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Abstract

This study aims to understand the fundamental aspects of the interactions between

mesoscale eddies and bottom topography using the quasi-geostrophic approxima-

tion.

First, the interaction between an upper-layer vortex and a bottom topography

is investigated using an f -plane two-layer quasi-geostrophic model with a point vor-

tex and step-like topography. The contour dynamics method is used to formulate

the model. A steadily propagating linear solution along the topography, known

as the pseudo-image solution, is derived analytically for a weak point vortex, and

the nonlinear solution is obtained numerically. The numerical experiments show

that the nonlinear pseudo-image solution collapses with time, with saddle-node

points in the velocity field playing a critical role in this collapse. Even after the

collapse, the point vortex propagates along the topography similarly to that in the

steadily propagating solution. Numerical experiments with various initial condi-

tions show that the point vortex has two types of motion in this system: motion

along the topography and motion away from the topography. In the latter case, the

point vortex and lower-layer potential vorticity anomaly form a heton-like dipole

structure. Moreover, the motion classification results show that an anticyclonic

(cyclonic) point vortex on the deeper (shallower) side is more likely to form a

dipole structure than a cyclonic (anticyclonic) vortex on the deeper (shallower)

side when its initial distance from the topography is the same.
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Second, we examine the influence of the finite width of the topography and

the β-effect on the interactions between an upper-layer eddy and a bottom to-

pography using the two-layer quasi-geostrophic model with a Gaussian eddy in

the upper layer and sloping topography. In the f -plane, anticyclonic (cyclonic)

eddies initially move along the topography in the opposite (same) direction of the

topographic Rossby wave. As time elapses, the anticyclonic eddies move away

from the topography even when their strength is small, whereas the cyclonic ed-

dies continue to move along the topography even when their strength is large.

These results suggest that in the f -plane, the formation of a heton-like dipole is

a common phenomenon in the case of anticyclonic eddies, while an isolated eddy

in the lower layer cannot strongly interact with the upper-layer eddies in the case

of cyclonic eddies. In the β-plane, anticyclonic eddies move westward onto the

sloping topography when their strength is small or the β-effect is large, whereas

when their strength is large or the β-effect is small, they move eastward, forming

the heton-like dipole. In contrast to the case of the f -plane, the dipole can move

eastward long distances in the β-plane. Meanwhile, the cyclonic eddies move west-

ward onto the topography independent of their strength. These results show that

the presence of the β-effect prevents the upper-layer eddy from interacting with

the bottom topography and enables the dipole moving eastward to move a long

distance.
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Chapter 1

Introduction

1.1 Background and observations

Ocean mesoscale eddies play an essential role in water exchange and material cir-

culation. The motion of these eddies is affected by background currents, advection

due to other eddies, and the presence of topography. In particular, mesoscale ocean

eddies in open ocean largely propagate westward due to the β-effect (Chelton et al.,

2011). As a result of this westward motion, the eddies reach the western boundary,

and eventually interact with the western bottom topography, such as continental

shelves, slopes, and rise. Since oceanic eddies transport momentum, heat, and wa-

ter masses, investigating their behaviour is essential for understanding the ocean

environment and its variability in the western region (Spall et al., 2008; Chelton et

al., 2011; Baird and Ridgway, 2012; Dong et al., 2014). Moreover, western ocean

regions have distinct topography, including continental shelves/slopes. Since dis-

tinct topography can play an essential role in the evolution of eddies, investigating

the interactions between eddies and topography is critical for understanding the

material transport via the movement of eddies (Spall et al., 2008; Itoh and Yasuda,

2010; Ribbe et al., 2018).
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In the Kuroshio extension region, warm-core rings are frequently detached from

the Kuroshio extension. Hence, many previous studies have examined the move-

ment of warm-core rings. For example, Yasuda et al. (1992) observed the north-

ward movement along an isobath line. Itoh and Sugimoto (2001) suggested that

this movement is caused by the steep topography. Other studies (e.g., Lutjeharms

and Roberts, 1988; Everett et al., 2012) pointed out that since eddies moving pole-

ward along the topography are widely observed, this is a typical motion of eddies

near the topography.

The dipole structures are observed in the global ocean (Ni et al., 2020). In

the open ocean, eddies largely propagate west due to the β-effect; once eddies

reach the western boundary, they typically move along that boundary as if they

are trapped. However, there is an eastward-propagating solution with a dipole

structure. This type of structure is known as a modon (Stern, 1975; Flierl et al.,

1980). Using satellite altimeter data, Hughes and Miller (2017) recently observed

modons moving eastward in the Tasman Sea and suggested that the bottom to-

pography could play an important role in the formation process (figure 1.1). While

a modon is a solution consisting of two vortices in the same density layer, a dipole

structure with eddies in different layers is also possible. This type of structure is

known as a heton (Hogg and Stommel, 1985). Since hetons have high heat and

material transport capabilities, they are thought to be significant structures in the

ocean (Richardson and Tychensky, 1998; Morel and McWilliams, 2001; Serra and

Ambar, 2002; Carton et al., 2010; Serra et al., 2010).

1.2 Previous studies

The Mid-Ocean Dynamics Experiment (MODE) showed that a large number of

energetic eddies exist in the ocean interior (MODE Group, 1978). Since then,
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Fig. 1.1: (a) Sea surface temperature. Black circles mark the modon position. Tem-

peratures are shown relative to the median value, which is written on each

plot. (b) The mean sea level structure of this modon from along-track altime-

try. (c) As in Figure b but with a north-south slope added so that contours

represent the flow relative to the modon. (d) The analytical modon solution

that best fits the observations. (From Hughes and Miller, 2017)
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numerous studies have investigated the behaviour of isolated eddies. Additionally,

researchers identified some of the important properties of mesoscale eddies; for

example, they propagate westwards due to the β-effect, have an isolated structure,

and are strongly nonlinear and highly baroclinic. McWilliams and Flierl (1979) in-

vestigated the influence of the planetary β and nonlinear effects on the behaviour of

an isolated eddy. Their results showed that anticyclonic eddies propagate south-

westward due to the combination of these effects, and that the nonlinear effect

suppresses dispersion of the eddies due to the Rossby waves. Using a two-layer

primitive model, Mied and Lindemann (1979) verified these results.

To explain the fact that there are many eddies in the ocean interior, as revealed

by the MODE, Stern (1975) developed an exact nonlinear solution with a steady

dipole structure on a barotropic β-plane. This solution results from the balance

between the dispersion due to the linear Rossby waves and the nonlinear advective

steepening. Stern (1975) referred to this solution as the modon. Moreover, Flierl

et al. (1980) derived the nonlinear solutions to the quasi-geostrophic two-layer

equations to extend this solution to include baroclinic effects and showed the ex-

istence of rider perturbations upon these solutions. Verkley (1984) demonstrated

the barotropic modon solutions on a sphere. Further, other studies investigated

the behaviour of modons in various systems using numerical experiments (e.g.,

McWilliams et al., 1981; McWilliams and Zabusky, 1982; Kizner et al., 2003;

Lahaye and Zeitlin, 2012).

Hogg and Stommel (1985) investigated the behaviour of dipole structures with

opposite-signed eddies in different layers using the two-layer model. Focusing on

the ability of this dipole to transfer heat, they referred to this structure as a heton.

For example, in situations where the hydrostatic and geostrophic approximations

hold, both an anticyclonic eddy in the upper layer and a cyclonic eddy in the lower

layer dent the interface between the layers downwards. If the upper layer is warmer
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than the lower layer, the heat in the area containing these eddies is higher than

that in the surrounding area, and the dipole is called a warm heton. Conversely,

the dipole is referred to as a cold heton.

Interactions between eddies and the bottom topography, which represent the

focus of this thesis, have been investigated. Smith and O’Brien (1983) studied these

interactions using a two-layer primitive model on a β-plane. They showed that

the behaviour of barotropic eddies on a sloping bottom topography is additively

affected by the planetary and topographic β-effect. Additionally, the anticyclonic

eddies are more likely to move away from the topography, whereas the cyclonic

eddies are more likely to move onto the sloping topography due to their nonlinear

effects. Kamenkovich et al. (1995) observed a similar behaviour of eddies using a

model with a steep ridge.

Using primitive equations, Itoh and Sugimoto (2001) numerically reproduced

the poleward movement of an eddy that was initially near the topography and

found that the effect of the steep bottom slope is an important factor in this

motion. They called this effect the equivalent image effect and showed that this

effect increases as the slope becomes steeper. Frolov et al. (2004) investigated

the interaction between an anticyclonic eddy, which mimics a Loop Current Eddy

detached from the Loop Current, and a realistic western topography using a two-

layer model on a β-plane and observed the poleward motion of the eddy, as in Itoh

and Sugimoto (2001).

Using a one-layer quasi-geostrophic model on an f -plane, Wang (1992) inves-

tigated the interaction between a point vortex and a step-like bottom topography

and identified the important processes in this interaction, namely the excitation

of the topographic wave due to the advection of the point vortex, the formation

of a vortex rotating in the opposite direction to the point vortex, and the cross-

topography volume transport.
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McDonald (1998) and Dunn et al. (2001) investigated the interactions be-

tween a point vortex and a step-like topography using a 1.5-layer quasi-geostrophic

model. Specifically, McDonald (1998) examined the behaviour of intense point vor-

tices, while Dunn et al. (2001) studied the behaviour of moderate and weak point

vortices. Dunn et al. (2001) derived the linear solution within the limit that a

point vortex is weak and a moderate point vortex can propagate away from the to-

pography by forming the dipole structure. Other studies have also confirmed these

results using various models with a vortex and a step-like topography (Dunn, 2002;

Dunn et al., 2002; White and McDonald, 2004).

1.3 Outline of thesis

Previous studies using the idealised model with a point vortex and a step-like bot-

tom topography have focused solely on situations in which vortices are located in

the same layer as the topography. Moreover, in previous studies using a two-layer

primitive model, the details of the formation mechanism underlying the motion

caused by interactions between an upper-layer eddy and a bottom topography are

not clear. Therefore, the aim of this study is to establish a comprehensive frame-

work for understanding the interactions between upper-layer eddies and the steep

bottom topography.

The remainder of this thesis is structured as follows. In chapter 2, we use a

two-layer quasi-geostrophic model in an f -plane, with a point vortex in the upper

layer and a step-like topography in the lower layer. In chapter 3, we use a two-layer

quasi-geostrophic model in a β-plane, with a Gaussian eddy in the upper layer and

a sloping bottom topography. The summary of this thesis is presented in chapter

4.
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Chapter 2

Point Vortex and Step-like

Topography Interactions

2.1 Introduction

Interactions between Oceanic eddies and bottom topography seem complex due to

the deformation of eddies and topographic complexity such as an irregular conti-

nental slope/shelf shape. In this chapter, we simplify the problem as interactions

between a point vortex in the upper layer and a step-like topography in the lower

layer, to clarify a fundamental behavior in this system. An infinitely long and

straight escarpment is adopted in this model as the bottom topography. When

the fluid is at rest, a potential vorticity front is along the topography, and the dis-

placement of this front from the topography generates relative vorticity due to the

potential vorticity conservation. Since the flow field in this system is determined

only by the point vortex and the displacement of this front, we investigate inter-

actions between the point vortex and the potential vorticity front in this chapter.

The models close to our system are that of Wang (1992), McDonald (1998), and

Dunn et al. (2001). Especially, McDonald (1998) and Dunn et al. (2001) studied
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the motion of a point vortex near a step-like topography in a 1.5-layer quasi-

geostrophic model in the f -plane. McDonald (1998) found that intense vortices

cause a potential vorticity front, which is located along the topography, to wrap

around themselves. They defined an intense vortex as one in which the time scale

for vortex circulation, Ta, is much shorter than the time scale for topographic

wave generation, Tw. Dunn et al. (2001) investigated moderate, Tw ≈ Ta, and

weak, Tw ≪ Ta, point vortices. They found that a moderate vortex forms a dipole

structure consisting of a point vortex and the vortex caused by potential vorticity

conservation, while a weak vortex propagates steadily along the topography. They

analytically showed that a weak vortex propagates parallel to the topography.

