the total angular momentum is 0, the global vector is not needed. Then the trial function

is

ϕk = exp

(
−1

2
x̃Akx

)
(A.7)

The explicit form of overlap matrix element is

⟨ϕk|ϕk′⟩ =
(

(2π)N−1

det(Ak +Ak′)

) 3
2

(A.8)
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A.2 Kinetic Energy

The matrix element of kinetic energy is

⟨ϕk|
1

2
π̃Λπ|ϕk′⟩ =

~2

2
(R+ LQρ−1)

(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

ρL (A.9)

where

R = 3Tr(AB−1A′Λ) (A.10)

Q = 2ũ′B−1AΛA′B−1u (A.11)

For the case of total angular momentum 0,

⟨ϕk|
1

2
π̃Λπ|ϕk′⟩ =

3

2
~2Tr

(
Ak(Ak +Ak′)

−1Ak′Λ
)
⟨ϕk|ϕk′⟩ (A.12)

A.3 Two-body interaction

General form,

⟨ϕk|V (|ri − rj |)|ϕk′⟩ =
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
n=0

L!

n!(L− n)!

(
γγ′

c

)n

× ρ̄L−n 2n+2

√
π(2n+ 1)!!

∫ ∞

0
V

(√
2

c
x

)
x2n+2e−x2

dx (A.13)

where

c−1 = ω̃(ij)B−1ω(ij) (A.14)

γ = cω̃(ij)B−1u (A.15)

γ′ = cω̃(ij)B−1u′ (A.16)

For the case of total angular momentum 0,

⟨ϕk|V (|ri − rj |)|ϕk′⟩ = ⟨ϕk|ϕk′⟩
( c

2π

) 3
2

∫
V (r)e−

1
2
cr2dr (A.17)

A.3.1 Gaussian

The matrix element of Gaussian

⟨ϕk| exp(−βr2ij)|ϕk′⟩ =
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2
(
1 +

2β

c

)− 3
2

(
ρ̄+

γγ′

c

1

1 + 2β
c

)L

(A.18)

where

ρ̄ = ρ− γγ′

c
(A.19)
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then

⟨ϕk| exp(−βr2ij)|ϕk′⟩ =
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2
(
1 +

2β

c

)− 3
2

(
ρ̄+

γγ′

c

1

1 + 2β
c

)L

(A.20)

=
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2
(
1 +

2β

c

)− 3
2
(
ρ− γγ′

c

2β

c+ 2β

)L

(A.21)

=
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2
(

c

c+ 2β

) 3
2
(
ρ− γγ′

c

2β

c+ 2β

)L

(A.22)

For the case of the total angular momentum 0,

⟨ϕk| exp(−βr2ij)|ϕk′⟩ = ⟨ϕk|ϕk′⟩
(

c/2

β + c/2

) 3
2

(A.23)

A.3.2 Shifted Gaussian

The matrix element of the shifted Gaussian exp(−αr2ij −βrij) is obtained by using eq.(A.13).

⟨ϕk| exp(−αr2ij − βrij)|ϕl⟩ (A.24)

=
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
n=0

L!

n!(L− n)!

(
γγ′

c

)n

ρ̄L−n 2n+2

√
π(2n+ 1)!!

(A.25)

∫ ∞

0
exp

(
−
(
2α

c
+ 1

)
x2 − β

√
2

c
x

)
x2n+2dx

The unerlined integration is reduced to the imcomplete Gamma function.∫ ∞

0
exp

(
−
(
2α

c
+ 1

)
x2 − β

√
2

c
x

)
x2n+2dx (A.26)

=

∫ ∞

0
exp

(
−A′x2 −B′x

)
x2n+2dx (A.27)

=

∫ ∞

0
exp

(
−A′

(
x+

B′

2A′

)2

+
B′2

4A′

)
x2n+2dx (A.28)

= exp

(
B′2

4A′

)∫ ∞

0
exp

(
−A′

(
x+

B′

2A′

)2
)
x2n+2dx (A.29)

The integration part,∫ ∞

0
exp

(
−A′

(
x+

B′

2A′

)2
)
x2n+2dx (A.30)

=

∫ ∞

B′
2A′

exp(−A′x2)

(
x− B′

2A′

)2n+2

dx (A.31)

=

∫ ∞

B′
2A′

exp(−A′x2)
2n+2∑
m=0

(2n+ 2)!

m!(2n+ 2−m)!
xm
(
− B′

2A′

)2n+n−m

dx (A.32)

=
2n+2∑
m=0

(2n+ 2)!

m!(2n+ 2−m)!

