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Abstract

This dissertation is based on [1]: (H. Motoki, Y. Suzuki, T. Kawai, and M.
Kimura, Progress of Theoretical and Experimental Physics 2022(11), 113D01
(2022)).

Background:
Recently, experiments performed using the (p, pα) reactions have revealed a
negative correlation between the α cluster formation and neutron number in
Sn isotopes, showing a trend opposite to that predicted theoretically in Be
and B isotopes. Although the observed charge radii of the Be and B isotopes
suggest the formation of clusters as the neutron drip-line is approached, these
radii themselves are not a physical quantity that can directly probe the cluster
structure.

Purpose:
I directly investigate the cluster formation in Be and B isotopes as the neu-
tron drip-line is approached to elucidate the effect of excess neutrons for the
possibilities of 6He and 8He clustering as well as α clustering.

Method:
All nuclei are described by antisymmetrized molecular dynamics (AMD) plus
generator coordinate method (GCM) framework. The cluster formations are
directly analyzed by the spectroscopic factors (S-factor) of 6He and 8He clus-
ters as well as α clusters using the Laplace expansion method.

Results:
Sum of the S-factors, i.e. S(α), S(6He), and S(8He), increases as the neutron
drip-line approaches although S(α) decreases. This behavior might be corre-
lated with the enhancement of clustering which is analyzed by the intrinsic
proton density distributions.

Conclusions:
The results indicate that the excess neutrons contribute to yield 6He and 8He
clusters as well as α clusters. The decrease in S(α) toward the neutron drip-
line in Be and B isotopes is due to considering only the ground state of the
residual nuclei, meaning that it does not indicate that α cluster formation
is not increased. Thus, S(α) is not enough to estimate the enhancement of
clustering in Be and B isotopes.
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1 Introduction

1.1 Clustering phenomena in nuclei

An atomic nucleus is a finite quantum many-body system composed of nucleons (pro-

tons and neutrons) that strongly interact with each other governed by the nuclear

force. This finite nucleus is an isolated system and therefore has a degree of free-

dom related to space inversion and rotation different from the infinite nuclear matter.

The nucleus has not only an energetically stable ground state but also excited states

which have higher energies and decay after specific lifetime. The nuclear force be-

tween nucleons is a strong attraction that greatly exceeds the Coulomb repulsion force

between protons, and its range is a few fm (fm = 10−15 m) which is much shorter

than that of the Coulomb force and comparable with the average distance between

nucleons in a nucleus. As a result, the density of the nucleus and the binding energy

per nucleon are well-saturated. Despite the strong correlation between nucleons due

to the nuclear forces, it is known that the structure of the nucleus is well described

by a single-particle picture of the nucleon in the mean-field. The “shell” structure

(atom-like structure) of nucleons is the most typical example of the single-particle

picture and is especially dominant in the ground state (Fig. 1).
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Fig. 1 Schematic figure of shell and cluster structures for 12C as an example. The

red and blue circles are proton and neutron, respectively.

On the other hand, the structure of the excited states, especially in the light-mass

region, can be drastically changed to “cluster” structure (molecule-like structure)

with a small amount of excitation energy (see also Fig. 1). In the cluster structure,

a group of nucleons is strongly bound to form the sub-unit called “cluster”. This

cluster structure state is a universal phenomenon in atomic nuclei. The most typical

cluster is 4He nucleus called α particle which consists of two protons and two neutrons
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due to its spin-isospin saturated and double-closed shell structure. The presence of α

particles in the nuclear state has been discussed since the 1930s [2,3]. Table 1 lists the

binding energy per nucleon (B.E./A) and the first excited state energy E1st
x for light

nuclei. The B.E./A of α particle is much larger than that of the other light nuclei

and close to the saturation energy 8 MeV. Furthermore, the E1st
x of the α particle is

approximately 20 MeV which is remarkably larger than the other light nuclei, which

means the stiffness of α particle as a sub-unit.

Tab. 1 Binding energy per nucleon (B.E./A) and first excited state energy E1st
x in

the unit of MeV.

B.E./A E1st
x

3He 2.57 -

α 7.07 20.21
6He 4.88 1.80
8He 3.92 2.92
2H 1.11 -
3H 2.83 -

In order to explain in which excitation energy region the cluster structure states of

α particles can appear, a threshold rule (or hypothesis) was proposed half a century

ago [4]. The rule insists that when a cluster structure state emerges, it appears the

corresponding decomposition threshold energy. This rule also indicates that when the

excitation energy is lower than the cluster decomposition threshold, the cluster loses

its identity and the shell structure becomes dominant. Figure 2 is a so-called Ikeda

diagram that shows how cluster structures emerge according to the threshold rule for

the self-conjugate nuclei (mass number A = 4n where Z = N = 2n and n ∈ N).

1.2 Molecular orbit model

The cluster structure of the nucleus with excess neutrons becomes more complicated.

α cluster structures also emerge in neutron-rich nuclei, and the role of excess neutrons

in these nuclei is an intriguing study. Namely, the excess neutrons in neutron-rich

nuclei stabilize unstable cluster structures such as the linear-chain configuration in

which two or more clusters are linearly aligned. The extended Ikeda diagram was

proposed [5] to explain the role of excess neutrons in neutron-rich nuclei as shown

in Fig. 3. The number of possible cluster structures is much larger than that in the

self-conjugate nuclei. Be isotopes are a well-known example for explaining the role of

the excess neutrons which surround the 2α particle cores and stabilize the nuclei [5–9].
8Be has a well-developed cluster structure consisting of 2α particles and is an unstable

nucleus that decays into 2α particles. On the other hand, both 9Be and 10Be having
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Fig. 2 Ikeda diagram proposed in Ref. [4]. The values mean the excitation energies of

α cluster-decay thresholds in the unit of MeV. The open circle shows the α particle.

The nucleus is dissolved into α particle units by providing energy.

one and two additional neutrons are stable nuclei and are famous examples of the α

clustering. The distance between the 2α particles in 9Be and 10Be is shorter than that

of 8Be. Thus, the excess neutrons in 9Be and 10Be play a glue-like role. Furthermore,
11Be and 12Be having more additional neutrons have more developed cluster structures

than 10Be [10, 11]. These discussions on the enhancement of the cluster structures

in neutron-rich Be isotopes are consistent with the experimental charge radii [12–14].

Therefore, the excess neutrons play an important role in enhancing as well as bonding

the cluster structures.

This emergence mechanism of the cluster structures in Be isotopes can be explained

by the molecular orbits of the excess neutrons that are formed around the 2α cores.

Figure 4 shows the p-orbits constructed around the α particle (panel (a)) and cor-

responding nucleon orbits in the mean-field in which two protons and two neutrons

forming the α particle occupy the s-orbit and a single excess neutron occupies the

p-orbit (panel(b)). In Be isotopes consisting of 2α cores and the excess neutrons, the

systems are expected to be described by a linear combination of the p-orbits con-

structed around the α core (Fig. 5(a)) because the p-orbit is the lowest allowed orbit

around the α particle. As a result, two types of orbits of the excess neutrons are con-

structed around the 2α cores and are called σ-orbit and π-orbit following the manner

in the covalent electron orbits in molecules. The π-orbit with negative parity is the

lowest nodal orbit with a single node in the transverse direction for the α-α direc-
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Fig. 3 Extended Ikeda diagram (as in Fig. 2) for neutron-rich nuclei as well as self-

conjugate nuclei. Some molecular structures consisting of α particles and 16O nuclei

clusters with valence neutrons are shown. The schematic shapes are given with the

threshold energies for the decomposition into the continuum state. This figure is

taken from Ref. [5].

tion and shortens the 2α core distance while the positive parity σ-orbit is the higher

nodal orbit in the longitudinal direction and enhances the 2α cluster structure. Using

this molecular orbit picture, the development of the cluster structure in Be isotopes

can be explained more clearly. In the ground states of 9Be and 10Be, the 2α cluster

structure is hindered due to the one and two excess neutrons occupying the π-orbit,

respectively, compared with that of 8Be ground state. As a result, the ground states

of 9Be and 10Be become bound states, which indicates that one or more excess neu-

trons play a role in stabilizing the 2α system. On the other hand, in the ground states

of 11Be and 12Be, the 2α core distance is elongated because of the additional excess

neutrons occupying the σ-orbit showing the well-developed cluster structures. At the

same time, the cluster structures in not ground but excited states of Be isotopes are

also discussed [15] in which, for example, various “ionic” configurations are predicted

in 12Be such as α + 8He, 6He + 6He, and 5He + 7He configurations.
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Fig. 4 (a) p-orbits constructed around the α particle. (b) Corresponding nucleon

orbits in the mean-field. Namely, two protons and two neutrons forming the α particle

occupy the s-orbit and the third excess neutron occupies the p-orbit.

+－

π-orbit

σ-orbit

+ +－

+

－
(a)

(b)

Fig. 5 (a) Linear combination of two α cores with the p-orbits occupied by the excess

neutron. (b) σ-orbit and π-orbit constructed around the 2α cores.

