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A B S T R A C T   

In the study of the evolution of biological complexity, a reliable phylogenetic framework is needed. Many at-
tempts have been made to resolve phylogenetic relationships between higher groups (i.e., interordinal) of brown 
algae (Phaeophyceae) based on molecular evidence, but most of these relationships remain unclear. Analyses 
based on small multi-gene data (including chloroplast, mitochondrial and nuclear sequences) have yielded 
inconclusive and sometimes contradictory results. To address this problem, we have analyzed 32 nuclear protein- 
coding sequences in 39 Phaeophycean species belonging to eight orders. The resulting nuclear-based phyloge-
nomic trees provide virtually full support for the phylogenetic relationships within the studied taxa, with few 
exceptions. The relationships largely confirm phylogenetic trees based on nuclear, chloroplast and mitochondrial 
sequences, except for the placement of the Sphacelariales with weak bootstrap support. Our study indicates that 
nuclear protein-coding sequences provide significant support to conclusively resolve phylogenetic relationships 
among Phaeophyceae, and may be a powerful approach to fully resolve interordinal relationships with increased 
taxon sampling.   

1. Introduction 

Brown algae or Phaeophyceae represent a large class of multicellular 
photosynthetic marine eukaryotes distributed in cold to tropical marine 
waters with major ecological and economical functions (Bringloe et al., 
2020). Brown algae include about 2000 species classified into 340 
genera, 59 families and 19 orders (Guiry and Guiry, 2021). In contrast to 
land plants, our understanding of brown algal evolution remains quite 
limited (Bringloe et al., 2020). The Phaeoexplorer project (https://phae 
oexplorer.sb-roscoff.fr/home/) was initiated in 2016 with the objective 
of exploring the evolution of biological complexity in brown algae by 
generating genomic data for a broad range of brown algal species. A 

fully resolved backbone phylogeny for brown algae is required to 
investigate questions in evolution, ecology and conservation. 

Initial efforts to elucidate phylogenetic relationships among brown 
algae were based on nuclear ribosomal DNA sequences (Bhattacharya 
et al., 1992; Druehl et al., 1997; Rousseau and De Reviers, 1999; Tan and 
Druehl, 1993), followed by studies adding RuBisCO genes (Bailey and 
Andersen, 1999; De Clerck et al., 2006; Draisma et al., 2001; Peters and 
Ramírez, 2001; Phillips et al., 2008). More recently, significant attempts 
were made to produce multi-gene datasets but with a limited number of 
genes (less than 15), mainly from chloroplast and mitochondrial ge-
nomes with nuclear DNA still represented only by ribosomal markers 
(Bringloe et al., 2020; Cho et al., 2012; Kawai et al., 2015; Lane et al., 
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2007; Silberfeld et al., 2010). While contributing considerably to our 
understanding of brown algal evolutionary history, these previous 
phylogenies only partially resolved relationships at some taxonomic 
levels, in particular for interordinal relationships within the Fucophy-
cideae. Furthermore, in some cases, multi-gene molecular phylogenies 
based on chloroplast and mitochondrial genes indicated contradictory 
relationships (Bringloe et al., 2020; Kawai et al., 2013; Kawai et al., 
2015; Kawai et al., 2017). Whole genome data are gradually emerging 
for brown algae (Bringloe et al., 2020), and several studies based on 
mitochondrial or chloroplast genomes, focused mainly on Laminariales 
and Fucales members, produced strong evidence supporting the merit of 
genome data in resolving phylogenetic relationships (e.g., Zhang et al., 
2019). However, so far, whole genome data are available for only six of 
the 19 orders of brown algae (Bringloe et al., 2020). More recently, two 
studies made use of nuclear transcriptomic data to deduce brown algal 
evolutionary relationships (Jackson et al., 2017; Sun et al., 2014). The 
latter study, which was based on 108 orthologous genes from 18 
Phaeophyceae species belonging to six orders (i.e., Desmarestiales, 
Dictyotales, Ectocarpales, Fucales, Ishigeales, Laminariales), produced 
mixed results (Sun et al., 2014). Overall, phylogenomic trees provided 
strong to full support for infraordinal relationships and for the rela-
tionship between Ectocarpales and Laminariales, but less strong support 
for other interordinal relationships (e.g., bootstrap (BS) = 55% for 
Dictyotales-Ishigeales node) (Sun et al., 2014). A second nuclear- 
transcriptome-based phylogenomic study conducted at the infraordi-
nal level, employed 152 genes from 15 Laminariales species and yielded 
a nearly fully resolved tree, which enabled relationships between 
various genera to be revised (Jackson et al., 2017). Family-level re-
lationships were similar to those previously established based on a 
dataset of eight chloroplast and mitochondrial genes (Kawai et al., 
2013). These two transcriptome-based studies effectively resolved lower 
taxonomic-level phylogenetic relationships (infraordinal), but further 
studies are needed to improve resolving power at a higher level (i.e., 
interordinal level). 