(
− B′

2A′

)2n+n−m ∫ ∞

B′
2A′

exp(−A′x2)xmdx. (A.33)



APPENDIX A. MATRIX ELEMENTS WITH THE CORRELATED GAUSSIAN BASIS 64

By substituting q = A′x2,

2n+2∑
m=0

(2n+ 2)!

m!(2n+ 2−m)!

(
− B′

2A′

)2n+n−m ∫ ∞

B′2
4A′

exp(−q)
( q
A′

)m
2 1

2A′

√
A′

q
dq (A.34)

=
2n+2∑
m=0

(2n+ 2)!

m!(2n+ 2−m)!

(
− B′

2A′

)2n+n−m A′− 1
2
(m+1)

2

∫ ∞

B′2
4A′

exp(−q)q
1
2
(m+1)−1dq (A.35)

=

2n+2∑
m=0

(2n+ 2)!

m!(2n+ 2−m)!

(
− B′

2A′

)2n+n−m A′− 1
2
(m+1)

2
Γ

(
1

2
(m+ 1),

B′2

4A′

)
, (A.36)

where the Γ(a, b) is the imcomplete Gamma function. Finally

⟨ϕk| exp(−αr2ij − βrij)|ϕl⟩ (A.37)

=
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
n=0

2n+2∑
m=0

L!

n!(L− n)!

(
γγ′

c

)n

ρ̄L−n 2n+2

√
π(2n+ 1)!!

exp

(
B′2

4A′

)
(2n+ 2)!

m!(2n+ 2−m)!

(
− B′

2A′

)2n+n−m A′− 1
2
(m+1)

2
Γ

(
1

2
(m+ 1),

B′2

4A′

)
(A.38)

=
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

exp

(
B′2

4A′

) L∑
n=0

2n+2∑
m=0

L!(2n+ 2)!

n!(L− n)!m!(2n+ 2−m)!(2n+ 1)!!(
γγ′

c

)n

ρ̄L−n 2
m−n−1

√
π

A′m
2
−2n− 5

2 (−B′)2n+2−mΓ

(
1

2
(m+ 1),

B′2

4A′

)
(A.39)

where

A′ =
2α

c
+ 1 (A.40)

B′ = β

√
2

c
. (A.41)

When α = 0, the present matrix element is reduced to the matrix element of the exponential

funtion. On the other hand when β = 0, the matrix element is reduced to the matrix element

of the Gaussian just explained in Sec. ??.

A.3.3 Coulomb potential

The matrix element of the Coulomb potential can be calculated by the Gaussian expansion.

1

r
=

2√
π

∫ ∞

0
dt exp(−r2t2) (A.42)

1

r
erf(κr) =

2κ√
π

∫ 1

0
dt exp(−κ2r2t2) (A.43)
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The Regular Coulomb potential

⟨ϕk|
1

r
|ϕk′⟩ (A.44)

=
2√
π

∫ ∞

0
dt ⟨ϕk| exp(−r2t2)|ϕk′⟩ (A.45)

=
2√
π

∫ ∞

0
dt

(
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2
(

c

c+ 2t2

) 3
2
(
ρ− γγ′

c

2t2

c+ 2t2

)L
)

(A.46)

=
2√
π

(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2
∫ ∞

0
dt

(
c

c+ 2t2

) 3
2

L∑
l=0

LCl ρ
l

(
−γγ

′

c

2t2

c+ 2t2

)L−l

(A.47)

=
2√
π

(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
l=0

LCl ρ
l

(
−γγ

′

c

)L−l ∫ ∞

0
dt

(
c

c+ 2t2

) 3
2
(

2t2

c+ 2t2

)L−l

(A.48)

=
2√
π

(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
l=0

LCl ρ
l

(
−γγ

′

c

)L−l

c
3
2 c−L+l− 3

2 cL−l︸ ︷︷ ︸
=1

∫ ∞

0
dt

(
2
c t

2
)L−l(

2
c t

2 + 1
)L−l+ 3

2

(A.49)

Let u = 2
c t

2, then

⟨ϕk|
1

r
|ϕk′⟩ (A.50)

