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Abstract 
 

It has become better known in recent years that climate and land use land cover (LULC) 

changes can significantly impact local streamflow behaviors. Therefore, studies on estimating 

future streamflow behaviors in response to such changes have become abundant in recent years. 

However, more efforts have been dedicated to improving the robustness of future climate and 

LULC projections. In contrast, the representation of hydrological processes in the river basin 

needs to be more noticed and adequate. More specifically, the application of the most widely 

used tool under this topic, the physical hydrological model, is often met with two major issues 

that may render the entire estimation unreliable: data limitation, and the use of statistical tuning. 

Due to the commonly large number of parameters in hydrological models, both issues are 

generally inevitable in actual practices, which is why minimizing the use of tuning under 

limited data availability is a necessary and meaningful notion. However, the practicality and 

significance of this notion have yet to be adequately explored. Therefore, this study aims to 

estimate the future streamflow of the Abashiri River basin (ARB) under likely climate and 

LULC conditions while fulfilling the notion. A consistent and physically meaningful approach 

was proposed and realized in a hydrological distributed model, Soil and Water Assessment Tool 

(SWAT), by primarily relying on open-access resources in response to the data limitation in 

this study. ARB was selected as the study site mainly due to its local significance of streamflow 

to the active and stable fishery activities in Lake Abashiri, in addition to the growing concerns 

by the local stakeholders regarding the stability of river flow in the future.  

 



The future climate change projection was obtained from the Japan Meteorological Agency 

Regional Climate Projection Data for Japan, which was projected using a non-hydrostatic 

regional climate model under IPCC RCP2.6 and RCP8.5 scenarios in 2076-2095. Under the 

future climate conditions, major changes in streamflow include a significant change in the 

timing and quantity in the melting season, and a significant decrease in the low flows. Mixed 

impacts of significantly decreased winter precipitation and increased temperature led to a clear 

difference in the change of winter streamflow between the two scenarios. Significant 

implications include an increased risk of irrigation water shortage in the early summer and a 

less stable condition for fishery activities in Lake Abashiri. The future LULC projection was 

obtained from a vegetation survey-based dataset developed by the Predicting and Assessing 

Natural Capital and Ecosystem Services project. The projection was made as of 2050, focusing 

mainly on the future development directions of the natural capital source, and population 

distribution. Under the future LULC conditions, quantitatively insignificant forest change led 

to a slight general decrease in streamflow. On the other hand, the significant relative difference 

in paddy field led to a significant difference of change in future streamflow from midsummer 

to autumn. From these results, it was implied that future LULC in the ARB may affect 

streamflow less significantly than the impact from climate, while concern for irrigation water 

use may be raised. In addition to the streamflow estimation results, this study successfully 

demonstrates the practicality and necessity of minimizing the use of tuning in SWAT under a 

data limitation, and emphasizes the significance of physically meaningful sophistication for 

SWAT in a predictive application as the present study. 
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1. Introduction 

 

Streamflow is an essential component of the continental water processes, and its variation 

is influenced by climate and the nature of the land surface (Brutsaert, 2005; Haines et al., 1988). 

Climate change could impact streamflow through the change in precipitation and evaporation 

(e.g., Barnett et al., 2005; Croitoru & Minea, 2015; Tan & Gan, 2015; van Vliet et al., 2013) 

and the change on the land surface, or in most cases, land use land cover (LULC) change, could 

impact the streamflow through changes in surface runoff, evaporation, or the variation in the 

groundwater storage (e.g., Schilling et al., 2008; Turner et al., 1995; Twine et al., 2004; Wang 

et al., 2017). Climate and LULC changes are generally considered the major driving factors for 

the change in streamflow (Wang et al., 2020). To quantitatively clarify the relationship between 

the two factors and streamflow, three different techniques are widely used: (1) paired catchment 

analysis (e.g., Bosch & Hewlett, 1982; Brown et al., 2005; Changnon & Demissie, 1996; Zhao 

et al., 2010); (2) statistics-based analysis (e.g., Bulygina et al., 2011; Costa et al., 2003; López-

Moreno et al., 2006; Zheng et al., 2016); and (3) physical hydrological modeling (e.g., Kiros 

et al., 2015; Li et al., 2012; Ward et al., 2008). Particularly in the case of predicting such a 

relationship, physical complexity, partitioning on the sources of impact, and spatiotemporal 

scale, are the three crucial points to the reliability of streamflow estimations (Bulygina et al., 

2013; Ludwig et al., 2009; Sivapalan, 2003; Wang et al., 2020). Therefore, the hydrological 

model is often considered the preferable tool in estimating future streamflow in response to the 

climate and LULC changes, as it can accommodate the three key points better than the other 

techniques on principle. 
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Hydrological models can generally be categorized into two types, i.e., the lumped model, in 

which the river basin is considered as a whole and the spatial heterogeneity is therefore 

neglected, and the distributed model, which divides the river basin into subbasin-level 

compositions, and takes many aspects including topography, LULC, and soil conditions into 

account (Japan Society of Civil Engineers, 2019). Both the lumped model (e.g., Tan & Gan, 

2015; Wang et al., 2017) and distributed model (e.g., Aich et al., 2014; Lahmer et al., 2001; 

Schilling et al., 2008; Twine et al., 2004) have been utilized in previous studies of the same 

topic. Nevertheless, because the distributed model better consolidates the three crucial 

reliability points in streamflow estimations than the lumped models, the former is more 

frequently used in recent studies. Distributed models can give rise to a better understanding of 

the complex interplays in the realistic river system, provided their numerical parameters can 

be determined appropriately (Brutsaert, 2005). However, two significant issues are subsumed 

under this requirement due to the commonly large number of parameters in the hydrological 

models, i.e., the data limitation and the use of statistical tuning (Brutsaert, 2005; Hamilton, 

2007). Producing reliable streamflow estimations using a hydrological model under limited 

data availability is, therefore, a challenging and necessary research target, especially 

considering that the misuse and overuse of statistical tuning have become frequently 

overlooked issues in recent studies (Abbaspour, 2022). Data limitation and the use of statistical 

tuning are generally interconnected, and while the former is primarily exogenous, the latter 

may be practically minimized. Minimizing the use of tuning in hydrological modeling is not 

an unprecedented notion, but its practicality and significance under a data limitation are yet to 

be adequately explored. In this study, a consistent and physically meaningful approach with the 
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aim of minimizing the use of tuning in a hydrological distributed model was proposed and 

realized, which is then utilized for the estimation of future streamflow under a series of future 

climate and LULC conditions. The study was conducted in the Abashiri River basin, Hokkaido, 

Japan, the selection of which is discussed in chapter 2. The future conditions are introduced in 

chapter 3, and used as the boundary conditions for the streamflow simulation in the distributed 

model, Soil and Water Assessment Tool (SWAT), the detail of which are described in chapter 

4. Estimated future streamflow and its interpretation are discussed in chapter 5. Discussion on 

the significance and remaining limitations are presented in chapter 6. Conclusions are 

summarized in chapter 7. 

 

2. Study site 

 

The Abashiri River basin (ARB) is located in northeastern Hokkaido, northern Japan, 

44°1′22″N 144°16′30″E (Fig. 1). The main channel is approximately 115 km, and the basin 

area is about 1,380 km2. It originates in the Akan Mountain Range and flows through Tsubetsu 

Town and Bihoro Town, where the two major tributaries, i.e., Tsubetsu River and Bihoro River, 

join the main channel, respectively. The river then flows into Lake Abashiri, a eutrophic 

brackish lake with a mean elevation of around 0 m.s.l., a surface area of 32 km2, and a 

maximum water depth of 16 m (Nakajima et al., 2004). Seawater intrusion is frequent in Lake 

Abashiri. As a result, this study only estimate streamflow above the lake. Once out of the lake, 

the river passes through Abashiri City and enters the Sea of Okhotsk. Additionally, river 

management constructions (e.g., weir, levee, revetment) in the main channel and major 
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tributaries have been conducted since the 1950s (Hokkaido Regional Development Bureau, 

1994). Red triangles in Fig. 1 denote the location of river observation stations established by 

the Abashiri Development and Construction Department, Ministry of Land, Infrastructure, 

Transport and Tourism (MLIT). Observed daily streamflow data from the four stations were 

used in this study, obtained from the Water Information System of MLIT (http://www1.

river.go.jp/). 

 

 
Fig. 1. River network, elevation variation, streamflow stations, and major water bodies in the ARB. 
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The climate in this region is classified as the Okhotsk Sea-side type, which typically includes 

low precipitation, extensive diurnal temperature range, cool summer, and severely cold winter. 

According to the Japan Metrological Agency (JMA) observation records (https://www.

data.jma.go.jp/obd/stats/etrn/index.php), the annual mean precipitation in this region is the 

lowest in Japan (778.6 mm at Bihoro Town in 1991-2020). The annual mean temperature was 

5.8 °C, varying from 0.1 °C to 11.6 °C from 1991-2020. While foehn wind during spring could 

lead to sudden temperature rise and increase of precipitable water vapor (Mori & Sato, 2014), 

the cold and moist air caused by the Okhotsk High leads to a generally low temperature and 

frequently but weak precipitation during spring and summer. Precipitation and temperature 

exhibit relatively higher variabilities during autumn when precipitation reaches its highest level 

of the year. In winter, the drift ice in the Sea of Okhotsk reduces the water vapor over the sea 

surface, leading to lower precipitation and a more likely temperature drop. The middle-stream 

region of the ARB is largely covered by cropland, and the major crops include sugar beet, 

wheat, potato, and onion (9,430 ha, 8,013 ha, 6,761 ha, and 1,128 ha, respectively in 1993-

2004). Even though the coverage of the paddy field is much smaller in comparison (956 ha in 

1993-2004), the water taken from the river channel for irrigation use has been chiefly 

contributed to the paddy field rather than the other crops (Hokkaido Regional Development 

Bureau, 1994). The upper-stream region is mostly covered by forest, which mainly includes 

Japanese oak (Quercus crispula), Japanese lime (Tilia japonica), painted maple (Acer pictum), 

Japanese larch (Larix kaempferi), and Sakhalin fir (Abies sachalinensis). Pastureland is 

sparsely distributed across the ARB. The population was approximately 76,000 and 62,000 as 

of 2010 and 2022, respectively (Ministry of Internal Affairs and Communications, 2022).  
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The various features within the ARB provide a challenging environment for streamflow 

estimation, which was one of the key reasons for choosing it as the study site in the present 

study. In addition, the streamflow of the Abashiri River has a local significance and 

socioeconomic impact on the fishery activities in Lake Abashiri. According to the official 

record, the annual commercial catch (t⋅year−1) and landing value (¥⋅year−1) recorded in Abashiri 

City had been increasing from the 1950s to 1980s, and have been reasonably stable at around 

60,000 t⋅year−1 and 10 billion ¥⋅year−1 since then, respectively (https://www.city.abashiri.

hokkaido.jp/030shisei/020toukei/080suisanntoukei/index.html). The annual commercial catch 

from the inland fishery in the Abashiri region was about 8% to 10% of its total catch (inland 

fishery and marine fishery) during the 1960s to 2000s, and 30% to 60% of which was 

contributed from the catch in Lake Abashiri. In terms of landing value, Lake Abashiri 

contributed more than half of the region’s total inland fishery value. Shijimi (Corbicula 

japonica), Wakasagi (Hypomesus nipponensis), and Shirauo (Salangichthys microdon) are the 

three primary species for the fishery activities in Lake Abashiri. However, despite the present 

stable condition, a growing concern for the future river flow stability of the Abashiri River was 

expressed by the stakeholders of the Abashiri fishery community to the author in a previous 

interview. The socioeconomic significance of the local streamflow was another key reason for 

choosing the ARB as the study site in the present study. Landing value and commercial catch 

amount from the Ministry of Agriculture, Forestry and Fisheries of Japan (MAFF) statistics 

records (https://www.maff.go.jp/j/tokei/kouhyou/kensaku/bunya6.html) were used to evaluate 

the impact of future streamflow, discussed in section 5.2. 
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3. Boundary conditions for the future streamflow 