The objective of the study presented here was twofold: (1) to test the 
power of nuclear genome-based datasets for resolving inter and 
infraordinal phylogenetic relationships in brown algae and (2) to pro-
vide a reliable phylogenetic framework for trait-based phylogenetic 
analyses in the context of the Phaeoexplorer project. Maximum likeli-
hood and Bayesian phylogenomic trees were constructed based on the 
predicted amino-acid sequence data of 32 nuclear protein-coding genes 
in 39 brown algal species and two outgroup taxa selected in the 
Phaeoexplorer project. 

2. Materials and methods 

2.1. Taxa sampling 

A total of 39 species of brown algae representing 24 genera, 16 
families and eight orders (i.e., Desmarestiales, Discosporangiales, Dic-
tyotales, Ectocarpales s.l., Fucales, Laminariales, Sphacelariales, Tilop-
teridales), in addition to two outgroup taxa, Schizocladia ischiensis E.C. 
Henry, K.Okuda & H.Kawai (class Schizocladiophyceae) and Phaeo-
thamnion wetherbeei R.A.Andersen, L.Graf & H.S.Yoon (class Phaeo-
thamniophyceae), selected in the Phaeoexplorer project, were used in 
the present study for the phylogenetic reconstructions (Table S1). 

2.2. Culture conditions, DNA extraction, genome sequencing and 
assembly 

Genomic DNA was extracted from laboratory-housed culture strains 
(Roscoff Culture Collection (RCC), Bezhin Rosko Culture Collection, 
Kobe University Macroalgal Culture Collection (KU-MACC), Culture 
Collection of Algae at Göttingen University (SAG)) or from specimens 
collected in the field (Table S1). For species with diplohaplontic life 
cycles, the gametophyte generation was grown in culture either in 140 

mm Petri dishes or in 2–10 L bottles, the latter aerated by bubbling with 
sterile air. Standard growth conditions were sterile, Provosoli-enriched 
(Starr and Zeikus, 1993) natural seawater (PES medium) under fluo-
rescent white light (10–30 µM photons/m2⋅s) at 13 ◦C. The freshwater 
species Pleurocladia lacustris A.Braun and Heribaudiella fluviatilis (Are-
schoug) Svedelius were grown in natural seawater that had been diluted 
to 5% with distilled water (i.e., 95% distilled water/5% seawater) before 
addition of ES medium (http://sagdb.uni-goettingen.de/culture_medi 
a/01%20Basal%20Medium.pdf) micronutrients, at 20 ◦C for 
P. lacustris. Phaeothamnion wetherbeei was grown in MIEB12 (medium 7 
in (Schlösser, 1994)). Material for fucoid species was collected on the 
seashore, and extractions used either dissected meristematic regions or 
released male gametes. DNA was extracted with either the Nucleospin 
Plant II midi DNA Extraction Kit (Macherey-Nagel, Düren, Germany) or 
the OmniPrep Genomic DNA Purification Kit (G Biosciences, St. Louis, 
MO, USA). DNA quality was assessed using a Qubit fluorometer (Themo 
Fisher Scientific, Waltham, MA, USA), and fragment length was assessed 
by migration on a 1% agarose gel for some of the samples. DNA (30–100 
ng) was sonicated to a 100–800 bp size range using a Covaris E220 
sonicator (Covaris, Woburn, MA, USA). Fragments were end-repaired, 
3′-adenylated and Illumina adapters (Bioo Scientific, Austin, TX, USA) 
were then added using the NEBNext Sample Reagent Set (New England 
Biolabs, Ipswich, MA, USA). Ligation products were purified using 
Ampure XP (Beckmann Coulter Genomics, Danvers, MA, USA), and DNA 
fragments (>200 bp) were PCR amplified using Illumina adapter- 
specific primers and the KAPA HiFi HotStart polymerase (KapaBiosys-
tems, Wilmington, MA, USA). Libraries were quantified by qPCR using 
the KAPA Library Quantification Kit for Illumina Libraries (KapaBio-
systems), and library profiles were assessed using a DNA High Sensi-
tivity LabChip kit on an Agilent Bioanalyzer (Agilent Technologies, 
Santa Clara, CA, USA). Some samples were prepared according to the 
same protocol but with less DNA input (10–25 ng) and using the NEB-
Next Ultra II DNA Library Prep Kit for Illumina (New England Biolabs). 
Illumina short read sequence data (150 bp paired end sequence) was 
generated on either a HiSeq4000 or a NovaSeq6000 platform. The 
sequence data was first assembled with Megahit (Li et al., 2015), and 
eukaryotic contigs were separated from the bacterial contigs using a 
gene detection strategy based on Metagen and Blastp. The bacterial 
contigs were then used to filter the initial dataset by mapping Illumina 
reads to the contigs with BWA and then removing these reads, which 
were not of eukaryotic origin. The set of filtered Illumina reads were 
then assembled with SPAdes (Bankevich et al., 2012) using the standard 
protocol. 

