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A STUDY ON STACKED OBJECT RECOGNITION AND
STACKING OPERATION PLANNING COMBINING 3D
POINT CLOUD REPRESENTATION, DEEP-LEARNING

AND PHYSICS ENGINE∗

Yajun Xu

Abstract

Technically, three-demission (3D) data which provides richer geometric, shape, and scale
information than 2D data, make it easier for machines to understand and interact with
their surrounding environment. Typical 3D data include depth images, point clouds,
meshes, and volumetric grids. Among them, point clouds are widely used in various
fields, such as robotics, autonomous driving, and civil engineering, to preserve the original
geometric information in 3D space without discretization. In some specific scenes, many
objects are stacked on each other. For instance, in a robotic bin-picking scene, wherein
heavily piled up parts occlude each other; on the coast, a large number of wave-dissipating
blocks are stacked together in order to protect the embankment. Recognizing individual
objects in these cluttered scenes poses a problem. Adding new objects based on the state
of the stacked objects to address engineering requirements is an even more considerable
challenge.

In this dissertation, we design a 3D instance segmentation framework for stacked objects
scenes using a deep neural network and then develop a system that simulates object
stacking using a physics engine and deep learning to complete the object stacking plan
based on our recognized results.

Increasingly, deep learning on point clouds has attracted attention in recent years. 3D
instance segmentation networks for indoor scenes have made some breakthroughs but still
face several significant challenges. Several non-real-time deep learning-based 3D recogni-
tion frameworks for indoor scenes have been developed recently. However, deep learning
of 3D point clouds still faces several significant challenges, such as data annotation, the
memory required to process large-scale point clouds, and time-consuming processing. We
propose a fast point cloud clustering-based deep neural network, FPCC, for the instances
segmentation of stacked objects. The network simultaneously predicts the similarity of
points and the likelihood of being centroids. Based on the predicted results, this study de-
signs a novel clustering algorithm that can quickly generate the final segmentation results.
Experimental results on public datasets show that the proposed method has excellent
performance, reaching the current state-of-the-art precision and processing speed.

Then, we extend the application scenario of this 3D instance segmentation scheme to
the recognition of wave-dissipating blocks, a structural unit of breakwaters. Compared
with the current methods that minor the whole structure of the breakwater, our method
can minor the blocks at the instance level. The recognition consists of three main steps:

∗Doctoral Dissertation, Course of Systems Science and Informatics, Graduate School of Infor-
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point cloud instance segmentation of the blocks, pose estimation, and classification. A
novel point cloud feature extractor is designed to replace the original feature extractor of
FPCC, which can process more points faster with the same computational overhead. The
new feature extractor employs an attention-pooling mechanism, which allows the neural
network to learn richer local information. Then, the block-wise 6D pose is estimated using
a three-dimensional feature descriptor, point cloud registration, and CAD models of blocks.
Finally, the type of each segmented block is classified using model registration results.
The pose estimation results on real-world data showed that the fitting error between the
reconstructed scene and the scene point cloud ranged between 30 and 50 mm, which is
below 2% of the detected block size. The accuracy in the block-type classification on real-
world point clouds reached about 95%. These block detection performances demonstrate
the effectiveness of our approach.

Finally, based on the recognized results of wave-dissipating blocks, a system is devel-
oped to simulate the block stacking plan utilizing a physics engine and deep learning,
which can predict the additional block amounts and their stacking poses and provide
pre-visualization of their stacking operations. Deep learning was used to estimate the ad-
ditional block poses that better fit the stacked blocks. The simulation was applied to an
actual block-stacking operation in a local port at Hokkaido. The final construction results
in the real world verified the accuracy and usefulness of the simulation.

This dissertation generally makes three major contributions to object recognition and
object stacking simulation. The first one is to propose a fast framework for point cloud
instance segmentation called FPCC. The second major contribution is improving FPCC
and its use for stacked wave-dissipating block scenes. Combined with pose estimation,
this enables us to accurately retrieve the majority of the blocks in a 3D scene, minoring
the blocks at the instance level. The third major contribution is the development of
a simulation system for simulating the block supplementation project, which provides
customizable pre-visualization results and blocks stacking solutions according to different
construction requirements.

Keywords: Instance segmentation, Wave-dissipating blocks, Point cloud, Physics engine,
Deep learning
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Chapter 1

Introduction

This chapter describes the background of the research, related works, objectives, proposed
methods and their features, and the structure of this dissertation.

1.1 Background and Scope of This Study

In recent years, computer vision based on deep learning has made breakthroughs in clas-
sification [1,2], object detection [3,4], and semantic and instance segmentation [5–7]. The
performance on specific tasks is even comparable to that of human experts [1, 8]. These
achievements have been deployed in autonomous driving [9, 10], robot navigation [11],
medical image processing [12], and many other areas. Although deep learning-based mod-
els simplify the process of human-designed features, many crucial issues still need to be
addressed in some specific scenarios or tasks.

Stacked object recognition is one of them. In industry, a scene where multiple identical
objects are stacked in a container is called the bin-picking scene, which is very common [13].
The lack of information due to occlusion and the vast number of identical objects are
obstacles to recognition. Such a scene exists not only in the industrial field but also in
fruits [14], wave-dissipating blocks, Etc (see Figure 1.1).

In addition, the need for large-scale, high-quality labeled data for deep learning models
severely impedes the deployment of the models in practical applications. Transfer learning
and unsupervised or semi-supervised learning are essential directions to explore to alleviate
the dataset collection. However, a more feasible solution nowadays is to use synthetic data
instead of manually labeled data [16].

After finishing the recognition of stacked objects, continuously stacking new objects
to reach a target height or shape based on the current stacking condition of the objects
is a new topic that we propose based on practical construction. One of its application
scenarios is the maintenance project of breakwaters.

Wave-dissipating blocks placed around breakwaters are often constructed along the
coastline to stop wave erosion, but the wave-dissipating blocks, which are the structural
units of breakwaters, sink or even break as the waves erode (see Figure 1.2). Therefore,
it is a long and tedious project to replenish the breakwater blocks regularly to reach the
required height. The current conventional practice can only roughly estimate the required
number of dissipation blocks by volume ratio. However, it cannot provide more specific
guidance, such as where and how a new block should be inserted.
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Figure 1.1: Examples of stacked scenes from FruitVeg-81 [14], Mikado [15], IPA [13] and
wave-dissipating blocks.

Figure 1.2: Breakwater with its units—wave-dissipating blocks.

Based on this much-needed problem, this thesis mainly focuses on object identifica-
tion and stacking plan in stacking scenarios to save human and financial resources. The
proposed deep learning-based point cloud segmentation framework can be applied to nu-
merous stacked object scenarios, such as bin-picking. The object stacking plans developed
based on the physical engine can be highly customized to provide forward-looking con-
struction guidance and can be applied to different construction needs, leading to efficiency
gains and reduced production costs.

1.2 Related Works

1.2.1 3D Point Cloud Processing for Robotic Bin Picking

Computer vision empowers the interaction between robots and the real world. The avail-
ability of point clouds in a low-cost way has become possible with the development of
3D sensors. Point clouds are almost essential in robots’ simultaneous localization and
mapping (SLAM) due to the richer geometric, shape, and scale information they provide
than images [17]. Another vital application of point cloud is grasping task, which gener-
ally consists of four main steps: target object localization, object pose estimation, grasp

— 2 —



Chapter 1. Introduction

Figure 1.3: An experimental real-world robot cell from Fraunhofer IPA [13]. A dual-arm
robot is taking parts out of a bin and dropping them into another.

detection (synthesis), and grasp planning [18]. Numerous algorithms have been developed
based on point clouds. However, object recognition and 6D pose estimation in cluttered
scenes are still challenging.

Industrially, a scene where multiple objects are stacked in a container is called a bin-
picking scene (see Figure 1.3). The robot must accurately grasp a target object from the
container before completing a series of tasks [13, 19, 20]. In this scenario, pose-invariant
descriptors like Point Pair Feature (PPF) have been widely used to estimate the 6D poses
of objects from measured point clouds to locate the object. However, the occlusion of the
stacking objects seriously lowers the discrimination performance among individual object
instances. Therefore, the development of point cloud instance segmentation robust against
the occlusion should be developed.

1.2.2 3D Point Cloud Processing for as-is Status Recognition of Existing
Wave-Dissipating Blocks for Supplementary Work.

Figure 1.4: Regular supplementary works are required to maintain the height of the stack
of blocks.

Wave-dissipating blocks made of large concrete slabs are essential components of the
armor layer of breakwaters that protect their core from direct wave attacks. However, long-
term wave motion and erosion damage the blocks irreversibly, causing them to sink and
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even break off [21]. Therefore monitoring of breakwaters is a key aspect of maintaining the
quality of breakwaters [22] as shown in Figure 1.4. To this end, constructors must estimate
the number of new blocks to be supplemented as precisely as possible. Unfortunately, it
is difficult to estimate the number of blocks required due to the quality of data and the
limitations of current algorithms. Every year, a national budget of about 100 billion yen
is invested in the wave-dissipating block maintenance project. It turned out that the cost
could be reduced by about 10%~20% if the required number of blocks was accurately
estimated.

In this study, we recognize individual wave-dissipating blocks from the point cloud
so that an accurate reconstruction of the current scene can be performed in the physics
engine. This will be the foundation for some subsequent developments and offers the
following benefits for the administrators:

• 6D poses of individual blocks faithfully reproduce the as-built status of each block
to improve the accuracy of estimates of new blocks’ quantities and their stacking
plan in the supplemental work;

• The as-built status can be grasped block by block after the construction and sup-
plemental works. Thus, the construction results can be recorded and visualized
comprehensively compared to recording only the measured point clouds of existing
block surfaces;

• By providing the pose and attribute information to each block model, it is possible
to check the long-term change in the blocks, such as missing, sinking, and damaged
blocks, and implement a more precise and sustainable maintenance activity.

UAVs equipped with 3D sensors are a flexible and low-cost means of obtaining geometric
data on breakwaters. To date, several studies compared the 3D point clouds acquired at
different times to evaluate possible changes in breakwaters within a certain period [22–27].
Few studies have focused on the changes or movements of individual wave-dissipating
blocks [21,28,29].

1.2.3 Object Stacking Operation Planning

Figure 1.5: Examples of packing problem from Y. Ma et al. [30]. 3D Irregular objects
need to be packed as many as possible into a given container.

Object stacking operation planning can be regarded as an extension of the packing
problem. Object stacking operation planning not only expects to fill as many objects as
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possible in a given volume or container but also needs to meet the physical aspects of
feasibility.

Packing irregular 3D rigid objects into a container with pre-defined dimensions is a well-
known Np-hard problem that is faced in practical applications such as the construction
industry, 3D printing, and dry stacking. No algorithm can find a globally optimal solution
for the problem in polynomial time [31].

Due to the limitation of computational power, early approaches have approximated
irregular objects into some regular shape primitives, such as bounding boxes or bounding
cylinders, to reduce the computational requirements for geometric analysis and processing
[32,33]. However, these were inefficient and not current to the application’s needs [34].

Researchers have previously developed methods for packing objects based on mathe-
matical models [35]. However, their mathematical modeling methods suffered from com-
plexion and a large number of vertices, resulting in poor accuracy for typical irregular
objects. Furthermore, some studies [30, 31] have emphasized the solution’s optimality at
the expense of the balance and stability of object stacking, which is particularly important
in construction.

1.3 Objectives, Proposed Approaches and Contributions

1.3.1 Objectives of this study

The research aims to design and propose an efficient and effective method for stacked
object recognition and stacking operation planning combining 3D point cloud represen-
tation, deep learning, and a physics engine. In detail, the objectives of the research are
summarized as follows:

• For the object recognition of stacked objects, a deep-learning-based fast point cloud
instance segmentation method is newly developed to accurately distinguish individ-
ual objects in stacking scenes, such as the industrial bin-picking scene.

• The deep neural networks for fast point cloud instance segmentation are employed to
segment the point clouds of existing stacked wave-dissipating blocks placed oversea
and undersea levels at the instance level, estimate the 6D poses and classify the type
of the segmented blocks.

• To generate reasonable stacking plans of additional wave-dissipating blocks, an algo-
rithm is designed to automatically find the space where additional blocks need to be
inserted. Also the optimum initial pose of an block before it falls is predicted using
another deep neural network, as the initial poses of blocks have a crucial impact on
the construction results.

• To achieve the first three goals, we effectively used the physics engine to develop
systems that can automatically generate physically feasible scenes of stacked objects,
providing sufficient synthetic data for training the neural network and validating the
method’s performance.

1.3.2 Proposed Approaches

1) Deep-learning-based instance segmentation from point cloud of stacked ob-
jects
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We proposed a novel neural network for block segmentation from point cloud. We
use our-original category-agnostic instance segmentation network FPCCv2 to segment the
input point cloud into the subsets of points corresponding to individual block instances
from an input point cloud measured by UAV and MBES. FPCCv2 is a kind of deep
neural networks and is pre-trained by synthetic point clouds that mimic the point clouds
of stacked blocks measured by UAV and MBES, respectively, using the stacked block CAD
models and surface point sampling. FPCCv2 extracts features of each point while inferring
the centroid of each instance. After that, the remaining points are clustered to the closest
centroids in the feature embedding space.

2) Model-based 6D pose estimation and type classification of objects
After segmenting the input point cloud into a set of points corresponding to individual

block instances, the 6D pose of an individual block is estimated from each segmented
point cloud using Point Pair Feature descriptor and the best fit point cloud alignment
by Iterative Closest Points (ICP), which match the scene points with the surface points
sampled from the CAD model of the blcok. Moreover, the block type is classified based
on the pose estimation results, i.e., the fits between the model point cloud and the scene
point cloud.

3) Block stack-up simulation for object instance segmentation
The simulation software is implemented on a python module for physics engine Pybul-

let. We use synthetic point cloud data that mimics the stacking poses of wave-dissipating
blocks to train our instance segmentation network FPCCv2, and evaluate the performance
of the segmentation of our method. The synthetic data that is easier to synthesize in an
acceptable period, makes the network more robust and avoids the interference of environ-
mental factors.

4) Deep-learning-based physically-feasible and semi-compact object stack-
up simulation

After reconstructing the scene in a physical engine based on the recognition result,
we designed an algorithm to detect the space between the existing blocks. And then we
employ a network to predict a reasonable pose of new block to make the whole breakwater
more compact and stable. The combination of the physical engine and deep learning
enables physically-feasible and semi-compact planning of stack-up operation planning.

1.3.3 Contributions

The contributions of this study are listed as follow.

1) Fast 3D instance segmentation for robotic bin-picking

• A high-speed instance segmentation scheme for a 3D point cloud is proposed.

• Designed a convolutional network and an algorithm for point cloud instance segmen-
tation.

• Experiments show that FPCC trained by synthetic data demonstrates excellent per-
formance on real-world data compared with existing methods.

• FPCC achieved 55% precision on IPA Bin-Picking dataset and 80% precision on XA
Bin-Picking dataset.
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• The proposed 3D instance segmentation scheme can be applied in other similar
stacked objects scenes. Our method will significantly promote the application of
deep learning in industrial production and make robots more intelligent.

2) Detection of wave-dissipating block from large-scale point cloud

• Proposed a novel feature extractor for point cloud. By stacking graph convolution
layers and constructing local information of the point cloud, we can expand the
perceptual field of each point at the cost of a small computational overhead.

• Developed a simulation system based on Pybullet for providing the training data
sample for our network, so that we can train the network without any manually
labeled data.

• Experiments shown that our method could retrieve 70% 95% blocks in a point cloud
scene.

• Due to the efficiency of sparse convolution, a neural network built with sparse convo-
lution should be able to process larger point clouds than the current. Our simulation
system can provide richer labeling for a wider variety of scenarios.

3) Deep learning-based construction planning of wave-dissipating block

• Designed an algorithm to detect the spaces between blocks for inserting a new block.

• Made the new block inserted in a reasonable pose, so that the whole structure of the
breakwater is more stable.

• Provided previsualization of the construction work and the reconstruction plan.

• The strategy of how to insert a new block need to be complete and be more flexible.

1.4 Structure of the Dissertation

The dissertation is organized and divided into five chapters:

• Chapter 1: Introduction. This chapter introduces the background, objective,
relative works, and the construction of the dissertation.

• Chapter 2 Deep learning-based object instance segmentation from point
clouds of stacked industrial parts for robotic bin picking
This chapter introduces the bin-picking scene and explains why segmentation is nec-
essary for 6D pose estimation work about the bin-picking scene at first. Then the
chapter summaries some related works about point cloud instance segmentation.
Next, the chapter narratives the principles of a CNN for point-cloud instance seg-
mentation, FPCC. A simulation system is developed to simulate blocks stacking with
bullet physical engine to generate point clouds and instance label. The experimen-
tal results show that the performance of the network trained with synthetic data is
acceptable.
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Figure 1.6: The main structure of the dissertation, except for the introduction (Chapter
1) and the conclusion (Chapter 5). In this dissertation, Chapter 2 narratives the principles
of our 3D point cloud instance segmentation method. Chapter 3 develops a framework for
block recognition, pose estimation, and block type classification. Based on the recognized
results from the Chapter 3, Chapter 4 pictures a deep learning-based pose prediction
method to make the new blocks drop from a fine initial pose so that the breakwater
structure is steady and compacted.