They referred to this phenomenon as the pseudoimage of the vortex and derived its

linear solution. Other studies have also confirmed that the interaction of a vortex

with a step-like topography causes propagating vortices along the topography and

the formation of dipole structures (Dunn 2002; Dunn et al. 2002; White and

McDonald 2004). In this chapter, to investigate the behavior of our system, we

use a non-dimensional circulation of the point vortex, equivalent to the ratio of Ta

to Tw in the previous studies. Moreover, since it is reasonable to hypothesize that

the distance between the topography and the vortex is an important parameter for

controlling the system, we use the initial distance between the point vortex and

the topography as the parameter

After formulating the problem in section 2.2, we show the analytical results

based on linear theory at the limit of a weak point vortex in section 2.3. A

finite-amplitude pseudoimage solution is derived in section 2.4. In section 2.5, we

numerically investigate the temporal evolution of both the pseudoimage solution

and the system. The conclusions are presented in section 2.6.
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2.2 Model formulation

2.2.1 Potential vorticity and point vortex equations

In this chapter, we used a two-layer quasi-geostrophic model in the f -plane, with

the point vortex in the upper layer and the step-like topography in the lower layer

(see figure 2.1). Our model has two layers with an average thickness of Hj and a

density of ρj, where j = 1, 2 denotes the upper and lower layers, respectively. The

density in each layer is written in terms of the reference density of the fluid, ρ0, and

the density difference between the two layers, ∆ρ, as ρ1 = ρ0 and ρ2 = ρ0+∆ρ. The

point vortex in the upper layer has a circulation of Γ and is located at a distance

of Y0 from the topography. In the lower layer, hB, which denotes the bottom

topography, is written as hB = −∆Hsgn(y), where ∆H is the amplitude of the

bottom topography and sgn(y) is the sign function. Assuming that ∆H/H2 ≪ 1,

we can use the quasi-geostrophic approximation to formulate this system. The

governing equation and the quasi-geostrophic potential vorticity, qj, in each layer

can be written in nondimensional forms as

∂qj
∂t

+ J(ψj, qj) = 0, (2.1)

q1 = ∇2ψ1 − γLψ1 − (ψ1 − ψ2), (2.2)

q2 = ∇2ψ2 + γH(ψ1 − ψ2) + hB, (2.3)

where t is the time, J is the Jacobian, and ψj is the streamfunction in the jth

layer. The equations in this system were nondimensionalized using the length scale

L =
√
g′H1/f and the time scale T = (f∆H/H2)

−1, where g′ is the reduced gravity

and f is the Coriolis parameter. We scaled the relative vorticity by T−1 = f∆H/H2

and the stream functions by L2T−1 = (g′H1/f)(∆H/H2). The nondimensional

amplitude of the point vortex circulation is ε = |Γ|T/L2 = |Γ|f/(g′H1)/(∆H/H2).

The remaining nondimensional parameters in the equations are γH = H1/H2
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Fig. 2.1: Schematic illustration of the model configuration. (a) The cross-section of the

two-layer fluid. (b) The initial condition for this problem. The point vortex

indicated by ∗ is located at y = Y0 and has a circulation of Γ.

and γL = ∆ρ/ρ0. In addition to these nondimensional parameters, the initial

y-coordinate of the point vortex, Y0, contributes to the behaviour of this system.

Y0 is also nondimensionalized by L. It should be noted that the streamfunction in

the jth layer is invariant under the transformation ψj(x, y) → −ψj(x,−y).

Our model has a point vortex in the upper layer and a potential vorticity front

that initially lies along the step-like topography, y = 0, in the lower layer. Based

on the locations of the point vortex, (X(t), Y (t)), and the potential vorticity front,

y = η(t, x), we can write the nondimensional potential vorticity in each layer as

q1 = εsgn(Γ)δ(x−X, y − Y ), (2.4)

q2 = −sgn(y − η). (2.5)

The velocity caused by the topography can be determined based on the potential

vorticity anomaly in the lower layer, ∆q2. This anomaly occurs because of the

displacement between the potential vorticity front and the topography and is given
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by

∆q2 =


+2, 0 < y < η

−2, η < y < 0

0, otherwise

. (2.6)

In terms of η(t, x), X(t) and Y (t), the governing equation in this system can be

written as,

∂η

∂t
+ u2(t, x, η)

∂η

∂x
= v2(t, x, η), (2.7)

dX

dt
= u1(t,X, Y ),

dY

dt
= v1(t,X, Y ), (2.8)

where uj and vj are the horizontal components of the velocity and are given by

uj = −∂ψj

∂y
, vj =

∂ψj

∂x
. (2.9)

The streamfunction is determined by the equations

∇2

 ψ1

ψ2

−M

 ψ1

ψ2

 =

 εsgn(Γ)δ(x−X, y − Y )

∆q2

 , (2.10)

written in vector form, where the coefficient matrix, M , can be written as

M =

 γL + 1 −1

−γH γH

 . (2.11)

2.2.2 Vertical mode decomposition

The steamfunctions in each layer can be decomposed into vertical modes. The

eigenvalues and eigenvectors of M are denoted by λ± and
−→
V ± = (U±, V±), which

can be written as

λ± =
1 + γL + γH ±

√
(1 + γL + γH)2 − 4γHγL

2
, (2.12)

−→
V ± = (U±, V±) =

(
1,

1 + γL − λ±
γH

)
. (2.13)
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We note that the quantities λ
−1/2
+ and λ

−1/2
− correspond to the nondimensional

internal and external Rossby radii of deformation, respectively. We can define the

streamfunctions of the + and − modes as

ψ± = U±ψ1 + V±ψ2. (2.14)

By substituting (2.14) into (2.10) and using Green’s function, we can write ψ± as

ψ±(t, x, y) = U±εsgn(Γ)G±(x,X, y, Y ) + 2V±

∫ ∞

−∞
dx′
∫ η(t,x′)

0

dy′G±(x, x
′, y, y′),

(2.15)

where Green’s function in each mode, G±, is given by

G±(x, x
′, y, y′) = − 1

2π
K0

(√
λ±
√
(x− x′)2 + (y − y′)2

)
. (2.16)

The streamfunction in each layer, ψj, can be obtained from (2.14) and (2.16). We

can decompose the streamfunction ψj into the point vortex effect, Ψj, and the

topographic effect, ϕj. According to (2.16) and (2.15), the streamfunctions caused

by the point vortex can be written as

Ψ1 =
−εsgn(Γ)
V− − V+

{V+G−(x,X, y, Y )− V−G+(x,X, y, Y )} , (2.17)

Ψ2 =
εsgn(Γ)

V− − V+
{G−(x,X, y, Y )−G+(x,X, y, Y )} , (2.18)

while those caused by the topography can be written as

ϕ1 =
2V+V−
V− − V+

∫ ∞

−∞
dx′
∫ η(t,x′)

0

dy′ {G−(x, x
′, y, y′)−G+(x, x

′, y, y′)} , (2.19)

ϕ2 =
2

V− − V+

∫ ∞

−∞
dx′
∫ η(t,x′)

0

dy′ {V−G−(x, x
′, y, y′)− V+G+(x, x

′, y, y′)} ,

(2.20)

where U± = 1.
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2.2.3 Contour dynamics

The flow field in this system is given by (2.9) and (2.17)-(2.20). The horizontal

velocity in the jth layer, uj = (uj, vj), is the sum of the velocity due to the point

vortex, up
j , and the velocity due to the topography, ut

j. According to (2.17) and

(2.18), the velocity in the upper layer due to the point vortex can be written as

up1(t, x, y) =
εsgn(Γ)

V− − V+

{
V+
∂G−

∂y
(x,X, y, Y )− V−

∂G+

∂y
(x,X, y, Y )

}
, (2.21)

vp1(t, x, y) = − εsgn(Γ)

V− − V+

{
V+
∂G−

∂x
(x,X, y, Y )− V−

∂G+

∂x
(x,X, y, Y )

}
, (2.22)

while the velocity in the lower layer due to the point vortex can be written as

up2(t, x, y) = − εsgn(Γ)

V− − V+

{
∂G−

∂y
(x,X, y, Y )− ∂G+

∂y
(x,X, y, Y )

}
, (2.23)

vp2(t, x, y) =
εsgn(Γ)

V− − V+

{
∂G−

∂x
(x,X, y, Y )− ∂G+

∂x
(x,X, y, Y )

}
. (2.24)

According to (2.19) and (2.20), the velocity in the upper layer due to the topog-

raphy can be written as

ut1(t, x, y) =
2V+V−
V− − V+

∫ ∞

−∞
dx′ {G−(x, x

′, y, η)−G+(x, x
′, y, η)

−G−(x, x
′, y, 0) +G+(x, x

′, y, 0)} (2.25)

vt1(t, x, y) =
2V+V−
V− − V+

∫ ∞

−∞
dx′ {G−(x, x

′, y, η)−G+(x, x
′, y, η)} ∂η

∂x′
(t, x′), (2.26)

while the velocity in the lower layer due to the topography can be written as

ut2(t, x, y) =
2

V− − V+

∫ ∞

−∞
dx′ {V−G−(x, x

′, y, η)− V+G+(x, x
′, y, η)

−V−G−(x, x
′, y, 0) + V+G+(x, x

′, y, 0)} (2.27)

vt2(t, x, y) =
2

V− − V+

∫ ∞

−∞
dx′ {V−G−(x, x

′, y, η)− V+G+(x, x
′, y, η)} ∂η

∂x′
(t, x′).

(2.28)
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According to (2.7) and (2.8), we can determine the evolution of the system by

using (2.23)-(2.28) to calculate the advection velocity at the front and at the point

vortex.

The method of contour dynamics was used in this chapter to calculate the

temporal evolution of the system (Zabsusky et al. 1979). The contour dynamics

method allows for an accurate treatment of inviscid fluid dynamics and has been

used in numerous studies on the interaction between vortices and potential vortic-

ity fronts (Stern and Flierl, 1987; Bell 1989; Wang 1991; McDonald 1998; Dunn et

al. 2001; Dunn et al. 2001; Dunn 2002; White and McDonald 2004; Baker-Yeboah

et al. 2010; Zhang et al. 2011).

2.3 Linear dynamics and pseudoimage solutions

2.3.1 Linearized equations

If we assume that the displacement of the potential vorticity front is small, |η| ≪ 1,

and we maintain |η| ≪ 1, we can also assume that ε ≤ O(|η|). Then, the governing

equation (2.7) becomes

∂η

∂t
= vp2(t, x, 0) + vt2(t, x, 0), (2.29)

where the O(|η|2) terms are neglected. In this approximation, the velocities caused

by the topography can be written as

ut1(t, x, y) =
2V−V+
V− − V+

∫ ∞

−∞
dx′
{
∂G−

∂y′
(x, x′, y, 0)− ∂G+

∂y′
(x, x′, y, 0)

}
η(t, x′),

(2.30)

vt1(t, x, y) =
2V−V+
V− − V+

∫ ∞

−∞
dx′ {G−(x, x

′, y, 0)−G+(x, x
′, y, 0)} ∂η

∂x′
(t, x′), (2.31)
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in the upper layer and

ut2(t, x, y) =
2

V− − V+

∫ ∞

−∞
dx′
{
V−
∂G−

∂y′
(x, x′, y, 0)− V+

∂G+

∂y′
(x, x′, y, 0)

}
η(t, x′),

(2.32)

vt2(t, x, y) =
2

V− − V+

∫ ∞

−∞
dx′ {V−G−(x, x

′, y, 0)− V+G+(x, x
′, y, 0)} ∂η

∂x′
(t, x′),

(2.33)

in the lower layer.

2.3.2 Linear topographic wave

In the absence of a point vortex, we examined the waves governed by linearized

equations (2.29). Substituting the form of the wave solution, η = η̂0exp {i(kx− ωt)},

where η̂0 is a constant amplitude, k is the wavenumber in the x-direction and ω

is the frequency, into the governing equation, we obtain the condition for the

existence of a nontrivial solution, η̂0 ̸= 0, as

ω =
k

V− − V+

(
V−√
k2 + λ−

− V+√
k2 + λ+

)
, (2.34)

where we used both (2.16) and the relation∫ ∞

−∞
dx e−ikxK0

(√
λ±(x2 + y2)

)
=
πe−|y|

√
k2+λ±√

k2 + λ±
. (2.35)

This relation (2.34) is the dispersion relation for linear topographic Rossby waves

propagating along a step-like topography which has been derived by Rhines (1977).