3.1 Future climate 

 

The future climate projection dataset used in this study was obtained from the JMA Regional 

Climate projection Data for Japan (previously named JMA Global Warming Projection Volume 

9, JMA-GWP9), which was produced under the SOUSEI and TOUGOU programs. In the JMA-

GWP9, the projections were made as of later decades of the 21st century (2076-2095) under 

two different future greenhouse gas concentration trajectories designed by the 

Intergovernmental Panel on Climate Change (IPCC), i.e., the Representative Concentration 

Pathway (RCP) 2.6 and 8.5. Prediction simulations yielded by a total of 28 coupled general 

circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) were 

initially derived under the two scenarios. Then, cluster analysis was performed on the 

prediction simulations regarding the sea surface temperature (SST) variations in the tropical 

regions, which significantly impact precipitation and atmospheric circulation. The clusters 

were classified into three patterns. Next, the three patterns and their averaged result were 

applied to future climate calculations via a global atmospheric general circulation model 

(AGCM) with a grid spacing of 20 km (Mizuta et al., 2012). Finally, a non-hydrostatic regional 

climate model (NHRCM) with a grid spacing of 5 km was used for the downscaling process to 

improve the calculations over extreme events, main mountain ranges, and main river basins in 

Japan (Sasaki et al., 2011). Averaged result of the four SST pattern-based climate calculations 

were used in this study as the future climate boundary conditions for the streamflow estimation. 

Specifically, daily precipitation (mm) and maximum and minimum temperature (°C) were used. 



8 
 

In addition, the dataset also includes a simulated climate of the present time (1980-1999), 

which was used in this study for comparison with the observation data from the Automated 

Meteorological Data Acquisition System (AMeDAS). The comparison was conducted for the 

bias correction to the obtained data, which was not initially conducted in the JMA-GWP9 as 

the bias systematic bias is expected to vary from region to region. Therefore, in this study, bias 

was corrected using the least square regression to the projection data of each month separately, 

assuming the systematic bias of JMA-GWP9 is consistent in all the grid points within the ARB, 

and between the present and future time. 

 

Table 1. JMA-GWP9 projected climate change in the Abashiri region between the present (1980-
1999) and the future (2076-2095). Present time and relative change values are from the averaged 
result of the four SST pattern-based climate calculations (N = 4). Value in brackets is the standard 
deviation in the 20 years of each period (N = 20). 

Category Present RCP2.6 RCP8.5 

Annual mean temperature (°C) 6.3 +1.7 (0.5) +5.2 (0.7) 

Days of max temperature > 30 °C (day) 8 +2.6 (3.2) +17.0 (7.0) 

Days of min temperature < 0 °C (day) 76 −21.5 (11.2) −61.3 (8.1) 

Times of hourly precipitation > 30 mm (n) 0 +0.1 (0.2) +0.4 (0.5) 

Annual max snow depth change (%) 100 −11 (21) −45 (14) 

 

By the end of this century, the global mean temperature is expected to rise by 2 °C and 4 °C 

in the RCP2.6 and RCP8.5, respectively. In the JMA-GWP9, the temperature change was 

projected to increase by 1.7 °C and 5.2 °C across the Abashiri region under the two scenarios, 

respectively. More specific changes are described in Table 1. The JMA-GWP9 and its previous 

versions have been frequently used in many climate change reports by the JMA, such as the 

Climate Change in Japan 2020 (https://www.data.jma.go.jp/cpdinfo/ccj/index.html). Therefore, 
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the JMA-GWP9 was considered a suitable reference for setting this study's future climate 

boundary conditions. More details of the JMA-GWP9 are discussed in its official manual 

(https://www.data.jma.go.jp/cpdinfo/GWP/Vol9/pdf/gwp9_manual.pdf). 

 

3.2 Future LULC 

 

The future LULC projection dataset used in this study was developed based on the previous 

National Vegetation Surveys from the Ministry of the Environment of Japan, and a series of 

future assumptions for the possible future development direction in Japan up to 2050 (Saito et 

al., 2019; Shoyama, 2021; Shoyama et al., 2019). More specifically, assumptions were 

developed by the Predicting and Assessing Natural Capital and Ecosystem Services (PANCES) 

project, in which national-scale future scenario storylines for exploring potential changes in 

natural capital and ecosystem services until 2050 were designed (Saito et al., 2019). There are 

four PANCES scenarios: natural capital-based compact society (NC), natural capital-based 

dispersed society (ND), produced capital-based compact society (PC), and produced capital-

based dispersed society (PD), in addition to the business-as-usual scenario (BaU). The 

scenarios were used as the theoretical basis for producing analyzable data in the geographic 

information system (GIS) platform (Shoyama, 2021; Shoyama et al., 2019). LULC maps at 

three different time points (1987, 1998, 2014) were initially derived based on the National 

Vegetation Surveys. Numerous vegetation categories were aggregated into 10 LULC 

classifications following the aggregation methods proposed by the National Institute for 

Environmental Studies (Akasaka et al., 2014; Ogawa et al., 2013). A change matrix was then 
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Fig. 2. LULC distribution in each scenario by the PANCES-LULC. 

 

determined by analyzing the transitions between 1987 and 1998 using a multivariate function 

(Atkinson & Tatnall, 1997). The physical factors considered in the change matrix include 

elevation, slope, annual temperature, precipitation, distance to a stream, distance to a main 

paved road, and population density. A LULC simulation of 2014 was created using the change 

matrix and was then compared to the LULC map of 2014 as a validation of the matrix. After 
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modifying the change matrix based on the comparison in 2014, a series of future development 

assumptions were integrated into the change matrix to simulate the future LULC GIS data 

(raster format) at a spatial resolution of 500 m. The LULC GIS data in the ARB was clipped 

from the original national-scale LULC dataset (hereinafter referred to as the PANCES-LULC) 

using ArcMap 10.7 software. The PANCES scenarios were determined via the participation of 

15 research institutions and more than 100 researchers and policymakers in Japan. Therefore, 

this study considers the PANCES-LULC as a reasonable and conservative projection of the 

future. Even though the projected LULC in the ARB exhibits visually indistinct differences 

between the different scenarios (Fig. 2), significant relative change (Table 2) was found in 

classifications such as paddy field (+150% to +525%), built-up (−100% to +45%), and 

grassland (+45% to +50%). Relative change in forest coverage (5%) is quantitatively 

insignificant in comparison. 

 

Table 2. LULC coverage (%) in each scenario by the PANCES-LULC. 

LULC Present BaU PC PD NC ND 

Water 2.6 2.6 2.6 2.6 2.6 2.6 

Built-up 1.1 1.6 1.5 1.6 0.0 0.0 

Paddy field 0.4 1.0 1.0 1.0 2.5 2.3 

Cropland 21.3 20.2 20.2 20.2 20.3 20.3 

Grassland 6.5 2.9 3.0 2.9 3.6 3.5 

Deciduous broadleaf 2.9 0.2 2.6 2.6 1.7 0.9 

Deciduous needleleaf 33.2 38.8 36.3 36.3 36.3 37.2 

Evergreen needleleaf 32.0 32.8 32.8 32.8 32.8 32.8 

Bare 0.2 0.0 0.0 0.0 0.1 0.1 
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4. Methodology 

4.1 SWAT model 

 

As introduced in chapter 1, hydrological distributed models are particularly suitable for 

future streamflow estimation as they can better consolidate the three crucial points on 

estimation reliability, i.e., physical complexity, partitioning on the sources of impact, and 

spatiotemporal scale. Therefore, SWAT (Arnold et al., 1998; Williams et al., 2008) was 

considered the appropriate tool for this study. SWAT is a basin-scale semi-distributed model 

capable of simulating streamflow quantity by tracking and calculating water transport through 

various components within the water cycle. As an open-access model, it is particularly suitable 

for studies under a data limitation, which is the primary setting in this study. SWAT has been 

widely used in numerous studies with various hydrological issues, including the streamflow 

estimation in response to climate and LULC changes (Abbaspour et al., 2015; Ficklin et al., 

2009; Gassman et al., 2014; Wang et al., 2020). As SWAT was initially designed for 

managemental analysis on river basins, its reasonable physical complexity and the explicit 

partitioning on most of the water cycle components are particularly desirable for studies on this 

topic. 

 

In SWAT, major model components include weather, hydrology, soil properties, plant 

growth, and land management (Fig. 3). SWAT divides the river basin into subbasins and then 

hydrologic response units (HRUs) for better representation of homogeneous land use property, 

topographical, and soil characteristics. Digital elevation model (DEM) data, LULC 
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classification map, and soil property map are necessary as the model input to construct the 

HRUs.  

 

 

Fig. 3. Schematic of the basic structure of SWAT. 

 

Daily calculations of water transport within the water cycle of each HRU follow the water 

balance as: 

 

𝑃𝑃 = 𝐸𝐸𝐸𝐸 + 𝑄𝑄 + 𝑅𝑅 + ∆𝑆𝑆𝑆𝑆 + ∆𝐺𝐺𝑆𝑆        (1) 

 

where P is precipitation (mm), ET is evapotranspiration (mm), Q is streamflow in the river 

channels (mm), R is surface runoff (mm), ΔSW and ΔGW are variation in the soil water storage 
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(mm) and groundwater storage (mm), respectively. The water cycle is driven by climate, as it 

provides water content input and energy inputs. Accordingly, SWAT uses precipitation, 

maximum and minimum air temperature, solar radiation, relative humidity, and wind speed as 

the meteorological inputs. Simulation of catchment hydrology is separated into land phase and 

in-stream phase. Available water (mm) yielded from precipitated water, soil layers, and aquifers 

are first calculated in the land phase. Then, the streamflow (m3⋅s−1) is calculated in the in-

stream phase. Anthropogenic factors such as artificial reservoirs and irrigation water use can 

also be specified if necessary. Due to the limited data availability, all the input data (Table 3) 

were obtained from open-access sources. Additional verification was conducted for each input 

to ensure its reliability. 

 

Table 3. Description of input data used in SWAT model. 

Data Source Resolution/scale 

DEM 
Digital Elevation Topographic Dataset, Geospatial Information 
Authority of Japan. 
(https://fgd.gsi.go.jp/download/ref_dem.html) 

5 m and 10 m  
(grid) 

LULC 
ALOS High Resolution Land-Use and Land-Cover Map of Japan 
ver. 21.11, Japan Aerospace Exploration Agency. 
(https://www.eorc.jaxa.jp/ALOS/en/dataset/lulc_e.htm) 

10 m 

Soil 
Comprehensive Soil Classification System of Japan First 
Approximation, National Institute for Agro-Environmental Sciences. 
(https://soil-inventory.rad.naro.go.jp/index.html) 

1:200,000 

Climate 
Dynamical Regional Downscaling Using the JRA-55 Reanalysis 
(DSJRA-55), JMA. 
(http://jra.kishou.go.jp/DSJRA-55/index_en.html) 

5 km  
(grid) 
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DEM is used to delineate the distribution of river channels and subbasin division, based on 

which the HRUs are defined and then used for calculations. First, basin delineation was 

performed using the Hydrology toolset in ArcMap ver. 10.7, then every delineated river channel 

and its corresponding subbasin boundary were verified (and manually modified when 

necessary) by the Geospatial Information Authority of Japan (GSI) at the finest zoom level 

available (1:2500). A total of 366 subbasins were identified, and used for calculations in this 

study.  