• Chapter 3 Deep learning-based object instance segmentation and pose
estimation from point clouds of stacked wave-dissipating blocks
At first, this chapter introduces the breakwater and wave-dissipating blocks and
the current progress in monitoring breakwater and recognizing wave-dissipating
blocks. The scene point clouds are measure by photogrammetry and Multi-beam
echo sounder. Next, the chapter presents our recognition scheme for wave-dissipating
blocks, analyzes the limitation of FPCC, and prose a new point-wise feature extrac-
tor for FPCC. Next, the chapter picture the simulation system for synthetic data
generation, which are used for training network and validation experiment. Finally,
this chapter conducts experiments on synthetic and real-world data to validate our
scheme’s effectiveness in recognition, pose estimation, and block type classification.

• Chapter 4 Deep learning-based object stacking operation planning for
replenishing wave-dissipating blocks
This chapter first introduces the construction process of the wave-dissipating block
supplementation project. Next, the chapter reconstructs the current block scene
in a physic engine with the block CAD model and recognized poses based on the
results of chapter 3. Next, the chapter presents a space detection algorithm for
finding where the new blocks need to be inserted. And then, the chapter narratives
a deep learning-based pose prediction method to make the new blocks drop from a
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fine initial pose so that the breakwater structure is steady and compacted. At last,
deep learning-based supplement work is compared with traditional one to estimate
its effectiveness.

• Chapter 5 Conclusions and Future Work This chapter summarizes the results
and the conclusions that could be drawn from the previous chapters. The limitations
of the proposed approach are discussed. Future research directions are prospected.
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Chapter 2

Deep Learning-based Object
Instance Segmentation from Point
Clouds of Stacked Industrial Parts
for Robotic Bin-Picking

2.1 Background and Objectives of this Chapter

Acquisition of three-dimensional (3D) point cloud is no longer difficult due to advances in
3D measurement technology, such as passive stereo vision [36–39], phase shifting method
[40], gray code [41], and other methods [42, 43]. As a consequence, efficient and effective
processing of 3D point cloud has become a new challenging problem. Segmentation of
3D point cloud is usually required as a pre-processing step in real-world applications,
such as autonomous vehicles [44], human-robot interaction [45–47], robotic bin-picking
[3, 19, 20, 48], pose estimation [49–53], and various types of 3D point cloud processing
[54–58]. In the field of robotics, bin-picking scenes have received a wide range of attention
in the past decade. In this scene, many objects of the same category are stacked together.
The difficulty of bin-picking scenes in logistics warehouses is that there are too many
categories and unknown objects [59–61], while the problem of industrial bin-picking scenes
is that it is difficult to distinguish the same objects and make datasets. At present, an
application of convolutional neural networks (CNNs) to instance segmentation of 3D point
cloud is still far behind its practical use. The technical key points can be summarized as
follows: 1) convolution kernels are more suitable for handling structured information, while
raw 3D point cloud is unstructured and unordered; 2) the availability of high-quality, large-
scale image datasets [1, 62, 63] has driven the application of deep learning to 2D images,
but there are fewer 3D point cloud datasets; and 3) instance segmentation on 3D point
cloud based on CNNs is time-consuming.

For key point 1), PointNet [64] has been proposed as the first framework which is
suitable for processing unstructured and unordered 3D point clouds. PointNet does not
transform 3D point cloud data to 3D voxel grids such as [2, 65], but uses multi-layer
perceptions (MLPs) to learn the features of each point and has adopted max-pooling
to obtain global information. The pioneering work of PointNet has prompted further
research, and several researchers have introduced the structure of PointNet as the backbone
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Figure 2.1: Instance segmentation results using FPCC-Net. FPCC-Net has two branches:
the embedded feature branch and the center score branch.

of their network [7, 66, 67]. It is known that PointNet processes each point independently
and it results in learning less local information [66,68]. To enable learning of the 3D point
cloud’s local information, the methods proposed in [68–75] have increased the network’s
ability to perceive local information by exploring adjacent points. Following our previous
work [16], we employ DGCNN [68] as our feature extractor because DGCNN is flexible
and robust to process point clouds with only coordinates.

For key point 2), some well-known 3D point cloud datasets include indoor scene datasets
such as S3DIS [76] and SceneNN [77], driving scenario datasets such as KITTI dataset [78]
and Apollo-SouthBay dataset [79], and single object recognition dataset likes ShapeNet
dataset [2]. For robotic bin-picking, it is a huge and hard work to provide a general training
dataset of various industrial objects and there is no such dataset currently. Synthesizing
training data through simulation provides a feasible way to alleviate the lack of training
dataset [13, 16, 80–83]. At this stage, we argue that training the network with synthetic
data is an economical and feasible strategy. Our network is trained by synthetic dataset
and shows acceptable results on real data.

For key point 3), the reasons why instance segmentation on 3D point cloud by CNNs is
time-consuming are described as follows. Instance segmentation locates different instances,
even if they are of the same class. As instances in the scene are disordered and their
number is unpredictable, it is impossible to represent instance labels with a fixed tensor.
Therefore, the study of instance segmentation includes two methods: the proposal-based
method requiring an object detection module and the proposal-free method without an
object detection module. Proposal-based methods require complex post-processing steps
to deal with many proposal regions and have poor performance in the presence of strong
occlusion. For the instance segmentation of 3D point cloud, most researchers adopt the
proposal-free method [7, 67, 84–88]. The proposal-free method usually performs semantic
segmentation at first and then distinguishing different instances via clustering or metric
learning [7, 16, 67, 84]. The current clustering methods first generates multiple candidate
groups and then merge them, which is a very time-consuming process. In contrast, our
clustering algorithm does not generate candidate groups, but directly generates instances
based on the feature distance between the object’s center point and the rest of the points.
This way dramatically improves the speed of instance generation and avoids the case that
a point belongs to multiple instances at the same time.

This chapter aims to design and propose a fast point cloud clustering for instance seg-
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mentation method named FPCC consisting of FPCC-Net and a fast clustering algorithm
based on the output of FPCC-Net. FPCC-Net is a graph convolutional neural network
that can effectively segment the 3D point cloud at instance-level without training by any
manually annotated data. FPCC-Net involves mapping all points to a discriminative fea-
ture embedding space, which satisfies the following two conditions: 1) points of the same
instance have similar features, 2) points of different instances are widely separated in the
feature embedding space. Simultaneously, FPCC-Net finds center points for each instance,
and the center points are used as the reference point of the clustering process. After that,
the fast clustering is performed based on the center points as shown in Figure 2.1.

The main contributions of this work are listed below.

• A high-speed instance segmentation scheme for 3D point cloud is proposed.

• The proposed scheme consists of a novel network of 3D point cloud for instance
segmentation named FPCC-Net and a novel clustering algorithm using the found
center points.

• A hand-crafted attention mechanism is introduced into the loss function to improve
the performance of FPCC-Net, and its effectiveness is verified in an ablation study.

• Experiments show that FPCC-Net trained by synthetic data demonstrates excellent
performance on real-world data compared with existing methods.

• We annotate instance information for parts that have not been labeled in XA Bin-
Picking dataset [16]. The completed dataset is available at https://github.com/
xyjbaal/FPCC.

The remainder of this Chapter is organized as follows. Section 2.2 discusses the progress
of instance segmentation on images and 3D point cloud. Section 2.3 shows the structure
and principle of FPCC-Net. Experimental analyses are provided in Section 2.4. Section
2.5 discusses the Chapter. Finally, Section 2.6 gives the conclusion of the Chapter.

We use the following notations in this Chapter. A real number set is represented by
R. A coordinate of point i is denoted by pi = (xi, yi, zi) ∈ R3. Point cloud containing N
points is denoted by P = {p1, p2, ..., pN}. Distance function is denoted by

d(a, b) = ∥a− b∥2, (2.1)

where d(a, b) denotes Euclidean distance between a ∈ Rn and b ∈ Rn. For a matrix
A ∈ Rn×m, (i, j)-th element of A is denoted by a(i,j).

2.2 Related Works

With the emergence of CNNs, the methods of feature extraction from images and 3D point
cloud have been changing from manual design to automatic learning [89–91]. Instance
segmentation is one of the most basic tasks in the field of computer vision and receives
much attention. Segmentation on two-dimensional (2D) images has been almost fully
developed [92,93], but 3D point cloud segmentation has remained underdeveloped.
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2.2.1 2D Instance Segmentation

Current 2D instance segmentation methods can be roughly divided into two categories,
two-stage method, and one-stage method. Two-stage means they perform object detection
first by utilizing proposal generation, then followed by mask prediction. Mask R-CNN
[6] is one of the representative two-stage instance segmentation methods. Mask R-CNN
decomposes the problem of instance segmentation into object detection and pixel-level
segmentation of a single object. Mask R-CNN has added a branch to predict object masks
based on Faster R-CNN [94]. Based on the Mask R-CNN [6] and FPN [95], PANet [96]
enhanced mask prediction by improving the information propagation between lower and
higher levels. MaskLab [97] predicted the direction of each pixel to its corresponding
instance center for instance segmentation of the same class. TensorMask [98] regards
dense instance segmentation as a prediction task over 4D tensor and proposes a general
framework for operations on 4D tensors. The one-stage methods are usually faster than the
two-stage methods because the one-stage methods do not contain the proposal generation
and pooling step. YOCLAT [99] generates instance masks by linearly combining prototype
and mask coefficients, sacrificing a little performance for computational speed. BlendMask
[100] combined instance-level information with semantic information to enhance mask
prediction, and CenterMask [101] added a spatial attention-guided mask branch to the
object detector to predict masks. PolarMask [102] describes the mask of each instance
by its center and rays emitted from the center to the contour. Other approaches which
are not categorized into one-stage nor two-stage methods, such as clustering or metric
learning, do not perform well on 2D instance segmentation [103, 104]. Although the deep
learning-based methods on 2D instance segmentation utilizing a large number of high-
quality and manually labeled datasets [62, 105] have great achievements, they still have
drawbacks in industrial bin-picking scenes, where labeled datasets are often difficult to
obtain. To overcome the difficulties of making datasets, SD Mask R-CNN [83] has been
proposed as an extension of Mask R-CNN. The paper [83] has presented a method to
generate synthetic datasets rapidly, and their network was trained only with the generated
synthetic depth images instead of RGB images. However, SD Mask R-CNN does not show
enough performance, especially for multiple object instances with occlusion in the scene.

2.2.2 3D Instance Segmentation

Some researchers have adopted proposal-based methods that detect objects and predict
the instance masks. 3D-SIS [106] have combined 2D images and 3D geometric information
to infer the bounding boxes of objects in 3D space and the corresponding instance mask.
The demand for 2D images limits the application of this method because it is expensive
to train the network with 2D images. GSPN [107] continued the idea of Mask R-CNN.
They first predicted the candidate regions, and then refined the candidate regions with
R-PointNet to obtain the result of instance segmentation. However, the region proposal
network of 3D-SIS and GSPN consumes a long computing time. 3D-MPA [88] has used an
object-centric voting scheme to generate instance proposals, which are robust to potential
outliers in the instance proposal stage. 3D-BoNet [108] provided by B. Yang et al. directly
regresses the bounding box of each instance in the 3D point cloud and simultaneously
predicts point-level masks for each instance. 3D-BoNet performs well on the completed
point cloud because there is little overlap of objects’ bounding box in these datasets e.g.,
S3DIS [76], ScanNet [109]. In other words, the overlap and incompleteness of objects in
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the bin-picking scenes make 3D-BoNet difficult to regress reasonable bounding boxes.
Proposal-free methods extract the features of the points at first and then group points

into instances. SGPN [7] is the first direct 3D instance segmentation method that assumed
the points of the same instance should have similar features. Three sub-networks predict
semantic labels, confidence score, and point-wise features, respectively. The confidence
score of each point indicates the confidence of the reference point of clustering. SGPN [7]
have highlighted an interesting phenomenon that the clustering confidence scores of the
points located in the boundary area are lower than others. Inspired by this, FPCC takes
only one point that is most likely to be the geometric center of an object as the refer-
ence point of clustering for the object. Some methods combining semantic with instance
information have been proposed to improve performance [67, 84, 110]. Q. Phm et al. [67]
have used a Multi-Value Conditional Random Field to learn semantic and instance labels
simultaneously. J. Lahoud et al. [110] have performed instance segmentation by clustering
3D points and mapping the features of points to the feature embedding space according
to relationships of point pairs. However, the objects in the bin-picking scene are all of the
same types. Thus the semantic information of each point is the same. The way of combin-
ing semantic and instance information with each other loses its effectiveness in this case.
PointGroup [85] and HAIS [86] employ a similar strategy. They predict the offset vector
for moving each point towards its instance center and then cluster the moved points in Eu-
clidean space. OccuSeg [87] has constrained the clustering based on predicted occupancy
size and the clustered occupancy size, which help to correctly cluster hard samples and
avoid over-segmentation. B, Zhang, et al. [111] have presented a probabilistic embedding
framework to encode the features of each point and a novel clustering step.

Although previous proposal-free methods have used various ways to extract features of
points, they all need to find points far greater than the number of instances as reference
points for clustering, and each reference point corresponds to a potential group. Each
group is merged by intersection over union (IoU). The process of merging takes a lot of
time. The reason for time-consuming is described in more detail in Section 2.4.4. In
contrast, FPCC does not need the process of merging. In addition, all these methods
are based on public datasets such as S3DIS [76] and SceneNN [77] with rich annotations.
Making such a dataset for bin-picking scenes is a time-consuming and laborious task [16].
FPCC shows an acceptable performance on real-world data even trained by synthetic data.

2.2.3 Instance segmentation for Bin-Picking Scenes

Overall, the existing instance segmentation methods for bin-picking scenes can be divided
into two groups: logistics-oriented methods and industrial-oriented methods. The former
is multi-class, multi-instance learning. The latter tends to be one-class, multi-instance
learning from cluttered scenes without predicting semantic labels. Researchers [61,83,112–
115] have adopted the mainstream 2D detection or 2D instance segmentation network for
logistics scenes to locate objects. However, logistics scenes are usually less cluttered than
industrial scenes.

Currently, few works have focused on instance segmentation for industrial bin-picking
scenes. Because industries primarily use point cloud, and current 3D instance segmen-
tation is far slower than 2D instance segmentation and challenging to annotate. D. Liu
et al. [51] have located the bounding boxes of unoccluded objects from RGB image by
RetinaNet and then projected the bounding boxes into 3D space. Further, M. Grard et
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Figure 2.2: Instance segmentation principle of FPCC. The geometric centers of each object
is clustered with other points based on the feature distance.

al. [15] proposed a residual encoder-decoder design to predict the masks of unoccluded
objects. They did not segment industrial objects in 3D space and required 2D image
annotation. W. Abbeloos et al. [116] used point pair features to match model points and
scene points. They have reduced the complexity of the problem by reducing the search
space using simple heuristics. However, the number of objects found in this way is affected
by the degree of clutter, and the computation time is sensitive to the number of points.
PPR-net [50] has regressed the 6D transform of the instances corresponding to each point,
and then a density-based clustering method clustered these transformed points in the pose
space. The primary goal of PPR-net is to regress the 6D transform of the objects, and
the results of instance segmentation are generated based on pose regression.

2.3 Proposed Method

This chapter proposes a novel clustering method for instance segmentation on the 3D
point cloud. The training data are 3D point cloud without color and can be automatically
generated in simulation by using a 3D shape model of the target object. The main idea
of fast clustering is to find geometric centers of each object, and then use these points
as reference points for clustering. Figure 2.2 shows the principle of FPCC. Compared
with the existing cluster-based methods, we have two advantages. The first is that we
can achieve an acceptable result by synthetic point cloud without color information. The
second is that, theoretically, we can find center points equivalent to the number of instances
in the scene as reference points for clustering, so there is no need for redundant merged
algorithms [7, 84], which consumes a lot of computing time and easily introduce errors in
severely overlapping scenes.

2.3.1 Structure of Fast Point Cloud Clustering (FPCC)

In the first step, coordinates of original 3D point cloud pi = (xi, yi, zi), i = 1, 2, ..., N is
converted to new coordinate system by

xi = xi −min {x1, x2, ..., xN}
yi = yi −min {y1, y2, ..., yN}
zi = zi −min {z1, z2, ..., zN},

(2.2)
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Figure 2.3: Network architecture of FPCC-Net. The represented 3D point cloud
[xi, yi, zi, ni,x, ni,y, ni,z]⊤ (i = 1, 2, · · · , N) is fed into the network and the instance la-
bel is outputted for each point. The features of each point are extracted using a feature
extractor and then sent to two respective branches. The embedded feature branch extracts
128-dimensional features of each point and the center score branch predicts the center score
of each point. For supervising FPCC-Net, the following matrices are introduced. Valid
distances matrix defined by (2.4) is a binary matrix used to ignore some point pairs whose
distance is greater than a certain threshold. Attention score matrix defined by (2.6) is
used to increase the weight of point pairs closer to the center position.