1.3 Studies on cluster formation in isotope chain

1.3.1 Measurement of α cluster structure

α particle plays a significant role in such as the α decay in heavy nuclei and the

astrophysical nuclear reaction in light nuclei. Thus, it is an important issue how

to experimentally verify the α cluster structure in the nucleus. The proton-induced

α knockout reaction (p, pα) has been utilized for years to investigate the α cluster

formation in the ground state of nuclei [16, 17] since it can be considered that the

larger the cross section of the (p, pα) experiment, the more α particles are present in

the nucleus. However, there is a problem, for example, that α spectroscopic factors

(S-factors) deduced from α knockout experiments using the reaction theories and

phenomenological α cluster wave functions do not agree with that of the cluster model

calculations [17]. Specifically, a large discrepancy of the α S-factor in 20Ne, known as

a nucleus having α+16O structure and well described by the AMD framework, was

reported between that estimated from the 20Ne(p, pα)16O experiment (Fig. 6(a)) and
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that calculated from cluster model calculations. This discrepancy was successfully

solved several years ago [18]. In Fig. 6(b), it is shown that the triple differential cross-

section (TDX) of the 20Ne(p, pα)16O reaction is reproduced by the reaction theory

and the AMD+RWA framework (see Sec. 2). The authors also evaluated the real

part of the transition matrix density using a peak of the TDX (Fig. 6(c)) to show a

“radial distribution of the cross-section”. R is a sum of the calculated matter radii

of α and 16O. This means that the surface region of 20Ne contributes to the (p, pα)

cross-section because the internal region of the presented line is much suppressed

by the absorption effect. Therefore, the proton-induced α knockout reaction is a

quantitative probe for the α cluster formation at the nuclear surface. Recently, this

(p, pα) reaction has been also applied to heavier nuclei such as 112,116,120,124Sn [19]

(Z = 50) and 210,212Po (Z = 84) [20] in the interest of α decay and determining

the equation of state (EoS) of the matter. On the other hand, the experiments for

assessing the 6He and 8He cluster structures have not yet been established.

p

α

R = 4.33Ne20

p

(a) (b) (c)

R = Rα + R16O

Fig. 6 (a) Schematic figure of the (p, pα) reaction for 20Ne target. (b) Energy

sharing distribution calculated by DWIA with the AMD+RWA compared with the

experiment [17]. Namely, the triple differential cross section for the reaction as a

function of the proton emission energy Tp. (c) Real part of the transition matrix

density defined by [21] at the recoil-less condition (Tp = 67 MeV). All panels are

taken from Ref. [18] and modified.

1.3.2 Cluster formation in heavy nuclei

Many unstable nuclei decay by emitting an α particle, which is called α decay and

is theoretically explained by a quantum tunneling of the α particle formed within

the nucleus. However, the mechanism of how α particles are formed in heavy nuclei

has not been elucidated to date. Theoretically, the α density distributions were

investigated for 112,116,120,124Sn isotopes (Fig. 7(a)) [22]. These peak positions are

slightly outside of r ∼ 6.2 fm which is a sum of the charge radii of α and corresponding

Cd isotopes. Therefore, it was predicted that the formation of α particles develops at

the surface of nuclei where the density is dilute approximately 1/10 of the saturation
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density (Fig. 7(b)). Motivated by this prediction, the (p, pα) reaction experiments for

the Sn isotopes have been conducted [19]. Specifically, the ground-state to the ground-

state channel ASn(g.s.)(p, pα)A−4Cd(g.s.) was evaluated for A = 112, 116, 120, 124.

Figure 8(a) shows the missing-mass spectra for the (p, pα) reaction for 112Sn target

and the Gaussians fit for the peaks of the 108Cd ground-state, which indicates that

α particles are formed at the surface of 112Sn(g.s.). The same results were reported

for the other Sn isotopes (116,120,124Sn). As a result, the existence of α particles

was experimentally confirmed in the 112,116,120,124Sn isotopes. Figure 8(b) shows that

the cross sections of the (p, pα) reaction decrease as the neutron number, which is

correlated with the neutron-skin thickness, increases [22]. Thus, a negative correlation

between the neutron-skin thickness and the α cluster formation has been reported as

theoretically predicted.
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Fig. 7 (a) Radial density distribution of α particles for 112,116,120,124Sn. (b) Schematic

figure of α cluster at the nuclear surface of the neutron-rich nucleus. The neutron-skin

thickness is defined by the difference between the neutron and proton radii. Panel (a)

is taken from Ref. [22] and modified.

1.3.3 Cluster formation in light nuclei

A similar negative correlation was also theoretically predicted in neutron-rich C iso-

topes by directly analyzing the S-factors of the α cluster [23]. In contrast to the

trend observed in Sn isotopes and calculated in C isotopes, the α cluster formation

in light nuclei, such as Be and B isotopes, is predicted to enhance as the neutron

drip-line approaches [10, 11, 24–27]. In the previous studies, the development of the

α cluster formation is discussed based on the distance between the two cores in the

proton density distributions ρp and the proton distribution radii. The position of the

core in the distribution ρp can be regarded as the position of the α particle since the

distribution ρp is almost evenly distributed over the two cores (Fig. 9(a)). Thus, α

cluster formation in Be isotopes is expected to be enhanced as the neutron number

increases beginning at 10Be. This trend is not inconsistent with the observed charge
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Fig. 8 (a) Missing-mass (Mx ≡ mα+mCd−mSn) spectra for the α-knockout reaction

for 112Sn target. The blue line represents the result of the fit with the Gaussians for

the ground-state peaks (red line) and the simulated shapes of the continuum (dashed

line). (b) Cross sections of the (p, pα) reaction for 112,116,120,124Sn as a function of

the neutron number compared with the theoretical values [22]. Both panels are taken

from Ref. [19] and modified.

radii [12–14] (Fig. 9(b)). Similar development of the α cluster formation has been

discussed for B isotopes where the two cores also appear in the proton density distri-

butions [10,11]. Specifically, it was reported that α cluster formation in B isotopes is

expected to enhance as the neutron drip-line approaches from 11B. However, the pro-

ton density distributions and the radii do not directly evaluate the α cluster formation

because the α particle is composed of not only two protons but also two neutrons.

Furthermore, the neutron density distributions ρn are well-varied compared with that

of protons (Fig. 9(a)).
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Fig. 9 (a) Proton, neutron, and matter density distributions ρ of Be isotopes calcu-

lated by the AMD+VAP framework. (b) Those proton distribution radii compared

with the experimental values. Both panels are taken from Ref. [10] and modified.
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1.4 Purpose of this study

The experiments show a negative correlation between the α cluster formation and neu-

tron number in Sn isotopes using the (p, pα) reaction. In contrast, the opposite trend

is theoretically predicted in Be and B isotopes based on the proton density distribu-

tions ρp and the radii. Although the observed charge radii of the Be and B isotopes

appear to correlate with the distance between the two cores in the distributions ρp
and also the radii, these calculated values themselves are not physical quantity that

allows direct probing of the α cluster structure. Therefore, studying physical quan-

tities that can directly probe the cluster structure is highly desirable. In this study,

focusing on the opposite trends of the α cluster formation, I directly investigate the

α cluster formation in Be and B isotopes toward the neutron drip-line to elucidate

the effects of the excess neutrons on the α cluster formation. For this purpose, the α

cluster formation is evaluated by the α S-factors, which can be experimentally mea-

sured via (p, pα) reactions, in Be and B isotopes using the antisymmetrized molecular

dynamics (AMD) framework.

12Be( 2 2)

Fig. 10 Schematic figure of 12Be where the σ- and π-orbits are occupied by the two

excess neutrons (blue circles), respectively.

In Be isotopes, the molecular orbits occupied by the excess neutrons play a “covalent

bond”-like role. Figure 10 schematically shows 12Be as an example where the σ- and

π-orbits are occupied by the two excess neutrons, respectively. This allows considering

the conjecture that the residual nucleus 8He may be excited when the α particle is

kicked out. However, a channel related to the excited residual nucleus can not be

measured by the (p, pα) reaction since the reaction is limited to the channel between

the ground states only. Additionally, 6He+6He configuration is expected to emerge

owing to the excess neutrons surrounding the two α cores. In a similar manner, 6He

cluster is also expected to play an essential role in the enhancement of the Be isotopes.

According to previous studies, many B isotopes must have two α cores and the excess

neutrons surround the two cores, which indicates that 6He and 8He clusters have an

influence on the enhancement of the B isotopes.

Another point is that the closer the isotope is to the neutron drip-line, the less

bound the residual nucleus corresponding to the α particle becomes although there
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are exceptions. For example, 10He is a residual nucleus corresponding to the α particle

in 14Be and it is known as an unbound nucleus in free space, which indicates that the

clustered structure consisting of the bound nuclei is likely to emerge, i.e., 6He+8He

configuration. Likewise, 13Li is a residual nucleus corresponding to the α particle in
17B and it is known as an unbound nucleus in free space.

With these conjectures, 6He and 8He clusters are also taken into account as well as

the α clusters to elucidate the effects of the excess neutrons on the α cluster formation.

Since 6He and 8He clusters are composed of a single α core and the excess neutrons,

those S-factors in Be and B isotopes enable us to discuss how much α cluster structure

is enhanced having the excess neutrons which surround the α cores. This analysis of
6He and 8He cluster formations is the novelty of this study.
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2 Theoretical Framework

2.1 Effective Hamiltonian

The microscopic Hamiltonian for A-body system is expressed as,

Ĥ =
A∑
i

t̂(ri)− t̂c.m. +
A∑
i<j

v̂NN(rij) +
A∑

i<j∈proton

v̂C(rij), (2.1)

where t̂i and t̂c.m. denote the nucleon and center-of-mass kinetic energies, respec-

tively. v̂C is a Coulomb interaction approximated by a sum of seven Gaussians. The

Gogny D1S parameter set [28] is employed to represent the effective nucleon-nucleon

interaction v̂NN,

v̂NN(rij) =
∑
k=1,2

(Wk +BkP̂σ −HkP̂τ −MkP̂σP̂τ ) exp

[
−
(
ri − rj

µk

)2
]

+ iWLS
←−
∇δ(ri − rj)×

−→
∇ · (σi + σj)

+ vDD(1 + P̂σ)δ(ri − rj)

[
ρ

(
ri + rj

2

)]1/3
, (2.2)

where the first term is a central force with finite range interaction expressed as a

sum of the attractive and repulsive nuclear force. The P̂σ and P̂τ represent the

spin and isospin exchange operator, respectively. Thus, the W , B, H, and M are

the coefficients of direct, spin exchange, isospin exchange, and spin-isospin exchange

terms, respectively. The second term is a zero-range two-body spin-orbit interaction

where
←−
∇ and

−→
∇ act on the bra and ket side, respectively. The final one is a functional

of nuclear density ρ.