 

LULC data is another critical inputs to delineate HRUs in SWAT. The ALOS LULC dataset 

was used in this study. ALOS LULC utilized numerous reference data during its initial 

production (e.g., Sentinel-2 Multispectral Instrument images, ALOS-2 Synthetic Aperture 

Radar images, ALOS PRISM Digital Surface Model dataset) in addition to the National 

Vegetation Surveys (the sole reference data for the former). Extensive verification was also 

conducted before the release (Hirayama et al., 2022), leading to a high resolution and 

considerably good spatial accuracy in the final product. Nevertheless, the classification within 

the ARB was verified in this study using both the GSI topographic map and satellite images 

from Google Earth Pro at the subbasin level. 12 types of classification were used in the original 

dataset, and nine were included within the ARB (Fig. 4a).  

 

Soil type distribution data is the third critical input to delineate HRUs. In this study, it was 

not practically possible to directly verify the soil properties under limited data availability. 

Alternatively, the reported properties of each soil type were compared with that from the 
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FAO/UNESCO Soil Map of the World (http://www.fao.org/soils-portal/soil-survey/soil-maps-

and-databases/faounesco-soil-map-of-the-world/en/). Eight different soil types by Great 

Group-division (21 by series group-division) were considered in this study (Fig. 4b). Based on 

the 366 subbasins, representative thresholds for the HRU determination (the percentage of a 

feature’s coverage over the area of its subbasin) for slope, LULC, and soil type, were set as 

15%, 10%, and 10%, respectively. 5055 HRUs were determined under this setting.   

 

 

Fig. 4. LULC distribution map (a) and soil type distribution map (b) of the ARB, generated from the 
data listed in Table 3. For a clear illustration, only the eight Great Groups were included. 

 

For the five types of meteorological input, SWAT requires hourly data for precipitation and 

daily data for the other four. The inputs were derived from the DSJRA-55 reanalysis data 

(Kayaba et al., 2016), of which 116 grid points were included in the ARB. Bias was evaluated 
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and corrected before the release. It was concluded that a more considerable bias was observed 

in inland eastern Japan and the Pacific-side of northern Japan in the case of temperature, and 

in the Hokuriku region and Japan Sea-side of Honshu in the case of precipitation. On the other 

hand, the Abashiri region is among the areas where better agreements were found. In addition, 

it was mentioned that the reproductivity of extreme precipitation events over mountainous 

regions may require further improvement (Kayaba et al., 2016). However, as the reproductivity 

of extreme single-event was not the primary concern in this study, DSJRA-55 dataset was 

considered appropriate as the meteorological input. In the future streamflow simulations, 

ALOS LULC and DSJRA-55 were substituted by PANCES-LULC and JMA-GWP9, 

respectively. The former two datasets represent the present conditions for streamflow 

simulations, and the latter two represent the future conditions. The t-test was used to measure 

the difference between the present streamflow and future streamflow, in which a significant 

difference is described by a p-value that is lower than 0.05. Additionally, even though using 

different datasets between the present and future simulations may render the comparison 

between the two periods less rigorous, it was considered necessary to avoid more potentially 

significant uncertainty. More of this point is described in section 6.2. 

 

4.2 Water cycle calculations and parameters 

 

Most of the calculation processes in SWAT are performed at the unit of HRU (Fig. 5). Note 

that while SWAT provides multiple options for some of the processes (e.g., infiltration and 

potential evapotranspiration), this section only describes the ones used in this study. 
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Calculations of several major processes are described as follows. 

 

 

Fig. 5. Schematic of the water cycle calculation in a unit of HRU. Arrows indicate water movement 
through the water cycle; rhomboids are model input; rectangles are calculation processes; rhombuses 
are decisions; rectangles with double-struck edges are predefined processes; and the stadium is the 
calculation output. 
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1. Solar radiation. SWAT considers the radiant energy from the sun as the only energy source 

that impacts the earth's climatic processes. Net radiation (Hnet, MJ⋅m−2⋅d−1) is described as: 

 

𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 = (1 − 𝛼𝛼) ∙ 𝐻𝐻𝑆𝑆𝑆𝑆 + 𝐻𝐻𝐿𝐿𝑆𝑆        (2) 

 

where the arrows indicate the direction of the radiation flux, α is surface albedo, HSW is 

incoming shortwave radiation (MJ⋅m−2⋅d−1), and HLW is net (incoming – outgoing) longwave 

radiation (MJ⋅m−2⋅d−1). HSW is from the solar radiation input, HLW is determined by the Stefan-

Boltzmann law of radiation: 

 

𝐻𝐻𝐿𝐿𝑆𝑆 = 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝜀𝜀 ∙ 𝜎𝜎 ∙ 𝑇𝑇𝐾𝐾4        (3) 

 

where fcld is a factor to adjust for cloud cover described as a function of HSW concerning the 

maximum possible solar radiation at the given latitude, ε is the net emittance between the 

atmospheric and vegetative emittance described as a function of vapor pressure on a given day 

(kPa) calculated from the relatively humidity input (Brunt, 1932; Jensen et al., 1990), σ is the 

Stefan-Boltzmann constant (4.903 × 10−9 MJ⋅m−2⋅K−4⋅d−1), and TK is the daily mean air 

temperature (K) calculated from the temperature inputs. 

 

2. Potential evapotranspiration (PET). The daily heat flux is described using the Penman-

Monteith method: 
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𝜆𝜆𝜆𝜆 = Δ∙(𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛−𝐺𝐺)+𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎∙𝑐𝑐𝑝𝑝∙𝛿𝛿𝑛𝑛/𝑟𝑟𝑎𝑎
∆+𝛾𝛾∙(1+𝑟𝑟𝑐𝑐/𝑟𝑟𝑎𝑎)

        (4) 

 

where λ is the latent heat of vaporization (MJ⋅kg−1), E is PET rate (mm⋅d−1), Δ is the slope of 

saturation vapor pressure-temperature curve (kPa⋅°C−1), Hnet is the daily net radiation 

(MJ⋅m−2⋅d−1), G is ground heat flux (MJ⋅m−2⋅d−1), ρair is air density (kg⋅m−3), cp is the specific 

heat capacity of air (1.013 × 10−3 MJ⋅kg−1⋅°C−1), δe is vapor pressure deficit (kPa), γ is the 

psychrometric constant (kPa⋅°C−1), ra and rc are the atmospheric resistance and canopy 

resistance (s⋅m−1), respectively. More specifically, the value λ and Δ vary daily, as they are 

calculated from daily mean temperature; G is assumed as zero; δe is calculated from the 

temperature and relative humidity inputs; ra is calculated as a function of inputted wind speed; 

rc is calculated as a function of daily leaf area index, which varies according to the daily mean 

temperature; and γ is calculated as (Brunt, 1952): 

 

𝛾𝛾 = 𝑐𝑐𝑝𝑝∙𝑝𝑝
𝜆𝜆∙𝑀𝑀𝑆𝑆

        (5) 

 

where p is atmospheric pressure (kPa) at a given elevation, MW is the ratio molecular weight 

of water vapor over dry air (0.622). The calculated PET is then used to calculate actual 

evaporation, transpiration and sublimation. 

 

3. Snow accumulation and snowmelt. The mass balance of snow water content (Snow, mm) 

is described as: 
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∆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 − 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑐𝑐𝑛𝑛        (6) 

 

where Psnow is precipitation (mm) in the form of snowfall determined using the precipitation 

and temperature inputs, Esub is daily sublimation (mm), and Snowmlt is the daily amount of 

snowmelt (mm). Daily snowmelt (mm⋅d−1) is calculated using the degree day method 

(Anderson, 1976): 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑐𝑐𝑛𝑛 = 𝐷𝐷𝐷𝐷𝐷𝐷 ∙ (𝑇𝑇 − 𝑇𝑇𝑚𝑚𝑐𝑐𝑛𝑛)        (7) 

 

where DDF is the degree day factor on the day (mm⋅d−1⋅°C−1), T is the daily mean air 

temperature (°C), Tmlt is the threshold temperature (°C) above which snowmelt is allowed 

during the calculations. 

 

4. Soil water. Infiltration of water through the ground surface is calculated using a modified 

Green-Ampt infiltration method (Mein & Larson, 1973): 

 

𝑓𝑓𝑛𝑛 = 𝐾𝐾𝑛𝑛 ∙ (1 + Ψ∙∆θ
𝐹𝐹𝑛𝑛

)        (8) 

 

where ft is the infiltration rate at time t (mm⋅hr−1), Ke is the effective hydraulic conductivity 

(mm⋅hr−1) calculated from the saturated hydraulic conductivity, Ψ is the wetting front soil 

suction head (mm) described as a function of porosity, percent sand and percent clay, Δθ is the 

change in water content across the wetting front (mm⋅mm−1) described as a function of porosity 
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and the available water capacity, and Ft is the cumulative depth of infiltration at time t (mm). 

Saturated hydraulic conductivity, porosity, percent sand, percent clay, and available water 

capacity are defined in the input of soil properties. This method assumes that the soil above the 

wetting front is entirely saturated, and the excess water on the ground surface is considered 

surface runoff. In addition to the Green-Ampt infiltration method, the Curve Number method 

(Mockus, 1972) is another option for infiltration calculations. It is more frequently used in 

SWAT applications as it requires daily precipitation data instead of subdaily. However, it has 

been pointed out that the Curve Number can lead to more significant model uncertainty, more 

likely than the Green-Ampt method, while its realistic determination requires in-situ 

measurements (King et al., 1999; Tasdighi et al., 2018). Given the limited data availability, this 

study considers the latter the preferable method. SWAT assumes the water distribution within 

the soil layer is uniform, meaning only the saturated flow is directly calculated, which includes 

lateral flow and vertical percolation. In contrast, unsaturated flow is indirectly modeled as two 

exponential functions that describe the distribution variations caused by soil evaporation and 

plant transpiration. 

 

5. Groundwater. The saturated zone of groundwater is divided into an unconfined layer and 

a confined layer, i.e., a shallow aquifer and a deep aquifer. While the natural process of water 

transport in aquifers is from the shallow aquifer to the deep aquifer, SWAT applies a simple 

partition scheme that directly diverts the percolated water from soil layers. Therefore, water 

entering the deep aquifer within an HRU is excluded from later water budget calculations. The 

water in the shallow aquifer considers a water balance as: 
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𝑎𝑎𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑖𝑖−1 + 𝑆𝑆𝑟𝑟𝑐𝑐ℎ𝑟𝑟 − 𝑆𝑆𝑠𝑠𝑏𝑏 − 𝑆𝑆𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠        (9) 

 

where aqi and aqi-1 are the amount of water stored in the shallow aquifer (mm) on a given day 

and its previous day, wrchr is the amount of recharge entering the shallow aquifer (mm), wbf is 

the baseflow (groundwater contribution to the river channel; mm), and wloss is the water loss 

through irrigation water use or a conditional evaporation process (mm). 