Then converted each point is represented by a six-dimensional (6D) vector of x, y, and z
and a normalized location (nx, ny, nz) as to the whole scene (from 0 to 1). The represented
3D point cloud is fed into the network and outputs are 128-dimensional features and the
center score of each point.

As shown in Figure 2.3, FPCC-Net has two branches that encode the feature of each
point in the feature embedding space and infer each point’s center score. First, the
point-wise features of N points are extracted through a feature extractor. In FPCC-Net,
DGCNN [68] without the last two layers is adopted as the feature extractor. DGCNN
has better performance than PointNet in extracting the features of point cloud without
color [16]. The extracted point-wise features with size N × 256 are fed into two branches,
embedded feature branch and center score branch.

In the embedded features branch, the extracted features pass through an MLP to
generate an embedded feature with size N × 128. The center score branch is parallel to
the embedded feature branch and used to infer the center score of each point. In the center
score branch, the point-wise features generated by the feature extractor are activated by
a sigmoid function after passing through two MLP. Then, predicted center score ŝcenter
with size N × 1 is obtained. After the prediction of the center scores, We use algorithm
1 to find the points most likely to be the geometric centers of each object, and the found
points are taken as reference points in the clustering process.

— 17 —



A study on stacked object recognition and stacking operation planning Yajun Xu

2.3.2 Training phase

The loss of the network is a combination of two branches: L = LEF + αLCS , where LEF

and LCS represent the losses of the embedded feature branch and the center score branch,
respectively. The symbol α is a constant that makes LEF and LCS terms are roughly
equally weighted. We introduce three matrices, feature distance matrix, valid distance
matrix (VDM), and attention score matrix (ASM) for the learning of embedded features.

We explain our design for the training phase in the following order: feature distance
matrix, valid distance matrix, center score, attention score matrix, embedded feature loss,
and center score loss. Attention score matrix is obtained from the center score of each
point.

Feature distance matrix

In the feature embedding space, the points belonging to the same instance should be close,
while the points of different instances should be apart from each other. To make features
of the points in the same instance similar, we introduce the following feature distance
matrix DF ∈ RN×N . The (i, j)-th element of DF is represented by

dF (i,j) = ∥e(i)
F − e

(j)
F ∥2. (2.3)

Valid distance matrix

The valid distance matrix DV ∈ RN×N is a binary matrix in which each element is 0 or 1.
The purpose of introducing DV is to make the network focus on distinguishing whether
point pairs within a certain Euclidean distance belong to the same instance or not. In
the inference phase, points are clustered based on the feature distance and the Euclidean
distance of the point pair at the same time. If the Euclidean distance of two points exceeds
twice the maximum distance dmax, the two points cannot belong to the same instance.
Therefore, we ignore these point pairs with too far distance so that they do not contribute
to the loss. The (i, j)-th element of DV is defined by

dV (i,j) =
{

1 if ∥pi − pj∥2 < 2dmax
0 otherwise (2.4)

(2.4) indicates whether the Euclidean distance between point pi and pj is within a reason-
able range or not.

Center score

The center score is designed such that it should reflect the distance between a point and
its corresponding center. The points near the center of object have higher scores than the
points on the boundary. Based on this concept, the center score of pi is introduced by

scenter(i) = 1−
(∥pi − ci∥2

dmax

)β

, (2.5)

where β is positive constant and ci is the coordinate of the geometric center of the instance
to which point pi belongs. The value of scenter(i) is in the range [0, 1]. If β = 1, the
distribution of the center score will lead to imbalances, as shown in Figure 2.4: only a
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(a) β = 1 (b) β = 2

Figure 2.4: Distribution of the center score in the same scene. It is apparent that β = 2
makes the scores more uniform in the 0-1 interval.

Figure 2.5: Visualization of center score (β = 2). Red indicates a higher score. The points
at the boundary are mostly scored 0.

very small number of points have higher scores, while most points have lower scores. This
causes the center score branch to fail to effectively predict the center scores (all scores are
biased towards zero). Figure 2.4 shows that β = 2 leads more uniform balance than β = 1.
Thus, β is set to 2 in our implementation. The center scores are visualized in Figure 2.5.
Figure 2.5 shows that the points on the boundary area are mostly scored 0, and those near
the center are approximately scored 1.

Attention score matrix

We introduce attention score matrix SA ∈ RN×N to increase the weight of important
point pairs. The (i, j)-th element of SA represents the weight of a point pair for point i
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Ring Screw Gear Shaft Object A Object B Object C

Figure 2.6: Models of objects used in the experiment. The gear shaft and ring screw
are from the Fraunhofer IPA Bin-Picking dataset [13], and Object A, B, C are from XA
Bin-Picking dataset [16].

(a)

(b)

Figure 2.7: (a) Synthetic 3D point cloud scenes. (b) Center score computed by (2.5).

and j. Because the center point is used as the reference point for clustering in inference
phase, the point pair closer to the center position should have a higher weight. In this
dissertation, sA(i,j) is computed by

sA(i,j) = min(1, scenter(i) + scenter(j)). (2.6)

Embedded feature loss

A point pair (pi, pj) has two possible relationships as follows: 1) pi and pj belong to
the same instance; and 2) pi and pj belong to different instances. By considering this,
embedded feature loss LEF is defined by

LEF =
N∑
i

N∑
j

w(i,j)κ(i,j), (2.7)

where w(i,j) is a element of W ∈ RN×N which is a weight matrix obtained through element-
wise multiplying DV by DA, that is,

w(i,j) = dV (i,j)sA(i,j). (2.8)
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SGPN* [7] ASIS* [84] 3D-BoNet*
[108] PointGroup* PointGroup

[85] FPCC Ground
Truth

Figure 2.8: Comparison results on IPA. The performance of SGPN and ASIS is poor on
bin-picking scene. 3D-BoNet has difficulty in distinguishing some overlapping instances.
The performance of FPCC is acceptable even in high clutter environment. *: Feature
extractor is DGCNN.

In (2.7), κ(i,j) is the loss based on the relationships of point pair and it is defined as:

κ(i,j) =
{ max(0, dF (i,j) − ϵ1) if pi and pj in the same instance

max(0, ϵ2 − dF (i,j)) otherwise (2.9)

where ϵ1, ϵ2 are constants and set to satisfy the condition 0 < ϵ1 < ϵ2, because the feature
distance of point pairs in different instances should be greater than those belonging to the
same instance [7]. We do not need to make the feature distance for point pairs in the same
instance close to zero but smaller than the threshold ϵ1, which is helpful for learning [16].

Center score loss

Smooth L1 loss is used as a loss function for the center score branch because of robustness
of L1 loss function [4]. The center score loss LCS is defined by

LCS = 1
N

N∑
i

smoothL1(scenter(i) − ŝcenter(i)), (2.10)

where ŝcenter(i) represents the predicted center score and

smoothL1(x) =
{

0.5 |x|2 if |x| < 1
|x| − 0.5 otherwise (2.11)
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2.3.3 3D Point Cloud Instance Segmentation based on Deep Neural Net-
work

As described in the previous section, two branches of FPCC-Net output the embedded
features and the center scores of each point. Non-maximum suppression is performed on
all points with center scores to find the centers of each instance. The points with a center
score higher than 0.6 are considered as candidates of the center points. The point with
the highest center score is selected as a first candidate of the center point, and all the
other points located in the sphere with the center being the candidate point and radius
γdmax are removed, where dmax is the maximum distance from the geometric center to
the farthest point of the object, and γ is the screening factor. This process is repeated
until there are no more points left. The detailed processes of selecting the center points
are presented in Algorithm 1.

Algorithm 1: Non-maximum suppression algorithm on points; N is the number
of points; K is the number of center points.

Input: Threshold for center score θth;
Screening radius γdmax;
Set of points P = {p1, p2, ..., pN};
Corresponding predicted center scores of
points S = {s1, s2, ..., sN}

Output: Center points C = {c1, c2, ..., cK}
1 for i = 1 to N do
2 if si ≤ θth then
3 P← P\{pi};
4 S← S\{si};
5 end
6 end
7 C← {};
8 while P ̸= ∅ do
9 m∗ ← arg maxm{sm | sm ∈ S};

10 C← pm∗ ;
11 P← P\{pm∗};
12 S← S\{sm∗};
13 for pi in P do
14 if d(pm∗ , pi) ≤ γdmax then
15 P← P\{pi};
16 S← S\{si};
17 end
18 end
19 end
20 return C;

After the above process, the feature distances between the center points and the other
points are computed by

d(e(i)
F , e

(k)
F ) = ∥e(i)

F − e
(k)
F ∥2, (2.12)

where e
(k)
F represents the feature of k-th center point selected by Algorithm 1, and e

(i)
F

represents the feature of i-th point in the remaining points. All points except the center
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points are clustered with the nearest center point in terms of the feature distance. Note
that, we find the nearest center point ck of point pi in the feature embedding space, and
then calculate Euclidean distance d(pi, ck) between pi and ck in 3D space. If d(pi, ck)
exceeds dmax, pi is regarded as noise, and an instance label will not be assigned to pi.

It should be emphasized that our clustering method is novel. The conventional cluster-
ing method [7, 84] is to downsample the points of the whole scene into multiple batches.
The points of each batch are clustered, and then the points of all batches are integrated.
In contrast, we perform clustering after all the points have been feed into the network in
batches. After the feature and center score of each point are obtained, predicted instances
are directly generated based on the feature distance from the center points without any
merge or integration steps. In this way, we reduce the calculation time and reduce the
accumulated errors due to the merged process.

2.4 Experiment

2.4.1 Dataset

We test five types of industrial objects, as shown in Figure 2.6. Ring screw and gear shaft
are from the Fraunhofer IPA Bin-Picking dataset [13] and object A, B and C are from XA
Bin-Picking dataset [16]. The details of datasets are as follows:

• Fraunhofer IPA Bin-Picking dataset (IPA) [13]: This is the first public dataset for
6D object pose estimation and instance segmentation for bin-picking that contains
enough annotated data for learning-based methods. The dataset consists of both
synthetic and real-world scenes. Depth images, 3D point cloud, 6D pose annotation
of each object, visibility score, and a segmentation mask for each object are provided
in both synthetic and real-world scenes. The dataset contains ten different objects.
The training scenes of all objects are synthetic, and only the test scenes of gear shaft
and ring screw are real-world data.

• XA Bin-Picking dataset (XA) [16]: Y. Xu and S. Arai et al. have developed a dataset
of boundary 3D point cloud containing three types of industrial objects as shown
in Figure 2.6 for instance segmentation on bin-picking scene. The training dataset
is generated by simulation, while the test dataset is collected from the real-world.
There are 500 training scenes and 20 test scenes for each object. We supplement the
ground truth of object B and C in the test dataset. Each test scene contains about
60,000 boundary points. The examples of synthetic scenes are presented in Figure
2.7, respectively.

2.4.2 Experimental setting

FPCC-Net is implemented in the TensorFlow framework and trained using the Adam [117]
optimizer with initial learning rate of 0.0001, batch size 2 and momentum 0.9. All training
and validation are conducted on Nvidia GTX1080 GPU and Intel Core i7 8700K CPU with
32 GB RAM. During the training phase, ϵ1 = 0.5, ϵ2 = 1, α = 3 and β = 2 are set. γ = 1
and dmax = 0.07, 0.08, 0.6, 1.6, 1.2 correspond to the size of ring screw, gear shaft, object
A, object B and object C, respectively. In each batch in the training process, input points
(N = 4, 096) are randomly sampled from each scene and each point can be sampled only
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SD Mask FPCC Ground Truth

Figure 2.9: Comparison results of FPCC and SD Mask on IPA dataset. SD Mask is
performed on depth images.

once. Each point is converted to a 6D vector (x, y, z, nx, ny, nz) for inputting FPCC-Net.
The sampling is repeated until the remained points of the scene is less than N . The
network is trained for 30 epochs. It takes around ten hours to train FPCC-Net for each
object.

2.4.3 Performance Evaluation of the Instance Segmentation

FPCC vs 2D instance segmentation SD Mask

Table 2.1: Results of instance segmentation on IPA. The metric is AP(%) with an IoU
threshold of 0.5.

Method
Data IPA

Ring Screw Gear Shaft
SD Mask 22.1 21.0

FPCC 63.2 60.9

Figure 2.9 shows the comparison results of instances segmentation with SD Mask, and
FPCC. Different predicted instances are shown in different colors. SD Mask misses many
instances. In contrast, FPCC is robust to occlusion.

Table 2.1 reports the AP with an IoU threshold of 0.5 on gear shaft and ring screw.
Scannet Evaluation [109] is adopted to compute AP. Since the depth images of the scene
are not provided by XA, SD Mask cannot be performed on their scenes. In conclusion,
FPCC improves AP by about 40 points than SD Mask. We argue that the typical 2D
convolution kernel operates on a depth image with local information of each pixel coming
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Table 2.2: Results of instance segmentation on industrial objects. The metric is preci-
sion(%) and recall(%) with an IoU threshold of 0.5.

Method
Data Backbone Ring Screw Gear Shaft Object A Object B Object C

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
SGPN DGCNN 10.92 14.67 15.25 21.65 41.92 28.98 20.07 25.92 24.62 25.39
ASIS DGCNN 15.54 11.56 20.14 9.46 64.67 28.72 55.43 23.61 67.08 42.06

3D-BoNet DGCNN 27.88 19.80 26.57 20.11 66.05 50.23 42.22 26.38 45.88 62.40
PointGroup DGCNN 3.64 1.91 3.65 1.73 6.19 1.54 7.68 1.89 5.37 1.02
PointGroup Sparse Convolution 52.40 41.22 58.79 36.80 91.88 46.22 75.22 39.35 79.83 41.12

FPCC DGCNN 58.43 48.74 54.29 69.53 89.71 67.28 80.88 50.92 78.64 64.28

from the neighboring pixel and ignoring the actual structure in 3D space. Although the
current segmentation approach with input as depth image is faster than that with point
cloud as input, it is not as effective and reasonable as the direct 3D instance segmentation
approach.

FPCC vs other 3D Instance Segmentation Methods

Figure 2.10 shows results of instances segmentation and center scores predicted by FPCC-
Net on the five types of industrial objects. The points near the center have higher score
than boundary points. FPCC can distinguish the majority of instances clearly even with
heavy occlusion. For ring-shaped objects, i.e., ring screw, the geometric center point is
not on the part, thus the reference point used in the clustering is shifted from the center of
object. The shifted reference point reduces the performance of segmentation. We consider
that our clustering method is not suitable for objects that are mostly empty in the center,
e.g., ring.

Figure 2.8 shows the comparison results of instances segmentation with SGPN, ASIS,
3D-BoNet, PointGroup and FPCC. Since the objects in a bin are identical, We eliminate
the branches of semantic segmentation in these compared networks and treat the semantic
information of all input points as the same. It should be noted that the original SGPN,
ASIS and 3D-BoNet use PointNet or PointNet++ as their feature extractors. When we re-
evaluate their method in the point cloud without color, we found that the training process
could not converge at all. We believe that it is because PointNet and PointNet++ cannot
effectively learn local geometric feature. Therefore, we replaced their feature extractor
with DGCNN. For PointGroup, we provide two results, one is the original PointGroup,
and the other is the PointGroup using DGCNN as backbone. Different predicted instances
are shown in different colors. SGPN and ASIS adopt a similar clustering method, which
accumulate the error of each potential group in the process of merging and results in
predicting multiple instances as one instance in the heavy occlusion. In contrast, FPCC
is robust to occlusion because no redundant merging is required. The performance of
3D-BoNet is also poor. This is because the 3D-BoNet trained by synthetic data is difficult
to reasonably predict the 3D binding box of each instance on real data. The performance
of PointGroup using DGCNN as the backbone is very poor, which shows that the features
extracted by DGCNN can not support the clustering algorithm of PointGroup.

Table 2.2 reports the classical metrics precision and recall with an IoU threshold of
0.5 on ring screw, gear shaft, object A, object B and object C. In the case of using
DGCNN as the backbone, FPCC achieves the best results and is competitive with the
results of the original PointGroup. Original PointGroup uses sparse convolution as its
backbone, extracting more discriminative features of the points to support its clustering
algorithm. The recall of PointGroup is lower because PointGroup ignores some uncertain
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Ring Screw

Gear Shaft

Object A

Object B

Object C

Real Scene 3D Point Cloud Center Score
Prediction

Instance
Prediction

Figure 2.10: Visualization of the results of instance segmentation given by FPCC on
IPA [13] (Ring Screw, Gear Shaft) and XA [16] (Object A, B, C). Many objects of the
same class are stacked together in the Real Scene. 3D Point Cloud is represented by
(x, y, z, nx, ny, nz) and then input into FPCC-Net. Center Score Prediction is the predicted
center score and the color bar is the same as one in Figure 2.5. The results for instance
segmentation is shown in the last column. Different colors represent different instances.
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Table 2.3: Ablation results for non-maximum suppression with different γ on IPA dataset

γ
Data Ring Screw Gear Shaft

Precision Recall Precision Recall
0.5 27.52 45.21 63.56 38.12
0.8 65.70 54.64 66.35 63.71
1.0 58.43 48.74 54.29 69.53
1.2 10.86 25.66 28.65 12.19

segmentation results based on its confidence scores.