=
2√
π

(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
l=0

LCl ρ
l

(
−γγ

′

c

)L−l ∫ ∞

0
dt

(
2
c t

2
)L−l(

c
2 t

2 + 1
)L−l+ 3

2

(A.51)

=
2√
π

(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
l=0

LCl ρ
l

(
−γγ

′

c

)L−l ∫ ∞

0
du
c

4

(
2

c

) 1
2 uL−l− 1

2

(1 + u)L−l+ 3
2

(A.52)

=
2√
π

(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
l=0

LCl ρ
l

(
−γγ

′

c

)L−l

c
1
2 2−

3
2

∫ ∞

0
du

u(L−l+ 1
2
)−1

(1 + u)(L−l+ 1
2
)+1

(A.53)

Here the definition of the Beta function (1st Euler) can be used,

B(p, q) =

∫ ∞

0

tp−1

(1 + t)p+q
dt. (A.54)

Finally

⟨ϕk|
1

r
|ϕk′⟩ (A.55)

=
2√
π

(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
l=0

LCl ρ
l

(
−γγ

′

c

)L−l

c
1
2 2−

3
2B(L− l +

1

2
, 1) (A.56)

=
2√
π

(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
l=0

LCl ρ
l

(
−γγ

′

c

)L−l

c
1
2 2−

3
2
Γ(L− l + 1

2)Γ(1)

Γ(L− l + 3
2)

(A.57)

=
2√
π

(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
l=0

LCl ρ
l

(
−γγ

′

c

)L−l

c
1
2 2−

3
2
Γ(L− l + 1

2)

Γ(L− l + 3
2)

(A.58)
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By using　

Γ

(
n+

1

2

)
=

(2n− 1)!!

2n
√
π (A.59)

The matrix element can be reduced,

⟨ϕk|
1

r
|ϕk′⟩ =

2√
π

(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
l=0

LCl ρ
l

(
−γγ

′

c

)L−l c
1
2 2−

1
2

2(L− l) + 1
(A.60)

Error function type Coulomb potential

⟨ϕk|
1

r
erf(κr)|ϕk′⟩ (A.61)

=
2κ√
π

∫ 1

0
dt ⟨ϕk| exp(−κ2r2t2)|ϕk′⟩ (A.62)

=
2κ√
π

∫ 1

0
dt

(
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2
(

c

c+ 2κ2t2

) 3
2
(
ρ− γγ′

c

2κ2t2

c+ 2κ2t2

)L
)

(A.63)

=
2κ√
π

(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2
∫ 1

0
dt

(
1

1 + 2κ2

c t
2

) 3
2 L∑

l=0

LCl ρ
l

(
−γγ

′

c

2κ2

c t
2

1 + 2κ2

c t
2

)L−l

(A.64)

=
2κ√
π

(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
l=0

LCl ρ
l

(
−γγ

′

c

)L−l ∫ 1

0
dt

(
1

1 + 2κ2

c t
2

) 3
2
(

2κ2

c t
2

1 + 2κ2

c t
2

)L−l

(A.65)

For the under-lined integration, let u = 2κ2

c t
2

∫ 1

0
dt

(
1

1 + 2κ2

c t
2

) 3
2
(

2κ2

c t
2

1 + 2κ2

c t
2

)L−l

(A.66)

=
c

4κ2

(
2κ2

c

) 1
2
∫ 2κ2

c

0
du

(
1

1 + u

)L−l+ 3
2

uL−l− 1
2 (A.67)

Replacing the u as u = 1
ũ then

c

4κ2

(
2κ2

c

) 1
2
∫ 2κ2

c

0
du

(
1

1 + u

)L−l+ 3
2

uL−l− 1
2 (A.68)

=
c

4κ2

(
2κ2

c

) 1
2
∫ ∞

c
2κ2

dũ

(
1

1 + ũ

)L−l+ 3
2

(A.69)

=
c

4κ2

(
2κ2

c

) 1
2 1

L− l + 1
2

(
2κ2

c+ 2κ2

)L−l+ 1
2

(A.70)
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Finally the matirx element is

⟨ϕk|
1

r
erf(κr)|ϕk′⟩ (A.71)

=
2κ√
π

(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
l=0

LCl ρ
l

(
−γγ

′

c

)L−l c

4κ2

(
2κ2

c

) 1
2 1

L− l + 1
2

(
2κ2

c+ 2κ2

)L−l+ 1
2

(A.72)