 

6. Streamflow. Surface runoff, lateral flow from the soil layer, and baseflow from the 

shallow aquifer collectively become the available water for streamflow. As the in-stream phase 

of calculations, streamflow is calculated using the Muskingum routing method and Manning’s 

equation. The Muskingum routing method uses a conservation of mass approach to route the 

flow. The total available streamflow water in a channel is conceptualized as the sum of prism 

and wedge storage: 

 

𝑉𝑉𝑠𝑠𝑛𝑛𝑠𝑠𝑟𝑟𝑛𝑛𝑐𝑐 = 𝐾𝐾 ∙ (𝑋𝑋 ∙ 𝑎𝑎𝑖𝑖𝑛𝑛 + (1 − 𝑋𝑋) ∙ 𝑎𝑎𝑠𝑠𝑠𝑠𝑛𝑛)        (10) 

 

where Vstored is water currently stored in the channel (m3), K is the storage time constant for the 

channel (s), X is a weighing factor that defines the impacts between wedge and prism, qin is the 

rate of inflow (m3⋅s−1), which includes both the outflow from the nearest adjacent up-stream 

HRU(s) and the generated water from the land phase of the current HRU, qout is the outflow 

(m3⋅s−1) from the HRU, i.e., the streamflow, and functions as the qin for the nearest adjacent 

downstream HRU.  
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In almost every calculation process described in this section, numerical parameters are 

involved either as threshold, coefficient, or definitional value in the corresponding equation. 

Therefore, appropriately determining the parameter values is essential to the model 

performance. Ideally, the parameters should be determined a priori, independently from the 

model’s performance. However, in most distributed models, this becomes impossible due to 

their large number of parameters (Brutsaert, 2005). This study identified 35 parameters 

involved in the water cycle calculation. The alternative solution is statistical tuning, sometimes 

referred to as autocalibration, calibration, or optimization approach, and it has been considered 

conventional and inevitable in SWAT (Abbaspour, 2015; Abbaspour et al., 2015, 2018; Arnold, 

Moriasi, et al., 2012; Gassman et al., 2014). While minimizing the use of tuning in SWAT is 

not a necessarily unprecedented notion, a thorough discussion on its logical reasons and 

practical significance, especially under a representatively limited data availability, is yet to be 

appropriately presented. Therefore, this study proposes a consistent and physically meaningful 

manner to manually determine parameter values based on quantitative and qualitative empirical 

evidence. After the majority of parameters were determined, the remaining parameters left with 

relatively higher uncertainties were tuned using the SWAT Parameter Estimator of the SWAT 

Calibration and Uncertainty Procedures program (SWAT-CUP; Abbaspour, 2015) to improve 

the model performance. Model performance was measured by the Nash-Sutcliffe model 

efficiency coefficient (NSE; Nash & Sutcliffe, 1970), the Kling-Gupta efficiency (KGE; Gupta 

et al., 2009), and the coefficient of determination (r2). The primarily determined and minorly 

tuned parameters was then used for model validation and for future streamflow simulations.  
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4.3 Minimizing the use of tuning 

 

Tuning in hydrological models is an optimization process. While the tuning process has been 

developed from being more labor-intensive to more practically convenient and automated 

(Balascio et al., 1998), the model performance is always used as the benchmark. Therefore, 

this study argues that even when a satisfactory agreement between the simulation and 

observation was achieved by tuning, the physical meaning of the tuned parameters is not 

necessarily warranted to be reasonable to the local reality. Section 4.3 explains the logical 

reason and practical solution to this argument.  

 

4.3.1 The conventional use of tuning 

 

The model performance during tuning is measured by statistical quantities such as r2, NSE, 

or KGE, generally referred to as the objectives of the tuning process. In other words, the only 

essential function of tuning is to optimize parameter values so that a satisfactory model 

performance may be reached. In contrast, the physical meaning of the tuned parameters is 

entirely neglected during the process, which is a potentially problematic issue because the 

physical meaningfulness and complexity are critical to the model’s predictive power (Ludwig 

et al., 2009). However, the conventional argument considered in most previous studies is that 

if the sensitive parameters were tuned and led to satisfactory performance, the parameters must 

have been meaningful to a certain degree. As a result, most previous studies use a high-

sensitivity result on the tuned parameters as the critical justification for the completion of 
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tuning. In contrast to this conventional understanding, this study proposed a different argument. 

The parameter sensitivity is essentially the efficiency on the improvement of model 

performance, and is measured by statistical quantities. In the case of SWAT, tuning is 

commonly performed in SWAT-CUP, an interface developed primarily for tuning in SWAT, in 

addition to functions such as simulation validation and sensitivity analysis. In SWAT-CUP, the 

sensitivity of each parameter is measured by the t-test, where a high sensitivity is indicated by 

a higher absolute value of t-stat and a lower p-value (Abbaspour, 2015). Due to the large 

number of parameters, it is commonly considered impractical and logically unreasonable to 

tune all parameters simultaneously. As a result, less sensitive parameters would be excluded 

during tuning, leading to a small number of parameters for tuning. Owing to the tuning function, 

the unrealistic physical meaning of all the unadjusted parameters would be compensated by the 

fewer tuned ones, whose physical meaning was not warranted either. Moreover, as most of the 

water cycle processes and their corresponding calculations are directly or indirectly connected, 

the property of a given process can be altered by multiple parameters. Consequently, a cross-

compensation effect may be generated, i.e., when tuning a certain number of parameters, the 

potential uncertainty of every parameter, either tuned or untuned, would all be distributed non-

physically to the selectively tuned parameters and compensated. Ultimately, none of the 

parameters would necessarily become more physically meaningful, regardless of whether a 

satisfactory performance was achieved by tuning. As a result, the cross-compensation effect 

may lead to a matrix of incorrect representations of the natural processes that could collectively 

yield a conditionally satisfactory streamflow output.  
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Assuming the tuned parameters were significantly sensitive, the conditional performance of 

the physically unreasonable matrix could be acceptable for further simulations if a critical 

condition was met: the spatiotemporal settings between the tuned and further simulations were 

not significantly different. For example, the result of model validation in most previous SWAT 

applications follows this notion. However, the simulation of future streamflow does not comply 

with the critical condition. More specifically, the tuned parameters would be applied to the 

future in which the spatiotemporal setting (especially the temporal setting) is not necessarily 

comparable to that of the tuning simulation. For example, the parameters governed by the 

specific LULC type would be altered when the initial LULC input is replaced by its future 

version, thus violating the matrix. Therefore, minimizing the use of tuning is considered greatly 

important to the objective of this study. 

 

4.3.2 The empirical approach 

 

In response to the limited data availability, this study attempted to minimize the use of tuning 

in a consistent and physically meaningful manner by manually determining parameter values 

based on quantitative and qualitative empirical evidence (hereinafter referred to as the 

empirical approach): 

1. The physical definition of every parameter involved in the water cycle and their 

interconnections were studied via an extensive search and reviews of existing literature 

(e.g., textbooks, physical manual of SWAT and functionally similar models, and 

journal papers). 
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2. The numerical value of each parameter was determined based on relative and 

comparable quantitative references. 

3. Considering the paucity of direct measurement, qualitative references were used to 

compare the physical meaning of the determined value with the recorded local reality. 

4. Questionable parameters were selected for further optimization by tuning based on the 

previous comparisons. 

5. Considering the available computational power, parameters with significant physical 

impact on water quantity variation were used as the priority for tuning. 

 

The following summarizes the considerations given for some of the parameters during the 

empirical approach. Capitalized letters are the parameter codes used in SWAT applications 

(Arnold et al., 2012). 

 

SMFMX, SMFMN: maximum and minimum degree day factor value during a year 

(mm⋅d−1⋅°C−1). These two parameters governs the range of the DDF during the year in the Eq. 

7 with a sinusoidal interpolation (Huber & Dickinson, 1988): 

 

𝐷𝐷𝐷𝐷𝐷𝐷 = (𝑆𝑆𝑀𝑀𝐹𝐹𝑀𝑀𝑆𝑆+𝑆𝑆𝑀𝑀𝐹𝐹𝑀𝑀𝑆𝑆)
2

+ (𝑆𝑆𝑀𝑀𝐹𝐹𝑀𝑀𝑆𝑆−𝑆𝑆𝑀𝑀𝐹𝐹𝑀𝑀𝑆𝑆)
2

∙ sin ( 2𝜋𝜋
365

∙ (𝑑𝑑𝑛𝑛 − 81))      (11) 

 

where dn is the Julian date of a year. By this interpolation, the seasonal variation of daily DDF 

values varies between the summer and winter solstices. The degree day method model has been 

validated as generally reliable in the case of Japan (Miyata et al., 2012). It has been reported 
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that DDF may range from 1.4–6.9 in rural areas (Huber & Dickinson, 1988) to 0.9–7 in the 

case of Japan (Sakai, 1963). DDF during early April to early May in multiple locations on the 

western Hokkaido island has been estimated to vary from 3–4.5 (Hokkaido Electric Power 

Company & Sapporo Regional Headquarters of Japan Meteorological Agency, 1959; Sakai, 

1963). Therefore, SMFMX and SMFMN were given as 5 and 1, respectively, to match the 

reported values at different times of the year.   

 

CANMX, BLAI, T_BASE: maximum canopy storage capacity (mm), maximum leaf area 

index (LAI; m2⋅m−2), and minimum temperature for plant growth (°C). These three values 

differ on different LULC types. A portion of precipitation can be intercepted by plant canopy, 

which directly affects ET and varies between different types of vegetation and on different days: 

 

𝑐𝑐𝑎𝑎𝑆𝑆𝑐𝑐𝑑𝑑𝑑𝑑 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑎𝑎𝑑𝑑
𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿

        (12) 

 

where canday is daily canopy storage capacity (mm), LAIday is daily LAI (m2⋅m−2) calculated as 

a function of temperature and regulated by T_BASE. As neither of the LULC datasets 

distinguishes forest by its species, the dominant forest species over the area of forest types in 

the ALOS LULC classification were first calculated according to the forest distribution record 

(Forestry Agency of Japan, 2013). The reported CANMX values from existing studies were 

then slightly modified accordingly (Attarod et al., 2014; Liu & Lobb, 2021; Nur Syahida & 

Azinoor Azida, 2018; Sato, 2014; Xiao & McPherson, 2016; Yu et al., 2012; Zou et al., 2015). 

A similar modification was given to T_BASE in the case of forest LULC types. For BLAI, the 
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MODIS 8-day LAI dataset was used (Myneni et al., 2015) to calculate the reasonable range of 

each LULC type in response to its maximum growth period. The properties of each plant and 

forest LULC type were found in multiple references (Hashizume et al., 1993; Horie, 2004; 

Karizumi, 2010; Miyabe & Kudo, 1986; Sato, 2014). 

 

ESCO, EPCO: compensation factor (/) of soil evaporation and plant transpiration, 

respectively. The ability to meet the evaporative demand (PET) in the soil layers varies in 

different soil types and depths below the surface. An exponential function governs the variation 

related to depth, and the compensation factors can modify the significance of this function. No 

direct physical reference was found regarding the two parameters as they are specific to the 

SWAT applications. Nevertheless, ESCO was given to a difference between different soil types 

according to the permeability suggested in the input dataset of soil properties (https://soil-

inventory.rad.naro.go.jp/index.html). 

 

ALPHA_BF: inverse of the baseflow recession constant. SWAT considers baseflow 

recession as an exponential decay process: 

 

𝑄𝑄𝑠𝑠𝑏𝑏 = 𝑄𝑄𝑠𝑠𝑏𝑏,0 ∙ exp (−𝑡𝑡 ∙ 𝐶𝐶𝐴𝐴𝑃𝑃𝐻𝐻𝐶𝐶_𝐵𝐵𝐷𝐷)        (13) 

 

where Qbf is baseflow contribution rate (m3⋅s−1), Qbf, 0 is baseflow rate at the beginning of period, 

t is time (s). The inverse of ALPHA_BF, i.e., the baseflow recession constant (day), is the 

function of hydraulic conductivity, specific yield, and average flow distance of the shallow 
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aquifer (Brutsaert, 2005). While this parameter usually exhibits lower sensitivity during tuning 

due to its function, it is one of the vital characteristic parameters of groundwater contribution. 