2.4.4 Ablation studies

Ablation on the dmax

We use different screening factor γ in non-maximum suppression. The performance is
shown in Table 2.3. The larger γ tends to cluster different objects together, while the
smaller γ tends to produce over-segmentation.

Ablation on VDM and ASM

Four ablation experiments are conducted on the bin-picking scenes to evaluate the effec-
tiveness of VDM and ASM in FPCC-Net. Precision and recall with an IoU threshold of 0.5
is added to interpret the results. Four groups for this ablation experiments are explained
below:

1. VDM and ASM are removed, that is to say, no weights are added to compute the
embedded feature loss LEF.

2. Only VDM is used in loss LEF.

3. Only ASM is used in loss LEF.

4. Both VDM and ASM are adopted in loss LEF.

Table 2.4 shows that the performance of the first group is the worst among the four exper-
iments and two weight matrices improve the ability of the network to extract distinctive
features of the 3D point cloud. The result indicates that the two weight matrices we
designed are reasonable. VDM makes FPCC-Net do not need to care about the feature
distance of points with too large Euclidean distance. ASM reduce the network’s focus on
point pairs whose two points are boundary points.

Processing Time

Table 2.5 reports the average computation time per scene measured on Intel Core i7 8700K
CPU and Nvidia GTX1080 GPU. Each bin-picking scene of XA (Object A, B, and C)
contains about 20 objects with 60,000 points. It takes around 0.6 ∼ 0.8 [s] to process one
scene of XA by FPCC. A scene of IPA contains about 10 ∼ 30 objects with 15,000 points,
which could also be processed in about 1.5 [s] by FPCC. PointGroup has faster processing
speed with the support of sparse convolution. In summary, FPCC is about 60 times faster
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Table 2.4: Results of ablation experiments. The metric is precision and recall with an IoU
threshold of 0.5.

VDM ASM Ring Screw Gear Shaft
Precision Recall Precision Recall

1 52.08 40.54 40.90 23.74
2 ✓ 54.55 45.86 41.92 28.12
3 ✓ 54.46 45.69 44.85 48.43
4 ✓ ✓ 58.43 48.74 54.29 69.53

Figure 2.11: Illustration of merging process in SGPN. Dotted lines indicate instance and
thin solid lines represent potential groups. Groups with an IoU greater than a threshold
are merged and consist a new group represented by the thick solid line. Red group will be
merged with purple group, since the IoU between red and purple groups is greater than
the threshold.

than SGPN and 2 times faster than ASIS and 3D-BoNet, but slower than PointGroup with
sparse convolution. Most of the existing methods employing a clustering strategies similar
to SGPN find some reference points to generate potential groups, and then merge each
group according to some metrices, e.g., IoU. The computation complexities for clustering
processes of SGPN and FPCC are analyzed as follows: Firstly, we assume that there are m
instances and n points in the scene (m≪ n), and the outputs of clustering algorithms of
SGPN and FPCC are correct. The clustering of SGPN is divided into two steps: potential
groups generating and groups merging. Firstly, SGPN takes NSGPN ≫ m points with
high confidence as reference points of the clustering. Then NSGPN groups are generated
based on the feature distance between the reference points and the other points. The
computational complexity of groups generating, that is, the number of computation of the
feature distances tends towards O(nNSGPN). Next, two groups with an IoU greater than
a threshold, such as 0.5, are merged together, as shown in Figure 2.11. The computation
complexity of groups merging for SGPN, that is, the number of computation of IoUs
between two potential groups tends towards O(mNSGPN). In contrast, FPCC does not
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Table 2.5: Computation speed comparisons [s/scene]

Method
Data Backbone Ring Screw Gear Shaft Object A Object B Object C

SGPN DGCNN 298.60 104.90 53.32 72.83 28.21
ASIS DGCNN 8.37 7.45 3.62 3.09 1.78

3D-BoNet DGCNN 3.91 3.80 1.29 0.91 0.80
PointGroup DGCNN 2.16 1.62 1.26 0.78 1.20
PointGroup Spase Convolution 0.81 0.64 0.39 0.47 0.36

FPCC DGCNN 1.78 1.43 0.79 0.55 0.65

generate any potential group. The reference points of FPCC are found by Algorithm 1.
Each point in the scene point cloud is directly clustered with the nearest reference point,
that is, the center point based on feature distance. Hence the competition complexity of
clustering for FPCC tends towards O(nm). In summary, the computational complexities
of groups generating of FPCC is much lower than SGPN, that is O(nm) ≤ O(nNSGPN),
since the number of potential groups NSGPN is much higher than the number of instances
m. In addition, the calculation of IoU between groups which is not required for FPCC
needs more computational resources than that of feature distances. Thus we can conclude
that the computational cost of FPCC is much smaller than that of SGPN theoretically. An
example of the relationship of computation time and the number of instances is shown in
Figure 2.12. ASIS adopted a clustering method similar to SGPN, and their calculation time
increases significantly with the increase of the number of instances. 3D-BoNet also need
more calculation time because of increase of bounding boxes. However, the computation
time of FPCC and PointGroup are not sensitive to the number of instances.

(a) Computation time on ring (b) Computation time on gear

Figure 2.12: Average computation time for different number of instances. As the number
of instances increases, the computation time of SGPN and ASIS increase significantly.

2.5 Discussion

This chapter proposes a fast and effective 3D point cloud instance segmentation named
FPCC for the bin-picking scene, which has multi instances but a single class. FPCC
includes FPCC-Net which predicts embedded features and the geometric center score of
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each point, and a fast clustering algorithm using the outputs of FPCC-Net. Two hand-
designed weight matrices are introduced for improving the performance of FPCC-Net. A
novel clustering algorithm is proposed for instance segmentation. Although still slower
than typical 2D CNN based on depth images, the results are far superior to the 2D
scheme. For multi instances but single class scenes, FPCC achieves better performance
than existing methods even without manually labeled data. Besides, we theoretically prove
that the computational complexity of FPCC is much lower than SGPN.

This study also has a certain limitation that must be addressed in future work, as
follows: 1) FPCC is not particularly suitable for objects whose geometric center is not
on the itself. We are considering using other methods to define the reference point of
each instance. 2) We use the existing semantic network, i.e., DGCNN, as FPCC’s feature
extractor. Perhaps the feature extractor does not fit the task of instance segmentation
perfectly. The improvement of feature extractor is our future work.

2.6 Conclusion
The chapter developed a framework that enables for fast instance segmentation of point
clouds, with the following conclusions:

• the precision and speed of our 3D point cloud instance segmentation for robotic
bin-picking scenes reach the current state-of-the-art;

• Experimental results show that it is feasible to train the network with synthetic
data;

• The backbone, DGCNN, limits the number of points that the network can process
per frame.
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Chapter 3

Deep Learning-based Object
Instance Segmentation and Pose
Estimation from Point Clouds of
Stacked Wave-Dissipating Blocks

3.1 Background and Objectives of this Chapter

Breakwaters protect beaches, ports, and harbors from erosion caused by waves. Wave-
dissipating blocks made of large concrete slabs are essential components of the armor layer
of breakwaters that protect their core from direct wave attacks. However, long-term wave
motion and erosion damage the blocks irreversibly, causing them to sink and even break
off [21]. Therefore, periodical supplemental work must be conducted on wave-dissipating
blocks to maintain breakwaters. Therein, new wave-dissipating blocks are stacked onto the
existing ones until their top surfaces exceed the target height, as shown in Figure 3.1(a).
Thus, precisely estimating the current block-stacking status is imperative for monitoring
long-term block movements in the maintenance and planning of lean supplemental work.

With the recent increased availability of various 3D sensors, such as airborne LiDAR,
and UAV-photogrammetry, dense three-dimensional (3D) point clouds of existing offshore
object surfaces can easily be measured in a low-cost manner [22]. On the other hand,
multibeam echo-sounder (MBES) is enabling to capture a large-scale 3D point cloud of
the bottom of water and realizes detailed exploration of undersea objects [118,119]. More-
over, drone-mounted RGB and multispectral imagery [120], drone-mounted lightweight
dual-wavelength LiDAR systems [121] are enabling shallow bathymetric mapping capabil-
ities and undersea object detections. The effectiveness of data integration of bathymetric
mapping using single beam echo sounder with ground surface mapping using terrestrial
LiDAR and UAV-photogrammetry has also been demonstrated [122].

From the viewpoint of practicality and ease of use among above 3D sensing methods, as
shown in Figure 3.1(b), the emergent areas of wave-dissipating blocks can be measured eas-
ily by UAV-photogrammetry, while MBES can measure the submerged portion. Suppose
that individual block poses can be detected from the measured point clouds of existing
block surfaces, as shown in Figure 3.1(c). This allows for the evaluation of more precise
overseas and undersea block-wise stacking status required for long-term maintenance and
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(a) Block supplemental work (b) 3D measurement of existing block
surface

(c) Individual block pose de-
tection

Figure 3.1: Supplemental work on wave-dissipating blocks. Periodical repair work aims at
stacking new supplemental blocks on top of existing ones until the target height.

a lean supplemental plan.
Accurate monitoring of the poses of individual wave-dissipating blocks offer the follow-

ing benefits for the administrators:

• 6D poses of individual blocks faithfully reproduce the as-built status of each block
to improve the accuracy of estimates of new blocks’ quantities and their stacking
plan in the supplemental work;

• The as-built status can be grasped block by block after the construction and sup-
plemental works. Thus, the construction results can be recorded and visualized
comprehensively compared to recording only the measured point clouds of existing
block surfaces;

• By providing the pose and attribute information to each block model, it is possible
to check the long-term change in the blocks, such as missing, sinking, and damaged
blocks, and implement a more precise and sustainable maintenance activity.

To date, several studies compared the dense 3D point clouds acquired at different
times [22–27] to evaluate possible changes in stacked block surfaces within a certain pe-
riod. However, these studies do not provide sufficient information for individual block
movements or block breakage over a long time interval or after severe events [26] that
could significantly affect the structural integrity of breakwaters. Due to the technical dif-
ficulty, very few studies attempted to detect individual wave-dissipating block poses from
3D dense point clouds. For example, Bueno et al. [21] presented an algorithm for recon-
structing cube-shaped wave-dissipating blocks from incomplete point clouds captured by
airborne LiDAR. Shen et al. [28] estimated individual brick poses from laser-scanned point
clouds that measured a cluttered pile of cuboid bricks. Although the above methods can
recognize blocks with simple shapes, it is difficult for them to identify those with complex
shapes, like tetrapods or clinger blocks.

To address this issue, a novel deep-learning-based 3D pose detection method of wave-
dissipating blocks from as-built point clouds measured by UAV-photogrammetry and
MBES with reasonable detection performances is designed and proposed. The method
can detect as many blocks as possible all at once from a given scene. The proposed pose
detection method enables 6D pose estimation of blocks and block type classification.

To realize our detection method, a category-agnostic instance segmentation network
called Fast Point Cloud Clustering v2 (FPCCv2) was designed initially to segment a point
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cloud corresponding to a block instance from point clouds measured from large areas by
UAV and MBES. FPCCv2 is an instance segmentation network for point clouds extended
from our previous segmentation network Fast Point Cloud Clustering (FPCC) [123] with
a novel feature extractor. This feature extractor increases each point’s receptive field to
obtain more discriminative features for the instance segmentation. FPCCv2 is trained on
synthetic block-stacking scenes constructed from block CAD models and applied to the
instance segmentation of the blocks of real scenes. The 6D pose of the segmented block
is estimated using a 3D feature descriptor Point Pair Feature (PPF) [124] and refined
by best-fit point cloud alignment, called Iterative Closest Points (ICP) [125]. Finally, a
fitness score is used to distinguish each block type in a scene including different types of
blocks.

The proposed block detection method is validated on three sites of ports, consisting of
different block types. The instance-labeled training dataset used to supervise the network
is automatically generated by a physics engine [126] and block CAD models, which avoids
laborious manual labeling work on the real scene and secures rich training datasets for
our network. Different synthetic point clouds are generated according to the measurement
properties of UAV or MBES to bridge the gap between synthetic and real scenes. The
combination of PPF and ICP enables the precise estimation of 6D poses of individual
blocks in a scene. Moreover, the each block type can be identified from a point cloud
scene.

In summary, the original contributions of the proposed method are described as follows:

• The originally proposed convolutional-neural network called FPCCv2 enables rapid
segmentation of individual wave-dissipating block instances from a large-scale 3D
measured point cloud captured from a scene of stacked blocks. This enables us to
estimate 6D poses of multiple blocks at once and improve computational efficiency
of the block pose estimation.

• A physics engine enables synthetic and automatic generation of instance-labeled
training datasets for the instance segmentation of blocks. It thus avoids laborious
manual labeling work and secures rich training datasets for our convolutional-neural
network.

• Synthetic point cloud generation considering the difference in characteristics of mea-
surement using UAV and MBES enhances the performance of instance segmentation.

• The combination of the 3D feature descriptor by PPF and point-to-point registra-
tion by ICP enables precise estimation of 6D poses of individual blocks in a scene.
Moreover, the difference in the type and size of individual blocks can be identified
in a scene. This is useful for the as-built inspection and instance-level monitoring of
wave-dissipating blocks.

• The performances of 6D pose estimation of individual wave-dissipating blocks are
evaluated both in synthetic scenes and various real construction sites including un-
dersea blocks.

The remainder of this chapter is organized as follows. Section 3.2 reviews related work
and clarifies the issues encountered. Section 3.3 introduces an overview of the proposed
pose detection method. Section 3.4 describes our convolutional-neural network used for
the instance segmentation of measured point clouds. Section 3.5 presents the details of
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(a) Detection of cube-shaped blocks [127] (b) Detection of rectangular bricks [28]

Figure 3.2: Detection of the wave-dissipating blocks from large-scale point clouds.

block pose estimation and block type classification. Section 3.6 provides experimental
results about detection performances using real and synthesized scenes. Finally, Section
3.8 presents the conclusion and future directions for research.

3.2 Related Work

From a geometric processing viewpoint, this study employs three techniques: (1) 3D
monitoring of wave-dissipating blocks in breakwaters, mainly used in civil engineering,
(2) instance segmentation on point clouds, and (3) 3D object detection and 6D pose
estimation on point clouds, mainly used in computer vision. In this section, the related
work on these techniques is introduced, and the challenges faced by these techniques when
applied to detect the 3D poses of the wave-dissipating blocks from large-scale point clouds
are elucidated as shown in Figure.

3.2.1 3D monitoring of Wave-Dissipating Blocks in Breakwaters

As stated in the introduction, wave-dissipating blocks of breakwaters require periodic
monitoring and supplemental work to ensure that they remain in good condition [22, 23,
128–130]. To this end, in recent years, several studies have been reported on the use of
photogrammetry and UAVs to monitor the 3D condition of blocks of breakwaters.

Sousa et al. [23] developed a data acquisition system to capture 3D point clouds of
breakwaters using UAV-based photogrammetry. Lemos et al. [131] used a terrestrial laser
scanner, photogrammetry, and a consumer-grade RGBD sensor to determine the rocking
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and displaced wave-dissipating blocks in the breakwater structure. These studies monitor
the block surfaces’ overall condition by comparing changes in data from different periods.
However, they could not assess the state nor estimate the pose of an individual block.

In contrast, methods have gradually been proposed to investigate the condition of indi-
vidual blocks in breakwaters and estimate their posture from 3D point clouds obtained by
laser scanners or photogrammetry. González-Jorge et al. [22] evaluated the measurement
accuracy of 3D point clouds obtained by photogrammetry and clarified the detection limit
of small translations and rotations on a flat surface of one cube armor, manually segmented
from a point cloud. Shen et al. [28] proposed an algorithm to extract individual rectan-
gular bricks from a dense point cloud sampled from an unorganized pile of bricks using a
terrestrial laser scanner. Bueno et al. [127] developed a method for the automatic mod-
eling of breakwaters with cube-shaped block armors from a 3D point cloud captured by
a terrestrial laser scanner. Unfortunately, the detection methods proposed in [22, 28, 127]
are only applicable to a simple block, whose shape is bounded by planes. This cannot
be easily extended to the recognition of blocks like tetrapods or accropodes, whose shape
is composed of complex surfaces. Moreover, low recall and high computational overhead
reduce the practicality of these methods.

Recently, Musumeci et al. [27] used a consumer-grade RBGD sensor to measure the
damage in a laboratory-scale model of stacked accropode blocks around a rubble mound
breakwater simultaneously above and below the water level. Although they quantified
the distribution of rotational and translational shifts between the point clouds captured
at different times, they evaluated them only as a directional and positional shift at the
centroid of a local point cloud in a small cube, regularly partitioned from the original point
cloud. Therefore, their method could not detect individual wave-dissipating block poses
from 3D dense point clouds nor quantify the individual block movements or breakage over
time.