According to (2.34), the phase speed and group velocity are

c =
1

V− − V+

(
V−√
k2 + λ−

− V+√
k2 + λ+

)
, (2.36)

cg =
1

V− − V+

(
λ−V−

(k2 + λ−)3/2
− λ+V+

(k2 + λ+)3/2

)
, (2.37)

respectively. Since λ− < λ+ and V+ < V− hold for any value of k, c and cg are

always positive.
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2.3.3 Linear pseudoimage solutions

In a previous study, Dunn et al. (2001) used a 1.5-layer model to show the motion

of a point vortex propagating steadily along a step-like topography and referred

to this phenomenon as the pseudoimage of the vortex. In this study, we sought to

determine the linear solution, referred to as the linear pseudoimage solution, and

to investigate the properties of the solution.

To determine the steadily propagating solution of (2.29) that progresses with

the point vortex, we assumed that the solution was in the form η = η(x − cpset),

where the propagating speed, cpse, is given as cpse ≡ dX/dt. Since dX/dt =

ut1(t,X, Y ) = O(ε), we can consider a situation in which the point vortex is fixed

at (0, Y0). According to (2.29), the governing equation then becomes

−cpse
∂η

∂x
=
∂Ψ2

∂x
(x, 0)

+
2

V− − V+

∫ ∞

−∞
dx′ {V−G−(x, x

′, 0, 0)− V+G+(x, x
′, 0, 0)} ∂η

∂x′
(t, x′),

(2.38)

where vp2 = ∂Ψ2/∂x. Although the term on the left side in the above equation has

an order of O(ε2), to investigate the asymmetry of the solution due to the sign of

cpse, we leave this term explicitly in the equation. Using both Fourier transform

methods and (2.16) and (2.35), we can obtain the solution to equation (2.38) as

η(x− cpse) =
1

2π

∫ ∞

−∞
dk

eik(x−cpset)

c− cpse
F [Ψ2(x, 0)], (2.39)

where c is the phase speed of the topographic Rossby waves (2.36), and F [Ψ2] is

the Fourier transform of Ψ2,

F [Ψ2(x, 0)] = −1

2

εsgn(Γ)

V− − V+

{
e−|Y0|

√
k2+λ−√

k2 + λ−
− e−|Y0|

√
k2+λ+√

k2 + λ+

}
. (2.40)

By substituting (2.39) into the linearized streamfunction caused by the topography,
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ϕj, we can obtain the linear pseudoimage solution in the two-layer model:

ϕ1 =
−1

2π

V−V+
V− − V+

∫ ∞

−∞
dk

eik(x−cpset)

c− cpse

(
e−|y|

√
k2+λ−√

k2 + λ−
− e−|y|

√
k2+λ+√

k2 + λ+

)
F [Ψ2(x, 0)],

(2.41)

ϕ2 =
−1

2π

1

V− − V+

∫ ∞

−∞
dk

eik(x−cpset)

c− cpse

(
V−e

−|y|
√

k2+λ−√
k2 + λ−

− V+e
−|y|

√
k2+λ+√

k2 + λ+

)
F [Ψ2(x, 0)].

(2.42)

The propagating velocity, cpse, is given as

cpse = −∂ϕ1

∂y
(0, Y0)

=
sgn(Y0)

2π

V−V+
V− − V+

∫ ∞

−∞
dk

e−|Y0|
√

k2+λ− − e−|Y0|
√

k2+λ+

c− cpse
F [Ψ2(0, 0)]. (2.43)

The sign of cpse is equal to the sign of Y0Γ. The fields of the streamfunction,

ϕj and ϕj + Ψj, are shown in figure 2.2. Although the ϕj field is similar to its

counterpart in the 1.5-layer model, the ϕj + Ψj field differs from its counterpart.

In the 1.5-layer model, the fluid on the opposite side of the point vortex is at rest

because the pseudoimage solution completely cancels any effects from the point

vortex on this side. In a two-layer model, this cancellation is achieved only in the

vicinity of the topography in the lower layer.

2.3.4 Small but nonzero amplitude pseudoimage solution

If we suppose that 0 < ε ≪ 1 but ε is finite, we can examine the properties of a

two-layer pseudoimage with a finite amplitude. In this parameter region, ϕj may

have poles at the wavenumbers, kc, that satisfy c = cpse. The integrations (2.41)

and (2.42) do not include kc when the point vortex moves in the opposite direction

of the topographic waves, i.e., cpse < 0. In contrast, if cpse > 0, the solutions

include a singularity because the path must contain kc. In the 1.5-layer model,
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Fig. 2.2: The ϕj field (left column) and the ϕj + Ψj field (right column) of the linear

pseudoimage solution in the upper layer (top row) and lower layer (bottom

row). The positive and negative streamlines are indicated by the solid and

dashed lines, respectively. The positions of the maximum or minimum value

are denoted by the cross. In the left panels, the contour interval is 0.005, and

the minimum values are -0.0235 in the upper layer and -0.0292 in the lower

layer. In the right panels, the contour interval is 0.001, and the maximum

values are 0.0694 in the upper layer and 0.0098 in the lower layer. In all the

cases shown here, sgn(Γ) = −1, ε = 0.1, Y0 = 1, γL = 10−3, and γH = 1.

The point vortex is indicated by the closed circle at (0,1). The topography is

located along y = 0.
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Fig. 2.3: (a) The dependencies of the wavenumbers, kc, which satisfy c = cpse on

sgn(Γ)ε for Y0 = 1 and is calculated from (2.36) and (2.43). Since c is a

function of k2, there are both positive and negative kc. As sgn(Γ)ε → 0, |kc|

diverges to infinity. (b) The dependence of the propagation velocity, cpse, on

Y0. The propagation velocity has a maximum at approximately Y0 = 0.7. In

both panels, γH = 1 and γL = 10−3.

Dunn et al. (2001) confirmed that a finite length wave train in the wake of the

vortex is excited and that the point vortex drifts towards the topography due to

the presence of the singularity. Similar behaviours are expected in the two-layer

model. However, since the poles kc correspond to short waves, the singularity only

has a small influence on the pseudoimage solution (see figure 2.3 (a)).

Figure 2.3 (b) shows the Y0 dependence of cpse in the parameter region 0 <

ε ≪ 1. The propagation speed, |cpse|, does not monotonically decrease along Y0,

and it has an extreme value at Y0 ≈ 0.7. This corresponds to the radial distance in

the lower layer where the upper-point vortex has its maximum azimuthal velocity,

i.e., the internal Rossby radius of deformation, λ
−1/2
+ ≈ 0.7. Another feature is

that cpse is non-singular as Y0 → 0. This nonsingularity occurs because the lower

layer lacks a singular point at the location of the point vortex.
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2.4 Finite-amplitude pseudoimage solution

It is difficult to obtain analytical expressions for finite-amplitude, nonlinear solu-

tions. In this section, we determined finite-amplitude steadily propagating solu-

tions by numerically solving equation (2.7) with (2.21)-(2.28). According to the

linear arguments, the finite-amplitude pseudoimage solutions can exist only when

sgn(ΓY0) = −1. Hence, in this section, we focus on the case of an anticyclonic

point vortex at the deeper side.

First, we use the Galilean transformation,

x→ ξ = x− cpset. (2.44)

Then, the governing equation can be written as

−cpse
∂η

∂ξ
+ u2

∂η

∂ξ
= v2. (2.45)

As a result, the pseudoimage solutions satisfy the equation

∂η

∂ξ
=

v2
u2 − cpse

. (2.46)

The boundary condition can be written as

η → 0 as |ξ| → ∞. (2.47)

Furthermore, we assume that the solution is symmetric with ξ = 0. Therefore, we

have

η(−ξ) = η(ξ). (2.48)

We compute η only for ξ ≤ 0.

To perform the numerical calculations, we discretize the potential vorticity

front into N nodes for −ξ∞ ≤ ξn ≤ 0, where ξ1 = −ξ∞ and ξN = 0. Since the

contribution of the far field is weak in the integration (2.28) and (2.29), the node
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spacing near the crest should be fine, whereas the spacing in the far field can

be rough. Therefore, we set ξn = µ0(n − N) for n ≥ N1 and ξn = −W + 1 −

µ0(N1 − n) − exp[µ0(N1 − n)/5] for n < N1, where W = µ0(N − N1) and ξ∞ =

W −1+µ0(N1−1)+exp[µ0(N1−1)/5]. In this study, we set µ0 = 0.02, N = 2650

and N1 = 1150; thus, we have W = 30 and ξ∞ ≃ 151. The finite-difference form

of (2.46) is

ηn+1 − ηn−1

ξn+1 − ξn−1

=
v2,n

u2,n − cpse
, n = 1, ..., 2N − 1. (2.49)

The boundary conditions at ξ = ξ1, ξN are

η1 = 0, (2.50)

ηN =
ηN−1 − ηN−2

ξN−1 − ξN−2

(ξN − ξN−1) + ηN−1, (2.51)

where (2.50) corresponds to (2.47), and (2.51) indicates that the front can be

approximated as a quadratic function near the origin. As a result, we can obtain

the frontal displacement, ηn, and the propagation velocity, cpse, for the given values

of ε by solving the equations (2.49), (2.50), (2.51), with the condition that the

solution propagates with the point vortex, cpse = u1(0, Y0), where the point vortex

is located at (0, Y0). We used MINPACK (Moreé et al. 1980) to solve the nonlinear

simultaneous equations, with the front displacement of the linear solution (2.39)

as the initial value in the iterative calculation. In this study, the midpoint method

was used for the numerical integration. The validity of the obtained solutions

was confirmed by conducting numerical experiments with the solutions as initial

conditions. In the following subsections, we set the remaining parameter values as

γH = 1, γL = 10−3, and Y0 = 1.

2.4.1 Dependency on ε

Figure 2.4 shows the frontal displacement and propagation speeds for various values

of ε obtained by solving the simultaneous equations. As ε increases, both the
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Fig. 2.4: (a) The potential vorticity front and (b) its propagation speed for each value

of ε. ε ranges from 0.1 to 1 in steps of 0.1. The front with the maximum

displacement was observed for ε = 1. The propagation speed obtained by the

linear solution is indicated by the dashed line in the right panel.

displacement and the propagation speed, |cpse|, increase. Figure 2.4 (b) suggests

that the linear solution is valid for small values of ε. Figure 2.5 shows that the

nonlinearity sharpens the peak of the frontal displacement.

2.4.2 The saddle-node point

Figure2.6 shows the current vectors caused by the frontal displacement and the

point vortex in ξ-y coordinates. There are two saddle-node points in the front

with u2 − cpse = 0. Since these points also exist when ε is small, the existence

of these points is believed to be a common feature of the pseudoimage solutions.

The existence of this point may affect the time evolution of the front as in eddy-jet

interactions (Bell and Pratt 1992; Capet and Carton 2004); this will be investigated

with numerical experiments in Section 2.5.1.
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Fig. 2.5: The potential vorticity front of the linear (dashed line) and nonlinear (solid

line) solutions for ε = 1.
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Fig. 2.6: The potential vorticity front of the nonlinear solution and the current vectors

caused by the nonlinear solution and the point vortex in ξ-y coordinates.

Panel (a) shows the case ε = 0.1, and panel (b) shows the case ε = 1. The

closed circles on the front represent the saddle points.
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2.5 Numerical experiments for nonlinear evolu-

tion

In this section, we perform numerical experiments. First, we consider the temporal

evolution of the pseudoimage solution obtained in the previous section. Then, to

investigate the temporal evolution of the system in the parameter space consisting

of ε and Y0, we perform numerical experiments with various initial conditions.

As in the previous section, we resolve the front into discrete nodes with posi-

tions (xn, ηn). From the Lagrangian perspective, the temporal evolution of these

nodes can be written as

dxn
dt

= u2(t, xn, ηn), (2.52)

dηn
dt

= v2(t, xn, ηn). (2.53)

We can determine the temporal evolution of the system by calculating (2.8), (2.52),

and (2.53). The velocities advecting the point vortex and the front can be evaluated

numerically by calculating (2.21)-(2.28). The numerical integration scheme used

to calculate the velocities is the same as in the previous section. The initial node

distribution is the same as that in Section 4. Since the front near the point vortex

elongates with time in its evolution, a new node is added by linear interpolation

to keep a spatial resolution when the distance between the adjacent nodes, µ, is

µ > 1.5µ0, where µ0 = 0.02. This interpolation is performed in the region of |x| ≤

W because the elongation of the front is negligibly small in the region of |x| > W ,

where W = 30. When filamentation structures appear, the number of nodes in

the front rapidly increases. To avoid calculating a large number of nodes, we use

a contour surgery algorithm (Dritschel 1988; Shimada and Kubokawa 1997). In

particular, we employ the algorithm described in Shimada and Kubokawa (1997).