Observed daily streamflow data over three stations were used to calculate ALPHA_BF using 

six different methods (Kroll, 1989; Vogel & Kroll, 1996). A value of 0.97 is given to the basin, 

indicating a rapid response to groundwater release (Neitsch et al., 2011).  

 

GW_REVAP: compensation factor (/) for shallow aquifer evaporation. The effect of this 

parameter is the same as EPCO and ESCO, as to adjust the evaporative demand. However, the 

evaporation process here refers explicitly to where water is removed from the shallow aquifer 

through the vadose zone to the surface and evaporates. This parameter is specific to the use of 

SWAT applications. Its value was suggested to be 0.02-0.20 with no physical explanation 

(Arnold et al., 2012). Liu et al. (2004) detailed this parameter in an arid region and reported a 

range of 0.05–0.30. Additionally, their study did not involve any use of SWAT and concluded 

that the parameter varies depending on the land cover and groundwater depth, and should 

generally be considered less significant in less arid regions than the study area they used (inner 

Mongolia). Therefore, a value of 0.02 was given. 

 

OV_N, CH_N: the Manning’s roughness coefficient (n) in surface runoff and river channel 

flow, respectively. The determination of n generally requires field measurement, such as inflow 

and outflow during a specific section of the channel, as well as its geometry information. In the 

absence of observation, n can be approximated based on the characteristics of the channel, such 

as slope, vegetation, and level of meandering (Arcement & Schneider, 1989). By cross-
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comparing multiple reported variations of n, values ranging from 0.01-0.2 were given to OV_N 

for different LULC types (Arcement & Schneider, 1989; Downer & Ogden, 2006; Engman, 

1986), and a value of 0.05 for river channel flow (Arcement & Schneider, 1989; Chow et al., 

1988; Hornberger et al., 2014; Japan Society of Civil Engineers, 2019).  

 

Information on the remaining parameters is summarized in Table 4. Most of the 35 

parameters were determined by direct calculation, or based on quantitative results reported in 

other comparable locations or qualitative results reported in the ARB. In the fourth step of the 

empirical approach, nine parameters were selected (bold ones in Table 4): SFTMP (snowfall 

threshold temperature, °C), SMTMP (snowmelt threshold temperature, °C), SNOCOVMX 

(minimum snow water content at 100% snow coverage, mm), SNO50COV (snow water 

content at 50% snow coverage over SNOCOVMX, %), SOL_AWC (soil water capacity, %), 

GW_DELAY (constant of groundwater delay, day), MSK_X (weighting factor X in Eq. 10), 

MSK_CO1, 2 (tuning factors in the Muskingum equation). Finally, the following four 

parameters were considered the priority to be tuned.  

 

SFTMP, SMTMP: threshold temperature (°C) for snowfall and snowmelt process. Both 

parameters were initially set as zero following their most general definition. However, coarse 

partitioning of the precipitation phase in modeling works may lead to significant biases in 

snow-related calculations, which propagates into errors in streamflow (Gascón et al., 2018; 

Jennings et al., 2018). Consequently, even a slight change in their values could lead to a 

significant difference in water content in the water cycle. Therefore the parameters were 



33 
 

included in the tuning process, after which SFTMP was adjusted to 3.2, and SMTMP was 

adjusted to 1.9. 

 

GW_DELAY: constant of the delay effect in groundwater recharge (day). This parameter is 

involved in an exponential decay function, similar to ALPHA_BF and SURLAG. The function 

is used here to represent the time delay from water passing through the soil profile via 

percolation to the point where it enters the shallow aquifer as recharge. In reality, this period 

depends on the depth of the groundwater table, and the hydraulic properties of the geologic 

formations in both the vadose zone (unsaturated zone) and the groundwater zone (saturated 

zone). The current data availability could not match the physical complexity of this parameter. 

Therefore it was considered necessary to be included in the tuning process. GW_DELAY was 

adjusted to 327.  

 

SOL_AWC: available water capacity (/). Available water is the difference in water contents 

at field capacity and wilting point. It is defined as the amount of water available for uptake by 

plant roots. This concept is frequently used in agronomic engineering and modeling (Cassel & 

Nielsen, 1986). This parameter significantly affects the availability of soil moisture, which 

controls the rates of evaporation and transpiration, and indirectly affects infiltration and 

groundwater recharge (Hong et al., 2013). Due to its physical importance and the lack of 

measurements, it was considered necessary to include SOL_AWC in the tuning process. In 

addition, the value of SOL_AWC varied on different soil types and was included in a pre-

defined database of SWAT. The tuning process applied a relative change to the pre-defined 
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values so that the heterogeneity could be maintained. The pre-defined values ranged between 

0.10-0.18 and were adjusted to 0.40-0.71 after the tuning (× 3.8). All parameters in the t-test 

showed acceptably high absolute t-stat values and significant p-values (p < 0.01). The 

significance of the empirical approach is discussed in section 6.1. 
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Table 4. Numerical value of all the identified parameters in water cycle calculations. Name is the 
parameter code name in SWAT, excluding Albedo, which refers to the plant albedo in Eq. 1:1.2.15 in 
the official SWAT manual (Neitsch et al., 2011). Default refers to the default value initially given in 
SWAT. The default value was left intentionally unchanged for several parameters according to the 
found references, otherwise marked as bold. Value range indicates an HRU-level parameter with one 
value on each LULC, soil, or slope class, not the meaning of a varying value during the calculations. 

Name Definition (unit) Default Determined 

SFTMP Snowfall threshold temperature (°C). 1 0 
SMTMP Snowfall threshold temperature (°C). 0.5 0 
SMFMX Maximum degree day factor (mm⋅d−1⋅°C−1). 4.5 5 
SMFMN Minimum degree day factor (mm⋅d−1⋅°C−1). 4.5 1 
TIMP Temperature lag factor of snowpack. 1 0.75 
SNOCOVMX Minimum SWE at 100% snow coverage (mm). 1 90 
SNO50COV SWE at 50% snow coverage over SNOCOVMX (/). 0.5 0.5 
CANMX Canopy storage capacity (mm). 0 [0, 2.5] 
ESCO Soil evaporation compensation factor. 0.95 [0.8, 1] 
EPCO Plant transpiration uptake compensation factor. 1 [0.1, 1] 
RCHRG_DP Deep aquifer percolation fraction (/). 0.05 0.04 
GWQMN Threshold water level of baseflow occurrence (mm). 1000 [700, 780] 
ALPHA_BF Inverse of the baseflow recession constant (day−1). 0.048 0.97 
GW_DELAY Aquifer recharge delay time (day). 31 31 
GW_REVAP Compensation factor of aquifer evaporation. 0.02 0.02 
REVAPMN Threshold water level of aquifer evaporation (mm). 750 1000 
SURLAG Lag coefficient for surface runoff. 4 5 
CH_N(1) Manning’s n for river flow in tributary channel. 0.014 0.05 
CH_K(1) Hydraulic conductivity in tributary channel (mm/h). 0 0 
CH_N(2) Manning’s n for river flow in main channel. 0.014 0.05 
CH_K(2) Hydraulic conductivity in main channel (mm/h). 0 0.03 
EVRCH Coefficient for river evaporation loss adjustment. 1 1 
EVRSV Coefficient for lake evaporation loss adjustment. 0.6 0.75 
MSK_X Weighting factor in Eq. 10. 0.2 0.2 
MSK_CO1 Impact factor of normal flow in Muskingum method.  0.75 0.75 
MSK_CO2 Impact factor of low flow in Muskingum method.  0.25 0.25 
OV_N Manning’s n for overland flow. [0.01, 0.15] [0.01, 0.2] 
BLAI Maximum leaf area index of plant (m2⋅m−2). [0, 5] [0, 7.5] 
ALAI_MIN Minimum leaf area index of forest (m2⋅m−2). 0.75 [0.05, 0.5] 
T_BASE Base temperature for plant growth (°C). [0, 12] [0, 8] 
SOL_AWC Available water capacity of soil (/). [0.1, 0.18] [0.4, 0.74] 
CHTMX Maximum canopy height (m). [0, 10] [0, 30] 
RDMX Maximum root depth (m). [0, 3.5] [0, 3] 
CO2 Carbon dioxide concertation (ppmv). 330 380 
Albedo Representative plant albedo at minimal snow cover. 0.23 0.1 
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4.4 Additional data and modifications 

 

The presentation of water bodies such as lakes and dams can be specified in SWAT as 

additional input. Three water bodies in the ARB with considerable surface areas were included 

in this study: Lake Abashiri, Lake Chimikeppu, and Furuume Dam. SWAT provides the option 

to simulate the water outflow from the water body, or to specify the outflow according to 

observation data. Primary inputs include surface area and water volume at normal and 

emergency conditions. An annual mean outflow rate or monthly mean outflow rate at each 

month is needed in the case of simulated outflow. The outflow from Lake Chimikeppu was 

simulated, and the required inputs were defined according to the 4th Natural Environment 

Survey on Inland Waters (1991). The outflow from Furuume Dam was simulated based on the 

official information (Table 5). For Lake Abashiri, observed daily streamflow data at the 

Omagari Station (Fig. 1) was used to specify the outflow directly.   

 

Table 5. Information of Furuume Dam presented at the dam station (43°41′50″N 144°13′33″E). 

Definition (unit) Value  Definition (unit) Value 

Catchment area (km2) 15.00  Effective water depth (m) 23.50 

Reservoir area (km2) 0.29  Design flood (m3⋅s−1) 200.00 

Reservoir capacity (hm3) 3.50  Maximum withdrawal (m3⋅s−1) 1.49 

Active storage capacity (hm3) 3.23  Maximum release (m3⋅s−1) 7.04 

 

SWAT provides several fairly straightforward options for representing irrigation water use 

over paddy fields. Previous studies have pointed out the limitations of these options and 

developed separate modules as a substitute for more robust simulations (e.g., Kang et al., 2006; 
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Sakaguchi et al., 2014; Tsuchiya et al., 2018). However, paddy field coverage in such studies 

(9% to 19%) is much more significant than in this study (0.3%). Furthermore, the additional 

modules commonly require more specific data, such as observed flow rate at irrigation canals 

or water depth measurement in the paddy field, which were not available in this study. 

Considering the research purpose and data availability, irrigation water use for the paddy field 

was estimated following the principles described by Nakagawa (1966). Paddy field irrigation 

water use is distinctively different over two stages, the puddling stage and the regular stage. 

Water balance (mm) during the puddling stage can be described as: 

 

𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝 + 𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴 + 𝑎𝑎𝑎𝑎𝑎𝑎𝐵𝐵 + 𝐸𝐸 + 𝑝𝑝        (14) 

 

where wpud is net water requirement during puddling stage, winu is inundation amount, E is 

evaporation over field surface, p is outward percolation amount, airA and airB are exchanged 

air amount in soil horizon A (Sakudo) and B (Shindo), respectively. Eq. 14 incorporates 

exchanged air amount puddling stage is essentially a process where the unsaturated soil gets 

inundated to reach complete and steady saturation (Nakagawa, 1966). Water balance (mm) 

during the regular stage can be described as: 

 

𝑤𝑤𝑟𝑟𝑟𝑟 = 𝐸𝐸 + 𝑝𝑝 + 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒        (15) 

 

where wre is net water requirement during regular stage, wlot is water requirement for lot-

management, Peffc is effective rainfall. Lot-management refers to the process after the mid-
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summer drainage where constant ponding needs to be maintained. The gross water requirement 

during both stages equals the sum of net water requirement, conveyance loss, and management 

water requirement. Considering the data limitation, Eqs. 14 and 15 were simplified according 

to the empirical records concerning the cultivation pattern of rice (Horie, 2004; Maruyama, 

1986; Nakagawa, 1966). wpud was assumed to be 120 mm -180 mm for a well-drained field 

during the puddling stage. E was consider proportional (0.93) to PET (Odani, 2015), and PET 

is the SWAT-calculated value in the subbasin at which the field is located. p + wlot was 

substituted by the standard optimum percolation level (15 mm⋅d−1 - 25 mm⋅d−1). Peffc was 

considered zero as daily mean was smaller than 5 mm. The sum of conveyance loss and 

management water requirement was considered 20% of wre. The paddy field area was derived 

from the ALOS LULC dataset and verified with data from the MAFF statistics database 

(https://www.maff.go.jp/j/tokei/kouhyou/sakumotu/menseki/index.html).  