Compared with the above methods, our method can monitor the wave-dissipating block
at instance level within an acceptable computation time. The high recall and low compu-
tational consumption broaden the deployment of our approach in real-world scenarios. In
addition, our method is robust to various wave-dissipating blocks with complex-shape.

3.2.2 Instance Segmentation on Point Cloud

Detecting point subsets that correspond to an individual wave-dissipating block from an
original point cloud can be regarded as a 3D instance segmentation problem. The 3D
instance segmentation algorithm aims at assigning a label to each point in an original
point cloud, distinguishing different instances of the same class.

Most deep learning-based 3D instance segmentation frameworks recently focused on
indoor data and exhibited remarkable performances. For example, some grouping-based
methods [7, 16, 67, 84, 110] cluster points in a high-dimensional space based on their sim-
ilarity of features, while others [85, 86] cluster points in Euclidean space after moving
points toward their corresponding instance centers based on the predicted offset vec-
tor. These methods [7, 16, 67, 84–86, 110] used publicly-available labeled point cloud
datasets [76,77,109] as training sets developed for indoor scene segmentation. The object
surfaces in these high-quality indoor point cloud scenes [76, 77, 109] are densely sampled
with little occlusions and sometimes attached with additional information, such as RGB
attributes.
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However, the lower sides of actual wave-dissipating blocks stacked on coast sides cannot
be measured, and missing portions of the point cloud remain, as only the upper sides of
each block are measured. Therefore, the coverage of the measured points of the wave-
dissipating blocks is incomplete and considerably different from the one of indoor objects.
Thus, the learning-based 3D instance segmentations developed for indoor scenes [7, 16,
67, 84–86, 110] do not necessarily work well for the block instance segmentation of point
clouds of stacked wave-dissipating blocks in the natural environment.

Recently, [132] proposed a method based on a deep neural network for instance segmen-
tation of LiDAR point clouds of street-scale outdoor scenes into point cloud instances of
pedestrians, roads, cars, bicycles, etc. The authors used not only the labeled point cloud
of real scenes, but of simulated scenes as well. In [132], they combined the point clouds
measured from real backgrounds with the foreground 3D object models to generate their
training data. However, their foreground objects are positioned separately, not jumbled,
and not overlapped like wave-dissipating blocks. Moreover, they manually cleaned up the
background points to remove moving objects, such as cars. Therefore, it is difficult to
directly apply their method of training dataset creation and instance segmentation to our
instance segmentation problem of complex overlapping blocks.

There are instance segmentation methods specifically designed according to the com-
plexity of outdoor scenes and according to characteristics of the objects of interest. Wal-
icka et al. [133] designed a method for segmenting individual stone grains on a riverbed
from a terrestrial laser-scanned point cloud. After the random forest algorithm separates
the grain and the background, a density-based spatial clustering algorithm then segments
the individual grains. Luo et al. [134] first employed a neural network to segment tree
points from the raw urban point cloud and then classified the tree clusters into single
and multiple tree clusters according to the number of detected tree centers. Djuricic et
al. [135] developed an automated analysis method to detect and count individual oyster
shells placed on a fossil oyster reef from a terrestrial laser-scanned point cloud based on
the convex surface segmentation from the point cloud and the openness feature. However,
these segmentation algorithms are designed to segment the instances of specific objects in
outdoor point cloud scenes, and it is questionable whether they can be applied directly to
segment the scenes of wave-dissipating blocks.

In summary, to the best of our knowledge, there are no currently available studies on
the detection and recognition of complex-shaped wave-dissipating blocks from large-scale
3D point clouds.

3.2.3 Model-based 3D Object Detection and 6D pose estimation

Given the 3D reference model of a wave-dissipating block to be detected, the problem in
our study can be regarded as a model-based 3D object detection and 6d pose estimation
problem in point clouds. From a given point cloud scene, a local region on the point cloud,
whose geometry is matched to a given reference model shape, must be extracted, and the
position and orientation of the model must be identified.

Numerous descriptor-based methods were proposed for 3D object detection and 6D pose
estimation in a point cloud scene. So far, they have demonstrated good performances. For
example, SHOT [136] is a local feature-based descriptor that establishes a local coordi-
nate system at a feature point and describes the feature point by combining the spatial
location information of the neighboring points and the statistical information of geometric
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features. The Point Feature Histogram (PFH) [137] uses the statistical distribution of the
relationship between the pairs of points in the support area and the estimated surface nor-
mal to represent the geometric features. The PFH descriptor is calculated as a histogram
of relationships between all point pairs in the neighborhood. These studies show that
descriptor-based object recognition methods are highly generalizable and simultaneously
perform the detection and 6D pose estimation tasks.

However, pre-processing is often required for scenes containing multiple objects to
divide the scene into various regions of interest and then separately match the model and
regions of interest [19, 116, 138, 139]. The naive segmentation tends to cause over- and
under-segmentation, which seriously deteriorates the matching performance.

Nevertheless, some learning-based 6D pose estimation networks have also been pro-
posed in recent years. PoseCNN [140] is an end-to-end convolutional-neural network that
learns the 3D translation and rotation of objects from images. DenseFusion [141] merges
the features of images and point clouds and estimates the pose from them. PPR-Net [50]
and PPR-Net++ [142] regressed the 6D pose of the object instance to which each point
belongs from the point cloud. However, in addition to the difficulty of learning 6D poses
from images [143–145], producing a dataset for training also poses a substantial practical
problem for a single institution or company. Images of outdoor rubble mound breakwaters
can easily change with differences in light, weather, and season. PPR-Net [50] and PPR-
net++ [142] estimate the 6D pose of an individual object from a cluttered point cloud
scene; however, it is difficult to retrieve the 6D poses of heavily occluded objects.

Collectively, these learning-based methods cannot provide accurate poses that satisfy
the monitoring of small displacements that occurred in wave-dissipating blocks, and it is
difficult to retrieve the pose of the object with occlusion.

3.3 Overview of the Processing Pipeline

Figure. 3.3 illustrates a processing pipeline of 3D pose detection of individual wave-
dissipating blocks from an input point cloud in our study.

• First, the category-agnostic instance segmentation network FPCCv2 segments the
input point cloud measured by UAV and MBES into the subsets of points correspond-
ing to individual block instances. FPCCv2 is a kind of deep neural network, which is
pre-trained by synthetic point clouds that mimic the point clouds of stacked blocks
measured by UAV and MBES, respectively, using the stacked block CAD models
and surface point sampling. The detailed algorithms are described in Section 3.4.

• Second, the 6D pose of an individual block is estimated from each segmented point
cloud using a conventional descriptor-based 3D object detection algorithm that
makes use of PPF [124] and ICP [125]. The detailed algorithm is described in
Section 3.5.1.

• Finally, if the scene consists of multiple typed blocks, a fitness score corresponding
to each type is calculated for each segmented point cloud to identify the type of
detected individual block. The detailed algorithm is shown in Section 3.5.2.
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Figure 3.3: Pipeline of block detection. The algorithm consists of three steps for detecting
the type and 6D pose of all block instances in the scene. The input is the point cloud
of a scene measured by the UAV or MBES. The point cloud of an individual block is
output by the convolutional network FPCCv2 (Block segmentation). Next, the 6D poses
for multiple models were roughly estimated by PPF and refined by ICP (Block pose
estimation). Finally, the block type is determined based on the fitness score (Block type
classification).

3.4 3D Instance Segmentation for Wave-Dissipating Blocks
based on Deep Neural Network

The first and crucial step of our wave-dissipating block pose detection is an instance
segmentation of an original point cloud using a deep neural network. The category-
independent instance segmentation network, called FPCCv2, segments the input point
clouds measured by UAV and MBES into subsets of points corresponding to individual
blocks. FPCCv2 is an extended version of our previous instance segmentation network
FPCC [123] with a novel feature extractor. Therefore, this section first revisits FPCC,
then explains why we must improve our previous FPCC to address the issue of instance
segmentation of wave-dissipating blocks, and how we improved it to solve the issue.

3.4.1 FPCC and its limitation

FPCC was originally developed by Xu et al. [123] as a category-agnostic 3D instance
segmentation network for discriminating each part in an industrial bin-picking scene in
robotic automation, where the parts have an identical shape and overlap each other. FPCC
extracts features of each point, while inferring the centroid of each instance. Subsequently,
the remaining points are clustered to the closest centroids in the feature embedding space.
It was shown that even FPCC trained by synthetic data performs at an acceptable level
on real-world data [123].

As shown in Figure 3.4, FPCC is composed of a point-wise feature extractor and two
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Figure 3.4: Network architecture of FPCC [123]. After the Center Score branch predicts
the probability that each point is likely to be the centroid of the object, non-maximum
suppression is used to select the most likely centroids as reference points for clustering.
The reference and remaining points are clustered according to the L2 distance in feature
space. Our improvement aimed for FPCCv2 is the feature extractor (Section 3.4.2), where
the features of point clouds can be exploited more effectively than the original FPCC.

branches: an embedded feature branch and a center score branch. The point-wise feature
extractor has the same semantic segmentation structure as DGCNN [68]. The extracted
features are sent to the point-wise embedded feature branch and center score branch,
respectively. The instance segmentation can be regarded as a kind of point cloud clustering,
and the clustering method of FPCC assumes that the points in the same instance have
similar features, while points in the different instances have relatively different features.
In contrast, the center score branch predicts the probability of each point to be placed
at the centroid. In the prediction phase, non-maximum suppression finds the point with
the highest score for each target object as a reference point for clustering. Then, the
distances between the remaining points and the reference point were calculated. Finally,
the remaining points are clustered into the same instance with the center point by feature
distance.

Although FPCC exhibits a promising instance segmentation performance in robotic
bin-picking [16,19,51,123], a computational and efficiency issue could arise when applying
it to the instance segmentation of large-scale point clouds captured from stacked wave-
dissipating blocks in real breakwaters.

FPCC made use of DGCNN [68] as the feature extractor. DGCNN employs the k-
nearest neighbor (k-NN) algorithm to construct the graph of the point cloud in three-
dimensional space and high-dimensional space, such that the topological structure of the
graph of DGCNN is not static, but dynamically updated after each layer of the network.
Dynamically updating the graph can heavily increase training and prediction time and
limits the number of points that the network can process per frame under the same memory
size. To encode the features of large-scale point clouds faster and better, a novel feature
extractor is aided to the original FPCC. Details are described in the next section.
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Figure 3.6: Nearest neighbor selection of dilated k-NN [146]. The number in the circle
represents the distance from center point (red). k-NN, where k = 5, with different dilation
rates 1, 2 and 4 (left to right) selecting different points (yellow) as relative points.

3.4.2 FPCCv2 with New Feature Extractor

To solve the issue pointed out in 3.4.1, as shown in Figure 3.5, the feature extractor of
FPCCv2 consists of three parts: 1) dilated graph convolutions (GraphConv), 2) relative
local information, and 3) attentive pooling.

Dilated Graph Convolution. Our goal was to give each point reasonable and
sufficient information within an acceptable computational overhead. Previous studies
[146–148] showed that the size of the receptive field is essential to the performance of a
network. A larger receptive field can offer neural units more comprehensive and higher
dimensional features. However, a too-large receptive field makes it more difficult for the
network to learn high-frequency or local features [148]. Stacking convolutional layers or
increasing the kernel size of convolution are common approaches to increase the receptive
field.

Inspired by previous research [146,148], the dilated local graph is defined by a dilated
K-NN in Euclidean space. The d-dilated K-NN first finds K · d nearest neighbors for a
point i, but only selects every d points from the nearest as the neighbor point set N(i, K, d)
(see Figure 3.6). Therefore, a few computational overheads are increased to expand the
receptive field without increasing the number of model parameters. Three dilated graph
convolutions were stacked in our feature extractor. The receptive field sizes with different
k and d after each dilated graph convolution are shown in Figure 3.7. Then, the relative
feature r(i,k) of a point i to point k in its corresponding d-dilated K-NN neighbor points
N(i, K, d) is defined as:

r(i,k) = MLP (fi − f(i,k)), k ∈ N(i, K, d), (3.1)
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Figure 3.7: Visualization of the receptive field. The receptive field (green point) expands
with deeper networks (rows). Increasing nearest neighbors k and dilation rate d can
enhance the receptive field with less computational overhead. When k = 20, d = 4, the
receptive field of the third layer can roughly cover a complete block.

where fi and f(i,k) are respectively the feature of point i and k for N(i, K, d). In the
first graph convolution, f is selected as x-y-z coordinates of the point. MLP represents a
multilayer perceptron. Figure 3.8 illustrates the process of the dilated graph convolution.

Relative Local Information. The relative local information of a point i with its
d-dilated K neighbor points N(i, K, d) is defined as:

l(i,k) = [pi ⊕ p(i,k) ⊕ (pi − p(i,k))⊕ ∥pi − p(i,k)∥2], k ∈ N(i, K, d), (3.2)

where pi and p(i,k) denote three-dimensional coordinates of point i and k for N(i, K, d),
⊕ represents the concatenation operation, and ∥ · ∥2 denotes Euclidean distance between
the two points. The relative local information of each point is repeatedly introduced into
the network to learn local features efficiently.

Attentive Pooling. Given a set of features F = {f1, f2, ..., fm, ..., fM}, where fm ∈
R1×D and M denotes the size of pooling. Attentive pooling aims to integrate F into a single
feature fout ∈ R1×D, while achieving permutation invariance of its elements. The existing
methods [66,68,149] use simple max/mean pooling to address the permutation invariance,
resulting in the loss of crucial information [10]. Influenced by recent studies [10, 150], we
employed attentive pooling in aggregating relative features, as shown in Figure 3.9. The
attentive pooling operation consisted of the following steps:

1) Association with location information. For each point i, the relative features r(i,k)
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Figure 3.8: Dilated Graph Convolution. N points are input and K relative features of
each point are output.

and relative local information l(i,k) of the d-dilated K-NN neighbor points were concate-
nated to generate a new feature f̃(i,k) = r(i,k) ⊕ l(i,k), k ∈ N(i, K, d). The new feature set
F̃ is defined as F̃ = {f̃(i,k) ∈ R1×D|k ∈ N(i, K, d)}.

2) The feature set F̃ is fed into a shared MLP to obtain initial attention scores C =
{c(i,k)|k ∈ N(i, K, d)}, where c(i,k) has the same dimension as f̃(i,k), and is defined as:

c(i,k) = MLP (f̃(i,k)). (3.3)

3) A softmax normalizes the elements of C to obtain the attention score S = {s(i,k)|k ∈
N(i, K, d)}. The attention score s(i,k) is defined as:

s(i,k) = [s1
(i,k), s2

(i,k), ..., sd
(i,k), ..., sD

(i,k)], (3.4)

where

sd
(i,k) = e

cd
(i,k)∑K

j=1 e
cd

(i,j)
, (3.5)

where cd
(i,k), cd

(i,j) are the d-the elements of c(i,k), c(i,j). The learned attention score can
actively discriminate the degree of importance among features around a point. Finally,
the weighted summed feature of a point i is given by:

fiout =
K∑

k=1
(f̃(i,k) ⊗ s(i,k)), (3.6)

where ⊗ represents element-wise multiplication.
A sequence of Dilated Graph Convolution and Attentive Pooling modules are stacked in

the feature extractor. Theoretically, the more modules are stacked, the larger the receptive
field of each point will be. However, more modules would inevitably sacrifice the overall
computational efficiency, and an excessively large receptive field is unnecessary [10]. The
features integrated by the three Attentive Poolings were fed into three MLPs and then
concatenated. Finally, these features were fed into two MLPs with a skip connection.
Following the structure of the original FPCC, the 512-dimensional features of each point
were extracted and fed into the two branches of the FPCC.
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Figure 3.9: Attentive pooling. K a-dimensional relative features of N points are integrated
in this module with the permutation invariance

3.4.3 Generation of Synthetic Point Cloud as Training Data for Instance
Segmentation using physics engine

As discussed in Section 3.2.2, creating a rich and reliable training dataset is essential for
instance segmentation of measured point clouds of wave-dissipating blocks based on deep
learning. However, creating this training dataset by manually labeling block instances in
large-scale real measured point clouds is labor intensive and practically impossible. To
address this issue, FPCCv2 is only trained by the synthetic point cloud data that mimics
the stacking poses of wave-dissipating blocks, and evaluated on both real-word data and
synthetic data.

Several previous studies [151–153] used synthetic images to train the network through
domain randomization. These methods proved successful through sophisticated image
rendering. However, the color of blocks in outdoor environments can change due to un-
controllable factors, such as seawater, light and season, etc. Synthetic data faces difficulty
to cover these influences. Based on this consideration, RGB information of the point cloud
did not be used in both training and prediction. There are at least two advantages to this
approach. The first is that the data is easier to synthesize in an acceptable period without
manual work. The second is that it makes the network more robust and avoids interference
of environmental factors.

The following procedure generates our synthetic point cloud data of the stacked wave-
dissipating blocks.