2.2 AMD wave function

The model wave function of the A-body system is represented by a Slater determinant

of single-particle wave packets,

ΦAMD = A{φ1 φ2 · · · φA} =
1√
A!

∣∣∣∣∣∣
φ1(r1) · · · φA(r1)

...
. . .

...
φ1(rA) · · · φA(rA)

∣∣∣∣∣∣ , (2.3)
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where φi is the i-th single particle wave packet which is composed of the spatial ϕi,

spin χi, and isospin ηi parts,

φi(r) = ϕi(r)χiηi, (2.4)

ϕi(r;Z) = ϕi(r) =
∏

σ=x,y,z

(
2νσ
π

)1/4

exp {−νσ(rσ − Ziσ)}2, (2.5)

χi = aiχ↑ + biχ↓, |ai|2 + |bi|2 = 1, (2.6)

ηi = proton or neutron. (2.7)

The spatial part ϕi is expressed by deformed Gaussian [29]. The Gaussian widths νσ,

centroids Ziσ, and spin directions ai, bi are the variational parameters. The AMD

wave function Eq. (2.3) can be decomposed into the intrinsic wave function Φint and

the center-of-mass wave function Φcm:

ΦAMD = ΦintΦcm, (2.8)

Φint =
1√
A!

∣∣∣∣∣∣
φ1(r

′
1) · · · φA(r

′
1)

...
. . .

...
φ1(r

′
A) · · · φA(r

′
A)

∣∣∣∣∣∣ , (2.9)

Φcm =
∏

σ=x,y,z

(
2Aνσ
π

)1/4

exp {−νσr2cm,σ}. (2.10)

where Φcm is renormalized. The center-of-mass coordinate rcm and relative coordinate

r′i = ri−rcm satisfy the relation rcm = 1
A

∑A
i=1 ri. The details of this decomposition

and the expectation values of the operators sandwiched by Φint are explained in

Appendices A.1 and A.2, respectively.

The parity-projected wave function is employed as the variational wave function,

Φπ = P̂πΦint =
1 + πP̂x

2
Φint, (2.11)

where P̂π denotes the parity projection operator. The variational parameters of Eq.

(2.4) are independently determined for each parity by the variational calculation with

the shape constraint explained in Sec. 2.3.

2.3 Variational calculation with a shape constraint

A variational calculation is performed under constraint on the matter quadrupole

deformation parameter β.

The variational parameters Xi (νσ, Ziσ, ai, and bi) are determined by the frictional

cooling method [30] which minimizes the energy Ẽ(Xi, X
∗
i ). The variables Xi follow
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the equation of motion,

−iℏdXi

dt
= µ

∂Ẽ

∂X∗
i

(2.12)

where µ is the positive real number. Suppose that t is the pure imaginary number

t = iτ , the function Ẽ(Xi, X
∗
i ) is minimized by developing the imaginary time τ ,

d

dτ
Ẽ(Xi, X

∗
i ) =

∑
i

(
∂Ẽ

∂Xi

dXi

dτ
+

∂Ẽ

∂X∗
i

dX∗
i

dτ

)
= −2µ

ℏ
∑
i

∣∣∣∣∣ ∂Ẽ∂Xi

∣∣∣∣∣
2

≤ 0. (2.13)

In the AMD framework, the energy Ẽ is defined as,

Ẽ(β) =
⟨Φπ(β)|Ĥ|Φπ(β)⟩
⟨Φπ(β)|Φπ(β)⟩

+ vβ(⟨β⟩ − β)2, (2.14)

where the parabolic potential is added to the total energy to impose the β constraint

and the constraint potential strength vβ is selected sufficiently large positive value.

The β and ⟨β⟩ are the quadrupole deformation parameter as an input constraint

value and the expectation value of β calculated by Eq. (2.15) [31] explained below,

respectively. The Eq. (2.14) is ideally minimized when the ⟨β⟩ is equal to the input

β. Then one obtains the optimized wave function Φπ(β) which has the minimum

energy for each given value of β. In this calculation, the input constraint values β are

β = 0.00, 0.05, · · · , 0.90.
The quadrupole deformation parameters β and γ are defined as,

⟨σ̂2⟩ = R2
0

[
1 +

√
5

π
⟨β⟩ cos

{
⟨γ⟩+ (−)δyσ (1− δzσ)

2π

3

}]
, (2.15)

R2
0 =

1

3

∑
σ=x,y,z

⟨σ̂2⟩, (2.16)

where ⟨σ̂2⟩ is the expectation value of the squared radius in the σ-direction ⟨Φπ|σ̂2|Φπ⟩
and R0 is the radius of the spherical nucleus. Here, the relation Rx ≤ Ry ≤ Rz is

satisfied. The second term of Eq. (2.15) expresses the deviation from the sphere of

radius R0. The parameters β and γ represent the deformation of the entire nucleus

and the relationship among the lengths of the three principal axes of the ellipsoid,

respectively. Figure 11 shows a part of β-γ plane but this part is consistent with

the other parts of the plane with different principal axes. The typical shapes are

conventionally named as follows.

(a) Spherical: β = 0, γ = 0 (deg.); ⟨x̂2⟩ = ⟨ŷ2⟩ = ⟨ẑ2⟩
(b) Prolate: β ̸= 0, γ = 0 (deg.); ⟨x̂2⟩ = ⟨ŷ2⟩ < ⟨ẑ2⟩
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(c) Oblate: β ̸= 0, γ = 60 (deg.); ⟨x̂2⟩ = ⟨ŷ2⟩ > ⟨ẑ2⟩

The prolate and oblate shapes show an axisymmetric deformation with a rotationally

symmetric axis. In this calculation, z-axis is employed as a rotationally symmetric

axis.

 0  0.3  0.6  0.9

 γ

  0 deg.

 20 deg.

 40 deg.

 60 deg.

β-γ plane

(a) (b)

(c)

β

Fig. 11 β-γ plane. (a), (b), and (c) show the region of the spherical, prolate, and

oblate shapes shown in Fig. 12, respectively.

(a) Spherical (b) Prolate (c) Oblate

Fig. 12 Schematic figures showing the quadrupole deformation of a nucleus. (a),

(b), and (c) show the spherical, prolate, and oblate shapes corresponding to Fig. 11,

respectively.

2.4 Angular momentum projection

The optimized wave functions Φπ(β) obtained by the energy variational calculation

have deformed shapes and therefore break the rotational symmetry. Thus, Φπ(β)

is projected onto the eigenstate of the total angular momentum J to restore the
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rotational symmetry breaking,

ΦJπ
MK(β) =

2J + 1

8π2

∫
dΩ DJ ∗

MK(Ω)R̂(Ω)Φπ(β), (2.17)

DJ
MK(Ω) = ⟨JM |R̂(Ω)|JK⟩, (2.18)

R̂(Ω) = e−iαĴze−iβĴye−iγĴz , (2.19)

where DJ
MK(Ω) and R̂(Ω) denote the Wigner’s D-function and the rotation operator.

This integral calculation over Euler angles Ω is numerically evaluated. Then, one

obtains the spin-parity-projected wave functions ΦJπ
MK(β) which have a different value

of the deformation parameter β.

2.5 Generator coordinate method

The generator coordinate method (GCM) is adopted to obtain the wave functions and

energies employing the deformation parameter β as the generator coordinate. The

GCM wave function is expressed as the superposition of the spin-parity-projected

wave functions ΦJπ
MK(β),

ΨJπ
M,α =

∑
iK

giK,αΦ
Jπ
MK(βi). (2.20)

This Eq. (2.20) is the wave function of the generator coordinate method (GCM) [32],

where the deformation parameter β is employed as the generator coordinate. This

GCM wave function can approximately well describe the bound state as well as the

unbound state with a bound state approximation. The coefficients gjK′ ,α and the

eigenenergy Eα are determined by solving the Hill-Wheeler equation [32],∑
jK′

(HiKjK′ − EαNiKjK′ )gjK′ ,α = 0, (2.21)

HiKjK′ = ⟨ΦJπ
MK(βi)|Ĥ|ΦJπ

MK′ (βj)⟩, (2.22)

NiKjK′ = ⟨ΦJπ
MK(βi)|ΦJπ

MK′ (βj)⟩. (2.23)

The GCM wave functions can be used to derive the properties of Be and B isotopes,

such as the distribution radii and degree of clustering.

The overlap between the spin-parity-projected wave function ΦJπ
MK(β) and GCM

wave function ΨJπ
M,α is defined to evaluate how well the GCM wave function can be

understood by a single wave function ΦJπ
MK(β),

OiK,α = |⟨ΦJπ
MK(βi)|Ψ̃Jπ

M,α⟩|2, (2.24)

|Ψ̃Jπ
M,α⟩ =

∑
iK

giK,α|ΦJπ
MK(βi)⟩/

√
⟨ΦJπ

MK(βi)⟩|ΦJπ
MK(βi)⟩. (2.25)
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2.6 Reduced width amplitude and its radius

To evaluate the degree of clustering in Be and B isotopes, I calculated the reduced
width amplitude (RWA), which is generally defined as the overlapping between the
A-body GCM wave function ΦJπ

MA and the reference state composed of the cluster

Φj1π1

m1C1
with a mass C1 and the daughter nucleus Φj2π2

m2C2
with a mass C2 = A− C1:

YJπ
j1π1j2π2j12ℓ(a) = n(C1, C2)

〈
δ(r−a)

ra

[
Yℓmℓ(r̂)

[
Φj1π1

m1C1
Φj2π2

m2C2

]
j12m12

]
JM

∣∣∣ΦJπ
MA

〉
, (2.26)

where n(C1, C2) is the normalization constant: n(C1, C2) ≡
√

1
1+δC1C2

A!
C1!C2!