 

5. Streamflow of the ARB 

5.1 Finalized simulation 

 

After applying the empirical approach, the daily observation data during 2001-2005 (Fig. 6) 

was used as the benchmark for tuning the parameters to improve the model performance. 

Parameter values were then maintained to produce the daily simulation in 2006-2010 as the 

validation (Table 6). Preferable value ranges of NSE, KGE, and r2 are > 0.5 (Ritter & Muñoz-

Carpena, 2013), > 0 (Knoben et al., 2019), and > 0.5, respectively. A general agreement 

between the simulation and observation was reasonably satisfactory across the ARB. Daily 
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simulations during 2001-2010 were then used as the present level for comparisons with future 

simulations. It should be noted that ideally, the period considered in tuning should match with 

that in the future meteorological data (2076-2095). However, a 20-year tuning was not 

considered impractical, considering the available computational power in this study. 

Alternatively, the 5-year tuning was conducted, and a 10-year period (2001-2010) was used as 

the present benchmark. In the case of streamflow under the future LULC condition, the 5-year 

period (2001-2005) was used as the benchmark, because the LULC projection was initially 

made with a 5-year interval. In addition, it is considered necessary and meaningful to use the 

simulated results (instead of the observation) for comparisons, as the changing drivers that 

affect the streamflow could be explicitly controlled in this manner.  

 

 

Fig. 6. Comparison between the observation and the finalized simulation at Hongou station. 

 

In addition to the overall satisfactory model performance, higher discrepancies were found 

during summer and extreme events. The overestimation of streamflow during summer was 
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most likely due to the underestimation of ET, which could be resulted from the limitation of 

plant growth representation in SWAT, and has been frequently noted in previous studies (e.g., 

Strauch & Volk, 2013; Zhang et al., 2020). Possible solutions could be an extensive 

modification to the initial Heat Unit database of SWAT, or an individually developed module, 

both of which, however, require the in-situ observation of plant growth. Moreover, while tuning 

the parameters directly involved in the ET (e.g., ESCO, EPCO, GW_REVAP) may lead to a 

less significant underestimate, such an attempt was not conducted in this study to avoid 

excessive tuning. On the other hand, the underestimation of streamflow during extreme events 

was most likely caused by another systematic limitation of SWAT. It was particularly noted in 

the official manual of SWAT that the model is a continuous time model and was not designed 

for robust simulation of single-event flooding. Therefore, the tuning process was not able to 

significantly remedy the discrepancy. Nevertheless, the simulation appropriately reproduced 

each actual extreme event, and the finalized model was considered adequate for producing 

future streamflow simulations. Furthermore, most of the results in sections 5.2 and 5.3 were 

derived from the same subbasin in which Hongou station is located, from which the outflow 

directly contributes to Lake Abashiri.  

 

Table 6. Evaluation of the finalized simulations. The lower-stream and upper-stream locations refer 
to Hongou (1,120 km2) and Tsubetsu stations (571 km2), respectively (Fig. 1). 

Location 
Tuning (2001-2005)  Validation (2006-2010)  Validation (1991-1995) 

NSE KGE r2  NSE KGE r2  NSE KGE r2 

Lower-stream 0.77 0.71 0.81  0.67 0.69 0.68  0.49 0.63 0.55 

Upper-stream 0.75 0.73 0.77  0.68 0.70 0.70  0.50 0.66 0.58 
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5.2 Streamflow under future climate conditions 

 

Averaged streamflow results were compared between the present time (2001-2010) and the 

two future scenarios (RCP2.6, RCP8.5; 2076-2095). This section describes the climate-induced 

streamflow change (ΔQclim), marked by number for the convenience of reference in their 

corresponding interpretations, in which possible reason, implication, or both are discussed. 

Additionally, the significance of change is indicated based on the p-value in the t-test, where a 

significant difference is noted when p < 0.05, and vice versa. Daily streamflow (Fig. 7a) at 

present begins to increase in late March and reaches its peak in mid-April. After that, the 

streamflow decreases until early July and varies fairly frequently in autumn. Secondary peaks 

occur in September and October, then the streamflow decrease in November until the baseflow 

level is reached and maintained during the winter. Compared to the present level, significant 

changes in the RCP2.6 scenario include (1) a decrease in late March (March 16-29); and (2) an 

increase in late August (August 22-29). Significant changes in the RCP8.5 scenario include (3) 

a decrease in mid-March (March 6-19); (4) a decrease in early April (April 2-8), in addition to 

(5) a two-week early shift of the peak flow occurrence; and (6) a decrease from late April to 

June (April 19-July 2). Streamflow between the two scenarios showed (7) a significant 

difference in early April (March 31-April 4). In the case of monthly streamflow (Fig. 7b), 

significant decreases were found in (8) March in the RCP2.6 scenario, and in (9) May and June 

in the RCP8.5 scenario. Additionally, no significant difference was found in the monthly 

streamflow between the two scenarios. In the case of flow regime (Fig. 8), no significant change 

was found in the RCP2.6 scenario, whereas the (10) low flow, droughty flow, and average flow 
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showed a significant decrease in the RCP8.5 scenario. Moreover, a significant difference 

between the two scenarios was found in the high flow.  

 

 

Fig. 7. (a) 10-day averaged daily streamflow in the present and the two future climate scenarios. The 
horizontal axis is the day of the year. The shades are the standard deviation of the future streamflow, 
generated from the multi-year climate projection input. (b) Monthly streamflow in the present and the 
two future climate scenarios. Column and error bar are the absolute change and standard deviation of 
streamflow in each month, respectively. 
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Fig. 8. Averaged flow regime in the present and the two future climate scenarios. Flow regime index 
(except the average flow) is derived by arranging the daily streamflow of a year in descending order, 
where the 1st, 95th, 185th, 275th, 355th, and 365th quantity is referred to as the maximum flow, high 
flow, median flow, low flow, droughty flow, and minimum flow, respectively. The error bar is the 
standard deviation of each index, generated from the multi-year climate projection input.  

 

Between the present and future streamflow results, the climate conditions (Fig. 9) were the 

only source of difference. ΔQclim (1) and ΔQclim (3) are likely related to the change in monthly 

mean temperature in March. Compared to the present level, the timing when the temperature 

becomes positive is approximately a month earlier in the RCP8.5 scenario, which also explains 

the early shift in ΔQclim (5). The significant decrease in winter precipitation also significantly 

impacted the streamflow during the melting season by causing a significant decrease in 

snowmelt in both scenarios (Fig. 10). However, the change of snowmelt behaves differently 

between the RCP2.6 and RCP8.5 scenarios. In the former case, the impact is mainly from the 

decrease in winter precipitation, which resulted in a significant decrease in snowmelt in March, 

which explains ΔQclim (8). In the latter case, the timing change in temperature and the decrease 
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in winter precipitation collectively led to a significant change in timing and quantity in 

snowmelt. The difference between the two scenarios is the possible reason for ΔQclim (4, 7), 

whereas the more significant decrease of snowmelt in the RCP8.5 scenario most likely led to 

the decrease of streamflow in May in ΔQclim (6, 9). On the other hand, the significant decrease 

of streamflow in June in the RCP8.5 in ΔQclim (6, 9) is most likely caused by the significant 

increase of temperature in summer via the increase of actual ET (Fig. 11). The different change 

in ET between the two scenarios led to some noticeable differences in the streamflow. For 

example, in autumn, the highly variable precipitation led to the increase in ΔQclim (2) in the 

RCP2.6 scenario. In contrast, the more significantly increased ET in the RCP8.5 scenario 

suppressed the impact of precipitation and led to the insignificant quantity change in 

streamflow. Another example of the different change in ET can be found during winter, which 

is more visually noticeable in its spatial distribution than in Fig. 11. In Fig. 12, a distinct 

difference in winter streamflow change was simulated, despite the similar change in 

precipitation. This difference may be explained by the difference in ET, which received impacts 

from precipitation and temperature differently between the two scenarios. More specifically, in 

the RCP2.6 scenario, the impact of the decreased precipitation had a more dominant impact 

than the temperature on the change of ET, which likely caused a decrease in water content 

available for evaporation. As a result, despite the increase in temperature (therefore, the 

increase of PET), winter ET decreased in the RCP2.6 scenario. In contrast, in the RCP8.5 

scenario, the increased temperature had a more dominant impact than precipitation on the 

change of ET. As a result, winter ET increased in the lower-stream area of the ARB in the 

RCP8.5 scenario. 
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Fig. 9. (a) JMA-GWP9 projected monthly mean precipitation in the present and the two future climate 
scenarios. Columns and error bars are the absolute change and standard deviation of precipitation in 
each month, respectively. In both scenarios, the decreases in January and December are significant. The 
increase in July in the RCP8.5 scenario is significant as well. The difference in May is significant 
between the two scenarios. (b) Same as in Fig. 9a but for monthly mean temperature. Compared to the 
present level, the increases in all months are significant, except in August in the RCP2.6 scenario. The 
difference between the two scenarios is significant every month. Note that these are not strictly the 
results of the present study, but were allocated here for the convenience of reference. 
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Fig. 10. Monthly snowmelt in winter-spring in the present and the two future climate scenarios. Column 
and error bar are the absolute change and standard deviation of snowmelt in each month, respectively. 

 

 
Fig. 11. Monthly ET in the present and the two future climate scenarios. Column and error bar are the 
absolute change and standard deviation of ET in each month, respectively. 
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Based on the results described in this section, primary implications are discussed as follows. 

 

1. A possible drought in the future is one of the most concerning issues in response to climate 

change (Sheffield & Wood, 2011). In the present study, a significant decrease in the low flow 

and droughty flow in the RCO8.5 scenario, i.e., ΔQclim (10), may imply such an issue in the 

ARB. As a flow regime index, the droughty flow has a particular socioeconomic implication 

as the river flow at this level is commonly utilized in water use activities (Musiake et al., 1981). 

In one previous study, the likely change of droughty flow in Japan in 2075-2099 was discussed 

by simulating streamflow under the projected future climate (Tachikawa et al., 2011). A likely 

increase in droughty flow in Hokkaido was reported in the referred study, which is in contrast 

to the results of the present study (Fig. 8). The atmospheric general circulation model used by 

Tachikawa et al. (2011) was an earlier version of the same model used in the present study 

(MRI-AGCM3.2S, 20 km), while the latter was then regionally downscaled via the NHRCM05 

to produce the JMA-GWP9. Therefore, the projected regional variation considered in the 

climate projection in the referred study might be less robust than that applied in the present 

study. Indeed, Sakata et al. (2016) conducted a more specific study on the change of specific 

droughty flow (the ratio of droughty flow over the catchment area at the given point) in future 

Hokkaido by analyzing the long-term historical change via a regional regression model. The 

future climate conditions were derived from the MIROC3.2 and JMA MRI-NHM models. The 

referred study reported that the specific droughty flow (m3⋅s−1⋅100km−2) around the ARB 

region changed from 1.0-1.5 in 2001-2010 to 0.75-1.30 in the later decades of this century. This 

result is quantitatively comparable to the results in the present study, which are 0.98 in 2001-
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2010 to 0.90 (RCP2.6) and 0.74 (RCP8.5) in 2076-2095. This degree of change suggests a 

higher risk of drought in the future and could be considered a warning sign for local basin 

management actions (Sakata et al., 2016). The results in the present study further support this 

concern in the ARB. 