1. A triangular mesh model mb of a wave-dissipating block is created from the surface
tessellation of its 3D CAD model.

2. Subsequently, a point set P b is densely sampled on every triangle face of the mesh
model mb.

3. A variety of penetration-free stacking poses of piled blocks Sstack are generated using
a set of triangular mesh model instances {mb

0, mb
1, · · · } for the model mb. Further,

a set of sampled points on blocks in stacking poses are calculated for each block as
Pstack = {P b

0 , P b
1 , ·} on the model instances {mb

0, mb
1, ·}, respectively.

4. A subset of the sample points on the block model in the stacking poses Sstack is
picked up as P

′
stack = {P ′ b

0, P
′ b
1, ·}, (P ′ b

j ⊂ P b
j ) that are only visible from a given

position vms of the measurement device.

5. For every point q ∈ P
′ b
j ∈ P

′
stack, Gaussian noise at a certain level is imposed on

the coordinates of q, which simulates the possible accidental error induced from the
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Figure 3.10: Triangular mesh models of wave-dissipating blocks are used in this study. We
named these blocks Block A1 (a), Block A2 (b), Block A3 (c), Block B1 (d) and Block B2
(e). They are made of concrete to dissipate the force of waves. Notably, A1, A2, and A3
have the same shape but different sizes, and so do B1 and B2.

measurement device to create the final synthetic point cloud. The standard deviation
of the Gaussian noise is estimated from the average distance between between model
and real block point cloud.

The point cloud are used to train our instance segmentation network (FPCCv2). Figure
3.10 shows the examples of triangular mesh models of wave-dissipating blocks used for
generating the synthetic point cloud data used in this study.

The stacking of blocks is simulated in the Bullet physics engine [126]. As shown in Fig-
ure 3.11, the penetration-free block-stacking scene under gravitation can be reconstructed
in real time. About 50 identical blocks are stacked in a square with a side length about
five times the maximum length of the block in a computer.

Figure 3.11 illustrates the generation procedures of synthetic point cloud data. The
position of the measurement devices vms is defined corresponding to the UAV-mounted
camera and sonar of the MBES, as shown in Figure 3.11(a). Figure 3.11(b) illustrates use
of the hidden-point removal algorithm [154] to eliminate the invisible sample points on
the block model from the original set of sampled points on the blocks Pstack to obtain the
visible sample points P

′
stack. Considering the noise levels of UAV and MBES that were

found in the preliminary experiment, we added Gaussian noise with a standard deviation
of 1 cm to the sampled point cloud P

′
stack measured from the UAV-mounted camera, and

a standard deviation of 3 cm to that from the MBES sonar.
We generated six groups of the synthetic point cloud data corresponding to the UAV

and MEBS measurements of the blocks in three ports, each containing 500 training and
100 test point clouds. The generation for one synthetic point cloud took about three
minutes in a standard desktop PC.

3.5 Block Pose Estimation and Type Classification

After segmenting the input point cloud into a set of points corresponding to individual
block instances, the 6D pose of an individual block is estimated from each segmented point
cloud using the PPF descriptor [124] and the best-fit point cloud alignment by ICP [125].
Moreover, the block type is classified based on the pose estimation results. The detailed
algorithm is described in this section.
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(a) (b)

Figure 3.11: Synthetic point cloud of stacking poses of piled blocks. (a) Original set of
sampled points on blocks in stacking poses Pstack. Point clouds of different block instances
are rendered in different colors. (b) Point cloud P

′
stack after removing invisible points and

adding artificial Gaussian noise that mimics the measurement error.

3.5.1 Block 6D pose estimation using 3D feature descriptor

First, a brief introduction to the PPF [124] descriptors for pose estimation is given. Owing
to the powerful instance segmentation of FPCCv2 of the original point clouds, the input
original measured point cloud Q has already been partitioned into a set of instance point
clouds Qstack = {Qb

0, Qb
1, · · · , Qb

l , · · · }, where Qb
l denotes the point cloud corresponding to

the potential surface of an individual block l. Therefore, the original PPF algorithm is
sufficient to estimate the 6D pose of an individual block l from a given point cloud Qb

l .
PPF-based pose estimation combines a hash table and a voting scheme for matching

the point cloud of a 3D object model to the one of 3D scenes to estimate the 6D pose of
an object.

Figure 3.12: Illustration of Point Pair Feature (PPF).

The PPF descriptor PPF (i, j) for a pair of 3D points (i, j) in a point cloud Qb
l corre-

sponding to the block l is defined as a four-dimensional vector by

PPF (i, j) = (∥dij∥2,∠(ni, dij),∠(nj , dij),∠(ni, nj)), (3.7)

where ni denotes the normal vector at a point i(∈ Qb
l ), dij = pj − pi, where pi denotes a

coordinates of point i, and ∠(a, b) denotes the angle between a vector a and b, as shown
in Figure 3.12. PPF descriptors are generated from every pair of points (i, j) in the point
cloud Qb

l and stored in a hash table, where PPF (i, j) is used for the hash key. Because
the PPF descriptor is defined only by a distance and angles between a pair of points, it is
invariant to the rotation and translation.
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A point cloud corresponding to an instance point cloud Qb
l in a scene is sampled to

approximately the same resolution as the sampled point cloud on a mesh model mb. After
sampling, given a scene point pair (is, js), the model point pair (im, jm) that shares a
similar PPF descriptor value to (is, js) can be retrieved using the hash table. To match
the two point pairs, first, the point pairs (is, js) and (im, jm) are transformed by the 4× 4
homogeneous transformation matrix Ts and Tm, respectively, such that im and is move to
the origin, and their normals are aligned to the x− axis.

Then, the 3×3 rotation matrix Rx(α) that rotates jm by an angle α around the x−axis
is found, such that jm matches to js. These transformations can be defined as Eq. 3.8:

[pis , 1]t = T −1
s

[
Rx(α) 0

0 1

]
Tm[pim , 1]t, (3.8)

where pis and pim denote the 3D coordinates of the point is and im, respectively.
Finally, in the voting scheme, for a given reference scene point is, PPF is evaluated

with all other scene points js, after which it is matched with those of all point pairs
(im, jm) on the model using the hash table. For each potential match, one vote is cast in
a 2D accumulator (im, α). After all matches are completed, the candidate poses over the
threshold vote number are selected for clustering. The score of a cluster is the number of
the candidate poses it contains, and the cluster with the highest score yields the estimate
of the block pose. Finally, according to Eq. 3.8, the pose of a block l is estimated as

[
Rl tl

0 1

]
= T −1

s

[
Rx(α) 0

0 1

]
Tm, (3.9)

Where Rl ∈ R3×3 denotes the rotation matrix, and tl denotes the translation of a block l.

3.5.2 Pose Refinement and Block Type Classification

Some breakwaters are armored with two or more types of blocks, so it is necessary to reg-
ister the point clouds of the different types of block models with the segmented scene point
clouds. First, the poses roughly estimated by PPF is refined by ICP, and subsequently the
fitness score is evaluated. The fitness score represents the relative distance between the
segmented scene point cloud Qb

l of a block l and registered model point cloud Mu, where
u indicates the type of the block.

The fitness score B is the average minimum Euclidean distance between the point
clouds of Qb

l and Mu, and it is defined as Eq. 3.10:

B(Qb
l , Mu) = 1∣∣Qb

l

∣∣ ∑
pi∈Qb

l

min
qj∈Mu

∥pi − qj∥2 , (3.10)

where pi is the i-th point in the point cloud Qb
l , qj is the j-th point of the model point

cloud Mu. The score B reflects how accurately the two point clouds match, where a lower
score is better. Among different block types U , Mu(u ∈ U) with the smallest fitness score
B is determined as the most likely one.
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(a)

(b)

(c)

Figure 3.13: Instance segmentation results on Sawara port (a), Todohokke port, (b) and
Era port (c). The left column is the point cloud scene measured by UAV. The middle
column is the predicted result of instance segmentation, and the last column is the ground
truth. Different colors represent different blocks.

3.6 Results of Wave-Dissipating Block Detection

3.6.1 Experimental Sites

Three breakwaters at Sawara port, Todohokke Port, and Era Port in Hokkaido prefecture,
Japan, were used for evaluation of the proposed block detection algorithm. For these
ports, existing block point clouds above the water surface were measured by UAV and
a commercial photogrammetry software, and those below the surface were measured by
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(a)

(b)

(c)

Figure 3.14: Visualization of instance segmentation results on MBES data. The first
row of Sawara port (a), Todohokke port (b) and Era port(c) is the original point cloud
measured by MBES. The second row of each subfigure is the predicted results of instance
segmentation. Different colors represent different blocks.
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Table 3.1: Detail of point cloud data of three ports.
Site Sawara Todohokke Era

Method of measurement UAV MBES UAV MBES UAV MBES
Size of test region [m] ~10× 10 ~10× 10 ~15× 15 ~15× 15 ~25× 25 ~25× 25

The number of test regions 14 15 20 10 6 7
Point density

(pts/m2) ~600 ~260 ~370 ~250 ~580 ~800

Block type used A1 A1 B1 B1+B2 A2+A3 A2+A3
Approx. amount of points

in a region 100,000~120,000 30,000~35,000 70,000~100,000 65,000~80,000 400,000~700,000 700,000~1,000,000

MBES. Table 3.1 indicates the details of the data of these sites, and Figure 3.23 shows
the top view of the point clouds.

Only one type of block was used for the Sawara port, and two different types of blocks
for the Todohokke and Era ports. Because the point cloud of all ports contains more
than a million points, the proposed algorithm cannot handle it at once due to the memory
limitation. Therefore, we partitioned the original point cloud of the whole site into several
regions of tens of meters by tens of meters to test the proposed block detection method as
shown in Table 3.1. Depending on the extent of the construction, the length and width of
each region is approximately five times the size of the corresponding block, and the areas
range approximately 100 to 600 m2.

3.6.2 Block Instance Segmentation

Experimental Setting of CNN

Our block instance segmentation network FPCCv2 was implemented in the TensorFlow
framework and trained using the Adam optimizer with an initial learning rate of 0.0001,
batch size of 1, and momentum of 0.9. The network was trained for 60 epochs. It took
approximately 30 h to train FPCCv2 for each block-stacking scene. All training and
testing are performed on an NVIDIA GeForce RTX 2080 Ti GPU and an Intel Core i9-
9900k CPU with 64 GB of memory. The training data is an all synthetic point cloud, as
described in Section 3.4.3.

Precision and Recall

The performance of the block instance segmentation by FPCCv2 is evaluated on real UAV
data and synthetic MBES data. Blocks of the same type but different sizes were stacked
in Todohokke port and Era port. Because FPCCv2 is a category-agnostic clustering
algorithm, differences in their size are not classified in this stage, but rather in the block
classification stage described in Section 3.5.2.

Figure 3.13 and Figure 3.14 illustrate the results of the block instance segmentation
predicted by FPCCv2, and further results are shown in Figure 3.24. Different blocks are
rendered by different colors. While there are some burrs at the boundary of neighboring
blocks, Figure 3.13 and Figure 3.14 show that the main body of each block could be clearly
segmented. However, the segmentation of the area near sea surface is poor, because the
original points measured in this area are noisier due to wave splash.

Table 3.2 summarizes the block-wise precision and recall of the instance segmentation
with an intersection of union (IoU) threshold of 0.5. The ground truth instance label
of the UAV test regions is made manually by referring the orthorectified image of these
sites. The MBES test data used for quantitative evaluation are synthetic, because MBES
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Table 3.2: Performance of instance segmentation on blocks in three ports. Metrics are
precision(%) and recall(%) with an IoU threshold of 0.5. The UAV point cloud was
measured from real-world scenes, and ground truth segmentation was performed manually,
while the MEBS point cloud was synthesized.

Sawara Todohokke Era
UAV MBES UAV MBES UAV MBES

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
80.05 55.25 90.38 69.70 82.70 74.24 72.72 75.78 88.60 49.47 86.32 68.23

data are noisy, and the boundaries of the objects are blurred, making it difficult to label
them manually. The precision on UAV data reached over 80%, while the recall rate ranges
between 50 and 76%. The recall on the real UAV data is lower than that on the synthetic
MBES data. We attribute this to some extremely small visible part of blocks in the real
scene, which are difficult to be retrieved and segmented.

3.6.3 Block Pose Estimation

Synthetic Data Set Creation

Because manually labeling the 6D poses of all blocks included in a real point cloud scene
of wave-dissipating blocks is a time-consuming and ambiguous task, the accuracy of block
pose estimation is evaluated on six sets of synthetic datasets mimicking the UAV and
MBES point clouds from the three ports. Each set contains 100 scenes with pose annota-
tion. Figure 3.15(a) shows examples of the synthetic dataset.

Pose Estimation Accuracy using Synthetic Data Set

A pose of a rigid 3D object is generally represented by a 4 × 4 matrix P = [R, t; 0, 1],
where R ∈ SO(3) is a 3×3 rotation matrix and t ∈ R3 is a 3D translation vector. Because
numerous wave-dissipating block shapes exhibit a certain number of geometric symmetries,
and these symmetric poses are equivalent in appearance, the accuracy of the block pose
estimation must be evaluated by considering these equivalent poses.

Taking the symmetry of a block geometry into account, a set of equivalent symmetric
poses of the block R(P) can be represented by its ground truth 6D pose P = [R, t; 0, 1],
where R ∈ SO(3) and t ∈ R3, as Equation 3.11.

R(P) ≜ {[RG, t; 0, 1]|G ∈ Gs}, (3.11)

where Gs ⊂ SE(3) is the group of equivalent symmetries that have no effect on the static
state of an object [155]. Based on the Equation 3.11, the displacement error Ed and
rotation error ER between an estimated pose P̂ = [R̂, t̂; 0, 1] and its ground truth pose P
are evaluated by

Ed(P̂, P) = ∥t̂− t∥, (3.12)

and
ER(P̂, P) = min

G∈Gs

arccos trace(R̂(RG)T)− 1
2 (3.13)

The largest edge size of the bounding box of a block is set to dmax; if the displacement
error is within 0.1×dmax and the rotation error is within 5◦, the case was counted as a true
positive; otherwise, it was considered as a false positive. Herein, performance metrices,
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(a) (b)

Figure 3.15: (a): Synthetic point clouds for three ports. (b): Pose estimation results on
synthetic point clouds. Block models are transformed to the scene using estimated poses.

precision and recall, evaluated the case where a scene contains numerous blocks, and the
average precision and recall of all scenes in each port were calculate finally. Only blocks
with a lower than 80% occlusion rate are considered of interest to retrieve. Following the
work [156], the occlusion rate is defined as:

Occlusion rate = 1− visible model surface point in the scene
total model surface points (3.14)

Table 3.3 presents the accuracy of pose estimation for each port, and Table 3.4 offers the
displacement and rotation errors. Our method performs well on synthetic data, not only
retrieving roughly 80% of blocks, but also with the errors less than 40 mm and 2.4◦ in the
pose estimation. Figure 3.15(b) yields some visualization of the pose estimation results
on synthetic data.

Pose Estimation Accuracy using Real Scene Data

It is practically difficult to prepare the ground truth poses of stacked individual blocks in
a real scene. Therefore, in this study, the difference between the block surface with the
estimated poses and the original point cloud indirectly indicates the accuracy of the block
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Table 3.3: Block-wise accuracy of block pose estimation for synthetic scenes. Only blocks
with a <80% occlusion rate are considered of interest to retrieve. The metrics are preci-
sion(%) and recall(%) with displacement error ≤ 0.1× dmax and rotation error ≤ 5◦.

Sawara Todohokke Era
UAV MBES UAV MBES UAV MBES

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
99.3 79.4 83.2 85.4 96.1 95.5 86.1 77.9 98.6 97.0 97.9 95.2

Table 3.4: Average of displacement and rotation errors for synthetic scenes.
Ed: displacement error(mm); ER: rotation error(◦).

Sawara Todohokke Era
UAV MBES UAV MBES UAV MBES

Ed ER Ed ER Ed ER Ed ER Ed ER Ed ER

30 0.8 31 2.3 23 1.5 31 2.4 29 0.5 39 1.1

pose estimation in the real scenes.

Figure 3.16: Average fitting error for block pose estimation.

To this end, we employed two indirect evaluation metrics: the average fitting error and
the matching rate. As shown in Figure 3.16, for every point i in a scene point cloud, the
distance hi(∈ H) from i to the closest face on the block CAD model that fits to the point
cloud is examined first. Then, the average fitting error Ef is calculated as:

Ef = 1
|H ′ |

∑
hi∈H′

hi, H ′ = {hi|hi ⩽ hth, hi ∈ H} (3.15)

where hth is the threshold distance for the accuracy evaluation.
Another metric, matching rate R, is used to indirectly evaluate the recall of pose

estimates, which is defined as:

R = |H
′ |

|H|
(3.16)

Examples of the average fitting error and matching rate are visualized in Figure 3.21
and 3.22. The average fitting error and matching rate of UAV and MBES data for the
three ports are summarized in Table 3.5. The results on real data show that our method
can match more than 60% of the points with a small pose estimation error, and almost
all visible blocks in a scene can be retrieved. Meanwhile, the measured boundary of the
MEBS point cloud decreases the performance of the method due to the excessive noise.
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Table 3.5: Accuracy of pose estimation for various blocks in real scenes. Ef : fitting
error(mm); R: matching rate(%). hth = 0.1 m for Sawara and Todohokke, hth = 0.2 m
for Era.