. It is

assumed that the wave functions ΦJπ
MA, Φ

j1π1

m1C1
, Φj2π2

m2C2
are normalized. The spins j1

and j2 are coupled to j12 with the Clebsch–Gordan coefficient Cj12m12

j1m1j2m2
,[

|j1m1⟩|j2m2⟩
]
j12m12

=
∑

m1m2

Cj12m12

j1m1j2m2
, (2.27)

and j12 is coupled to the orbital angular momentum ℓ of the inter-cluster motion to

yield the total spin-parity Jπ. Therefore, the parity conservation π = π1π2(−)ℓ is

satisfied for π1, π2, and ℓ. Thus, the RWA is the probability amplitude of a cluster

at a distance r = a from the daughter nucleus. Using the relation combined with the

Laplace expansion (see also Appendix A.5),

Φint =
√

C1!C2!
A!

∑
1≤i1≤···<iC1

≤A

P (i1, · · · , iC1
)

× χ(r; i1, · · · , iA)ΦC1

int(i1, · · · , iC1)Φ
C2

int(iC1+1, · · · , iA) (2.28)

the RWA Eq. (2.26) is reduced to,

YJπ
j1π1j2π2j12ℓ(a) =

1√
1+δC1C2

∑
1≤i1≤···<iC1

≤A

P (i1, · · · , iC1
)

×
[
χℓmℓ

(a; i1, · · · , iA)
[
N j1π1

m1
(i1, · · · , iC1)N

j2π2
m2

(iC1+1, · · · , iA)
]
j12

]
JK

, (2.29)

which corresponds to Eq. (28) in Ref. [33]. Each overlap is defined as,

χℓmℓ
(a; i1, · · · , iA) =

〈
δ(r−a)

ra Yℓmℓ
(r̂)
∣∣∣χ(r; i1, · · · , iA)〉 , (2.30)

N j1π1
m1

(i1, · · · , iC1) = ⟨Φj1π1

m1C1
|ΦC1

int(i1, · · · , iC1)⟩, (2.31)

N j2π2
m2

(iC1+1, · · · , iA) = ⟨Φj2π2

m2C2
|ΦC2

int(iC1+1, · · · , iA)⟩, (2.32)

where χ(r; i1, · · · , iA) is the relative wave function between the two subsystems;

ΦC1

int(i1, · · · , iC1) and ΦC2

int(iC1+1, · · · , iA) are the intrinsic wave function of C1 and
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C2 clusters, respectively. The degree of clustering may be evaluated by the spectro-

scopic factor (S-factor), which is defined as the squared integral of the RWA,

S(C1) =

∫ ∞

0

da
∣∣aYJπ

j1π1j2π2j12ℓ(a)
∣∣2. (2.33)

Notably, S(C1) is not normalized to unity because of the antisymmetrized effects

between the cluster and the daughter nucleus.

In the present study, the spin-parity of cluster C1 and the orbital angular momentum

are jπ1
1 = 0+ and ℓ = 0, respectively, which results in the relation: jπ2

2 = Jπ.

Specifically, the spin-parity Jπ is 0+ and 3/2− for the Be and B isotopes, respectively.

The RWA Eq. (2.26) and S-factor Eq. (2.33) can be written in a simple formula,

YC1
(a) = n(C1, A− C1)

〈
δ(r−a)

ra Yℓ=0(r̂)
[
Φ0+

C1
ΦJπ

A−C1

]
J

∣∣∣ΦJπ
A

〉
, (2.34)

S(C1) =

∫ ∞

0

da
∣∣aYC1

(a)
∣∣2. (2.35)

Only for t+8Be channel in 11B, the RWA Eq. (2.26) is written as,

YC1=t(a) =
√

(113 )
〈

δ(r−a)
ra Yℓ=1(r̂)

[
Φ

1/2+
t Φ0+

8Be

]
1/2

∣∣∣Φ3/2−
11B

〉
. (2.36)

where isospins of t(jπ1
1 = 1

2

+
) were composed of a single proton with up (or down)

spin and two neutrons with opposite spins.

The root mean square (RMS) radius of the RWA between the cluster C1 and the

daughter nucleus is defined as,

arms(C1) ≡
[∫ ∞

0

da a2
∣∣aYC1(a)

∣∣2/∫ ∞

0

da
∣∣aYC1(a)

∣∣2]1/2 , (2.37)

where an expectation value of the squared inter-cluster distance a is normalized by

the S-factor, S(C1).
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3 Results and Discussions

3.1 α, 6He, and 8He clusters

In the present study, cluster formations of 6He and 8He clusters in Be and B isotopes

are analyzed as well as that of α clusters. In general, the size of a cluster at the

nuclear surface might be different from that in free space. However, it was confirmed

that the size change of the α cluster is small enough at the surface of several light

nuclei and does not affect the magnitude of S(α) [33]. Thus, I have assumed that the

α cluster size at the nuclear surface is the same as that in free space. Additionally,

the same assumption is imposed for 6He and 8He clusters.

Here, the binding energies and charge radii are listed in Tab. 2 compared with

those experimental values. 6He and 8He clusters are described by the AMD+GCM

framework explained in section 2 while α cluster is described by a product of Gaussians

whose size parameter is chosen to reproduce the observed value of the α radius. The

obtained binding energies and charge radii are qualitatively reproduced although the

former is slightly overbounded and the latter is slightly overestimated.

Tab. 2 Calculated binding energies (B.E.) and charge radii
√
⟨r2c ⟩ compared with

the experimental values in the unit of MeV and fm, respectively.

B.E. B.E. (Expt.)
√
⟨r2c ⟩

√
⟨r2c ⟩ (Expt.)

α -29.7 -28.29566240(80) 1.90 1.67824(83) [34]
6He -32.2 -29.271120(54) 2.16 2.068(11) [35]
8He -33.0 -31.396168(88) 2.15 1.929(26) [35]

3.2 Cluster formation in Be isotopes

3.2.1 Structure of Be isotopes

Be isotopes are well known to have an enhanced 2α-cluster core surrounded by valence

neutrons; such cores have been studied using numerous cluster models [7,9,11,36–38].

In the molecular orbital model, the excess neutrons occupy the molecular orbits and

bond with the α particles [6, 39–41]. 10Be is dominated by the π2 configuration, in

which the two excess neutrons occupy the π orbitals corresponding to the spherical

p-orbits in the limit of zero distance between the two α clusters. The two additional

excess neutrons in 12Be occupy the σ orbitals, which correspond to the spherical

sd-shell in the limit of zero distance between the two α clusters; further, the π2σ2

configuration is dominant in 12Be. Similarly, the two additional excess neutrons in
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14Be occupy the π orbitals, and the π4σ2 configuration is dominant. It is considered

that the σ-bond structure separates the α particles, while the π-bond structure brings

them closer [9,11]. In an ordinary spherical shell model, 10Be and 14Be are dominated

by the normal configuration, i.e. the 0ℏω configuration. In contrast, 12Be is dominated

by the 2ℏω configuration, in which two of the valence neutrons occupy the orbits in

the sd-shell beyond the N = 8 shell gap.

The ground-state properties of 10Be, 12Be, and 14Be deduced by our calculations

are summarized in Table 3. The point proton or charge distribution radii of the

Be isotopes increase toward the neutron drip-line in accordance with the enhance-

ment of clustering. In Fig. 13, both the observed and calculated RMS charge radii

increase from 10Be toward the neutron drip-line, although our calculations system-

atically overestimate the radii. This is because the Gogny interaction used in this

study tends to overestimate the radii of the s-shell nuclei, in particular that of the

α particle, which is an important ingredient of the clustered ground states of Be iso-

topes. The calculated RMS neutron and matter radii also show a similar trend. The

large quadrupole deformation parameter β also supports the presence of 2α-cluster

cores with large inter-cluster distances. Moreover, the calculated principal neutron

quantum numbers, Nn, of
10Be and 14Be are approximately 4 and 10, respectively,

which indicate the 0ℏω configuration, whereas for 12Be, Nn ≃ 8, which corresponds

to the 2ℏω configuration.

Tab. 3 Calculated quadrupole deformation parameter β, the RMS proton, neutron,

and matter distribution radii of the Be isotopes in the unit of fm, and the principal

neutron quantum numbers Nn. The approximated shell model (SM) and molecular

orbital (MO) configurations [41] are also listed.

β
√
⟨r2p⟩

√
⟨r2n⟩

√
⟨r2m⟩ Nn SM MO

10Be 0.60 2.44 2.49 2.47 4.03 0ℏω π2

12Be 0.55 2.57 2.85 2.76 7.60 2ℏω π2σ2

14Be 0.60 2.62 2.99 2.88 10.01 0ℏω π4σ2

3.2.2 Cluster formation in Be isotopes

Here, I discuss the enhancement of clustering in Be isotopes based on the calculated

RWAs. Figure 14(a) shows the calculated α RWA of the ground state of ABe for

the |α ⊗A−4 He(0+1 )⟩ channel. The amplitudes are suppressed and oscillate in the

nuclear interior because of the Pauli exclusion principle. The effect of Pauli exclusion

is approximately described by the Wildermuth-Tang rule [42], which asserts that the

nodal quantum number n and orbital angular momentum ℓ of the RWA must satisfy

the condition 2n+ ℓ ≥ 4 in 10Be and 2n+ ℓ ≥ 6 in 12Be and 14Be. Thus, the α RWAs
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Fig. 13 Calculated RMS charge radii of the Be isotope ground states compared with

the experimental charge radii from isotope shift measurements [12–14].

with ℓ = 0 have two and three nodes in 10Be and 12,14Be, respectively. Note that the

condition 2n + ℓ ≥ 6 for 12Be implies the dominance of the 2ℏω configuration, i.e.

the breaking of the N = 8 magic number. The amplitudes are peaked at the nuclear

exterior (r ≳ 3.0 fm), indicating the cluster formation at the nuclear surface. The

peak position is more outward for 12,14Be than for 10Be, and this result is consistent

with the enhanced cluster formation by the excess neutrons occupying the σ orbitals.