The validity of the predefined parameter µc, the minimum distance between two

29



segments on the front, was verified by comparing the area surrounded by the front

and the topography in surgery and no-surgery experiments for several different

parameters. The fourth-order Runge-Kutta method was used for time integration

in the numerical experiments. The accuracy of the calculation was verified by

comparing the phase speed of a small amplitude sine wave in the absence of a

point vortex calculated by the numerical experiment with the analytical result

(2.36). All the numerical experiments in this section used γL = 10−3, γH = 1,

µc = 0.002, and a time step of ∆t = 0.01. The parameters ε and Y0 are shown for

each experiment.

2.5.1 Temporal evolution of the pseudoimage

Figure 2.7 shows the evolution of the nonlinear pseudoimage solution for ε = 1.

Figure 2.7 (a) demonstrates that a frontal wave was generated, and that the

wavenumber increased as the wave approached the saddle-node point in the di-

rection of movement. Figure 2.7 (b) shows that the frontal wave is stationary and

grows near the saddle-node points in the coordinate system that moves with the

pseudoimage. These features suggest that the symmetry of the pseudoimage solu-

tions is unstable and likely to collapse (see figure 2.8 (a)). On the other hand, the

propagation speed of the point vortex remains nearly constant for some time, as

shown in figure 2.8 (b), suggesting that the interaction between the vortex and the

potential vorticity anomaly is insensitive to the shape of the front. The frontal

wave dynamics are the same as those of the topographic waves. The phase speed

along the front, cf , can be written as

cf = u2 + c, (2.54)

where u2 is the velocity along the front and c is given by (2.36). Since the waves

are stationary in the moving coordinate system, i.e., cf −cpse = 0, we can calculate
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Fig. 2.7: (a) Temporal evolution of the front of the nonlinear solution for ε = 1. The

solid line corresponds to the front at t = 50, while the dash-dotted line cor-

responds to the front at t = 0. The fluid in the shaded area has a higher

potential vorticity. (b) Temporal evolution of the amplitude of the frontal

wave in the coordinate system moving at cpse. The remaining parameter is

Y0 = 1.
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Fig. 2.8: (a) Temporal evolution of the front of the nonlinear solution for ε = 1. The

solid line corresponds to the front at t = 400, while the dash-dotted line

corresponds to the front at t = 0. The fluid in the shaded area has a higher

potential vorticity. (b) Temporal evolution of the ratio of the propagation

velocity of the point vortex, up, to the propagation velocity obtained from the

nonlinear solution, cpse. The parameters used in the numerical experiment

are the same as those in figure 2.7.
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the wavenumber as

0 = u2 + c− cpse, (2.55)

which shows that k is infinitely large at the stagnation point. Figure 2.9 (a)

shows the frontal displacement of the frontal wave at t = 50, which we can use to

estimate the local wavenumber as a function of the moving coordinate, ζ = x−cpset.

Figure 2.9 (b) shows that the wavenumbers calculated by (2.54) agree well with

those estimated from the experiment. The theoretical group velocity based on

the wavenumber in the moving coordinate system, cgf = u2 − cpse + cg, where

cg is given by (2.37), is shown in figure 2.9 (c). The group velocity in the ξ-

direction is negative and vanishes at the stagnation point. Therefore, according

to the experimental result shown in figure 2.7, the wave energy converges at the

stagnation point.

2.5.2 Generation of a heton-like vortex pair and the clas-

sification of the motion based on ε

We show the results of experiments in which the parameter ε was varied, and we

reveal the typical temporal evolution patterns of this system. In all the experiments

in this subsection, the initial position of the point vortex was fixed at (0, 1), and

there was initially no frontal displacement.

An anticyclonic point vortex

We first consider the case of an anticyclonic point vortex, i.e., sgn(Γ) = −1. Figure

2.10 shows the temporal evolution of the potential vorticity front interacting with

the point vortex with ε = 0.1. The temporal evolution of the velocity of the point

vortex, (up, vp), is shown in figure 2.11. The point vortex moves steadily along the

topography, combining with the vortex caused by the small frontal displacement.
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Fig. 2.9: (a) The frontal disturbance caused by the difference between the η obtained

from the numerical experiment at t = 50 and that obtained from the nonlinear

pseudoimage solution. (b) The distribution of the stationary wavenumber.

The solid line indicates the stationary local wavenumber obtained from the

phase velocity of the linear frontal wave, while the crosses indicate the local

wavenumber estimated from (a). (c) The group velocity of the stationary

wavenumber as a function of ε. In all panels, the closed circles on the zero

vertical coordinate denote the ξ coordinate of the saddle-node points, and the

shaded area corresponds to the region where u2 − cpse < 0. The parameters

used in the numerical experiment are the same as those in figure 2.7.
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Fig. 2.10: The temporal evolution of the potential vorticity front interacting with the

anticyclonic point vortex. The parameter values are ε = 0.1 and Y0 = 1.

We refer to the behaviour in which the point vortex moves along the topography as

pseudoimage-type behaviour. Figures 2.12 and 2.14 show the temporal evolution

of the front in the case that ε = 1, 2. When ε = 1, the disturbances collapse,

similar to those shown in figure 2.8 (b). In the case of ε = 2, the intrusion of

the front to the opposite side of the point vortex forms, causing the peak struc-

ture to become a topographic vortex, which is caused by the potential vorticity

conservation. However, they are classified as pseudoimages if they move along the

topography.

Figure 2.16 shows the evolution of the front and the point vortex for ε = 10.

The temporal evolution of (up, vp) is shown in figure 2.17. The point vortex attracts

the high potential vorticity fluid from the shallow side, forming a dipole structure.

Due to the formation of this dipole structure, the point vortex has a velocity
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Fig. 2.11: The trajectory of the point vortex in (a) x-y space and (b) up-vp space for

the case shown in figure 2.10, obtained by computing from t = 0 to t = 100.

The starting points at t = 0, which are located at (0, 1) on the left and (0, 0)

on the right, are indicated by the closed circles.
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Fig. 2.12: The temporal evolution of the potential vorticity front interacting with the

anticyclonic point vortex. The parameter values are ε = 1.0 and Y0 = 1.
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Fig. 2.13: The trajectory of the point vortex in (a) x-y space and (b) up-vp space for

the case shown in figure 2.12, obtained by computing from t = 0 to t = 100.

The starting points at t = 0, which are located at (0, 1) on the left and (0, 0)

on the right, are indicated by the closed circles.
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Fig. 2.14: The temporal evolution of the potential vorticity front interacting with the

anticyclonic point vortex. The parameter values are ε = 2 and Y0 = 1.
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Fig. 2.15: The trajectory of the point vortex in (a) x-y space and (b) up-vp space for

the case shown in figure 2.14, obtained by computing from t = 0 to t = 100.

The starting points at t = 0, which are located at (0, 1) on the left and (0, 0)

on the right, are indicated by the closed circles.
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component perpendicular to the topography, vp (see figure 2.17). Since the dipole

structure includes both the upper-layer point vortex and the lower-layer vortex

created by the potential vorticity patch, we hereafter refer to this behaviour as

heton-type behaviour (Hogg and Stommel 1985).

McDonald (1998) used a 1.5-layer model to describe the existence of motion

types other than those described above when the point vortex is intense, i.e.,

ε≫ 1. Figures 2.18 and 2.19 show the temporal evolution for ε = 100. During the

early stages of the temporal evolution, the point vortex draws a large amount of

fluid from the shallower side and wraps the fluid around itself. However, as more

time passes, the filament wrapped around the point vortex has a weaker effect on

the point vortex, and the system resembles a system with a moderate ε, forming

a hetonic structure consisting of the filament-wrapped point vortex and the high

potential vorticity patch from the shallower side.

A cyclonic point vortex

We next consider a cyclonic point vortex, i.e., sgn(Γ) = 1. Figures 2.20 and

2.21 show the temporal evolution of the front and the point vortex, as well as

the evolution of the velocity, (up, vp), for ε = 1. The point vortex moves in the

same direction as the topographic waves, and the small-scale wave train behind

the peak of the front is confirmed. As discussed in Section 2.3.4, this wave train

occurs only for cyclonic point vortices, and it is excited by the singularity in

(2.41) and (2.42) in linear theory, which was shown mathematically in Dunn et al.

(2001). Although wave radiation was expected to weaken the isolated structure, it

propagated similarly to the anticyclonic vortex, at least in our computation time.

Therefore, we refer to this behaviour as pseudoimage-type behaviour. The point

vortex did not drift towards the topography, as discussed by Dunn et al. (2001).

However, the behaviour for longer computation times remains unknown.
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Fig. 2.16: The temporal evolution of the potential vorticity front and the anticyclonic

point vortex. The parameter values are ε = 10 and Y0 = 1.
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Fig. 2.17: The trajectory of the point vortex in (a) x-y space and (b) up-vp space for

the case shown in figure 2.16, obtained by computing from t = 0 to t = 30.

The starting points at t = 0 are indicated by the closed circles.
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Fig. 2.18: The temporal evolution of the potential vorticity front and the anticyclonic

point vortex. The parameter values are ε = 100 and Y0 = 1.
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Fig. 2.19: The trajectory of the point vortex in (a) x-y space and (b) up-vp space for

the case shown in figure 2.18, obtained by computing from t = 0 to t = 30.

The starting points at t = 0 are indicated by the closed circles.
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Fig. 2.20: The temporal evolution of the potential vorticity front for a cyclonic point

vortex. The parameter values are ε = 1 and Y0 = 1.
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Fig. 2.21: The trajectory of the cyclonic point vortex in (a) x-y space and (b) up-vp

space for the case shown in figure 2.20, obtained by computing from t = 0

to t = 200. The starting points at t = 0 are indicated by the closed circles.
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Fig. 2.22: The temporal evolution of the potential vorticity front and the cyclonic point

vortex. The parameter values are ε = 10 and Y0 = 1.

Figures 2.22 and 2.23 show the results for ε = 10. With this parameter value,

the point vortex moves towards the topography in the deeper region, attracting low

potential vorticity fluid. As a result, the point vortex approaches and then passes

the topography, forming a dipole structure with the low potential vorticity fluid.

After the dipole structure is formed, the vortices move away from the topography.

We classify this behaviour as heton-type behaviour. The behaviour for ε = 100 is

shown in figures 2.24 and 2.25. Similar to the anticyclonic case, the cyclonic point

vortex initially wraps the filament around itself; however, as more time passes, the

filament stops wrapping, and the vortex couples with the low potential vorticity

patch in the deeper region, resulting in a heton-type motion.
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Fig. 2.23: The trajectory of the cyclonic point vortex in (a) x-y space and (b) up-vp

space for the case shown in figure 2.22, obtained by computing from t = 0

to t = 30. The starting points at t = 0 are indicated by the closed circles.
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Fig. 2.24: The temporal evolution of the potential vorticity front and the cyclonic point

vortex. The parameter values are ε = 100 and Y0 = 1.
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Fig. 2.25: The trajectory of the cyclonic point vortex in (a) x-y space and (b) up-vp

space for the case shown in figure 2.24, obtained by computing from t = 0

to t = 30. The starting points at t = 0 are indicated by the closed circles.

2.5.3 Classification of the motion based on ε and Y0

In the previous subsection, we used numerical experiments with the strength of

the point vortex, ε, as a parameter to demonstrate that there are two types of

motions that commonly occur in our model. Previous studies have observed the

formation of dipole structures in various systems and have identified the regions

where the dipole structures form in parameter space (e.g. Shimada and Kubokawa

1997; Vandermeirsch et al. 2003; Capet and Carton 2004). In this subsection,

we conduct numerical experiments with ε and the initial location of the point

vortex, Y0, as parameters and classify the motion types in ε-Y0 space. Based on

the trajectory in up-vp space, we classified pseudoimage-type motions as those

where the temporal evolution of vp asymptotically approached zero or oscillated

near zero after a sufficiently long calculation, while other motions were classified as

hetonic. The numerical experiments were conducted until t = 100. In the case that
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Fig. 2.26: The diagram of the motion classification in ε-Y0 space. The circulation of

the point vortex is (a) sgn(Γ) = −1 and (b) sgn(Γ) = 1. The triangles and

circles in the diagram indicate pseudoimage-type and heton-type motions,

respectively.

f = 10−4 s−1, H2 = 2000m and ∆H = 1000m, T = f−1(∆H/H2)
−1 = 2 × 104 s,

so that t = 100 corresponds to approximately 200 days.