Sawara Todohokke Era
UAV MBES UAV MBES UAV MBES

fitting
error

matching
rate

fitting
error

matching
rate

fitting
error

matching
rate

fitting
error

matching
rate

fitting
error

matching
rate

fitting
error

matching
rate

33 71.32 39 67.28 34 66.17 38 60.54 48 75.12 58 71.52

Table 3.6: Accuracy of block type classification.
Site Sawara Todohokke

Block Type B1 B2 A2 A3
Actual block number 77 58 111 70

Miss classified block number 4 5 3 3
Accuracy 94% 96%

3.6.4 Block Type Classification

Finally, the performance of our multiple block type classification was evaluated on the
UAV point cloud from the Todohokke and Era ports. As described in Section 3.5.2, after
estimating the pose of a block, the fitness scores were calculated using different model
point clouds of blocks and the corresponding scene point clouds, respectively. The one
with the smallest fitness score was regarded as the correct block type. The ground truth of
the block type was determined by taking manual size measurement for the points sampled
from the original scene point cloud and comparing the size with the standard block size
specification disclosed in advance from its manufacturer.

The block type classification performance was indicated in Table 3.6. Figure 3.17
presents the block type classification result for the Todohokke port, where a total of 135
blocks were recognized, of which nine misclassifications are indicated by yellow circles. The
block-wise accuracy reached 94%. Figure 3.18 shows the result of block type classification
of the Era port, where a total of 181 blocks were recognized, of which six misclassifications
are indicated by yellow circles. The accuracy rate reached 96%. As shown in Figure 3.17,
the incorrect results occur mainly at the boundaries of the data, where the points of the
blocks are incomplete, and in the part near the sea, where the noise is relatively high.

3.6.5 Processing time

This section provides the processing time of each step involved in our method. Table
3.7 presents the processing time for synthetic training data creation and training of our
instance segmentation network (FPCCv2). Five hundred artificial point cloud scenes of
piled blocks shown in Figure 3.11 that mimic UAV and MBES measurements were used
to train FPCCv2 with an epoch of 60. Approximately 30 hours of training were required
in each.

Table 3.8 summarizes the computation time of the block detection except for the train-
ing. Once learned, FPCCv2 could segment about 100,000 points into the block instances
in less than 1 second and 700,000 points in about 4 seconds. The pose estimation time
was about 3 minutes per region. Each region of Sawara and Era included 40 blocks on
average, and each region of Todohokke contained 30 blocks on average. The time of the
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(a) (b)

Figure 3.17: Visualization of results of block type classification on Todohokke port. (a) is
the real point cloud scene of Todohokke port measured by UAV, and (b) is the result of
type classification after instances segmentation and pose estimation. Block B1 and Block
B2 is rendered in red and green, respectively. The yellow circles indicate misclassified
blocks.

Table 3.7: Processing time for synthetic training data creation and training of the instance
segmentation network.

Site Sawara Todohokke Era
Method of measurement UAV MBES UAV MBES UAV MBES
Size of test region [m] ~10× 10 ~10× 10 ~15× 15 ~15× 15 ~25× 25 ~25× 25

The number of generated synthetic point cloud scenes 500 500 500 500 500 500
Block type used A1 A1 B1 B1+B2 A2+A3 A2+A3

The number of blocks / region 50~60 50~60 50~60 50~60 50~60 50~60
Epoch 60 60 60 60 60 60

Time of training [hour] 30 30 30 30 30 30

block classification was about 30 seconds per region for Sawara and Todohokke, and about
2.5 minutes per region for Era.

These results show that the proposed block detection method is fast enough for practical
use.

3.7 Need for Instance Segmentation in the Pose Recognition
of Wave-Dissipating Blocks

This section provides a complementary explanation of the effectiveness of this pre-processing
of instance partitioning. A naive solution is to use the sliding window method instead of
instance partitioning, similar to brute-force search. Considering that the size of a block
is 4m, we use a window of size 5m× 5m with a given step strip of 2.5m, cut out multiple
sub-regions from the original scene as shown in Figure 3.6.5, and then match the blocks
in each sub-region with PPF. The experiments is carried out on two regions of Todohokke
port as shown in Figure 3.20. Table 3.9 gives the comparison results of using instance
segmentation and the sliding window method, respectively. Both the speed and the num-
ber of recognized blocks, the method with instance segmentation is far better than the

— 54 —



Chapter 3. Deep Learning-based Object Instance Segmentation and Pose Estimation
from Point Clouds of Stacked Wave-Dissipating Blocks

(a)

(b)

Figure 3.18: Visualization of results of block type classification on Era port. (a) is the
real point cloud scene of the Era port measured by UAV, and (b) is the result of type
classification after instances segmentation and pose estimation. Block A2 and Block A3
is rendered in red and green, respectively. Yellow circles indicate misclassified blocks.

Table 3.8: Processing time of the block detection.
Site Sawara Todohokke Era

Method of measurement UAV MBES UAV MBES UAV MBES
Size of test region [m] ~10× 10 ~10× 10 ~15× 15 ~15× 15 ~25× 25 ~25× 25

The number of test regions 14 15 20 10 6 7
The number of blocks in a region 40~50 35~50 25~35 25~30 30~50 30~40

Point density
(pts/m2) ~600 ~260 ~370 ~250 ~580 ~800

Block type used A1 A1 B1 B1+B2 A2+A3 A2+A3
Approx. amount of points

in a region 100,000~120,000 30,000~35,000 70,000~100,000 65,000~80,000 400,000~700,000 700,000~1,000,000

Time of Block Instance segmentation [s]/region 0.8 0.4 0.7 0.5 3.6 4.2
Time of Block pose estimation [s]/region 127 72 130 85 175 162

Time of Block type classification [s]/region 32 24 35 26 160 158

method with sliding window.

3.8 Conclusions

A novel deep-learning-based approach to detect individual blocks from large-scale three-
dimensional point clouds measured from a pile of wave-dissipating blocks placed overseas
and underseas using UAV-photogrammetry and MBES was proposed. The approach con-
sisted of three main steps. First, the instance segmentation using our originally designed
deep convolutional-neural network (FPCCv2) partitioned an original point cloud into small
subsets of points, each corresponding to an individual block. A physics engine enabled
to generate instance-labeled training datasets synthetically and automatically for instance
segmentation of blocks, avoiding laborious manual labeling work and secure rich train-
ing datasets for our convolutional-neural network. Subsequently, the block-wise 6D pose
was estimated using a three-dimensional feature descriptor (PPF), point cloud registra-
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Figure 3.19: A illustration of sliding windows

Figure 3.20: The comparison results of sliding windows and proposed instance segmenta-
tion. The recognized blocks are shown in the green CAD model.

tion (ICP), and CAD models of blocks. Finally, the type of each segmented block was
identified using the model registration results.

The conclusions of this chapter are summered as follow.

• The results of the instance segmentation on real-world and synthetic point cloud
data achieved 70%~90% precision and 50%~76% recall with an intersection of union
threshold of 0.5.

• The pose estimation results on synthetic data achieved 83%~95% precision and
77%~95% recall under strict pose criteria.

• The average block-wise displacement error was 30 mm, and the rotation error was
less than 2◦.

• The pose estimation results on real-world data showed that the fitting error between
the reconstructed scene and the scene point cloud ranged between 30 and 50 mm,
below 2% of the block size detected.

• The accuracy in the block type classification on real-world point clouds reached
approximately 95%.
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Table 3.9: Comparison of method with instance segmentation and sliding windows.

Method Sliding windows
+ PPF

Instance segmentation
+ PPF (Proposed)

Computation time per region [s] 300 60
The number of recognized blocks 32 57

• These block detection performances proved the effectiveness of our approach.

In future studies, we plan to reconstruct the virtual scene of current wave-dissipating
blocks in the physics engine based on our detected block poses, and then simulate and
generate a more accurate construction process plan of block supplemental work than the
conventional one according to practical requirements. This would guide the accuracy, save
construction time, and visualize the construction process and results.
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Figure 3.21: Visualization of pose estimation on UAV data(a) and MBES data(b) of
Sawara port. The first column is the measured point cloud. The block models are trans-
formed to the scene space using pose results and displayed in the middle column. The last
column is a visualization of the average fitting error of the pose estimates, where the red
points indicate that its distance from the nearest block model is larger than 100 mm.
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Figure 3.22: Visualization of pose estimation on UAV data(a) and MBES data(b) of
Todohokke port. The first column is the measured point cloud. The block models are
transformed to the scene space using pose results and displayed in the middle column.
The last column is a visualization of the average fitting error of the pose estimates, where
red points indicate that its distance from the nearest block model is larger than 100 mm.
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(a) UAV point cloud of Sawara port

(b) MBES point cloud of Sawara port

(c) UAV point cloud of Todohokke port

(d) MBES point cloud of Todohokke port

(e) UAV point cloud of Era port

(f) MBES point cloud of Era port

Figure 3.23: Point cloud of three ports.
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(b)

(d)

(f)

Figure 3.24: Additional instance segmentation results on Sawara port (a), Todohokke port
(b) and Era port(c). The left column is the point cloud scene measured by UAV. The
middle column is the predicted results of instance segmentation, and the last column is
the ground truth. Different colors represent different blocks.— 61 —





Chapter 4

Deep Learning-based Object
Stacking Operation Plan for
Replenishing Wave-Dissipating
Blocks

4.1 Background and Objectives of this Chapter

Object stacking operation planning can be regarded as an extension of the packing prob-
lem. Object stacking operation planning not only expects to fill as many objects as possible
in a given volume or container but also needs to meet the physical aspects of feasibility.

Packing irregular 3D rigid objects into a container with pre-defined dimensions is a well-
known Np-hard problem that is faced in practical applications such as the construction
industry, 3D printing, and dry stacking. No algorithm can find a globally optimal solution
for the problem in polynomial time.

Due to the limitation of computational power, early approaches have approximated
irregular objects into some regular shape primitives, such as bounding boxes or bounding
cylinders, to reduce the computational requirements for geometric analysis and processing.
However, these were inefficient and not current to the application’s needs.

Researchers have previously developed methods for packing objects based on mathe-
matical models. However, their mathematical modeling methods suffered from complexion
and a large number of vertices, resulting in poor accuracy for typical irregular objects.
Furthermore, some studies have emphasized the solution’s optimality at the expense of the
balance and stability of object stacking, which is particularly important in construction.

As shown in 4.1, this chapter is (1) to develop a method that can plan a stacking
pose making more blocks compactly stacked in the same replenishment space, and (2) to
verify the matching of the number of blocks replenished from the plan with the actual
construction work.

The main contributions of this work are listed below.

• A space detection algorithm is designed for finding where the new blocks need to be
inserted.

• A deep learning-based pose prediction method is proposed to make the new blocks
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Figure 4.1: The problems to be solved in this chapter.

drop from a fine initial pose so that the breakwater structure is steady and com-
pacted.

• Experiments show that the results of the proposed scheme are reliable

The remainder of this Chapter is organized as follows. Section 4.3 briefly describes
the initial processing of the model before it is imported into the physics engine. Section
4.4 shows the overview of the processing pipeline. Section 4.5 4.6 4.7 illustrate three
important technical details, space detection, Initial block pose prediction based on deep
learning, and stacking simulation, respectively. Experimental analyses are provided in
Section 4.8. Section 4.9 discuss the results. Finally, Section 4.10 summaries the Chapter.

4.2 Related Works

Earlier approaches approximated irregular objects as some regular shaped primitives, such
as bounding boxes or bounding cylinders, to reduce the computational requirements for
geometric analysis and processing [32,33]. However, these were inefficient and do not meet
the current application requirements [34].

Some researchers have previously developed mathematical model-based methods for
packing objects [35]. However, their mathematical model approach suffers from complexity
and a large number of vertices, resulting in poor accuracy for typically irregular objects.
In addition, some studies [30,31] emphasized the optimization of solutions while ignoring
the balance and stability of object stacking, which is especially important in actual works.

Mitsui et al. [157] developed a real-time simulation system (see Figure 4.2) for the object
stacking planning, where the stacking process of each new object is manually controlled.
Thus the stacking plan generated by this solution relies heavily on the experience of the
controller and cannot be automatically generated.
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Figure 4.2: The real-time simulation system of object stacking developed by [157].

4.3 Approximate Convex Decomposition
This section briefly explains some basic concepts in the physics engine. To operate complex
concave 3D models in physics engines, 3D modeling software developers usually decompose
3D mesh into a set of simple convex shapes, such as ellipsoids, capsules, or convex-hulls.

4.3.1 Convex Geometry

A geometry is considered convex if any two points of a line segment within the geometry
must fall within the geometry. The contrast is a concave geometry, as shown in Figure
4.3.

4.3.2 Convex Decomposition

Since collision detection in the physics engine is based on convex geometry, it is necessary
to approximate the decomposition of a concave geometry into a set of convex geometries.
However, how to approximate the decomposition of objects is beyond the scope of this
thesis, so in this subsection, we only give a brief description of the HACD [158] and
V-HACD [159] techniques recommended by the developer of physics engine Bullet [126].

Approximate Convex Decomposition does not require strict convexity constraints but
rather that the decomposed components are approximately convex. They then iteratively
decompose and cluster the 3D shapes until the concavity of each decomposed component
is within a pre-determined threshold, which measures the difference between a shape and
its convex hull. HACD [158] employed a boundary distance as a metric by projecting the
grid vertices along the normal direction onto the convex hull surface and then measuring
the distance to the edge of the convex hull. Its extended version, V-HACD [159], used
the volume difference between the shape and its convex hull as a metric, first voxelizing
the input mesh and then greedily disentangling the voxels with axis-aligned cutting planes
and voxel-based concave surfaces. Due to its open-source code and good performance in
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(a) convex (b) concave

Figure 4.3: The example of convex and concave shape.

Figure 4.4: Approximate convex decomposition generated by HACD and V-HACD from
the work [159].

general, V-HACD is one of the most widely used convex decomposition algorithms today.
Figure 4.4 shows some examples of objects approximated by HACD and V-HACD.

4.4 Overview of the Processing Pipeline

We proposed a reliable approximate optimal solution for guiding the actual wave-dissipating
block replenishment by simulating the stacking of blocks in the physics engine. Note that
the models imported into the physics engine in this Chapter are convex models decom-
posed by V-HACD [159], if not otherwise specified. The simulation pipeline is outlined in
Figure4.5.

The blocks recognized from Chapter3 and the support and boundary planes are im-
ported into the physics engine to reproduce the current scene. The custom-generated
target plan is operated in the physics engine for visualization purposes only and does not
collide with other objects. In the loop, the point cloud scene of the current blocks is
first generated and rasterized for the proposed spatial detection to figure out where a new
block needs to be added. Next, a new block is dropped at the detected location. More-
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Figure 4.5: Pipeline of object stacking operation plan based on simulation. The simulation
consists of four main steps, 1) Initialization: importing the recognized blocks and the target
plane, the boundary, and support plans. 2) Space detection: identifying the locations
where new blocks need to be added. 3) Adding blocks: the blocks fall into the specified
locations with a reasonable attitude predicted by the CNN. 4) Height check: screening the
blocks whose height exceeds the target plane. Steps 2), 3), and 4) will be recycled several
times until the construction needs are met without inserting more stones.

over, since the initial pose before the block falls has a crucial impact on the results, a deep
learning-based estimator is utilized to predict the optimal initialized block pose. Each re-
plenishment round is followed by an automatic checking of whether the block exceeds the
predefined target plan. This round will be cycled several times, typically 20 times, until
there is no space vacated to replenish a new block, i.e., the desired construction result is
achieved.

4.5 Space Detection
Locating the location of the new wave elimination blocks based on the current scene and
the intended target shape is the first step in the construction. The scene point cloud is
reconstructed according to the current state of all the wave-dissipating blocks.

To evaluate the volume, as shown in Figure4.6 , the XY planes are gridded into a
collection of unit cells C = {Ck} at intervals ∆l in the designated construction area. The
z-height of each cell is calculated as:

hk = htk −max
z

Pz,k, (4.1)

where htk is the height of target plane at the center of Ck, Pz,k a set of height values of
the model points included in Ck. If there is not any point in the cell, hk is determined by
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Figure 4.6: Illustration of height map calculation.

Figure 4.7: Generated height map from a construction area. ∆l : 0.1.

the linear interpolation from the heights of surrounding cells. Then the volume Vk of a
cell Ck can be estimated as:

vk = (∆l)2hk. (4.2)

The vk over the window indirectly represents the insufficient volume to be filled in the
window. An example of the height map {hk} is displayed in Figure4.7. A window of size
dx × dy slides from the top-left corner of the height map with stride s. Usually dx∆l and
dy∆l are close to the size of the block, resulting in the range of the window close to that
of the block. We employ the typical non-maximal suppression algorithm2 to filter out the
windows that need to be supplemented with blocks, that is, the positions. Figure4.8 shows
the processing of NMS on detected windows.
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Algorithm 2: Non-maximum suppression algorithm on windows; N is the number
of windows; K is the number of detected windows.