=
1√
π

( c
2

) 1
2 (2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
l=0

LCl ρ
l

(
−γγ

′

c

)L−l 1

L− l + 1
2

(
2κ2

c+ 2κ2

)L−l+ 1
2

(A.73)

In the case of the totalangular momentum 0,

⟨ϕk|
1

r
|ϕk′⟩ = ⟨ϕk|ϕk′⟩

2√
π

√
c

2
(A.74)

⟨ϕk|
1

r
erf(κr)|ϕk′⟩ = 2κ ⟨ϕk|ϕk′⟩

√
c/2

π(κ2 + c/2)
(A.75)

A.3.4 Yukawa potential

The matrix element of the Yukawa potential is obtained by using the relation

1

r
exp(−κr) = 2√

π

∫ ∞

0
dt exp

(
−r2t2 − κ2

4t2

)
(A.76)

Finally

⟨ϕk|
1

r
exp(−κr)|ϕl⟩ (A.77)

=

√
2c

π

∫ 1

0
dt exp

(
−κ

2

2c

1− u2

u2

)
⟨ϕk|ϕl⟩ |ρ→ρ−cu2γγ′ . (A.78)

The integration is implemented with Gauss quadrature. The Yukawa potential is the same

form as the point Coulomb potential with screening effect exp(−κr).

A.3.5 ℓ2-dependent potential of the Gaussian radial form

This subsection calculate the matrix element of the ℓ2-dependent potential of the Gaussian

radial form,

V (r) = exp

{
−1

2
c′x̃ww̃x

}
ℓ2, (A.79)

where w̃x = ri − rj = y1 and ℓ = y1 × (−i~)∂/∂y1. According to the ref. [65], the matrix

element of the generating function g(s;A,x) is calculated,

⟨g(s′;A′,x)| exp
{
−1

2
c′x̃ww̃x

}
ℓ2|g(s;A,x)⟩ (A.80)

=~2 ⟨g(s′;A′,x)| exp
{
−1

2
c′x̃ww̃x

}
L2|g(s;A,x)⟩ (A.81)

with

L2 = (w̃x× (ζ̃s′ − ζ̃A′x)) · (w̃x× (ζ̃s− ζ̃Ax)). (A.82)
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I consider only Jπ = 0+ states and s can be 0.

L2 = (w̃x× (−ζ̃A′x)) · (w̃x× (−ζ̃Ax)) (A.83)

= x̃ww̃x · x̃A′ζζ̃Ax− x̃A′ζw̃x · x̃Aζw̃x (A.84)

The matrix element of squared quadratic form with Gaussian radial form exp
{
−1

2c
′x̃ww̃x

}
xQ1x·

xQ2x is needed.

x̃Q1x · x̃Q2x =

N−1∑
ijkl

Q1,ijQ2,kl(xi · xj) · (xk · xl) (A.85)

The integration can be carried out with the integration formula

∫
exp

(
−1

2
x̃Ax+ s̃x

)
dx =

(
(2π)N

detA

)3/2

exp

(
1

2
s̃A−1s

)
. (A.86)

See the SVM book for details. By differentiating both sides with respect to the mth component

of the vector si, (si)m, I obtain

∫
(xi)m exp

(
−1

2
x̃Ax+ s̃x

)
dx = ((A−1s)i)m

(
(2π)N

detA

)3/2

exp

(
1

2
s̃A−1s

)
(A.87)

In the same way, by further differentiating with respect to the (sj)n and so on,

∫
(xi)m(xj)n exp

(
−1

2
x̃Ax+ s̃x

)
dx (A.88)

=
{
(A−1)ijδmn + ((A−1s)i)m((A−1s)j)n

}((2π)N

detA

)3/2

exp

(
1

2
s̃A−1s

)
(A.89)

∫
(xi)m(xj)n(xk)l exp

(
−1

2
x̃Ax+ s̃x

)
dx (A.90)

=
{
(A−1)ikδml((A

−1s)j)n + ((A−1s)i)m(A−1)jkδnl
}((2π)N

detA

)3/2

exp

(
1

2
s̃A−1s

)
(A.91)