Figure 2.26 (a) depicts the phase diagram for the anticyclonic case, showing

the distribution of the typical motion types in ε-Y0 space. The ε-Y0 relation at

the boundary between the two motion types can be divided into two regions.

For Y0 < 1, the value of Y0 changes rapidly and approaches zero at small but

finite ε. This feature occurs because the point vortex and the topography are in

different layers. When Y0 = 0, a point vortex with negative Γ moves towards

the deeper side (Y > 0), and if ε is small, the pseudoimage propagates along the

topography with Y ̸= 0. For Y0 > 1, the slope of the boundary between the

two motion types in ε-Y0 space becomes gentler, and the slope becomes linear for

sufficiently large Y0. This feature occurs because when the value of Y0 is initially

large, the point vortex and the front interact primarily through the barotropic
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mode. Since the nondimensional internal Rossby deformation radius, λ
−1/2
+ , is

approximately 0.7 in this model, the barotropic mode dominates the interaction

when Y0 > λ
−1/2
+ . Because the frontal self-advection component has a baroclinic

component even when Y0 is large, the results of our model do not exactly match

those of a barotropic model.

Figure 2.26 (b) shows the phase diagram for the cyclonic case. When Y0 = 0,

the motion is symmetric about the x-axis, similar to the case of the anticyclonic

point vortex, since ψj(x, y) = −ψj(x,−y). Therefore, in the pseudoimage motion

starting from Y0 = 0 with ε = 1 shown in figure 2.26 (b), the cyclonic point vortex

moves to the shallower side of y < 0 and propagates in the opposite direction to

the topographic wave, in contrast to the behaviour shown in figures 2.20 and 2.21.

Although the border that divides the behaviour is unclear, all of the pseudoimages

with Y0 > 0.25 in our experiments have a similar structure to that shown in figure

2.20. The boundary between pseudoimage-type and heton-type motions is almost

the same as that in the anticyclonic case. However, in the cyclonic case, the slope

of this boundary is smaller than that in the anticyclonic case for Y0 < 1. This

difference occurs due to the difference in the direction of the displacement of the

front. In the cyclonic case, as ε increases, the front tends to move away from

the point vortex in the y direction , whereas in the anticyclonic case, the front

approaches the point vortex as ε increases. This result indicates that for the same

value of Y0, the anticyclonic vortex is more likely to interact with the topography

than the cyclonic vortex.

2.6 Summary

In this study, the interaction between a point vortex in the upper layer and the

step-like topography in the lower layer was investigated using a two-layer quasi-
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geostrophic model in the f -plane. The results can be summarised as follows.

• We derived the linear pseudoimage solution that steadily propagates along

the topography in the two-layer system and discussed the properties of the

solution. The results suggested that the steadiness of the finite-amplitude

solution is lost when the solution propagates in the same direction as the

topographic waves, and that the point vortex can move along the topography

even when the point vortex and topography are close because they are in

different layers.

• The finite-amplitude, steadily propagating nonlinear pseudoimage solution

was calculated numerically. We found that the flow field of the system,

which includes the solution, always has saddle-node points on the potential

vorticity front in a coordinate system that moves with the solution. In the

numerical experiments where the nonlinear solution was used as the initial

condition, short frontal waves appeared near the saddle-node point, and the

symmetric structure of the front collapsed. Even after the collapse, the point

vortex moved in the same manner as in the steadily propagating solutions.

• We showed that the point vortex has two types of motion in this system:

motion along the topography due to the pseudoimage when the strength of

the point vortex, ε, is small, and motion away from the topography due to

the formation of a heton-like structure when ε is large. In addition to ε,

we treated the initial distance between the point vortex and the topography,

Y0, as a parameter and classified the motion types in ε-Y0 space. We found

that pseudoimage-type motion exists in the region where Y0 is large or ε is

small, while heton-type motion exists in the region where Y0 is small or ε is

large. The boundary in parameter space that separates these motions be-

haves differently in relation to Y0 and the internal deformation radius. When
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the diagrams of the anticyclonic and cyclonic point vortices are compared,

it can be seen that the anticyclonic vortex is more likely to move away from

the topography than the cyclonic vortex for the same value of Y0.
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Chapter 3

Gaussian Vortex and Sloping

Bottom Topography Interactions

3.1 Introduction

The model with a point vortex and a step-like topography, which is treated in the

previous chapter, can capture the fundamental features of the interactions between

an eddy and a bottom topography. However, this model is highly idealised and

has a few unrealistic aspects. For example,

• In contrast to the discontinuous potential vorticity produced by a step-like

topography, a more realistic topography has a continuous one. Additionally,

a group velocity of the topographic wave governed by the step-like topogra-

phy can propagate in only one direction and its property is unrealistic;

• Whereas the f -plane approximation is used, the motion of an eddy in real

ocean is strongly influenced by a β-effect.

In this chapter, we investigate the interactions between an upper-layer eddy

and a bottom topography using a Gaussian eddy and a sloping bottom topography.
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In particular, we classify the motion types occurring in this system and explore

their individual properties.

After describing the model configuration in section 3.2, we show the results

using an f -plane in section 3.3, and a β-plane in section 3.4. The summary of this

chapter is presented in section 3.5.

3.2 Model formulation

In this chapter, we use the two-layer quasi-geostrophic equation in the β-plane.

The non-dimensionalised equation and the quasi-geostrophic potential vorticity in

the jth layer, qj, can be written as

∂qj
∂t

+ J(ψj, qj) = −ν∇6ψj +∇ · (R∇ψj) (3.1)

q1 = ∇2ψ1 − γLψ1 − (ψ1 − ψ2) + βy, (3.2)

q2 = ∇2ψ2 + γH(ψ1 − ψ2) + βy + hB, (3.3)

where β is the meridional gradient of the Coriolis parameter, ν is a biharmonic

eddy viscosity acting on the relative vorticity to suppress numerical noise at the

grid scale, and R is a linear friction coefficient and is only non-zero in the sponge

layer. As in the previous chapter, the equations are non-dimensionalised using the

length scale L =
√
g′H1/f0 and the time scale T = (f0∆H/H2)

−1. We scaled the

meridional gradient of the Coriolis parameter by (LT )−1 = (f 2/
√
g′H1)/(∆H/H2),

the biharmonic eddy viscosity by L4T−1 = (g′H1)
2∆H/(f 3H2), and the linear

friction coefficient by T−1 = f∆H/H2. Other variables and parameters are the

same as in the previous chapter. The model domain is a 25× 25 square bounded

by slip boundaries. The box is limited at x = 0 and x = 25 in the x-direction and

at y = −12.5 and y = 12.5 in y-direction. In this model, the no-normal flow and

51



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10  12  14  16  18  20  22  24

h
B
(x

)

x

Fig. 3.1: Hyperbolic tangent profile to mimic a bottom topography. The bottom to-

pography idealised by (3.5), where xh = 5, Ls = 0.5.

slip boundary conditions are used on all boundaries;

ψj = 0, ∇2ψj = 0, and ∇4ψj = 0 j = 1, 2. (3.4)

We consider an eddy approaching the western region from the open ocean

and focus on the interaction between the eddy and a steeply sloping topography.

To explore this interaction, we use a hyperbolic tangent function as the bottom

topography, so that hB is written in a non-dimensional form as

hB(x) = −1

2
tanh

(
x− xh
Ls

)
+

1

2
, (3.5)

where xh is the centre of the bottom topography and Ls is half of the slope width.

We scaled the height of the topography by ∆H. The profile of hB is shown in

figure 3.1.
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The eddy is a Gaussian potential vorticity anomaly, and we consider an initial

condition qj satisfying

q1(t = 0, x, y) = ε sgn(Γ) exp

(
−(x−Xc,0)

2 + (y − Yc,0)
2

L2
e

)
, (3.6)

q2(t = 0, x, y) = 0, (3.7)

where ε is the non-dimensional amplitude of the Gaussian eddy at the initial time,

(Xc,0, Yc,0) is the initial position of the eddy centre, and Le is the non-dimensional

radius of eddy at initial time. We define Ld = Xc,0 − xh as the initial distance

between the eddy centre and the centre of the bottom topography. In each layer,

the initial streamfunction, ψj, is determined to satisfy

∇2ψ1 − γLψ1 − (ψ1 − ψ2) = q1(t = 0, x, y), (3.8)

∇2ψ2 + γH(ψ1 − ψ2) = q2(t = 0, x, y). (3.9)

Figure 3.2 shows the distribution of qj, ψj and the eddy-induced velocity,

∂ψj/∂x. A different way of giving an initial eddy in the upper layer is described

in appendix A. The controlling non-dimensional parameters in this system are

ε, Ls, Ld, β,

and we set the remaining parameter values as γH = 1, γL = 10−3, Le = 0.5.

We consider typical values of parameters. In the case that f = 10−4 s−1,

H1 = H2 = 2000m, ∆H = 1000m, and g′ = 9.8 × 10−3m/s2, L ∼ 44 km, and

T ∼ 2 day. Based on these scales, the dimensional model domain is approximately

1000 km× 1000 km. The eddy radius is typically defined as the radius of a closed

contour with maximum average speed (e.g., Kurian et al., 2011; Chen and Han.,

2019; Ji et al., 2018) and corresponds to Le. In this study, We set Le = 0.5,

which is approximately 22 km. From figure 3.2, the maximum velocity induced

by the eddy associated with (3.6) and (3.7) is approximately 0.15ε in the upper
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Fig. 3.2: Initial profiles of qj , ψj , and the eddy-induced velocity given by (3.6), (3.7),

(3.8), and (3.9) in the section at y = Yc,0. The value of |x −Xc,0| represents

the distance from the eddy centre. The eddy-induced velocity is obtained

by ∂ψj/∂x. In all panels, the red (blue) lines indicate a profile in the upper

(lower) layer. In this case, ε = 1, Le = 0.5, and (Xc,0, Yc,0) = (12.5, 0).
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layer. Since L/T ∼ 2.2, the dimensional eddy-induced velocity in this model is

approximately 0.33εms−1. Since realistic swirl velocity ranges are from 0.5ms−1 to

1.0ms−1, we set 1 ≤ ε ≤ 4. We estimate the value of Ls based on the slope of the

bottom topography used in Itoh and Sugimoto (2001). The bottom topography

introduced by them has a height of 3 km and a width of 100 km; thus, the gradient

of this slope is 0.03. Since the dimensional gradient of the slope in our model

is ∆H/(2LLs), by solving ∆H/(2LLs) = 0.03, the non-dimensional slope-width,

Ls, is approximately 0.4. Accordingly, we assume that Ls ranges from 0.25 to 0.5

in this study. Since the meridional gradient of the Coriolis parameter at 40◦ is

approximately 1.6 × 10−11m−1s−1, β is approximately 1.3 × 10−2 in our scaling.

Thus, we assume that β ranges from 0.5× 10−2 to 3× 10−2 in this study.