 

2. In addition to the change of droughty flow, the significant changes of streamflow in its 

quantity and pattern in the melting season, i.e., ΔQclim (4, 5), are concerning results to the water 

resource as well. For example, similar results were reported in the Ishikari River (Nakatsugawa, 

2015; Usutani & Nakatsugawa, 2005). The referred studies showed that due to the acceleration 

of snowmelt caused by the projected temperature increase, streamflow of the Ishikari River in 

May and June decreased, while peak flow during the melting season shifted from late April to 

early April. The time shift is very similar to the results in the present study in the RCP8.5 

scenario, i.e., ΔQclim (5). Nakatsugawa (2015) also compared the projected daily streamflow of 

the Ishikari River in April-June with the approximate irrigation water requirement in the region 

(expressed by the water right, or Suiriken in Japanese) and reported that the latter significantly 

exceeded the former during the comparison period. This comparison is because the paddy 

field's water use during its puddling stage depends critically on the streamflow from late April 

to June. Therefore, such a discrepancy means that the available river flow cannot satisfy the 

desirable water uptake. In the present study, the recorded water right near the Hongou station 

is nearly 8 m3⋅s−1 (Hokkaido Regional Development Bureau, 1994), which does not exceed the 

daily streamflow (Fig. 7) during the discussed period. However, the water right is not 

necessarily the maximum water uptake, and the actual value of the latter may vary around the 
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former (Maruyama, 1986). Therefore, considering that the streamflow during the period under 

RCP8.5 indeed significantly decreased compared to the present level, the risk of water use 

shortage could be considered inclined. 

 

3. Besides the possible impacts on water resources, the fishery is another major 

socioeconomic component on which the streamflow variation may impact. Sugihara and Hirai 

(2015) conducted a study to extend the pre-established relationship between the reproductivity 

of Shijimi and the habitat properties (water temperature, salinity, dissolved oxygen level) to a 

relationship between the former and the streamflow changes. The interannual change of the 

median flow of the Sarobetsu River was compared to that of the catch number of Shijimi in the 

same region during 1980-2012. A negative correlation was found between the two, in which 

the correlation coefficient increased when a lag time by year between the two was applied 

(Sugihara & Hirai, 2015, Fig. 20). This is because the time by which Shijimi reaches its 

commercial size (the practical standard for the commercial catch) is usually around 9 to 10 

years in the case of Teshio River (to which the Sarobetsu River contributes), and its growth can 

be affected by the growth rate of the newborn in the recent past years, which varies depending 

on the habitat condition of the present year (Sugihara & Hirai, 2015; Utoh, 1981). In the present 

study, the same comparison using a least square regression was conducted between the two 

components, i.e., the annual commercial catch of Shijimi in Lake Abashiri and the annual 

median flow at Hongou station during 1960-2008. Similar to the referred study, a negative 

correlation was found between the two components in the present study. Moreover, the 

correlation coefficient of the relationship increases when the lag time (year) is higher than three, 
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and becomes significant from seven (Fig. 13). It has been reported that the majority of Shijimi 

in Lake Abashiri takes five or six years to reach its commercial size, while the fast-growing 

individuals may take four (Watanabe et al., 2021). The timing adequately explains the result in 

Fig. 13. Therefore, considering the results in Fig. 8, a possible positive impact on the 

reproductivity of Shijimi in Lake Abashiri may be expected. However, it was also explained 

that increases in precipitation and temperature during July-September may suppress the short-

term growth rate of Shijimi (Sugihara & Hirai, 2015). Consequently, a negative impact on the 

reproductivity of Shijimi in Lake Abashiri can be expected according to the projected climate 

(Fig. 9). Collectively, a likely less stable future for the capture of Shijimi was implied.  

 

 

Fig. 13. Relationship between the annual median flow of the ARB and the annual commercial catch of 
Shijimi in Lake Abashiri in 1960-2008. The vertical axis is the correlation coefficient in the relationship; 
the horizontal axis is the lag time between the two components. A darker point denotes a significant 
correlation. 
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In the case of Shirauo, Hayano et al. (2013) compared the interannual change of its catch 

number in Lake Abashiri with that of the average daily streamflow of Abashiri River from 

August to November in 1985-2007. It was discovered that the former is considerably sensitive 

to the occurrence of higher streamflow, and that more frequent and heavier rainfall is likely to 

cause a negative impact on the catch number of Shirauo. As an increase in streamflow 

variability during July-August was found in both future scenarios, a likely less stable future for 

the capture of Shirauo was implied. 

 

In the case of Wakasagi, Asami (2004) conducted a comprehensive study on its life ecology 

in Lake Abashiri and summarized a complex relationship between the growth of Wakasagi and 

numerous factors. It was explained that Wakasagi in Lake Abashiri experiences its larva stage 

(May-June) and juvenile stage (July-November) in the lake, where its growth rate is 

significantly related to the production of Sinocalanus tenellus, in addition to the water 

temperature, salinity, and Chlorophyll a concentration. The seaward migration occurs in July-

November, followed by upstream migration by the end of December. The fish stays in the lake 

until April and begins its second and last year of life with a similar migration cycle. Fisheries 

activity in Lake Abashiri mainly primarily on production during January-March, which varies 

considerably from year to year (Asami, 2004). Therefore, the impact of the estimated 

streamflow change in the ARB on the productivity of Wakasagi was difficult to conclude, not 

only because its primary influencer, i.e., Sinocalanus tenellus, has a nonlinear relationship with 

the water temperature, but also because its migration number varies with the variation of its 

population density within the lake (Asami, 2004; Asami & Ito, 2003).  
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5.3 Streamflow under future LULC conditions 

 

Averaged streamflow results were compared between the present time (2001-2005) and the 

five future scenarios (BaU, PC, PD, NC, ND; 2050). This section describes the LULC-induced 

streamflow change (ΔQlulc), marked by number for the convenience of reference in their 

corresponding interpretations. Same as in ΔQclim, the significance of change is indicated based 

on the p-value in the t-test, where a significant difference is noted when p < 0.05, and vice 

versa.  

 

 

Fig. 14. Present streamflow (2001-2005) and the relative change in each future LULC scenario (2050). 
The left axis and the line are present streamflow; the right axis and column are relative change compared 
to the present streamflow. Future streamflow was not shown due to visually unnoticeable difference. 
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Between the present and future streamflow results, (1) an insignificant decrease was found 

in every month and in each scenario (Fig. 14). On the other hand, between the relative change 

in the two natural capital-based scenarios (NC, ND) and the other three scenarios (BaU, PC, 

PD), significant differences were found, except in May and June. More specifically, (2) the 

former is significantly lower than the latter in November-March; and (3) the former is 

significantly higher than the latter in June-October. 

 

Between the present and future streamflow results, the LULC conditions (Figs. 2, 4a) were 

the only source of difference. ΔQlulc (1) most likely resulted from the insignificant increase of 

forest coverage (Table 2), which changed from 68.1% in the present to 71.8%, 71.7%, 71.7%, 

70.8%, and 70.9% in the five scenarios. Nevertheless, the increase in forest coverage can lead 

to an increase in ET and hence the streamflow decrease. ΔQlulc (2) is likely related to the change 

in forest coverage as well, but through different process. SWAT calculation considers the 

dormancy of trees by effectively excluding the canopy interception of deciduous trees in winter. 

Table 2 shows that the coverage of evergreen trees is the same between the five scenarios. 

Therefore, ΔQlulc (2) cannot be explained directly by the change in forest coverage. On the 

other hand, Fig. 2 shows that the reduced grassland coverage was replaced with deciduous 

broadleaf tree. Such a transformation can cause a decrease in the surface albedo within the area, 

and hence an increase in ET, then a decrease in streamflow. Therefore, the more significant 

transformation of grassland in BaU, PC, and PD likely led to difference in ΔQlulc (2). Lastly, 

ΔQlulc (3) is explained by the significant increase in paddy field coverage, where it increased 

by 150% in BaU, PC, and PD, and by more than 500% in NC and ND. More specifically, the 
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change in the paddy field led to a change in its water demand, calculated based on its area, as 

introduced in section 4.4. In addition, the built-up area in NC and ND is significantly different 

from the other three scenarios, which may also lead to a change in the water demand. However, 

the domestic water use in the ARB is not taken from the river channel but directly from 

groundwater instead (https://www.city.abashiri.hokkaido.jp/280josuido/), its representation 

was not included in the streamflow simulations considering the paucity of applicable 

information.  

 

Based on the results described in this section, the primary implication is that under a 

conservatively projected future, LULC in the ARB may not significantly impact the local 

streamflow. This implication is comparatively different than what has been reported in many 

previous studies (e.g., Schilling et al., 2008; Tao et al., 2014; Wijesekara et al., 2012). However, 

much more extreme transitions of LULC distributions were commonly given in these studies. 

For example, Kayitesi et al. (2022) reviewed studies conducted in tropical regions and reported 

that a majority of the studies (68%) focused on the area where significant deforestation 

occurred or was expected to occur. The tendency was expected to be maintained in the near 

future. It was also summarized that significant streamflow and surface runoff changes were 

mostly reported in studies where a substantial change in forest coverage or agricultural land 

coverage was considered (Kayitesi et al., 2022, Table 1). Cuo (2016) reviewed studies on this 

topic conducted in mesoscale basins worldwide, and reported a similar tendency in the 

magnitude of LULC changes (Cuo, 2016, Table 6.1). Nevertheless, both review studies 

concluded that LULC changes do not necessarily lead to an essential change in streamflow, 
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and suggested that more specific changes, such as dam construction or river morphology 

alteration, could deliver more noticeable changes to the streamflow. However, reasonable 

prediction on such changes is difficult to produce without any additional information from the 

related stakeholders. Therefore, considering the projected LULC conditions in the present study, 

it is reasonable to expect an insignificant corresponding change in the future streamflow in the 

ARB. Additionally, simulations in combined future climate and LULC conditions were also 

conducted in the present study. However, no significant difference was produced compared to 

the simulation in which the same climate condition was applied. Such results were therefore 

omitted. 

 

6. Discussion 

6.1 Significance of the empirical approach 

 

As explained in section 4.3, the empirical approach aims to minimize the use of statistical 

tuning, and it is essentially a sophistication to the current parameter determination manner in 

SWAT. It is important to note that the data limitation is the crucial premise herein; otherwise, 

the parameters could be realistically determined based on the in-situ measurements. When 

facing a data limitation, the tuning in SWAT is conventionally considered preferable over the 

empirical approach in previous studies, because the latter is deemed impractical and 

unnecessary. However, the model performance was significantly improved after the empirical 

approach (Fig. 15). Compared to the observation, the discrepancy in the initial simulation was 

successfully reduced in the modified simulation, and reached a statistically acceptable model 
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performance. The conventional manner would require applying the tuning on a model 

performance similar to the initial simulation until the discrepancy is remedied. However, as 

explained in section 4.3.1, such a practice would lead to significant uncertainties yielded by 

the cross-compensation effect, resulting in highly conditional model performance, unsuitable 

for predictive applications. Therefore, the result in Fig. 15 effectively supports the practicality 

and necessity of the empirical approach without the contribution from direct measurements or 

tuning.  

 

 

Fig. 15. Comparison between the streamflow in observation and simulations at Hongou station in 2001-
2005. Parameter values in the simulation were left as default (initial), modified in the empirical 
approach (modified), and tuned after being modified in the empirical approach (modified + tuned), 
respectively. 