+
{
(A−1)ijδmn + ((A−1s)i)m((A−1s)j)n

}
((A−1s)k)l

(
(2π)N

detA

)3/2

exp

(
1

2
s̃A−1s

)
(A.92)
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∫
(xi)m(xj)n(xk)l(xp)q exp

(
−1

2
x̃Ax+ s̃x

)
dx (A.93)

=
{
(A−1)ikδml(A

−1)jpδnq + (A−1)ipδmq(A
−1)jkδnl

}((2π)N

detA

)3/2

exp

(
1

2
s̃A−1s

)
(A.94)

+
{
(A−1)ikδml((A

−1s)j)n + ((A−1s)i)m(A−1)jkδnl
}
((A−1s)p)q

(
(2π)N

detA

)3/2

exp

(
1

2
s̃A−1s

)
(A.95)

+
{
(A−1)ipδmq((A

−1s)j)n + ((A−1s)i)m(A−1)jpδnq
}
((A−1s)k)l

(
(2π)N

detA

)3/2

exp

(
1

2
s̃A−1s

)
(A.96)

+
{
(A−1)ijδmn + ((A−1s)i)m((A−1s)j)n

}
(A−1)kpδlq

(
(2π)N

detA

)3/2

exp

(
1

2
s̃A−1s

)
(A.97)

+
{
(A−1)ijδmn + ((A−1s)i)m((A−1s)j)n

}
((A−1s)k)l((A

−1s)p)q

(
(2π)N

detA

)3/2

exp

(
1

2
s̃A−1s

)
(A.98)

Setting s = 0 and m = n, l = q.

∫
(xi)m(xj)n(xk)l(xp)q exp

(
−1

2
x̃Ax

)
dx (A.99)

=
{
(A−1)ikδml(A

−1)jpδnq + (A−1)ipδmq(A
−1)jkδnl

}((2π)N

detA

)3/2

(A.100)

+(A−1)ijδmn(A
−1)kpδlq

(
(2π)N

detA

)3/2

(A.101)

∫
(xi)m(xj)m(xk)l(xp)l exp

(
−1

2
x̃Ax

)
dx (A.102)

=
{
(A−1)ikδml(A

−1)jpδml + (A−1)ipδml(A
−1)jkδml

}((2π)N

detA

)3/2

(A.103)

+(A−1)ijδmm(A−1)kpδll

(
(2π)N

detA

)3/2

(A.104)

Finally I obtain

∫
(xi · xj) · (xk · xp) exp

(
−1

2
x̃Ax

)
dx (A.105)

=
∑
ml

{
(A−1)ik(A

−1)jpδml + (A−1)ip(A
−1)jkδml + (A−1)ij(A

−1)kp
}((2π)N

detA

)3/2

(A.106)

=
{
3(A−1)ik(A

−1)jp + 3(A−1)ip(A
−1)jk + 9(A−1)ij(A

−1)kp
}((2π)N

detA

)3/2

(A.107)

Returning to the matrix element of ℓ2-dependent potential, we can calculate it with the
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above formula,

〈
exp

(
−1

2
x̃A′x

)
Y0

∣∣∣∣ exp{−1

2
c′x̃ww̃x

}
L2

∣∣∣∣ exp(−1

2
x̃Ax

)
Y0

〉
(A.108)

=

2∑
a=1

〈
exp

(
−1

2
x̃A′x

)
Y0

∣∣∣∣ exp{−1

2
c′x̃ww̃x

}
x̃Qa,1x · x̃Qa,2x

∣∣∣∣ exp(−1

2
x̃Ax

)
Y0

〉
(A.109)

=
2∑

a=1

N−1∑
ijkl

Qa,1,ijQa,2,kl

〈
exp

(
−1

2
x̃A′x

)
Y0

∣∣∣∣ exp{−1

2
c′x̃ww̃x

}
(xi · xj) · (xk · xl)

∣∣∣∣ exp(−1

2
x̃Ax

)
Y0

〉
(A.110)

=
2∑

a=1

N−1∑
ijkl

Qa,1,ijQa,2,kl
1

4π

∫
dx(xi · xj) · (xk · xl) exp

−1

2
x̃(A′ +A+ c′ww̃︸ ︷︷ ︸

=B

)x

 (A.111)

=
2∑

a=1

N−1∑
ijkl

Qa,1,ijQa,2,kl
1

4π

{
3(B−1)ik(B

−1)jp + 3(B−1)ip(B
−1)jk + 9(B−1)ij(B

−1)kp
}((2π)N

detB

)3/2

(A.112)