Input: W = {w1, w2, ..., wN},V = {v1, v2, ..., vN}, v, tiou;
W is the list of all windows;
V is the volume corresponding the windows;
v is the minimum volume;
tiou is the NMS threshold.

Output: Detected windows D = {d1, d2, ..., dK}
1 for i = 1 to N do
2 if vi ≤ v then
3 W←W\{wi};
4 end
5 end
6 D← {};
7 while P ̸= ∅ do
8 m∗ ← arg maxm{vm | vm ∈ V};
9 D← wm∗ ;

10 W←W\{wm∗};
11 for wi in W do
12 if iou(wm∗ , wi) ≥ tiou then
13 W←W\{wi};
14 V← V\{vi};
15 end
16 end
17 end
18 return W,V;

Figure 4.8: Illustration of non-maximum suppression.

4.6 Overflow check

After the dropped blocks are stabilized, we check the height of each fallen block, and if
the difference f in height between the centroid of a block and target plane exceeds the
threshold, the overflowed block is automatically removed from the stack of new blocks.
The setting of f can be adapted freely according to the construction needs. Figure4.9 is
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a illustration of overflow check.

Figure 4.9: Block whose centroid overflows f from the target plane is automatically
removed from the stacked blocks.

4.7 Deep Learning-based Initial Block Pose Prediction for
stacking

After locating where the blocks needs to be replenished, the next step is to decide in what
poses the blocks should be inserted into the insufficient space. Since the initial pose of
a block before it drops has a crucial impact on the final stack-up simulation results, this
section aims to find an optimal initialized pose of an additional block to fit it tightly to
the existing stack of blocks using a physics engine and image-based deep-learning method.

Usually, the 3D irregular packing problem is Np-hard, meaning that it is difficult to find
an optimal solution. The computational cost of the exhaustive search selection algorithm
is too high to try all possible combinations of subsets. Based on the above considerations,
we only use exhaustive search selection in the training phase (e.g., 3000 iterations) to find
an approximate optimal solution under a certain space that needs to be filled with blocks
for learning. In the simulation process, the learned network can directly predict the initial
pose of the block and use it to fill the insufficient space. The experiments in Section 4 and
the discussion in Section 4 illustrate the effectiveness of predicting the initialized pose by
deep learning.

4.7.1 Overview of the block pose estimation

Our problem can be defined as follows: given an existing block stack as a background, find
an optimal initialized pose of a new block so as to best fit to the existing stack. Figure4.10
shows the processing flow of our optimal bock pose estimation. The estimation consists
of (1) creation of background block stack scene, (2) finding an optimal block pose by
generate-and-test search, (3) training the network for pose estimation, and (4) prediction
of the optimal initialized block pose.

4.7.2 Creation of background block stack scene

We used a block CAD model and a physics engine to generate the block stacking scene.
The size of the simulated stacking scene is about 220m × 20m. Then we create a large
depth image Id corresponding to this whole background scene, as shown in Figure4.11.
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Figure 4.10: The processing flow of our optimal bock pose estimation.

4.7.3 Finding an optimal block pose by generate-and-test

Next, for generating training dataset, we should find a collection of the optimal initialized
poses of an additional block so as to best fit to a given existing background block stack
scene. To this end, the following generate-and-test search was adopted. First, as shown
in Figure 3(a), we place a small 2D window w on the depth image Id representing the
background scene. Then, we set the initial pose (R, t) of a new on w before it drops so
that the position t of the block coincide with the centroid cw of w. To find the best fit pose
to the background, we added a uniform random distribution σ ∈ [−0.5m, 0.5m] to each
component of t. The initial orientation R is also randomly perturbed. Finally, we drop a
new block onto the background scene in the simulator, evaluate the following criteria for
optimal block pose, and record the local depth image Iw cut by w.

4.7.4 Criteria for optimal block pose

A reasonable initial block pose needs to satisfy the two conditions.

• Stability: There should not be much lateral difference between the initialized pose
and final stabilized pose. Therefore, the block’s displacement in the horizontal plane
should be less than 0.2 m (about 10% of the block size).

• Compactness: We want the inserted block to be as close as possible to existing
background blocks. So the change in insufficient volume V between a block surface
and the target height shown in Figure 4.12 before and after the block insertion should
be small enough.

A window w slides at a fixed small interval d on the depth image Id. At every position
of w, local depth image Iw of the background scene is detected as 512× 512 pixel image.
Examples of Iw are shown in Figure 4.11(b). Then we drop a new block 1000 times at a
randomly selected initial pose inside Iw and evaluate the change of the insufficient volume
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(a) (b)

Figure 4.11: Block pose generation and samples of the recorded depth images.

V and block’s horizontal displacement d for each time. Finally, the pose that gives the
smallest change in V and satisfies d ≤ 0.2m is taken as the expected optimal block pose,
as shown in Figure4.12.

4.7.5 Block Pose Prediction

In our prediction, given an input depth image I, we need to establish the correspondence
f between the depth image and a reasonable pose as Equation4.3:

(R, t) = f(I), (4.3)

where I is an input depth image, and R and t are the predicted rotation matrix and
translation vector. To implement f as a deep-neural-network, we can use the classical
feature extractor [160] or [161] followed by a several fully-connected layers, as show in
Figure4.13. To train it, we minimized the loss function,

L = Ld + αLR, (4.4)

which combines displacement loss Ld and rotation loss LR, and α denotes a balancing
constant. As Ld, we used the L2 loss as

L⌈(t, t) = ∥t− t∥2, (4.5)

where t is the ground truth translation vector. We took LR to be the “distance” between
different pose defined by:

LR(R, R) = min
G∈Gs

cos−1[tr(R (RG)T )− 1
2 ], (4.6)

where, R is the ground-truth rotation matrix, and Gs is the group of proper symmetries
that have no effect on the static state of the object [155]. In our problem, R is encoded
by Euler angles. Our network accepts a depth image Iw of size h× b× 1. After extracting
a 2048-dimensional global feature F , the network is divided into two branches that each
pass F through a series of fully connected layers to obtain the predicted t and R.
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Figure 4.12: Criteria for optimal block pose.

Figure 4.13: Network structure for predicting optimal pose prediction.

4.7.6 Results of optimal pose prediction

We experimented with 800 depth images of 512 × 512 pixels on the training set and 200
images on the test set. The block type is assumed to be a clinger 6 tons. The displacement
and rotation error are estimated by equation 4.5 and 4.6. We use an ADAM optimizer
with initial learning rate 0.001, batch size 32. The network is trained for 700 epochs,
which took about 24 hours.

The prediction results from the various feature extractors are summarized in Table
4.1. Displacement errors of less than 0.5 m were achieved, but rotational errors were
not sufficiently small. Figure 4.14 compares the randomly generated pose and the pose
predicted by the network, and it can be seen that the pose generated by the network is
more stable and reasonable, while the randomly generated pose causes the block to fall
into other positions.
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Figure 4.14: Comparison of randomly generated initialized poses and poses predicted by
the network.

Table 4.1: Rotation and displacement errors in pose prediction.
Feature extractor Rotation error(◦) displacement error(m)
Transformer [161] 42.45 0.42

ResNet16 [160] 36.2 0.36
ResNet34 [160] 28.48 0.37
ResNet50 [160] 25.15 0.31

4.8 Experiments

4.8.1 Experimental Sites and Purpose of the Experiments

The breakwater of Sawara port in Hokkaido prefecture, Japan, was used for evaluation of
the proposed block detection algorithm, as surface point cloud of the breakwater before
and after construction had been recorded respectively. For this port, existing block point
clouds above the water surface were measured by UAV and a commercial photogrammetry
software, and those below the surface were measured by MBES. Table 4.2 indicates the
details of the construction area, and Figure 4.15 shows the top view of the construction
areas. Two different types of blocks is shown in Figure 4.16.

Our simulation experiment aims to compare with the real construction results and
discuss the accuracy of simulation and the rationality of the current construction plan.

4.8.2 Results of stacking Operation Planning for Replenishing Wave-
Dissipating Blocks

In the simulation, we set the vertical gravitational acceleration 9m/s2, the mass of block
5t, lateral friction 0.8, spinning friction 0.5, and rolling friction 0.01.

We first imported the existing block poses and target and boundary planes and recon-
struct the scene (Figure 4.17 (a)). Then we performed the space checking, as described
in Section 4.5, and inserted a couple of new blocks into the detected window (Figure 4.17
(b)) until there are not enough window to insert additional blocks. After the blocks are
stabilized, we checked the overflow blocks that exceeded the target plane as shown in
Figure 4.17 (c) and eliminated them. The final simulated scene is shown in Figure 4.17
(d). According to the simulation results, the number of new blocks to be supplemented
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Table 4.2: Details of the construction area.
Site Sawara port

Method of measurement UAV
Construction area [m] 150× 25

Approx. point density [pts/m2] 150(MBES) & 900(UAV)
Existing block type Clinger 5 ton

Supplemental block type Clinger 6 ton

Figure 4.15: The construction area of Sawara port.

the whole construction was estimated as in Table 4.4. As a comparison, the simulation
with the randomly generated initialized poses are summarized in Table 4.5. To estimate
the fitness between the stacked results and the designed shape, we calculated the distance
from the surface point cloud of the stacked CAD model to the designed shape, and the
average distances w/ and w/o deep learning are summarized in Table 4.6 and Table 4.7,
respectively.

The time taken for each step in the simulation is summarized in Table 4.3, and the
total time taken for each simulation is about 1 hour.

4.9 Discussion

This chapter developed a method that can predict the optimal pose of blocks for inserting
more blocks in the same replenishment volume. Comparing Tables 4.4 with Table 4.5, the
deep learning-based stacking scheme could insert more blocks (around 100) under the same
simulation parameters, implying that a more dense block structure of the supplemented
blocks was generated. Moreover, comparing the simulation results in Tables 4.6 and 4.7
with the same parameter settings, the deep-learning-based stacking results fit better with
the designed target surface, and the average distances were reduced by about 10 mm.

On the other hand, number of supplemented blocks added in the actual maintenance
work was 864. As can be seen from Table 4.4, the estimated number based on the deep
learning was approximately equal to the actual number, indicating the possibility of gen-
erating a strong and solid structure of wave-dissipating block.

We could also find from Figure 4.18 that the measured point cloud of the top surface
of the blocks after the actual construction was significantly higher than the design target
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Figure 4.16: The size of Clinger 5 ton and 6 ton.

(a) Existing scene reconstruction (b) Insert additional blocks into the de-
tected window

(c) Overflow check (d) Final simulation results

Figure 4.17: An example of the block stack-up simulation process in Sawara port.

height. The results shown that it is possible to plan block replenishment operations more
accurately and economically for the design target geometry.

However, the results still need to be verified on other sites, which will be our future
work.

4.10 Conclusion

This chapter used a physics engine to develop a simulation system to automatically gen-
erate an optimal operation plan for stacking new blocks on top of already exited wave-
dissipating blocks in a stable and compact manner.

• A space detection algorithm was designed to find out the location of the block to be
replenished.

• A neural network was employed to predict the stable and compact poses of the
supplemental blocks.
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Chapter 4. Deep Learning-based Object Stacking Operation Plan for Replenishing
Wave-Dissipating Blocks

Table 4.3: Processing time of simulation.
Processing Initialization

Scene reconstruction) Generate height map Space check Drop Total time

Time 2 min 1 min × 10 1 min × 10 5 min × 10 1 hour

(a) Real scene after construction (b) Simulation scene after construction

Figure 4.18: Comparison of actual construction results and simulation results.

• We compared the replenishment plans with or without deep learning in a port of
Hokkaido.

• It turned out that more blacks could be inserted for the same target replenishment
space with deep learning contributing to more robust structures of wave-dissipating
blocks.

• The estimated number of blocks was approximately equal to the number of blocks
added in the actual work.

According to the construction requirements, we set two parameters, the minimum volume
v and the allowable height above the design plane f . However, the simulation accuracy
should be also validated at more sites.
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Table 4.4: Number of supplemented blocks by simulation w/ deep learning.
The number of blocks f = 0m f = 0.1m f = 0.3m f = 0.35m f = 0.5m

v = 0.4m3 733 781 889 955 1016
v = 1.0m3 698 773 891 925 1017
v = 2.0m3 676 778 894 906 1002
v = 3.0m3 671 739 842 868 898
v = 4.0m3 668 701 761 768 780

Table 4.5: Number of supplemented blocks by simulation w/o deep learning.
The number of blocks f = 0m f = 0.1m f = 0.3m f = 0.35m f = 0.5m

v = 0.4m3 645 683 788 852 903
v = 1.0m3 645 682 792 844 900
v = 2.0m3 645 677 786 823 892
v = 3.0m3 645 686 790 821 884
v = 4.0m3 645 682 756 795 836

Table 4.6: The average distance[m] of the blocks’ surface points to the designed shape w/
deep learning.

The number of blocks f = 0m f = 0.1m f = 0.3m f = 0.35m f = 0.5m

v = 0.4m3 0.40 0.40 0.44 0.46 0.50
v = 1.0m3 0.40 0.40 0.43 0.46 0.50
v = 2.0m3 0.41 0.41 0.43 0.46 0.49
v = 3.0m3 0.41 0.42 0.44 0.48 0.50
v = 4.0m3 0.42 0.43 0.44 0.50 0.50

Table 4.7: The average distance[m] of the blocks’ surface points to the designed shape w/o
deep learning.

The number of blocks f = 0m f = 0.1m f = 0.3m f = 0.35m f = 0.5m

v = 0.4m3 0.42 0.42 0.44 0.46 0.47
v = 1.0m3 0.42 0.43 0.45 0.47 0.48
v = 2.0m3 0.42 0.43 0.45 0.48 0.48
v = 3.0m3 0.42 0.43 0.45 0.48 0.49
v = 4.0m3 0.42 0.43 0.45 0.48 0.48
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Chapter 5

Conclusions and Future work

5.1 Conclusions

The research objective of this dissertation is to design and propose an efficient and effective
method for stacked object recognition and stacking operation planning combining 3D
point cloud representation, deep learning, and a physics engine. To achieve this goal, a
framework was developed for fast segmentation of 3D point clouds with an acceptable
speed and accuracy. Then, a modified 3D instance segmentation network was applied
to the segmentation of the wave-dissipating blocks, and the pose and type of the blocks
were estimated from the segmentation results, laying the foundation for simulation. A
simulation system was developed for the block supplementation project, which simulated
the supplementation process and provided the builder with pre-visualized construction
results as well as the stacking plan of blocks.

The conclusions of the thesis are summarized as follows:

(1) In Chapter 2, a fast 3D instance segmentation network, FPCC, was been proposed for
robotic bin-picking scene. The network joined a novel clustering algorithm to segment
individual object from a point cloud of stacked objects. Experiments shown that
FPCC trained by synthetic data demonstrates excellent performance on real-world
data compared with existing methods. FPCC achieved 55% precision on IPA Bin-
Picking dataset and 80% precision on XA Bin-Picking dataset. FPCC significantly
promoted the application of deep learning in industrial production and make robots
more intelligent.

(2) In Chapter 3, a novel feature extractor was added into FPCC instead of DGCNN.
By stacking graph convolution layers and constructing local information of the point
cloud, the perceptual field of each point was expanded at a small cost of the com-
putational overhead. The training data samples were all provided by our developed
simulation system based on Pybullet, so that the network could be trained without any
manually labeled data. Experiments shown that our method could retrieve 70% 95%
blocks in a point cloud scene.

(3) In Chapter 4, a novel method for the planning of replenishment of wave-dissipating
blocks was proposed. The method predicts the stable and compact stacking poses
of additional blocks that minimizes the height of the center at the time of stacking
by combining deep learning and a physics engine. The proposed method has been
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applied to the case study of a port in Hokkaido, Japan. The replenishment plans with
and without deep learning were compared in this Chapter. Experiment results show
that the proposed method could generate a more stable structure of wave-dissipating
blocks because more blocks can be inserted densely in the same target replenishment
space. In addition, the estimated number of blocks is comparable to the number of
blocks added in the actual work.

In summary, the object stacking system developed based on our recognized results could
provide valuable guidance for actual construction. s.

5.2 Future work
In order to enhance or enrich the current studies, future researches are going to be carried
out in the following aspects:

(1) The proposed 3D instance segmentation scheme can be applied in other similar stacked
objects scenes. Our method will significantly promote the application of deep learning
in industrial production and make robots more intelligent.

(2) The strategy of how to insert a new block need to be complete and be more flexible.

(3) After reconstructing the scene in a physical engine based on the recognition result,
we can employ a reinforcement learning network then randomly inserts blocks in the
construction area, and experienced construction workers act as supervisors to evaluate
each insertion and give feedback to the network.
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