This trend is also evident from the calculated RMS radius of the RWA, arms, shown

in Fig. 15. The arms(α) of 12Be is larger than that of 10Be owing to the cluster

development in 12Be. Additionally, the arms(α) of 14Be is slightly shorter than that

of 12Be, because the two neutrons of 14Be occupying the π orbitals attract the two α

particle cores.
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Fig. 14 Calculated α (panel (a)) and 6He (panel (b)) RWAs of the Be isotopes with

orbital angular momentum ℓ = 0.

However, the calculated S-factor for α clustering, shown in Fig. 16, is dependent

on the neutron number, which contradicts the aforementioned analysis. The S-factor

decreases as the neutron number increases, suggesting the suppression of the α-cluster
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Fig. 16 Calculated α and 6He S-factors

and the sum of those S-factors as a func-

tion of the neutron number of the Be iso-

topes.

formation by the excess neutrons. The associated mechanism may be explained as

follows: Because of the glue-like role played by the valence neutrons in 12Be, this Be

isotope has a mixing of α+8He and 6He+6He configurations. As a result, the S(α)

of 12Be becomes smaller than that of 10Be, although the sum of S(α) and S(6He)

is larger than that of 10Be. Similarly, 14Be may be an admixture of α+10He and
6He+8He configurations. To verify this hypothesis, the calculated 6He RWAs of 12Be

and 14Be are shown in Fig. 14(b) since the 6He RWA of 10Be is equivalent to that of

the α RWA. In both 12Be and 14Be, the peak height of the 6He RWA is comparable

to that of the α RWA, and the peak position slightly shifts inward, which is reflected

by the RMS radii of the RWAs for the α and 6He clusters shown in Fig. 15. Thus,

the magnitude of S(6He) is comparable with that of S(α). Here, I assume that the

|α ⊗A−4 He⟩ and |6He ⊗ A−6He⟩ channels are not similar to each other in 12Be and
14Be. The sum of S(α) and S(6He), i.e. Ssum, varies only negligibly with the neutron

number. Thus, taking into account the clustering of 6He as well as α, it can be stated

that Be isotopes have a well-developed cluster structure. Furthermore, for example in
12Be, S(α) related to the excited state of the residual nucleus, Yℓ=2[α(0

+)⊗ 8He(2+1 )]

channel, is S(α) ∼ 0.15; Yℓ=4[
6He(2+1 ) ⊗ 6He(2+1 )] channel, is S(α) ∼ 0.23. The

results indicate that the excess neutrons contribute to yield not only α cluster but

also 6He cluster, which means that S(α) is not enough to estimate the enhancement

of clustering in Be isotopes.

3.3 Cluster formation in B isotopes

3.3.1 Structure of Li isotopes

Table 4 lists the quadrupole deformation parameters β and γ, the RMS proton and

neutron distribution radii, the charge radii and those observed radii, and the principal
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neutron quantum numbers Nn of Li isotopes. 7Li is expected to have α + t configu-

ration because 7Li is prolately deformed and has one less proton than 8Be which is

a famous 2α resonance state having a prolate shape. 9Li is not a very characteristic

nucleus while it has a large asymmetry with N/Z = 2. Nn of 9Li indicates that all six

neutrons are within the 0p-shell. Different from 9Li, 11Li has interesting properties

and is known as a two-neutron halo nucleus. Nn of 11Li indicates that two valence

neutrons are in the sd-shell beyond the N = 8 shell gap. The calculated intrinsic wave

function of 11Li, explained in Appendix B.7, consists of (1s)2 and (0d)2 configurations

that amount to 30% and 69%, respectively. Note that this 30% contribution by (1s)2

configuration is close to that of previous works; 33(6)% [43] and 36.8% [44]. Further-

more, the calculated charge radius of 11Li is within an error range of its observed

radius. The enhancement of neutrons of 11Li can be seen as the large neutron-skin

thickness compared with those 7Li and 9Li, and also the deformation parameters of

the proton and neutron with βp = 0.23 and βn = 0.44, respectively.

Tab. 4 Calculated quadrupole deformation parameters β, γ; the r.m.s. proton and

neutron distribution radii and the charge radii and those observed radii [45,46] in the

unit of fm; and the principal neutron quantum numbers Nn of Li isotopes.

β γ
√
⟨r2p⟩

√
⟨r2n⟩

√
⟨r2c ⟩

√
⟨r2c ⟩ (Expt.) Nn

7Li 0.50 2 2.18 2.31 2.36 2.39(3) 2.01
9Li 0.55 29 2.24 2.45 2.42 2.217(35) 4.02

11Li 0.39 6 2.31 2.77 2.49 2.467(37) 8.00

3.3.2 Structure of B isotopes

Although the structures of B isotopes have been theoretically studied by many au-

thors [10, 25–27, 47, 48], the physical quantities, which directly indicate clustering,

have not been discussed in detail. Here, I explain the calculated ground-state prop-

erties of B isotopes. The calculated spin-parity of the ground states of 11,13,15,17,19B

are Jπ = 3/2−, which is consistent with the experimental data. Table 5 lists the

calculated quadrupole deformation parameters β and γ, and the RMS proton, neu-

tron, and matter distribution radii of the B isotopes. The principal neutron quantum

numbers, Nn, are approximately 4, 6, 10, 14, and 18 for 11,13,15,17,19B, respectively,

which indicate that all the B isotopes are dominated by the 0ℏω configurations. The

deformation parameters γ show that 13B, 15B, and 17B are prolately deformed, while
11B and 19B are oblately deformed. Remarkably, in the present calculations, 19B is

oblately deformed (γp,n ≈ 60◦), while the spin-fixed AMD calculations [27] yielded a

prolate deformation. Figure 18 shows the energies of before (after) projected model

wave functions, Eq. (2.11), of 19B onto the 3/2− state as a function of the quadrupole
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deformation parameter β as an open (a filled) circle. Prolately deformed wave func-

tions of 19B are also described but those energies are larger than that of oblate de-

formation. This difference significantly affects the cluster formation probabilities as

discussed later in this paper. Figure 17 shows the calculated RMS point proton radii,

which are in reasonable agreement with the experimental values, except for 11B. The

magnetic moments µ and electric quadrupole moments Qp of 11−17B shown in Figs.

19 and 20 are also in good agreement with the observed values and do not exhibit

a strong dependence on the neutron number. Thus, the present calculation results

successfully describe the ground states of B isotopes.

Tab. 5 Calculated deformation parameters β, γ; the RMS proton, neutron, and

matter distribution radii; the principal neutron quantum numbers Nn of the B iso-

tope ground states. The γ values and radii are given in the unit of degree and fm,

respectively.

β γ
√
⟨r2p⟩

√
⟨r2n⟩

√
⟨r2m⟩ Nn

11B 0.45 59 2.45 2.49 2.47 4.03
13B 0.30 6 2.47 2.56 2.52 6.04
15B 0.50 0 2.61 2.87 2.79 10.00
17B 0.55 9 2.66 3.02 2.92 14.01
19B 0.45 60 2.69 3.12 3.01 18.01
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Fig. 17 Calculated RMS point

proton radii of the B isotopes

compared with the observed val-

ues [49,50].
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3.3.3 Cluster formation in B isotopes

In this subsection, I discuss the cluster formation in B isotopes based on the intrinsic

density distributions, RWAs, radii of the RWAs, and S-factors.

Cluster formation in B isotopes can be evaluated from Fig. 21, which shows the

proton, neutron, and matter intrinsic density distributions of the Be and B isotopes.

The peak positions of the proton density distributions are marked by points, and

the distance d between them are shown in panel (c). All the Be isotopes exhibit a

prolate shape, and the distance d increases as the neutron number increases, which

is consistent with the growth of clustering toward the neutron drip-line. For the

B isotopes, the S-factors are expected to be smaller than those of the Be isotopes,

because the distance d is smaller than that of the Be isotopes. The S-factor increases

as a function of the neutron number until 17B. The isotope 19B has an oblate shape and

does not exhibit clustered structures. Thus, I expect that the clustering is enhanced

until 17B, but the corresponding S-factors are always smaller than those of the Be

isotopes.

Next, I discuss the RWAs in the |α⊗A−4Li(3/2−1 )⟩ channel with A = 11, 13, and

15 as shown in Fig. 22(a). I assume that the N = 8 magic number is broken in 11Li

and the last neutrons occupy the 1s and 0d orbits which amount to 30% and 70%,

respectively. The RWAs of the B isotopes are peaked at the nuclear exterior and

suppressed in the interior due to the Pauli exclusion satisfying the Wildermuth-Tang

rule [42]. The peak height is much smaller than that of the Be isotopes, suggesting

the presence of less developed clustered structures as expected. Similar to the case of

Be and C isotopes [23], the S(α) decreases as the neutron number increases as shown

28



10
Be

ρp(a) ρn ρm/2

12
Be

14
Be

-6.0 0.0 6.0

(fm)

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

11
B

ρp(b) ρn ρm/2

13
B

15
B

17
B

19
B

-6.0 0.0 6.0

(fm)

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

0.0

1.0

2.0

3.0

4.0

6 8 10 12 14

(c)

11
B

13
B

15
B

17
B

10
Be

12
Be

14
Be

C
lu

st
er

 d
is

ta
n
ce

 d
 (

fm
)

Neutron number

Be
B

Fig. 21 Panels (a) and (b) show the proton, neutron, and matter intrinsic density of

Be and B isotopes, respectively. The peak positions of the proton density are marked

with a point and those distances are shown in panel (c). Note for 11B that the largest

distance between a peak and the mean position of the other peaks is adopted and

shown as an arrow.

in Fig. 23 because of the excess neutrons, which cause the mixing of the α+9Li and
6He+7Li configurations in 13B and that of the 6He+9Li and 8He+7Li configurations in
15B. The calculated 6He and 8He RWAs are shown in Figs. 22(b) and (c), respectively.