A.3.6 Gaussian over the r2 potential

This subsection calculates the matrix element of the Gaussian over the r2,

V (r) =
exp(−µr2)

r2
. (A.113)

Using the relation that
1

r2
=

∫ ∞

0
dt exp(−tr2), the desired matrix element become the inte-

gration of the matrix element of the Gaussian potential,

〈
ϕk

∣∣∣∣ exp(−µr2)r2

∣∣∣∣ϕk′〉 (A.114)

=

〈
ϕk

∣∣∣∣ ∫ ∞

0
dt exp(−(µ+ t)r2)

∣∣∣∣ϕk′〉 (A.115)

=

∫ ∞

0
dt ⟨ϕk| exp(−β(t)r2)|ϕk′⟩ (A.116)

=

∫ ∞

0
dt
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2
(

c

c+ 2β(t)

) 3
2
(
ρ− γγ′

c

2β(t)

c+ 2β(t)

)L

(A.117)

=
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2
∫ ∞

0
dt

(
c

c+ 2β(t)

) 3
2

L∑
l=0

LClρ
l

(
−γγ

′

c

)L−l ( 2β(t)

c+ 2β(t)

)L−l

(A.118)

=
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
l=0

LClρ
l

(
−γγ

′

c

)L−l ∫ ∞

0
dt

(
c

c+ 2β(t)

) 3
2
(

2β(t)

c+ 2β(t)

)L−l

(A.119)
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The integration. ∫ ∞

0
dt

(
c

c+ 2β(t)

) 3
2
(

2β(t)

c+ 2β(t)

)L−l

(A.120)

=

∫ ∞

0
dt

(
c/2

c/2 + µ+ t

) 3
2
(

µ+ t

c/2 + µ+ t

)L−l

(A.121)

=

∫ ∞

µ+c/2
dt′
(
c/2

t′

) 3
2
(
t′ − c/2

t′

)L−l

(A.122)

=

∫ ∞

µ+c/2
dt′
( c
2

)3/2
t′−3/2

L−l∑
n=0

L−lCn

(
−c/2
t′

)L−l−n

(A.123)

=

L−l∑
n=0

L−lCn

( c
2

)L−l−n+3/2
(−1)L−l−n

∫ ∞

µ+c/2
dt′t′−L+l+n−3/2 (A.124)

=

L−l∑
n=0

L−lCn

( c
2

)L−l−n+3/2
(−1)L−l−n

(
µ+ c

2

)−L+l+n−1/2

L− l − n+ 1
2

(A.125)

Finally I obtain〈
ϕk

∣∣∣∣ exp(−µr2)r2

∣∣∣∣ϕk′〉 (A.126)

=
(2L+ 1)!!

4π

(
(2π)N−1

detB

) 3
2

L∑
l=0

LClρ
l

(
−γγ

′

c

)L−l L−l∑
n=0

L−lCn

( c
2

)L−l−n+3/2
(−1)L−l−n

(
µ+ c

2

)−L+l+n−1/2

L− l − n+ 1
2

(A.127)

=
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M. Perez, P. Papka, F. D. Smit, J. A. Swartz, and I. Usman, Phys. Rev. C 80, 041303(R)

(2009).

[36] M. Itoh, H. Akimune, M. Fujiwara, U. Garg, N. Hashimoto, T. Kawabata, K. Kawase,

S. Kishi, T. Murakami, K. Nakanishi, Y. Nakatsugawa, B. K. Nayak, S. Okumura, H.

Sakaguchi, H. Takeda, S. Terashima, M. Uchida, Y. Yasuda, M. Yosoi, and J. Zenihiro,

Phys. Rev. C 84, 054308 (2011).

[37] W. R. Zimmerman, M. W. Ahmed, B. Bromberger, S. C. Stave, A. Breskin, V. Dangen-

dorf, Th. Delbar, M. Gai, S. S. Henshaw, J. M. Mueller, C. Sun, K. Tittelmeier, H. R.

Weller, and Y. K. Wu, Phys. Rev. Lett. 110, 152502 (2013).

[38] J. H. Kelley, J. E. Purcell, and C. G. Sheu, Nucl. Phys. A 968, 71 (2017).

[39] M. Freer et al., Phys. Rev. C 83, 034314 (2011).
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