2.3. Identification of orthologous single-copy genes 

Genomes were predicted from Schizocladia ischiensis and 23 Phaeo-
phycean species that belong to various orders (Table S1). Predicted 
genomes were analyzed with OrthoFinder v.2.3.11 (Emms and Kelly, 
2015) to detect orthologous single-copy genes. The program detected a 
total of 32 single-copy genes, which were used in the phylogenetic an-
alyses. Table S2 presents a list of the 32 orthologues in the reference 
Ectocarpus sp.7 strain Ec32 genome. For Phaeothamnion wetherbeei and 
the other 16 species, orthologous amino acid sequences were retrieved 
using the “tblastn” function of BLAST + 2.6.0 (Camacho et al., 2009). 

2.4. Phylogenetic analyses 

Amino acid sequences of the thirty-two single-copy genes were 
aligned manually using the alignment software AliView v.1.26 (Larsson, 
2014). The aligned sequences were concatenated (41 OTUs, 15,597 
amino acids (aa)) and subjected to Maximum likelihood (ML) and 
Bayesian (BI) analysis. For ML analysis, 10,000 Rapid Bootstrap searches 
and the subsequent ML search with gamma model were conducted using 
RAxML v.8.2.9 (Stamatakis, 2014). Bayesian analyses were performed 
using MrBayes v.3.2.2 (Ronquist et al., 2012). The best-fit evolutionary 
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models for each gene were determined on the basis of AIC for ML and 
BIC for BI using Kakusan4 (Tanabe, 2011) (Table S2). The Bayesian 
analyses were initiated with a random starting tree, and four chains of 
Markov chain Monte Carlo iterations were run simultaneously for 
10,000,000 generations, keeping one tree every 100 generations. The 
first 10,000 trees sampled were discarded as ‘burn-in’, based on the 
stationarity of log-likelihood as assessed using Tracer v.1.7.1 (Rambaut 
et al., 2018). A consensus topology and posterior probability values were 
calculated from the remaining trees. 

3. Results 

3.1. Data characteristics 

We assembled a 41-species dataset based on 32 nuclear genes 
(Tables S2, S3) from 39 species of Phaeophyceae, belonging to 24 
genera, 16 families and eight orders (Desmarestiales, Discosporangiales, 
Dictyotales, Ectocarpales, Fucales, Lamiariales, Sphacelariales, Tilop-
teridales), together with one species from the Schizocladiophyceae 
(Schizocladia ischiensis) and one species from the Phaeothamniophyceae 
(Phaeothamnion wetherbeei), which served as outgroups (Table S2). The 

Fig. 1. Maximum likelihood phylogenomic tree based on 39 brown algal taxa and two outgroup species inferred from the amino-acid sequence data of 32 nuclear 
protein-coding genes. ‘*’ indicates ML bootstrap = 100%. 
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gene matrix was 95.6% complete and the dataset contained 15,597 aa 
(Table S2). 