3.2.1 Linear waves

In this subsection, we consider a periodic channel in y-direction limited at x = 0

and x = 25, and examine the waves governed by the linearised equations of (3.1)

in the absence of the upper-layer eddy and the β-effect. Wave solutions which are

periodic in y and t can be sought in the form

ψj = Reϕj(x)exp {i(ly − ωt)} , j = 1, 2. (3.10)

where ϕj(x) is wave amplitudes which vary in x-direction, l is the wave number

in y-direction, and ω is the frequency. By substituting the wave solutions into the

linearised governing equation, we obtain the equations for ϕj,

d2ϕ1

dx2
− l2ϕ1 − (1 + γL)ϕ1 + ϕ2 = 0, (3.11)

d2ϕ2

dx2
− l2ϕ2 + γHϕ1 − γHϕ2 −

l

ωLs

sech2

(
x− xh
Ls

)
ϕ2 = 0. (3.12)

These equations with boundary conditions ϕj = 0 at x = 0 and x = 25 pose

an eigenvalue problem with eigenvalues ωn and eigenfunction ϕn
j , where n =
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0, 1, 2, 3, ... . By solving this problem numerically using LAPACK (Anderson et

al., 1999), we obtain the dispersion relation for the linear topographic Rossby

wave in this system. The dispersion curves for this wave, the phase speed, and

the group velocity are shown in figure 3.3 and the eigenfunctions are shown in

figure 3.4. Unlike the case with the step-like topography in the previous chapter,

the group velocity can be positive. The eigenfunctions show that the waves are

bottom trapped.
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Fig. 3.3: The phase speed (red line), group velocity (blue line), and dispersion curve

multiplied by 10 (dashed line) of the topographic Rossby wave (n = 0), which

are obtained by solving an eigenvalue problem (3.11), (3.12), in the case that

Ls = 0.5, xh = 12.5. The long topographic Rossby wave speed is approx-

imately −3.52. The maximum group velocity is approximately 0.31 at the

wave number l ≈ 0.16.
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Fig. 3.4: Numerical solutions, ϕnj , of (3.11) and (3.12) in the case that xh = 12.5,

Ls = 0.5, and l = 4π/5. These solutions are normalised by the maximum

value of ϕn2 . The red (blue) lines indicate the upper (lower) layer.
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3.2.2 Numerical scheme

In this subsection, we describe the numerical methods used in the following numeri-

cal experiments. We solve (3.1) on a 256×256 grid. The fourth-order Runge–Kutta

scheme is used for time integration, with a time step of ∆t = 0.01. The Arakawa

Jacobian is used for the expression of the advective term (Arakawa, 1966). At

each time step, the streamfunction, ψj, must be obtained from the potential vor-

ticity, qj by solving (3.8) and (3.9). By defining the potential vorticity anomaly,

q′1 ≡ q1 − βy and q′2 ≡ q2 − βy − hB, we obtain

q′1 = ∇2ψ1 − γLψ1 − (ψ1 − ψ2), (3.13)

q′2 = ∇2ψ2 + γH(ψ1 − ψ2). (3.14)

The potential vorticity anomaly can be decomposed into vertical modes by using

eigenvalues and eigenvectors, λ± and V⃗±, as in (2.12) and (2.13). We define the

potential vorticity anomaly and the streamfunction of + and − modes as

q′± = U±q
′
1 + V±q

′
2, (3.15)

ψ± = U±ψ
′
1 + V±ψ

′
2. (3.16)

Using q′± and ψ±, we obtain

q′± = ∇2ψ± − λ±ψ±, (3.17)

which are known as the Helmholtz equations. We can obtain ψ± by solving these

Helmholtz equations in each mode. This calculation is performed using the same

method as in Q-GCM, as described in Hogg et al. (2003). We use LAPACK and

FFTPACK (Swarztrauber 1982) to calculate the Helmholtz equations numerically.

Using (3.16), we can obtain ψj.

In numerical experiments, a sponge layer is introduced a short distance from

the boundary to the interior. The purpose of the sponge layer is to remove the
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wave reflection and to reduce the influence of the boundary on the interior flow

field. The structure of the sponge layer is represented by the distribution of R in

(3.1). In this study, the sponge layers are 2.5 non-dimensional distances from the

boundary to the interior. In the sponge layer, the linear friction coefficient, R, has

a non-zero value, as shown in figure 3.5. After conducting a series of experiments

with different widths of the sponge layer, we determined this value.

The accuracy of the calculation is verified by comparing the phase speed of a

small-amplitude topographic Rossby wave in the absence of an upper-layer eddy

calculated by the numerical experiment with the results in subsection 3.2.1 (figure

3.3). To verify the accuracy, we conduct a few numerical experiments using a

512 × 512 grid and ∆t = 0.005. A few numerical experiments with fixed grid

interval and doubled domains confirm that the boundaries have little influence on

the results.

3.3 Numerical experiments on an f-plane

In this section, we show the results of numerical experiments on an f -plane. The

numerical experiments were conducted until t = 600.

3.3.1 An anticyclonic Gaussian eddy

We consider the case of an anticyclonic eddy, that is, sgn(Γ) = −1, with ε = 1.

Figure 3.6 shows the temporal evolution of the potential vorticity, q2, in the lower

layer. The trajectories of the upper-layer eddy with ε = 1, 3 are obtained by

tracking the minima of q1, as shown in figure 3.7.

In the early stage, the advection due to the upper-layer eddy exists in the

direction towards the deep side for y > Yc and in the direction towards the shallow

side for y < Yc, where (Xc, Yc) denotes the location of the minima of q1, that
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Fig. 3.5: The distribution of the non-dimensional value of the linear friction coefficient,

R, in this model. R has the value in both layers. The width of the sponge

layer is 2.5.
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Fig. 3.6: The temporal evolution of the potential vorticity field in the lower layer, q2,

and the anticyclonic eddy with ε = 1 in the upper layer. White lines indicate

the contour of q1 = −0.8,−0.6,−0.4,−0.2. From left to right, (top) t = 40,

t = 80, t = 120; (middle) t = 160, t = 200, t = 240; (bottom) t = 280,

t = 320, t = 360. In this case, xh = 5, Ls = 0.5, Ld = 1.5 and β = 0.
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Fig. 3.7: The trajectory of the anticyclonic upper-layer eddy in the case of ε = 1 (left)

and ε = 3 (right). Other parameters are the same as in figure 3.6. In both

panels, the initial position of the upper-layer eddy is (Xc,0, Yc,0) = (6.5, 0).
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is, the location of the upper-layer eddy. The potential vorticity anomaly on the

deeper side of the slope is trapped on the slope region, i.e., this anomaly cannot

propagate in the negative y direction as the topographic Rossby wave, but one

on the shallower side of the slope propagates as the topographic Rossby wave.

After this stage, the high potential vorticity fluid in the deeper side of the slope

is elongated by the upper-layer eddy, becoming an isolated eddy out of the slope

region. This isolated eddy forms a dipole structure with the upper-layer eddy.

Further, this dipole structure causes the upper-layer eddy to move away from the

topography. Figure 3.7 shows the trajectory of the upper-layer eddy. The dipole

structure propagates in the opposite direction to the topographic Rossby wave

along the topography with anticyclonic rotation, since the two eddies consisting

of the dipole structure are not balanced in their strength. The dipole formation

always occurs on the f -plane in the parameter, ε, within the range of this study.

These results indicate that the interaction between the upper-layer eddy and

the sloping bottom topography forms heton-type motion independent of the strength

of the eddy. This differs from the results in the previous chapter in the case of in-

teractions between the point vortex and step-like topography, which suggest that

the ratio of the strength of the point vortex and the height of the topography

determines the motion type occurring in the system. The sloping topography is

interpreted as a stair-step (figure 3.8). In other words, the distribution of q2 can be

interpreted as a situation in which a large number of the potential vorticity fronts

are parallel to each other. Based on this interpretation, the heton-type motion can

form even for weak eddies, as there are fronts corresponding to the small topog-

raphy. Therefore, the results suggest that the formation of heton-type motion is

a common phenomenon in the interaction between the upper-layer eddy and the

sloping bottom topography.

Figure 3.9 shows the trajectories of the upper-layer eddy for the sloping width,
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Fig. 3.8: Example of representing the sloping bottom topography as a stair-step. The

solid line is the bottom topography, hB(x), where xh = 5 and Ls = 0.5, and

the dashed line is the stair-step profile.

Ls = 0.25, 0.5, and for the initial distance between the upper-layer eddy and the

sloping topography, Ld = 1.5, 3, 4.5. The results indicate that the upper-layer

eddy moves along the topography over a longer distance when Ls is smaller, that

is, the behaviour of the upper-layer eddy approaches that of the case with the

step-like topography when the slope becomes steeper. Decreasing Ls corresponds

to reducing the difference in velocity due to the upper-layer eddy at the deep and

shallow sides of the slope. The results also indicate that the upper-layer eddy

moves along the topography over a longer distance when Ld is larger. From Fig.

3.2, the further away from the eddy, the slower the spatial variation in the eddy-

induced velocity in the low layer becomes since the barotropic mode dominates

at a large distance from the centre of the upper-layer eddy. As a consequence,
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increasing Ld reduces the difference in velocity due to the upper-layer eddy across

the topography and leads to the same result as decreasing Ls. Hence, the behaviour

of the upper-layer eddy approaches that of the case with the step-like topography

when Ls is smaller and Ld is larger.

3.3.2 A cyclonic Gaussian eddy

We consider the case of the cyclonic eddy in the upper layer, that is, sgn(Γ) = 1.

Figure 3.10 shows the temporal evolution of the potential vorticity, q2, while figure

3.11 shows the trajectories of the upper-layer eddy with ε = 1, 3. In this case,

the upper-layer eddy propagates along the topography in the same direction of

the topographic Rossby wave, forming a low-potential vorticity anomaly on the

slope, similar to the pseudoimage in a previous chapter (see also figure 2.20).

The propagation speed is approximately 1.5 × 10−2, which is much smaller than

that of the long topographic Rossby wave, |ω0/l| ≈ 3.5. From figure 3.11, the

upper-layer eddy approaches the topography initially but cannot move onto the

slope region in the computational time. From the results of the previous chapter,

when the upper-layer eddy enters the shallow side, this forms the dipole structure

with the lower-layer eddy generated by the advection of the low potential vorticity

fluid across the topography. However, in the present case, the width of the slope

prevents the upper-layer eddy from advecting the low potential vorticity fluid to

the shallow side before the lower-layer structure is adjusted by the topographic

Rossby wave. Therefore, the upper-layer eddy cannot move into the shallow side,

propagating in the only direction along the topography.

Figure 3.12 shows the trajectories of the upper-layer eddy for the slope widths,

Ls = 0.25, 0.5, and for the initial distance between the upper-layer eddy and the

sloping topography, Ld = 1.5, 3, 4.5. The tendency of the eddy to approach the

topography becomes smaller when Ls is smaller (i.e., the slope becomes steeper),
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Fig. 3.9: The trajectory of the anticyclonic upper-layer eddy with ε = 1 in the case of

Ls = 0.25, 0.5 are indicated by the red and blue lines, respectively (left); and

Ld = 1.5, 3, 4.5 are indicated by the red, blue, and green lines, respectively

(right). The calculation with Ls = 0.25 in the left panel is conducted with

∆x = ∆y = 25/512 and ∆t = 0.005 to maintain the resolution of the sloping

topography. Other parameters are the same as in figure 3.6. The horizontal

axis in the right panel is set by x−Xc,0 to the starting points of the upper-layer

eddy in each experiment.
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Fig. 3.10: The temporal evolution of the potential vorticity field in the lower layer, q2,

and the cyclonic eddy with ε = 1 in the upper layer. White lines indicate

the contour of q1 = 0.2, 0.4, 0.6, 0.8. From left to right, (top) t = 50, t = 100,

t = 150; (middle) t = 200, t = 250, t = 300; (bottom) t = 350, t = 400,

t = 450. In this case, xh = 5, Ls = 0.5, Ld = 1.5 and β = 0.
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Fig. 3.11: The trajectory of the cyclonic upper-layer eddy in the case of ε = 1 (left)

and ε = 3 (right). Other parameters are the same as in figure 3.10. The

initial position of the upper-layer eddy is (Xc,0, Yc,0) = (6.5, 0)
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or Ld is larger. As in the case of the anticyclonic eddy, both decreasing Ls and

increasing Ld correspond to reducing the difference in velocity due to the upper-

layer eddy at deep and shallow sides of the topography. Thus, the behaviour of

the upper-layer eddy approaches that of the case with the step-like topography

when Ls is small and Ld is large, regardless of the sign of the eddy rotation.

3.4 Numerical experiments on a β-plane

In this section, we investigate interactions between the upper-layer eddy and the

sloping bottom topography on a β-plane.

3.4.1 An anticyclonic Gaussian eddy

We consider the case of an anticyclonic eddy, that is, sgn(Γ) = −1, and show two

typical motions in the interactions on a β-plane. Figure 3.13 shows the temporal

evolution of the potential vorticity, q2−βy, in the lower layer for ε = 1, β = 10−2,

Ld = 3. Figure 3.14 shows the trajectory of the upper-layer eddy in this case.