Evidently, in 13B, the peak height of the 6He RWA is comparable to that of the α

RWA. In 15B, the peak heights of the 6He and 8He RWAs are larger than that of

α. Similarly, the excess neutrons in 17B contribute to the formation of the 8He+9Li

29



configuration. These features are reflected in the S-factors depicted in Fig. 23 as

well as the radii of the RWAs shown in Fig. 24. Clearly, some of the α, 6He, and
8He cluster structures are enhanced in 11,13,15,17B. In Fig. 23, Ssum shows the sum of

S(α), S(6He), and S(8He) and is not hindered by the excess neutrons in the isotopes

up to 17B.

In 19B, the corresponding RWA and S-factor indicate a less developed 8He cluster

structure, which is expected from the intrinsic densities. Therefore, the behavior of

Ssum is consistent with the enhancement of clustering, determined from the intrinsic

density distributions in Fig. 21 showing a certain amount of cluster development with

smaller Ssum values compared with that of Be isotopes. This result indicates that
6He and 8He clusters as well as α clusters are exhibited due to the excess neutrons in

B isotopes.
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Fig. 22 Calculated α (panel (a)), 6He (panel (b)), and 8He (panel (c)) RWAs of the

B isotopes with orbital angular momentum ℓ = 0.
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Here, I also discuss the cluster formation in 11B which has an oblate shape with
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three peaks in the distributions of proton ρp and neutron ρn (Fig. 21). Thus, it is

expected that two excess neutrons of 11B are in the vicinity of a single proton forming

t and therefore 11B is expected to have a α+ α+ t configuration. Addition to the α

cluster formation in Fig. 22(a) and Fig. 23, t RWA and its S-factor are shown in Fig.

25 and Tab. 6, respectively. The peak position of the α and t RWAs are close to each

other with the almost same amplitudes. The calculated t S-factor, S(t) = 0.11, is

comparable to S(α) = 0.07. Thus, in 11B, α and t clusters emerge with approximately

the same degree of clustering. Table 6 also lists the S(α) in 12C and 14C calculated by

the same framework [23]. 12C is 3α system and is composed of one more proton than
11B. 14C is composed of two more neutrons than 3α system of 12C. S(α) in 14C is

much reduced to approximately 1/3 of the 12C, but is largest among the neutron-rich

C isotopes and is comparable to the S(α) and S(t) in 11B. This indicates that the

S(α) and S(t) in 11B are not small because those S-factors are comparable to the

S(α) in 14C although the S(α) is reduced when a nucleon is added to the 3α system.

Therefore, 11B is still keeping the α + α + t structure, which seems to support the

previous study [58].
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Fig. 25 Calculated α and t RWAs of 11B with orbital angular momentum ℓ = 0 and

ℓ = 1, respectively.

Tab. 6 Calculated α and t S-factors of 11B are compared with the α S-factors of 12C

and 14C calculated in Ref. [23].

channel S-factor
11B Yℓ=0[α(0

+)⊗ 7Li( 32
−
)] 0.07

11B Yℓ=1[t(
1
2

+
)⊗ 8Be(0+)] 0.11

12C Yℓ=0[α(0
+)⊗ 8Be(0+)] 0.30

14C Yℓ=0[α(0
+)⊗ 10Be(0+)] 0.10
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4 Summary

Cluster formation is a universal phenomenon exhibited at all levels constituting the

hierarchy of matter. Notably, in finite nuclei, cluster formation is expected to be

hindered by the growth of a neutron skin. Recently, it was shown that the proton-

induced α knockout reaction (p, pα) is useful for assessing the α cluster formation at

the nuclear surface. Using this reaction, the negative correlation between the neutron-

skin thickness and the α cluster formation at the nuclear surface of Sn isotopes has

been reported. On the other hand, the α cluster formation in Be and B isotopes is

predicted to enhance as the neutron drip-line approaches. However, this prediction

was not based on the physical quantity which can directly probe the α cluster struc-

ture. Thus, I theoretically evaluated the α cluster formation by the α S-factors in

neutron-rich Be and B isotopes to clarify the possible clustering toward the neutron

drip-line using the AMD+RWA framework. Additionally, considering the excess neu-

trons surrounding the two α cores in Be and B isotopes, 6He and 8He clusters were also

evaluated. In this study, the ground-state ΦA(g.s.) to the ground-state ΦA−C1
(g.s.)

channel of C1 cluster formation was only evaluated, which can be measured by the

(p, pα) reaction in the case of C1 = α.

The AMD framework successfully described the ground-state properties of both the

Be and B isotope chains. I estimated the cluster formation from the intrinsic density

distributions and the proton distribution radii in the Be and B isotopes as well as by

referring to the molecular orbital model for the Be isotopes. Although the calculated α

spectroscopic factors, i.e. S(α), show a negative correlation with the neutron number,

the sum of S(α) and S(6He) for the Be isotopes and that of S(α), S(6He), and S(8He)

for the B isotopes are not being hindered as the neutron drip-line approaches except

for 19B. This result is consistent with the clustering estimated from the intrinsic

density distributions. Thus, the results of this study revealed the possibility of cluster

formation as the neutron drip-line is approached in Be and B isotopes, by explaining

the mechanism of cluster formation for the former and showing consistency between

the cluster distances of the intrinsic density distributions and cluster formation for

the latter. Additionally, t spectroscopic factor in 11B was microscopically calculated

and it was comparable to that of α cluster, which may support the α+ α+ t model.

It can be concluded that the excess neutrons surrounding α cores contribute to yield
6He and 8He clusters as well as α clusters. The decrease in α spectroscopic factor

toward the neutron drip-line in Be and B isotopes is due to considering only the

ground state of the residual nuclei, meaning that it does not indicate that α cluster

formation is not increased. Namely, S(α) is not enough to estimate the enhancement

of clustering in neutron-rich Be and B isotopes.
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Appendix A AMD wave function

A.1 Decomposition of the center-of-mass coordinate

The AMD wave function Eq. (2.3) can be decomposed into the internal wave function

Φint and the center-of-mass wave function Φcm:

ΦAMD = ΦintΦcm, (A.1)

Φint =
1√
A!

∣∣∣∣∣∣
φ1(r

′
1) · · · φA(r

′
1)

...
. . .

...
φ1(r

′
A) · · · φA(r

′
A)

∣∣∣∣∣∣ , (A.2)

Φ̃cm =
∏

σ=x,y,z

(
2Aνσ
π

)1/4

exp {−Aνσr
2
cm,σ} = Φcm

∏
σ=x,y,z

(
2Aνσ
π

)1/4

, (A.3)

where Φ̃cm is renormalized. Using the relation r′iσ = riσ − rcm,σ, the spatial part of

the single particle wave function Eq. (2.5) can be written as,

ϕi(r) =
∏

σ=x,y,z

(
2νσ
π

)1/4

exp {−νσ(riσ − Ziσ)}2, (A.4)

=
∏

σ=x,y,z

(
2νσ
π

)1/4

exp {−νσ(r′iσ + rcm,σ − Ziσ)}2, (A.5)

= ϕi(r
′)

∏
σ=x,y,z

exp {−νσr2cm,σ} exp {−2νσrcm,σ(r
′
iσ − Ziσ)}. (A.6)

Inserting this equation into the AMD wave function Eq. (2.3), the center-of-mass

coordinate can be separated:

ΦAMD = Φint

A∏
i=1

∏
σ=x,y,z

exp {−νσr2cm,σ} exp {−2νσrcm,σ(r
′
iσ − Ziσ)}, (A.7)

= Φint exp

{
−

A∑
i=1

∑
σ=x,y,z

νσr
2
cm,σ

}
exp

{
−

∑
σ=x,y,z

2νσrcm,σ

(
A∑
i=1

r′iσ

)}

× exp

{ ∑
σ=x,y,z

2νσrcm,σ

(
A∑
i=1

Ziσ

)}
, (A.8)

= Φint exp

{
−A

∑
σ=x,y,z

νσr
2
cm,σ

}
= ΦintΦcm, (A.9)

where the relative coordinate r′iσ satisfies the relation
∑A

i=1 r
′
iσ = 0. Furthermore, it

is imposed that
∑A

i=1 Ziσ ≡ 0 without the loss of generality.
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A.2 Expectation values

Single particle wave packet

φi(r) = ϕi(r)χiηi, (A.10)

ϕi(r) =
∏

σ=x,y,z

(
2νσ
π

)1/4

exp {−νσ(rσ − Ziσ)}2. (A.11)

Overlap

The matrix element Bij of an A×A overlap matrix B is defined as,

Bij ≡ ⟨φi|φj⟩ = DijSijδαβ (A.12)

Dij ≡ ⟨ϕi|ϕj⟩ =
∫

dr ϕ∗
i (r)ϕj(r), (A.13)

Sij ≡ ⟨χi|χj⟩ = a∗i aj + b∗i bj , (A.14)

δαβ ≡ ⟨ηα|ηβ⟩. (A.15)

Here, I derive the kernel Dij . The integrand is given as,

ϕ∗
i (rσ)ϕj(rσ) =

(
2νσ

π

)1/2
exp

[
−νσ

{
(rσ − Z∗

iσ)
2 + (rσ − Zjσ)

2
}]

, (A.16)

=
(
2νσ

π

)1/2
e−

νσ

2 (Z∗
iσ−Zjσ)

2

exp{−2νσ(rσ − Zijσ)
2}, (A.17)

=
(
2νσ

π

)1/2
Dijσ exp{−2νσ(rσ − Zijσ)

2}, (A.18)

Zijσ ≡ (Z∗
iσ + Zjσ)/2. (A.19)

Thus,

Dij =
∏
σ

(
2νσ

π

)1/2
e−

νσ

2 (Z∗
iσ−Zjσ)

2
∫

drσ exp{−2νσ(rσ − Zijσ)
2}, (A.20)

=
∏

σ=x,y,z

exp
{
−νσ

2
(Z∗

iσ − Zjσ)
2
}

. (A.21)