3.2. Phylogenetic relationships 

ML and BI analyses of the 32-nuclear concatenated genes in the 41- 
species dataset produced trees with identical topology except for the 
placement of the Sphacelariales in relation to the Dictyotales (Figs. 1, 
S1). In both analyses, placement of the Sphacelariales was poorly sup-
ported with a BS of 53% and a Bayesian posterior probability (BPP) of 
0.59. Eighty-two percent of the 38 brown algal nodes were fully sup-
ported in the ML analysis (i.e., 100% BS) and 0.95 BPP in BI analysis (i. 
e., 1.00 BPP). Five nodes within the genus Ectocarpus yielded BS values 
of 81 to 99%. The seven inter-family relationships presented 99–100% 
BS and 0.99–1.00 BPP support, and the seven interordinal relationships 
were fully supported for both BS and ML analyses with the exception of 
the Sphacelariales. Porterinema fluviatile (H.C.Porter) Waern (SAG 2381) 
positioned among the Ectocarpales as a sister to the Chordariaceae. 

4. Discussion 

Morphology and gene-based studies of higher-level brown algal 
phylogeny have a long history (Kawai et al., 2015; Silberfeld et al., 2010; 
Sun et al., 2014; De Reviers et al., 2007; Draisma et al., 2001). However, 
many higher-level relationships remain problematic, even with the 
major improvements that have resulted from multi-gene methodologies 
(Bringloe et al., 2020; Silberfeld et al., 2010). Recent studies have 
demonstrated the value of studies based on multi-gene data from 
organellar (Cui et al., 2019; Liu and Pang, 2015a, b; Liu et al., 2019, 
2020; Wu et al., 2021; Zhang et al., 2019) and nuclear genomes (Sun 
et al., 2014) for solving higher-level relationships in the Phaeophyceae. 
The current study was based on higher ordinal coverage of protein- 
coding nuclear genes to assess the resolving power of protein-coding 
nuclear genes in brown algae at this taxonomic level. 

The approach used for the current study significantly improves on 
previous analyses. With the exception of Sphacelariales, interordinal 
relationships were fully resolved in the current study. Sun et al. (2014) 
used a similar approach to resolve interordinal relationships, but it is 
difficult to compare our results with this earlier study, as it was based on 
different nuclear genes and taxon sampling. However, some conclusions 
can still be drawn. First, our study included a smaller number of nuclear 
genes (32 vs. 108 genes), but comprised a higher number of taxa (39 vs. 
18 species, 24 vs. 10 genera, 16 vs. seven families, and eight vs. six 
orders) than that of Sun et al. (2014). The strong branch support ob-
tained by our phylogenetic analyses indicates that the nuclear genes 
selected in this study are sufficient to generate a robust molecular 
higher-level phylogeny, although the number of genes are lower than 
that used by Sun et al. (2014). Testing the quantity of sequence data 
required for strong node support (e.g., Wortley et al., 2005) will facili-
tate targeted inclusion of additional taxa in future studies. Second, a 
better taxonomic representativity of the different orders seems to in-
crease node robustness in our study. Five of the orders analyzed by Sun 
et al. (2014) were also analyzed in our study, but we did not include any 
members of the Ishigeales. Another important difference with Sun et al. 
(2014) concerns the choice of outgroup. In their study, they used a 
distant outgroup, i.e., the diatom Phaeodactylum tricornutum (Bacillar-
iophyceae), which caused a very long branch and may have affected the 
ingroup taxa relationships and caused lower bootstrap supports (Li et al., 
2014), while we used closely related outgroups, i.e., Scizocladiophyceae 
and Phaeothamniophyceae, which is recommended, when distantly 
related ingroup taxa are poorly sampled (Li et al., 2014), as it is the case 
in Sun et al. (2014) and our studies. The taxa analyzed by Sun et al. 
(2014) were biased towards Fucales and Ectocarpales, and our study 
mainly towards Ectocarpales. The Sun et al. (2014) analysis included 
four brown algal crown radiation (BACR) orders and our study five. In 
line with previous multi-gene studies, both studies conclusively resolved 