The propagation tendency of the anticyclonic nonlinear eddy associated with the

planetary β effect is southwestward. Even after approaching the topography, the

upper-layer eddy maintains this propagation tendency and eventually reaches the

western boundary. As the eddy approaches the topography, the high potential

vorticity fluid on the slope is advected to the deeper side. In this case, since the

upper-layer eddy cannot obtain a sufficient amount of the high-potential vorticity

fluid for the dipole structure propagating eastward to form, the eddy moves onto

the slope region and the potential vorticity anomaly in the lower layer propagates

as the topographic Rossby wave. Consequently, the eddy cannot propagate away

from the topography and reaches the western boundary.

Figures 3.15 and 3.16 show the results for ε = 3, β = 10−2, Ld = 3. As in the
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Fig. 3.12: The trajectory of the cyclonic upper-layer eddy with ε = 1 in the case of

Ls = 0.25, 0.5 are indicated by the red and blue lines, respectively (left)

and Ld = 1.5, 3, 4.5 are indicated by red, blue, and green lines, respectively

(right). The calculation with Ls = 0.25 in the left panel is conducted with

∆x = ∆y = 25/512 and ∆t = 0.005 to maintain the resolution of the sloping

topography. Other parameters are the same as in figure 3.10.
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Fig. 3.13: The temporal evolution of the potential vorticity field in the lower layer,

q2 − βy, and the anticyclonic eddy with ε = 1 in the upper layer. White

lines indicate the contour of q1 − βy = −0.8,−0.6,−0.4,−0.2. From left to

right, (top) t = 50, t = 100, t = 150; (middle) t = 200, t = 250, t = 300;

(bottom) t = 350, t = 400, t = 450. In this case, xh = 5, Ls = 0.5, Ld = 3

and β = 10−2.
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Fig. 3.14: The trajectory of the upper-layer eddy in figure 3.13. The initial position of

the eddy is (0, 8).
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case that ε = 1, the upper-layer eddy initially moves westward. However, it forms

a dipole structure on the east of the topography with a cyclonic eddy generated

by potential vorticity conservation, moving eastward as the heton-like eddy pair.

This dipole propagates eastward and reaches the eastern boundary. Therefore,

the heton-type motion can exist on the β-plane. This motion is identical to the

heton-type motion on the f -plane, except that it can propagate eastward over a

long distance. The existence of the β effect (i.e., background potential vorticity

gradient) and the nonlinear effect seem essential for the long-distance eastward

motion of the heton-like dipole, as in the eastward motion of modons.

3.4.2 A cyclonic Gaussian eddy

We consider the case of a cyclonic eddy, that is, sgn(Γ) = 1, on a β-plane. Figure

3.17 shows the temporal evolution of the potential vorticity, q2 − βy for ε = 1,

β = 10−2, Ld = 3. Figure 3.18 shows the trajectory of the upper-layer eddy in

this case. The upper-layer eddy propagates northwestward, crossing the topog-

raphy. Before crossing the topography, the eddy advects the fluid on the slope;

however, the anticyclonic eddy in the lower layer generated by the upper-layer

eddy is small, propagating as the topographic Rossby wave. Figures 3.19 and 3.20

show the case that ε = 3. Unlike the case with ε = 1, the strong interaction with

the bottom topography causes the southward propagation, as seen in the f -plane

case (Fig. 3.10), while it continuously propagates westward due to the β-effect.

Immediately after entering the shallow side, the upper-layer eddy attracts the low

potential vorticity fluid. Simultaneously, the dipole structure observed in the pre-

vious chapter is present (see figure 2.22). However, since the lower-layer potential

vorticity anomaly propagates as the topographic Rossby wave, the upper-layer

eddy can attract only a small amount of the low-potential vorticity fluid in the

lower layer so that the lower-layer anticyclonic is much weaker than the upper-
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Fig. 3.15: The temporal evolution of the potential vorticity field in the lower layer,

q2 − βy, and the anticyclonic eddy with ε = 1 in the upper layer. White

lines indicate the contour of q1 − βy = −2.4,−1.8,−1.2,−0.6. As in figure

3.13, except for ε = 3.
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Fig. 3.16: As in Figure 3.14, except for ε = 3.

layer cyclonic eddy. Although the lower-layer eddy affects the upper-layer eddy

motion, the upper-layer eddy propagates largely northwestward by the β-effect

since the influence of the lower-layer eddy is small, even when ε is large. This

result suggests that the influence of the sloping topography on the behaviour of a

cyclonic upper-layer eddy on the β-plane is small.

3.4.3 Classification of the motion based on ε and β

In this subsection, we conduct numerical experiments with ε and β as parameters

and classify the motion types in ε-β space. We consider the case of an anticyclonic

eddy (i.e., sgn(Γ) = −1), since we see that the motion of an anticyclonic eddy

is significantly affected by the amplitude of ε and the presence or absence of a

β-effect, in contrast to the case of a cyclonic eddy in a previous subsection. Figure

3.21 shows the distribution of the typical motion types in ε-β space, and that the
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Fig. 3.17: The temporal evolution of the potential vorticity field in the lower layer,

q2 − βy, and the cyclonic eddy with ε = 1 in the upper layer. White lines

indicate the contour of q1 − βy = 0.2, 0.4, 0.6, 0.8. From left to right, (top)

t = 60, t = 120, t = 180; (middle) t = 240, t = 300, t = 360; (bottom)

t = 420, t = 480, t = 540. In this case, xh = 17, Ls = 0.5, Ld = 3 and

β = 10−2.
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Fig. 3.18: The trajectory of the upper-layer eddy in figure 3.17. The initial position of

the eddy is (0, 20).
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Fig. 3.19: The temporal evolution of the potential vorticity field in the lower layer,

q2 − βy, and the cyclonic eddy with ε = 3 in the upper layer. White lines

indicate the contour of q1 − βy = 0.2, 0.4, 0.6, 0.8. From left to right, (top)

t = 60, t = 120, t = 180; (middle) t = 240, t = 300, t = 360; (bottom)

t = 420, t = 480, t = 540. In this case, xh = 17, Ls = 0.5, Ld = 3 and

β = 10−2.
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Fig. 3.20: The trajectory of the upper-layer eddy in figure 3.19. The initial position of

the eddy is (0, 20).
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heton-type motion is more likely to occur for smaller β in the case that the upper-

layer eddy has the same strength. The boundary between two motion types in ε-β

space is linear. This suggests that this boundary is determined by the time scale

on which the upper-layer eddy moves westward, which is proportional to 1/β, and

the time scale on which the upper-layer eddy advects the fluid in the lower layer,

which is proportional to 1/ε. In this model, the lower-layer velocity field has a

maximum at r ≈ Le due to the upper-layer eddy, where r is the distance from the

centre of the eddy and is zero at the eddy centre in the lower layer. Since the eddy

approaches the topography quickly if β is large, it reaches the topography before

obtaining a sufficient amount of the high-potential vorticity fluid for the dipole

structure to form.

The results obtained in the f -plane show that the heton-like dipole structure

can be formed even when ε is small. However, on the β-plane, the region where the

dipole is formed is limited within the ε-β space. In the case that the dipole is not

formed, the eddy moves onto the shallow side and reaches the western boundary.

Thus, this result suggests that the β effect prevents the upper-layer eddy from

interacting with the topography and sustains the eastward motion of the dipole

structure.

3.5 Summary

In this chapter, the interactions between a Gaussian eddy in the upper layer and

a sloping bottom topography in the lower layer were investigated using the quasi-

geostrophic system on the f -plane and the β-plane. In particular, we focused on

the parameter dependence of the behaviour of the system with the upper-layer

eddy and the sloping bottom topography in the lower layer. The results in the

f -plane showed that the anticyclonic eddy moves away from the topography while
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Fig. 3.21: Diagram of the motion classification in the ε-β space. The triangles and

circles in the diagram indicate the southwestward and eastward motion of
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Ls = 0.5 and Ld = 3.
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moving in the opposite direction of the topographic Rossby wave. The behaviour

in the direction away from the topography was caused by the formation of the

dipole structure consisting of the upper-layer eddy and the isolated eddy in the

lower layer. This isolated eddy was generated by the advection of a low-potential

vorticity fluid to the deep side of the slope. The motion of the upper-layer eddy

with the dipole structure corresponds to the heton-type motion in the previous

chapter. The heton-type dipole also occurs even for small ε, since there is always

a region where advection due to the upper-layer eddy is dominant on the deeper

side of the slope. Thus, the formation of the heton-like dipole structure is a

common phenomenon in the interaction between the upper-layer eddy and the

sloping bottom topography. Meanwhile, in the case of the cyclonic eddy in the

upper layer, the eddy propagates along the topography in the same direction as the

topographic Rossby wave, even when the eddy is strong since the presence of the

slope width makes it difficult for the upper-layer eddy to advect the low potential

vorticity fluid to the shallow side before the lower-layer structure is adjusted by the

topographic Rossby wave. In both anticyclonic and cyclonic eddies, the effect of

the bottom topography on the eddy approaches that of the step-like topography

on the point vortex when the slope becomes steeper and the distance between

the eddy and the topography becomes larger. We showed that the upper-layer

anticyclonic eddy has two types of motion on the β-plane: southwestward motion

over the topography when ε is small or β is large, and eastward motion due to the

formation of a heton-like dipole structure when ε is large or β is small. In addition,

the dipole formed in the latter case can propagate a long distance to the east, in

contrast to the case of the f -plane. Therefore, we can conclude that the β-effect

prevents the upper-layer eddy from interacting with the topography and sustains

the eastward motion of the dipole structure. The cyclonic eddy in the upper layer

propagates northwestward, moving onto the shallow side across the slope region.
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Although a dipole structure is temporarily formed when it moves onto the shallow

side, the eddy in the lower layer immediately dissipates. Hence, in the case of

cyclonic eddies, the β-effect tends to prevents the upper-layer anticyclonic eddy

from interacting with the topography, as in the case of anticyclonic eddies.
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Chapter 4

Conclusion

Mesoscale eddies play an essential role in material transport. Owing to the west-

ward motion of these eddies, they reach the western boundary and interact with the

distinct topography of Western ocean regions, including continental shelves/slopes,

thus highlighting the need for a deeper understanding of the interactions between

eddies and the steep bottom topography. In this study, we investigated the eddy-

topography interactions using two idealised models.

In chapter 2, the interaction between a point vortex in the upper layer and the

step-like topography in the lower layer was investigated using a two-layer quasi-

geostrophic model in the f -plane. We used a contour dynamics model to formulate

the system. We then analytically derived the linear pseudo-image solution in the

two-layer system within the limit that the point vortex is weak. We numerically

obtained the nonlinear pseudo-image solution, which has a finite amplitude of

the potential vorticity front, in the case that the strength of the point vortex is

small but non-zero. The finite-amplitude nonlinear pseudo-image solution always

has saddle-node points on the potential vorticity front in a coordinate system

that moves with the solution. After conducting the numerical experiments in

which the nonlinear solution was used as the initial derivation of the front, we
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found that the symmetric structure of the front collapsed due to short frontal

waves near the saddle-node points. In the numerical experiments with no initial

frontal displacement, we showed that the point vortex has two motion types in this

system using the strength of the point vortex, ε. The point vortex moves along the

topography due to the pseudo-image in the case that ε is small and moves away

from the topography due to the formation of a heton-like structure in the case that

ε is large. We treated the initial distance, Y0, as a control parameter and classified

the motion types in the ε-Y0 space. From this classification, we demonstrated that

the motion types in this system are the two types mentioned above.