One-body operator

One-body operator Ô is defied as Ô ≡
∑A

i=1 oi, and its expectation value is given by,

⟨Ô⟩ = ⟨Φint|Ô|Φint⟩ =
∑
α

∑
ij∈α

⟨φi|ô|φj⟩(B−1)ji. (A.22)
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◦ Kinetic energy

The kinetic energy and its expectation value are given by,

T̂ =
A∑
i=1

−ℏ2

2m
∇2

i =
A∑
i=1

t̂i, (A.23)

⟨T̂ ⟩ = − ℏ2

2m

∑
α

∑
ij∈α

⟨φi|∇2|φj⟩(B−1)ji, (A.24)

= − ℏ2

2m

∑
α

∑
ij∈α

Sij⟨ϕi|∇2|ϕj⟩(B−1)ji, (A.25)

Using these relations:

∇τϕj(r) = −2ντ (rτ − Zjτ )ϕj(r), (A.26)

∇2
τϕj(r) = {−2ντ + 4ν2τ (rτ − Zjτ )

2}ϕj(r), (A.27)

ϕ∗
i (r)ϕj(r) = Dij

∏
σ

(
2νσ

π

)1/2
exp{−2νσ(rσ − Zijσ)

2} (A.28)

∴ ϕ∗
i (r)∇2

τϕj(r) = {−2ντ + 4ν2τ (rτ − Zjτ )
2}

×Dij

∏
σ

(
2νσ

π

)1/2
exp{−2νσ(rσ − Zijσ)

2}, (A.29)

the kernel is obtained as,

⟨ϕi|∇2
τ |ϕj⟩ =

∫
dr ϕ∗

i (r)∇2
τϕj(r), (A.30)

= Dij{−ντ + ν2τ (Z
∗
iτ − Zjτ )

2}, (A.31)

∴ ⟨ϕi|∇2|ϕj⟩ = Dij

∑
τ

{−ντ + ν2τ (Z
∗
iτ − Zjτ )

2}. (A.32)

Thus, the kinetic energy is given by,

⟨T̂ ⟩ = − ℏ2

2m

∑
α

∑
ij∈α

SijDij(B
−1)ji

∑
τ

{−ντ + ν2τ (Z
∗
iτ − Zjτ )

2}, (A.33)

=
ℏ2

2m

∑
τ=x,y,z

Aντ −
∑
α

∑
ij∈α

Bij(B
−1)jiν

2
τ (Z

∗
iτ − Zjτ )

2

 . (A.34)

◦ Kinetic energy of CoM

The operator for the center-of-mass kinetic energy, t̂cm, acts only on the center-
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of-mass wave function Φcm:

⟨t̂cm⟩ = ⟨ΦAMD|t̂cm|ΦAMD⟩, (A.35)

= ⟨Φint|Φint⟩⟨Φ̃cm|t̂cm|Φ̃cm⟩ = ⟨Φ̃cm|t̂cm|Φ̃cm⟩, (A.36)

t̂cm =

A∑
i=1

−ℏ2

2(Am)
∇2

cm,i. (A.37)

The kernel is obtained as the simple formula,

∇cm,τ Φ̃cm(rcm) = −2Aντrcm,τ Φ̃cm(rcm), (A.38)

∇2
cm,τ Φ̃cm(rcm) = (−2Aντ + 4A2ν2τ rcm,τ )Φ̃cm(rcm), (A.39)

∴ ⟨Φ̃cm(rcm)|∇2
cm|Φ̃cm(rcm)⟩ = −A

∑
τ

ντ . (A.40)

Thus, the center-of-mass kinetic energy is given by,

⟨t̂cm⟩ = −
ℏ2

2Am

A∑
i=1

⟨Φ̃cm(rcm)|∇2
cm|Φ̃cm(rcm)⟩ =

ℏ2

2m

∑
τ=x,y,z

ντ . (A.41)

◦ Density distribution

The intrinsic density operator and its expectation value are given by,

ρ̂(R) =
A∑
i=1

δ(ri −R), (A.42)

⟨ρ̂(R)⟩ =
∑
α

∑
ij∈α

Sij⟨ϕi(r)|δ(r −R)|ϕj(r)⟩(B−1)ji, (A.43)

=
∑
α

∑
ij∈α

Sij(B
−1)ji

∫
dr δ(r −R)ϕ∗

i (r)ϕj(r), (A.44)

=
∑
α

∑
ij∈α

Sij(B
−1)jiϕ

∗
i (R)ϕj(R), (A.45)

=
∑
α

∑
ij∈α

Bij(B
−1)ji

∏
σ

(
2νσ

π

)1/2
exp{−2νσ(rσ − Zijσ)

2} . (A.46)

◦ RMS radius

The RMS radius operator and its expectation value are given by,

r̂2 =
1

A

A∑
i=1

r2i , (A.47)

⟨r̂2⟩ = 1

A

∑
α

∑
ij∈α

Sij⟨ϕi|r2|ϕj⟩(B−1)ji, (A.48)
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⟨ϕi|r̂2τ |ϕj⟩ =
∫

dr ϕ∗
i (r)r

2
τϕj(r) = Dij

1

4ντ
{1 + ντ (Z

∗
iτ + Zjτ )

2}, (A.49)

⟨r̂2⟩ = 1

A

∑
α

∑
ij∈α

∑
τ

Bij(B
−1)ji

1

4ντ
{1 + ντ (Z

∗
iτ + Zjτ )

2}, (A.50)

=
∑

τ=x,y,z

1

4ντ

1 +
1

A

∑
α

∑
ij∈α

Bij(B
−1)jiντ (Z

∗
iτ + Zjτ )

2

 . (A.51)

◦ Principal quantum number

The number operator N̂στ is defined as,

N̂στ =

A∑
i=1

n̂στ , (A.52)

n̂στ = â†σâτ , â†σ = r̂σ +
p̂σ

2iℏνσ
, âσ = r̂σ −

p̂σ
2iℏνσ

, (A.53)

p̂σ = −iℏ∇σ, (A.54)

where p̂σ is a momentum operator. The operator âσ satisfies the relation,

âσϕ(r) = Zσϕ(r). (A.55)

Thus, the principal quantum number is given by,

N̂στ =
∑
α

∑
ij∈α

Sij⟨ϕi|n̂στ |ϕj⟩(B−1)ji, (A.56)

=
∑
α

∑
ij∈α

Z∗
iσZjτBij(B

−1)ji . (A.57)

Two-body operator

Two-body operator is defied as Ô ≡
∑A

ij=1 ôij , and its expectation value is given by,

⟨Ô⟩ =
∑
α

∑
β

∑
ij∈α

∑
ij∈β

⟨φiφj |ô|φkφℓ − φℓφk⟩(B−1)ki(B
−1)ℓj . (A.58)

◦ Central potential
The central potential is given in a Gaussian form,

V̂ =
1

2

A∑
ij=1

Xe−ar2
ij =

1

2

A∑
ij=1

v̂ij , rij = ri − rj , (A.59)

X̂ = W +BP̂σ −HP̂τ −MP̂σP̂τ , (A.60)
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Using the relations Eq. (A.28), the integrand is obtained as,

ϕ∗
i (r1)ϕ

∗
j (r2)ϕk(r1)ϕℓ(r2)

= DikDjℓ

∏
σ

2νσ

π e
−4νσ

(
Rσ−

1
4Z

(+)
ijkℓ,σ

)2

e
−νσ

(
rσ−

1
2Z

(−)
ijkℓ,σ

)2

, (A.61)

where Z
(±)
ijkℓ ≡ 2(Zik ±Zjℓ) and R = 1

2 (r1 + r2). The integration over R can

easily performed:∫
dR ϕ∗

i (r1)ϕ
∗
j (r2)ϕk(r1)ϕℓ(r2) = DikDjℓ

∏
σ

(
νσ

π

)1/2
e
−νσ

(
rσ−

1
2Z

(−)
ijkℓ,σ

)2

.

(A.62)

The Eq. (A.58) for the central potential is written as,

⟨V̂⟩ = 1

2

∑
αβ

∑
ij∈α

∑
ij∈β

(vHijkℓ − vFijkℓ)(B
−1)ki(B

−1)ℓj , (A.63)

vHijkℓ = ⟨φiφj |v̂|φkφℓ⟩, (A.64)

= ⟨ϕiϕj |e−ar2

|ϕkϕℓ⟩⟨χiηαχjηβ |X̂|χkηαχℓηβ⟩. (A.65)

⟨ϕiϕj |e−ar2

|ϕkϕℓ⟩ =
∫

drdR ϕ∗
i (r1)ϕ

∗
j (r2)ϕk(r1)ϕℓ(r2), (A.66)

= DikDjℓ

∫
dr
∏
σ

(
νσ

π

)1/2
e
−νσ

(
rσ−

1
2Z

(−)
ijkℓ,σ

)2

, (A.67)

= DikDjℓ

∏
σ

(1− λσ)
1/2 exp

(
−1

4
λσνσZ

(−)2
ijkℓ,σ

)
, (A.68)

where λσ ≡ a/(a+ νσ).

◦ Coulomb potential

The Coulomb potential is written as,

1

|ri − rj |
=

1

r
=

2√
π

∫ ∞

0

dξ e−r2ξ2 . (A.69)

Thus, the kernel is expressed as,

⟨ϕiϕj | 1r |ϕkϕℓ⟩ =
2√
π

∫ ∞

0

dξ ⟨ϕiϕj |e−ξ2r2 |ϕkϕℓ⟩. (A.70)
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In practical calculation, the Coulomb interaction is approximated by a sum of

seven Gaussians to reduce the computational cost:

1

r
=

7∑
n=1

cn
√
ν̄ exp

{
−(νxνyνz)1/3

(
r

γn

)2
}
, (A.71)

where the dimensionless parameters cn and n are listed in Tab. 7. The param-

eters are determined to yield approximate values of the Coulomb interaction

when the matrix elements of Eq. (A.71) are calculated from the nucleon Gaus-

sian wave packets.