the sister relationship between the Ectocarpales and the Laminariales. 
The Sun et al. (2014) analysis did not fully resolve relationships among 
the BACR orders (Desmarestiales, Ectocarpales, Fucales, Laminariales), 
but interordinal relationships were fully resolved in our analyses (Des-
marestiales, Ectocarpales, Fucales, Laminariales, Tilopteridales). Our 
analyses conclusively positioned the Desmarestiales as first divergence 
within the BACR with almost full support (BS = 99%, BPP = 1.00). This 
stands in contrast with previous nuclear- and mitochondrial-based an-
alyses (Liu and Pang, 2015a, b; Liu et al., 2019; Sun et al., 2014), which 
positioned the Fucales basally in relation to the Desmarestiales. Never-
theless, in the mitochondrial-based analyses (Liu and Pang, 2015a, b; Liu 
et al., 2019), the ordinal taxon coverage was very limited, and in the 
nuclear-based analysis (Sun et al., 2014), placement of the Desmar-
estiales and the Fucales was supported by lower BS values of 95% and 
90%, respectively. These low support values in Sun et al. (2014) may be 
explained by the long branch of the outgroup. Overall, these results 
indicate a beneficial effect of increased taxon sampling for phylogenetic 
inference in brown algae using protein-coding nuclear data. Since our 
dataset only encompassed eight of the 19 Phaeophyceae orders, we as-
sume that increasing taxon sampling may further resolve the placement 
of Sphacelariales 

Interordinal relationships retrieved in this study were nearly iden-
tical to those established by Bringloe et al. (2020) based on 12 plastid, 
mitochondrial and nuclear markers (18S, 5.8S, 28S, atpB, psbA, psaB, 
psaA, rbcL, psbC, cox1, cox3, nad1), with the exception of the relation-
ship between the Dictyotales and the Sphacelariales. The phylogenetic 
position of the Sphacelariales, associated to the monophyly of the Dic-
tyotophycidae, was found to be unstable in previous studies. The weak 
support and unstable position of the Sphacelariales in most studies is 
possibly associated with incongruence among markers, with a weak 
phylogenetic signal and/or methodological bias. We assume that adding 
the missing orders for the Sphacelariales, Syringodermatales, Dictyo-
tales, Onslowiales (SSDO) clade (i.e., Onslowiales and Syringoderma-
tales) may help improving the resolution. 

Our dataset included five out of the seven families of Ectocarpales, 
and relationships within Ectocarpales sensu lato were fully resolved. The 
Acinetosporaceae were positioned as a sister group to the Chordar-
iaceae. Familial relationships within the Laminariales were fully sup-
ported and identical to the most up-to-date phylogeny of this order 
based on genomic data (Starko et al., 2019). For Porterinema fluviatile, it 
should be noted that strain SAG 2381 differs genetically from strain SAG 
124.79 (McCauley and Wehr, 2007), which are both from the Culture 
Collection of Algae at Göttingen University (SAG). SAG 2381 was posi-
tioned within the Ectocarpales in this study, while SAG 124.79 was 
positioned basally among the brown algae (Draisma et al., 2010; 
McCauley and Wehr, 2007). Molecular and morphological analyses of 
the culture strains of SAG 2381, SAG 124.79, and Pilinia rimosa collected 
from various localities worldwide indicated that SAG 2381 is the true 
P. fluviatile displaying the characteristic plurilocular zoidangia, whereas 
SAG 124.79 is in fact P. rimosa (Kawai et al., 2021). 

5. Conclusions 

In conclusion, this study provides a valuable phylogenetic frame-
work for the Phaeoexplorer project, which focuses on the study of the 
evolution of biological complexity in brown algae, and further evidence 
supporting the resolving power of protein-coding nuclear genes at inter- 
ordinal level in brown algae, demonstrating the interest of nuclear 
multi-gene analysis as a complementary tool to analysis of mitochon-
drial and chloroplast organellar genome data. Since the current study 
only included eight of the 19 orders of brown algae, much effort is still 
needed to provide a comprehensive phylogeny robustly resolving inter- 
ordinal relationships in brown algae. By comparing our results with 
previous studies, taxonomic sampling appears to be a major element in 
resolving interordinal relationships. In the data vs. taxa trade-off, it 
would therefore be better to give priority to taxonomic sampling. Given 
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the satisfactory results based on the 32 nuclear genes included in the 
present study, we recommend that future studies make use of the same 
set of genes as a standard approach using whole-genome sequencing 
data. 
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