In chapter 3, the interaction between a Gaussian eddy in the upper layer and

the sloping bottom topography in the lower layer was investigated using a two-layer

quasi-geostrophic model. In the f -plane, the anticyclonic eddies move away from

the topography, propagating along the topography in the opposite direction of the

topographic Rossby wave. During this motion, the eddy attracts the fluid that is

initially on the slope, forming a heton-like dipole structure. Since the heton-like

dipole also occurs even for the weak eddy, this motion is a common phenomenon in

the interactions between the anticyclonic eddies in the upper layer and the sloping

bottom topography in the lower layer. Meanwhile, the cyclonic eddies propagate

along the topography in the same direction as the topographic Rossby wave in-

dependent of their strength since the potential vorticity anomaly due to the eddy

propagates as the topographic Rossby wave and cannot form the dipole structure

with the eddy. Further, the motion of the upper-layer eddies was also investigated

in the β-plane. On the one hand, the motion types of anticyclonic eddies caused

by interacting with the sloping topography are southwestward motion when the

strength of the eddy is small or the β-effect is large, and eastward motion due to

the heton-like dipole structure when the strength of the eddy is large or the β-effect

is small. On the other hand, the cyclonic eddies move onto the slope and north-
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westward by the β-effect after entering the shallow side. This motion of cyclonic

eddies occurs independent of its strength. These results show that the β-effect

prevents eddies in the upper layer from interacting with the bottom topography

and sustains the eastward motion of the heton-like dipole.

The results obtained in this study provide fundamental knowledge on the mo-

tion of eddies caused by the bottom topography. However, the study has some

limitations. First, the conditions for the transitions in the motion types in the

parameter space in the f -plane and β-plane (i.e., the condition for the dipole

structure to be formed) are still unclear. The findings of this study are the first

step towards understanding these transitions. The details of these transitions will

be investigated in future work. Second, as the results of this study are obtained

based on a variety of assumptions (e.g., the quasi-geostrophic framework, a simple

structure of the topography and eddies, and no extra forcing), the applicability of

the results to a more realistic environment seems to be restricted. However, the

results in this study capture the fundamental processes in the interactions between

oceanic eddies and the steep topography to some extent.

Using two idealised models to investigate the interactions between the upper-

layer eddies and the steep bottom topography, we revealed the nature of the motion

resulting from the interactions and, in particular, showed that the interactions

result in the formation of heton-like dipoles. The results suggest that since the

western boundary region with high eddy activity typically has a steep bottom

topography, mass transport due to the dipole structure may have a non-negligible

impact on the near-shore environment. Quantitative discussion of the impact of

the dipole structure on the real ocean is left for future work.
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Appendix A

Dependence on Initial Condition

In chapter 3, the initial eddy in the upper layer is given by (3.6) and (3.7), that

is, the potential vorticity field in the upper layer has the Gaussian profile at the

initial time. The initial stream function associated with qj is obtained by solving

∇2ψ1 − γLψ1 − (ψ1 − ψ2) = q1, (A.1)

∇2ψ2 + γH(ψ1 − ψ2) = q2. (A.2)

However, in addition to this, we can choose other initial conditions that provide

an eddy in the upper layer. In this appendix, we consider an initial condition that

the stream function field in the upper layer has the Gaussian profile and show the

behaviour of upper-layer eddies given this initial condition. In particular, we focus

on the behaviour on the β-plane. The model configuration and the method of

numerical calculation are the same as in chapter 3, except for the initial condition.

We consider the initial condition,

ψ1(t = 0, x, y) = −sgn(Γ)
L2
e

2
exp

(
−(x−Xc,0)

2 + (y − Yc,0)
2

2L2
e

)
, (A.3)

q1(t = 0, Xc,0, Yc,0) = ε sgn(Γ), (A.4)

q2(t = 0, x, y) = 0, (A.5)
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where Le is the non-dimensional radius of an eddy at initial time, and (Xc,0, Yc,0)

is the initial position of the eddy centre. The initial stream function in the lower

layer, ψ2, is obtained by solving (A.1) and (A.2) to satisfy (A.3), (A.4), and (A.5).

Figure A.1 shows the initial distribution of qj, ψj and the eddy-induced velocity.

A.1 An anticyclonic eddy

We consider the case of an anticyclonic eddy, that is, sgn(Γ) = −1, with ε = 1.

Figures A.2 and A.3 show the temporal evolution of the potential vorticity, q2, and

the trajectory of the upper-layer eddy on the β-plane (β = 10−2). Similar to the

results in chapter 3, the weak eddy approaches and then passes the topography due

to the β-effect. Figures A.4 and A.5 are the same as figures A.2 and A.3, except

that ε = 3. In this case, after approaching the topography, the eddy attracts the

low-potential vorticity fluid on the slope, moving eastward with the cyclonic eddy

in the lower layer. The structure formed by the interaction between the upper-layer

eddy and the topography is similar to the heton-type dipole structure in chapter 3.

However, the upper-layer eddy moves westward again since this structure collapses

as time elapses. The collapse of this structure is observed even when ε is larger.

From figures 3.2 and A.1, it can be seen that the area affected by the upper-layer

eddy varies depending on the initial conditions; the area in the present case is much

smaller than that in chapter 3. Therefore, the dipole structure may collapse as the

upper-layer eddy cannot obtain a sufficient amount of the high-potential vorticity

fluid in the lower layer (compare Fig. A.4 with Fig. 3.15). Another possible

reason is that the upper-layer eddy has a triple-pole structure after interacting the

topography. Although there is a difference in the distance the upper-layer eddy

can move eastward, the upper-layer eddy has two types of motion in this system,

as in the result of chapter 3.
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Fig. A.1: Initial profiles of qj , ψj , and the eddy-induced velocity given by (A.3), (A.4),

and (A.5) in the section at y = Yc,0. The value of |x −Xc,0| represents the

distance from the eddy centre. The eddy-induced velocity is obtained by

∂ψj/∂x. In all panels, the red (blue) lines indicate a profile in the upper

(lower) layer. In this case, ε = 1, Le = 0.5, and (Xc,0, Yc,0) = (12.5, 0).
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Fig. A.2: The temporal evolution of the potential vorticity field in the lower layer,

q2 − βy, and the anticyclonic eddy with ε = 1 in the upper layer. White

lines indicate the contour of q1 − βy = −0.9,−0.7,−0.5,−0.3,−0.1, 0.1. The

positive and negative contours are indicated by the solid and dashed lines,

respectively. From left to right, (top) t = 120, t = 240, t = 360; (middle)

t = 480, t = 600, t = 720; (bottom) t = 840, t = 960, t = 1080. In this case,

xh = 5, Ls = 1, Ld = 3, and β = 10−2.
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Fig. A.3: The trajectory of the upper-layer eddy in figure A.2. The initial position of

the eddy is (0, 8).
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Fig. A.4: The temporal evolution of the potential vorticity field in the lower layer,

q2 − βy, and the anticyclonic eddy with ε = 3 in the upper layer. White

lines indicate the contour of q1 − βy = −2.7,−2.1,−1.5,−0.9,−0.3, 0.3. The

positive and negative contours are indicated by the solid and dashed lines,

respectively. From left to right, (top) t = 60, t = 120, t = 180; (middle)

t = 240, t = 300, t = 360; (bottom) t = 420, t = 480, t = 540. In this case,

xh = 5, Ls = 1, Ld = 3, and β = 10−2.

92



-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10  12  14  16  18  20  22  24

y

x

Fig. A.5: The trajectory of the upper-layer eddy in figure A.4. The initial position of

the eddy is (0, 8).
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A.2 A cyclonic eddy

We consider the case of a cyclonic eddy, that is, sgn(Γ) = 1, with ε = 3. Figures

A.6 and A.7 show the temporal evolution of the potential vorticity, q2, and the

trajectory of the upper-layer eddy. On both the deep and shallow sides, the upper-

layer eddy moves northwestward due to the β-effect. This motion is observed

almost independent of ε, as in the result of chapter 3.
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Fig. A.6: The temporal evolution of the potential vorticity field in the lower layer,

q2 − βy, and the cyclonic eddy with ε = 3 in the upper layer. White lines

indicate the contour of q1−βy = −0.3, 0.3, 0.9, 1.5, 2.1, 2.7. The positive and

negative contours are indicated by the solid and dashed lines, respectively.

From left to right, (top) t = 60, t = 120, t = 180; (middle) t = 240, t = 300,

t = 360; (bottom) t = 420, t = 480, t = 540. In this case, xh = 5, Ls = 1,

Ld = 3, and β = 10−2.
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Fig. A.7: The trajectory of the upper-layer eddy in figure A.6. The initial position of

the eddy is (0, 20).
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Moreé, J. J., Garbow, B. S., and Hillstrom, K. E., 1980: User Guide for MINPACK-

1, Technical Report ANL-80-74, Argonne National Laboratory.

Morel, Y., and McWilliams, J., 2001: Effects of Isopycnal and Diapycnal Mixing

on the Stability of Oceanic Currents., J. Phys. Oceanogr., 31 pp. 2280-2296.

Ni, Q., Zhai, X., Wang, G., and Hughes, C. W., 2020: Widespread Mesoscale

Dipoles in the Global Ocean., J. Geophys. Res, 125.

Ribbe, J., Toaspern, L., Wolff, J. -O., and Azis Ismail, M. F., 2018: Frontal eddies

along a western boundary current., Cont. Shelf Res., 165 pp. 51-59.

Richardson, P. L., and Tychensky, A., 1998: Meddy trajectories in the Canary

Basin measured during the SEMAPHORE experiment., J. Geophys. Res., 103

pp. 25029-25045.

Rhines, P. B., 1977: The dynamics of unsteady currents., In The Sea – Ideas and

Observations of Progress in the Study of the Seas., ed Goldberg, E. D., McCave,

I., O’Brien, J., and Steele, J., Vol 6, pp. 189-318. John Wiley and Sons.

Schaeffer, A., Gramoulle, A., Roughan, M., and Mantovanelli, A., 2017: Charac-

terizing frontal eddies along the East Australian Current from HF radar obser-

vations., J. Geophys. Res., 122 pp. 3964-3980.

102



Serra, N., and Ambar, I., 2002: Eddy generation in the Mediterranean undercur-

rent., Deep-Sea Res. II, 49 pp. 4225-4243.

Serra, N., Ambar, I., and Boutov, D., 2010: Surface expression of Mediterranean

Water dipoles and their contribution to the shelf/slope - open ocean exchange.,

Ocean Sci., 6 pp. 191-209.

Shimada, K., and Kubokawa, A., 1997: Nonlinear Evolution of Linearly Unstable

Barotropic Boundary Currents., J. Phys. Oceanogr., 27 pp. 1326-1348.

Smith, D. C., and O’Brien, J. J., 1983: The Interaction of a Two-Layer Isolated

Mesoscale Eddy With Bottom Topography, J. Phys. Oceanogr., 13 pp. 1681-

1697.

Spall, M. A., Pickart, R. S., Fratantoni, P. S., and Plueddemann, A. J., 2008: West-

ern Arctic shelfbreak eddies: Formation and transport., J. Phys. Oceanogr., 38

pp. 1644-1668.

Stern, M. E., 1975: Minimal properties of planetary eddies., J. Mar. Res., 40

pp. 57-74.

Stern, M. E. and Flierl, G. R., 1987: On the interaction of a vortex with a shear

flow., J. Geo. Res., 92 pp. 10733-10744.

Swarztrauber, P. N., 1982: Vectorizing the FFTs., Parallel Computations, Aca-

demic Press, pp. 51-83.

The MODE Group, 1978: The mid-ocean dynamics experiment., Deep-Sea Res.,

25 pp. 859-910.

Wang, X., 1991: Interaction of an eddy with a continental slope., school PhD thesis

Massachusetts Institute of Technology/Woods Hole Oceanographic Institution.

103



White, A. J. and McDonald, N. R., 2004: The Motion of a Point Vortex near

Large-Amplitude Topography in a Two-Layer Fluid., J. Phys. Oceanogr., 34

pp. 2808-2824.

Yasuda, I., Okuda, K., and Hirai, M., 1992: Evolution of a Kurosio warm-core ring

- variability of the hydrographic structure., Deep-Sea Res., 39 pp. S131-S161.

Vandermeirsch, F. O., Carton, X. J., and Morel, Y. G., 2003: Interaction between

an eddy and a zonal jet. Part I. One-and-a-half-layer model. Dyn. Atmos.

Oceans, 36 pp. 247-270.

Zhang, Y., Pedlosky, J. and Flierl, G. R., 2011: Shelf Circulation and Cross-Shelf

Transport out of a Bay Driven by Eddies from an Open-Ocean Current. Part I:

Interaction between a Barotropic Vortex and a Steplike Topography, J. Phys.

Oceanogr., 41 pp. 889-910.

Zabusky, N. J., Hughes, M., and Roberts, K. V., 1979: Contour dynamics for the

Euler equations in two dimensions, J. Comput., 30 pp. 96-106.

104