Tab. 7 Dimensionless parameters for an approximation of the Coulomb interaction.

n cn γn
1 0.437686 8.888000

2 -0.421877 6.244998

3 0.363035 4.358899

4 0.082946 3.000000

5 0.179389 2.000000

6 0.717984 1.224745

7 2.108150 0.500000

A.3 General expression of deformed Gaussian

In general, Eq. (2.3) can be extended to,

ϕi(r) =

(
|2M |
π3

)1/4

exp {−t(r −Zi)M(r −Zi)}2, (A.72)

M =

(
νxx νxy νxz
νxy νyy νyz
νxz νyz νzz

)
. (A.73)

under the assumption that M is a symmetric matrix: tM = M , which reads to
trMZ = tZMr for example. Here, I only show the overlap calculated by Eq. (A.72)

with different matrices M1 and M2.

− t(r −Z∗
i )M1(r −Z∗

i )− t(r −Zk)M2(r −Zk), (A.74)

=− tr(M1 +M2)r + tr(M1Z
∗
i +M2Zk) + (tZ∗

iM1 +
tZkM2)r

− tZ∗
iM1Z

∗
i − tZkM2Zk. (A.75)
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The first to third terms can be transformed as,

− trM12r + trM12M
−1
12 (M1Z

∗
i +M2Zk) +

t(M1Z
∗
i +M2Zk)M

−1
12 M12r, (A.76)

=− t(r − Z̃)M12(r − Z̃) + tZ̃M12Z̃, M12 = M1 +M2, (A.77)

where Z̃ ≡M−1
12 (M1Z

∗
i +M2Zk). Using the relation,

M̃12 ≡ M1M
−1
12 M2, (A.78)

= M1M
−1
12 (M1 +M2)−M1M

−1
12 M1 = (M1 +M2)M

−1
12 M1 −M1M

−1
12 M1, (A.79)

= M2M
−1
12 M1 = M̃21, (A.80)

one can obtain equality:

tZ̃M12Z̃ − tZ∗
iM1Z

∗
i − tZkM2Zk = −t(Z∗

i −Zk)M̃12(Z
∗
i −Zk). (A.81)

The overlap is calculated as,∫
dr exp{−t(r − Z̃)M12(r − Z̃)} =

∫
dR ∂r

∂Re−R2

= π3/2|M12|−1/2, (A.82)

where R = M
1/2
12 (r − Z̃).

∴ Dij ≡ ⟨ϕi|ϕj⟩ =
∫

dr ϕ∗
i (r)ϕj(r) = exp

{
−t(Z∗

i −Zk)M̃12(Z
∗
i −Zk)

}
. (A.83)

A.4 Nα model of AMD wave function

In the self-conjugate nuclei, α cluster structures often emerge in the excited states.

Therefore, Nα model helps to understand the properties of the excited states. An α

particle can be approximately described by the spin-fixed wave functions with spher-

ical packet widths located at the same position Z:

Φα(Z) = A{ϕ(r1;Z)χpη↑ ϕ(r2;Z)χpη↓ ϕ(r3;Z)χnη↑ ϕ(r4;Z)χnη↓}, (A.84)

νx = νy = νz. (A.85)

This Nα wave function was combined with the time-dependent variational principle

and has applied for 12C and 16O [59,60].

A.5 Laplace expansion of the AMD wave function

The Laplace expansion is a generalization of the cofactor expansion and is given for

the determinant of an A×A matrix B as,∣∣B∣∣ = ∑
1≤i1≤···<iC1

≤A

P (i1, · · · , iC1)
∣∣B(i1, · · · , iC1)

∣∣∣∣B(iC1+1, · · · , iA)
∣∣, (A.86)
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∣∣B(i1, · · · , iC1
)
∣∣ =

∣∣∣∣∣∣
B1i1 · · · B1iC1

...
. . .

...
BC1i1 · · · BC1iC1

∣∣∣∣∣∣ , (A.87)

∣∣B(iC1+1, · · · , iA)
∣∣ =

∣∣∣∣∣∣
BC1+1,iC1+1

· · · BC1+1,iA
...

. . .
...

BA,iC1+1
· · · BA,iA

∣∣∣∣∣∣ , (A.88)

where the summation runs over all possible combinations of indices i1 ≤ · · · < iC1 .
The sign is expressed as,

P (i1, · · · , iC1) =
(

1 · · · C1 C1 + 1 · · · A
i1 · · · iC1 iC1+1 · · · iA

)
= (−)

C1(C1+1)
2

+
∑C1

s=1 is . (A.89)

The A-body AMD wave function ΦA
AMD Eq. (2.3) can be decomposed into ΦC1

AMD and

ΦC2

AMD by applying the Laplace expansion:

ΦA
AMD =

√
C1!C2!

A!

∑
1≤i1≤···<iC1

≤A

P (i1, · · · , iC1)Φ
C1
AMD(i1, · · · , iC1)Φ

C2
AMD(iC1+1, · · · , iA).

(A.90)
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Appendix B Others

B.6 Charge radius
√
⟨r2c⟩

The mean-square charge radius ⟨r2c ⟩ is extrapolated from the point-proton radius of

a nucleus ⟨r2p⟩,

⟨r2c ⟩ = ⟨r2p⟩+
(
R2

p +
3ℏ

(2Mpc)2

)
+

N

Z
R2

n + ⟨r2so⟩+ ⟨r2mec⟩, (B.91)

where Rp and Rn mean the proton and neutron charge radius, respectively. ⟨r2so⟩ and
⟨r2mec⟩ represent the spin-orbit effect and the meson-exchange currents, respectively.

Eq. (B.91) corresponds to Eq. (6.48) in Ref. [61]. Rp = 0.8775 fm, Rn = −0.1161 fm,

and 3ℏ/(2Mpc)
2 = 0.033 fm2 are applied.

B.7 Description of 11Li wave function

I have artificially made the model wave function of 11Li to reproduce the halo struc-

ture. Figure B.1 shows the energies for 0p0h-like and 2p2h-like before projected model

wave functions of 11Li as a function of the quadrupole deformation parameter β. The

filled points of 0p0h and 2p2h wave functions are used for describing the proton

and neutron parts of 11Li, respectively, to reproduce the mixing of (1s)2 and (0d)2

configurations suggested in the previous studies,

Φint = A{ϕ(0p0h)
p1 · · ·ϕ(0p0h)

p3 ϕ
(2p2h)
n1 · · ·ϕ(2p2h)

n8 } (B.92)

where the center of the system is shifted to be 0 (c.f. Eq.(2.4)).
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Fig. B.1 Energies for 0p0h-like and 2p2h-like before projected model wave functions

of 11Li as a function of the quadrupole deformation parameter β.
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[46] R. Sánchez, W. Nörtershäuser, G. Ewald, D. Albers, J. Behr, P. Bricault, B. A. Bushaw,

A. Dax, J. Dilling, M. Dombsky, G. W. F. Drake, S. Götte, R. Kirchner, H.-J. Kluge, T.
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R. Knöbel, J. Kurcewicz, Y. A. Litvinov, M. Marta, M. Mostazo, I. Mukha, C. Nociforo,
H. J. Ong, S. Pietri, A. Prochazka, C. Scheidenberger, B. Sitar, P. Strmen, Y. Suzuki, M.
Takechi, J. Tanaka, I. Tanihata, S. Terashima, J. Vargas, H. Weick, and J. S. Winfield,
Phys. Rev. Lett. 113, 132501 (2014).

[51] J. Kelley, E. Kwan, J. Purcell, C. Sheu, and H. Weller, Nuclear Physics A 880, 88–195
(2012).

[52] F. Ajzenberg-Selove, Nuclear Physics A 523(1), 1–196 (1991).
[53] H. Okuno, K. Asahi, H. Ueno, H. Izumi, H. Sato, M. Adachi, T. Nakamura, T. Kubo,

N. Inabe, A. Yoshida, N. Fukunishi, T. Shimoda, H. Miyatake, N. Takahashi, W.-D.
Schmidt-Ott, and M. Ishihara, Physics Letters B 354(1), 41–45 (1995).

[54] H. Ueno, K. Asahi, H. Izumi, K. Nagata, H. Ogawa, A. Yoshimi, H. Sato, M. Adachi,
Y. Hori, K. Mochinaga, H. Okuno, N. Aoi, M. Ishihara, A. Yoshida, G. Liu, T. Kubo,
N. Fukunishi, T. Shimoda, H. Miyatake, M. Sasaki, T. Shirakura, N. Takahashi, S.
Mitsuoka, and W.-D. Schmidt-Ott, Phys. Rev. C 53, 2142–2151 (1996).

[55] F. Ajzenberg-Selove, Nuclear Physics A 506(1), 1–158 (1990).
[56] H. Izumi, K. Asahi, H. Ueno, H. Okuno, H. Sato, K. Nagata, Y. Hori, M. Adachi, N. Aoi,

A. Yoshida, G. Liu, N. Fukunishi, and M. Ishihara, Physics Letters B 366(1), 51–55
(1996).

[57] H. Ogawa, K. Asahi, K. Sakai, T. Suzuki, H. Izumi, H. Miyoshi, M. Nagakura, K. Yogo,
A. Goto, T. Suga, T. Honda, H. Ueno, Y. X. Watanabe, K. Yoneda, A. Yoshimi, N.
Fukuda, Y. Kobayashi, A. Yoshida, T. Kubo, M. Ishihara, N. Imai, N. Aoi, W.-D.
Schmidt-Ott, G. Neyens, and S. Teughels, Phys. Rev. C 67, 064308 (2003).

[58] N. Itagaki, T. Naito, and Y. Hirata, Phys. Rev. C 105, 024304 (2022).
[59] R. Imai, T. Tada, and M. Kimura, Phys. Rev. C 99, 064327 (2019).
[60] Motoki, Hideaki and Kimura, Masaaki, EPJ Web Conf. 260, 11019 (2022).
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