 

Furthermore, the necessity of the empirical approach under a data limitation is commonly 

opposed by the notion that its effect cannot be directly verified by observation, regardless of 
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the efforts. However, this study argues that an opposite consideration should be given instead. 

Namely, precisely because of the paucity of in-situ observation, a physically meaningful 

determination process for the parameters is necessary. In addition to the logical reasons 

proposed in section 4.3, three practical advancements in this study, as compared to the previous 

studies, contribute to the necessity of the empirical approach. 

 

1. The selection of parameters for tuning became more physically reasonable. Due to the 

large number of parameters, only a selective portion must be used for tuning, while the rest is 

left unchanged from its default value. However, such a parameter selection manner can become 

problematic, especially under a data limitation, as it is conventionally based on subjective 

reasons such as tested sensitivity and the modeler’s experience. For example, van Griensven et 

al. (2012) reviewed numerous SWAT applications conducted in the upper Nile River basin, in 

which the number of tuned parameters varies widely between different studies: Mulungu and 

Munishi (2007) used more than ten parameters (CN2, ALPHA_BF, SURLAG, SOL_AWC, 

CH_K, CH_N, CANMX, REVAPMN, SOL_ALB and others), Kingston and Taylor (2010) 

used ten parameters (CH_K, CH_N, SURLAG, SOL_AWC, CANMX, ESCO, CN2, SOL_Z, 

SOL_ALB, GWQMN), Setegn et al. (2008) used eight parameters (ESCO, CN2, ALPHA_BF, 

REVAPMN, SOL_AWC, GW_REVAP, CH_K2, GWQMN), Mekonnen et al. (2009) used 

eight parameters (CN2, SURLAG, GW_DELAY, SOL_AWC, SOL_Z, ALPHA_BF, 

GW_REVAP, REVAPMN), while Jayakrishnan et al. (2005) and Tibebe and Bewket (2011) 

used only two parameters (SOL_AWC and ESCO, CN2 and ESCO, respectively). The 

sensitivity of the tuned parameters was used as the reason for the parameter selection in every 
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study (van Griensven et al., 2012). However, except for the inclusion of a few generally 

sensitive parameters, such as CN2 and SOL_AWC, the decision on the parameter selection is 

substantially different between different studies conducted in the same river basin system. Such 

differences suggest that even though a satisfactory agreement between the simulation and 

observation may be achieved via tuning, the model performance could be highly conditional to 

the tuning period. In contrast, the four tuned parameters in this study (SFTMP, SMTMP, 

SOL_AWC, GW_DELAY) were chosen without considering their statistical sensitivity. The 

four parameters were deemed necessary for tuning mostly because no comparable reference in 

the ARB could be found for the empirical approach, in addition to their physical involvement 

in the water cycle. While the use of tuning is inevitable, especially under limited data 

availability, the empirical approach allows the parameters for tuning to be selected in a more 

physically reasonable and less performance-focused manner.  

 

2. The numerical values of the tuned parameters became more physically meaningful. As 

explained in section 4.3.1, the compensation effect can easily lead to physically unrealistic 

parameter values, regardless of the model performance. This negative impact becomes 

particularly distinct when the tuning pressure is considered significant. For example, in the 

author’s previous study regarding the river basins in the Kamchatka Peninsula (KP), Russia 

(Shi et al., 2021), the only available observation was monthly streamflow data of several rivers. 

SWAT was the primary tool to extend the limited observation to other ungauged basins in the 

KP. A high tuning pressure was expected due to the extreme data limitation. Consequently, 

some tuned parameters showed unrealistic physical meaning after the process. For example, 
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SFTMP (°C, snowfall threshold temperature) was tuned as higher than 10 or lower than −10 in 

several river basins (Shi et al., 2021, Table A2). In contrast, the SFTMP was tuned to 3.2 in the 

present study. Jennings et al. (2018) reported the same value in this region as 3.6 using a binary 

logistic regression phase-prediction model based on a comprehensive 29-year meteorological 

observation dataset. Another tuned parameter in the present study, SOL_AWC (%, available 

water capacity), was tuned to an overall increase from its default values. The change is 

reasonable as a large portion of the ARB is covered by Andosols (Fig. 4b), a volcanic soil type 

typically with considerable water retention capacity (Obara et al., 2011). Spilling (2018) 

conducted an extensive study on the variation of soil hydraulic properties, and concluded that 

the available water capacity tends to become more prominent in less steep areas, which also 

agrees with the topographic condition in the ARB. In contrast to the non-physical nature of 

tuning, in which the physical meaning of parameters cannot be warranted, the reduced tuning 

pressure due to the empirical approach successfully suppressed this issue. In addition, this 

advancement could, in turn, improve the reliability of the calculations in which the tuned 

parameters directly involve, i.e., snowmelt, soil water content, and groundwater release.  

 

3. The empirical approach improves the physical meaning of both the untuned parameters 

(directly) and the tuned parameters (indirectly). The physical meaningful sophistication of 

SWAT led to the third practical advancement compared to the previous studies, i.e., the 

suppressed model performance reduction. A perfect model performance of a hydrological 

model is never possible, as a certain degree of generalization and simplification is always 

involved, regardless of the model’s purpose. Therefore, its performance will inevitably reduce 
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when the tuned model is reapplied to a different spatial or temporal setting. The former is 

utilized in the predictions in ungauged basins (PUB), and the latter is utilized in model 

validations. For example, using SWAT, Liu et al. (2022) assessed the impacts of climate and 

LULC changes in western China. The tuning was conducted in 1976-1999, and an NSE of 0.7 

was achieved. In contrast, the validation was conducted in 2001-2019, and the model 

performance became questionable (Liu et al., 2022, Figs. 6 and 7). Studies that focused on 

modelling previous streamflow events tend to conduct validation in much shorter period to 

demonstrate desirable performance (e.g., Kalin & Hantush, 2006; Tolson & Shoemaker, 2007). 

In the case of PUB, the tuned model is reapplied to a different spatial setting, while the temporal 

setting should be left unchanged. For instance, Shi et al. (2021) initially tuned the parameters 

in 1984-2013 in several gauged basins, then reapplied the parameters from the gauged basins 

to their respective neighboring ungauged basins and performed simulation again in 1984-2013. 

This practice was to extend the limited data to allow conditionally reasonable simulation in 

ungauged basins. While simulations in the ungauged basins cannot be validated, the model 

performance declined by nearly 40% in a few cases in the validation (Shi et al., 2021, Table 3). 

In both practices, a critical premise is that the difference between the spatiotemporal setting in 

which the model was tuned and that to which the model is reapplied should be considered 

insignificant, or otherwise, the reapplied simulation would become ineffectual to its purpose. 

Despite the limited data available in this study, the performance reduction was not overly 

significant to compromise the model even at the daily scale (Table 6). The suppressed reduction 

of model performance is owing to the overall improvements in the physical meaning of the 

parameters.  



62 
 

In addition to the three advancements discussed above, it is worth noting that despite the 

effort to minimize tuning, the primary intention in this study was not to reject the significance 

of tuning but rather, to emphasize its use in a more physically reasonable manner as a new 

insight to SWAT applications. More specifically, the results in this study show that it is 

necessary and meaningful to apply different parameters with different physical meanings in 

response to the specific target basin, in contrast to the conventional manner where the 

significance of commonly insensitive parameters is commonly ignored, and vice versa. This 

point is widely overlooked in the existing SWAT applications. For example, through the 

extensive literature review to realize the empirical approach, the author noticed that CANMX 

(canopy storage capacity) is one of the most frequently misused parameters in SWAT 

applications. Its involvement in the calculation is only active when the Green-Ampt infiltration 

method is used rather than the Curve Number method. However, numerous studies included 

CANMX during their tuning process, even though the Green-Ampt infiltration method was not 

used in the calculations. This mistake is frequently presented even in highly ranked journals 

(e.g., Grusson et al., 2015; Herman et al., 2018; Shimizu et al., 2013; van Griensven et al., 

2006), which demonstrates how conventional mistakes hidden in the model preparation process 

can be easily overlooked provided that satisfactory final performance was achieved.  

 

6.2 Remaining limitations 

 

The present study aims to produce streamflow estimations under limited data availability by 

using a hydrological model. While this key objective was achieved by focusing on the physical 
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sophistication of the model, several remaining limitations in this study are worth noting from 

a more general perspective.  

 

1. As mentioned in chapter 4, the meteorological input dataset differed between the present 

streamflow simulation (DSJRA-55) and the future climate-induced simulation (JMA-GWP9). 

More specifically, while the same non-hydrostatic model (Saito et al., 2006) was used for the 

downscaling process, the boundary conditions were different, i.e., reanalysis data in the 

DSJRA-55, and AGCM-simulated data in the JMA-GWP9. The difference in the boundary 

condition could lead to a systematic difference between the two meteorological inputs, which 

may lead to an additional difference in the streamflow results. For example, the present 

streamflow showed a quantitatively insignificant difference at the beginning of the melting 

season compared to the two future results (Fig. 7a). The present streamflow began to increase 

nearly a week earlier than the two future streamflow results. By comparing the meteorological 

inputs, it was found that while no significant difference existed in the temperature data in the 

discussed period, the precipitation began to increase approximately four days earlier in the 

DSJRA-55 than in the JMA-GWP9. The difference might be the consequence of using different 

meteorological datasets. Nevertheless, the primary reason for applying different datasets was 

the concern over the accuracy of each dataset during the model preparation process. More 

specifically, in the case of DSJRA-55, the regional bias was comprehensively evaluated and 

corrected before the release of the dataset (Kayaba et al., 2016). In contrast, the systematic bias 

in the released version of JMA-GWP9 was intentionally left uncorrected to allow individual 

correction by the data users according to their specific target location (https://www.data.
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jma.go.jp/cpdinfo/GWP/Vol9/pdf/gwp9_manual.pdf). Bias correction for the JMA-GWP9 was 

indeed conducted in this study using the least square linear regression, which is a relatively 

simple process. The simplicity may not lead to a significant problem in future streamflow 

simulations, as most of the results were discussed monthly. However, the simplicity could 

function as an additional uncertainty in the tuning process, which can be hidden by the 

compensation effect after applying the tuning. Therefore, using the DSJRA-55 during the 

model preparation process was considered preferable, even though it may contain an essential 

difference from the JMA-GWP9. Nevertheless, a more robust bias correction on the JMA-

GWP9 could be considered a solution to allow a unanimous use of meteorological input 

between the present and future simulations. 

 

2. Compared to the streamflow simulation in the present, changing factors were rigorously 

controlled in future simulations. More specifically, only climate or LULC conditions were 

altered, while all the remaining inputs and parameters were left unchanged (except the water 

use demand of the paddy field, which varied in response to the paddy field area). The rigorous 

control allows a straightforward interpretation of the reason for streamflow changes. However, 

it also assumes no interconnection between the LULC change and climate change, which is not 

necessarily realistic depending on the significance of the change. For example, LULC change 

in the form of significant deforestation was reported to have caused a decrease in winter 

precipitation in Hokkaido in the recent past (Sugimoto et al., 2015a). In the referred study, 

sensitivity analysis revealed that deforestation led to an increase in snow cover and surface 

albedo, which altered the regional surface energy budget and ultimately caused a decrease in 
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winter precipitation. Furthermore, the referred study also suggested a change in the regional 

wind speed as another consequence of deforestation. In addition to deforestation, a strong 

influence was found from the historical urbanization in southwestern Hokkaido to the daily 

temperature in winter at a local scale (Sugimoto et al., 2015b). Based on the projected future 

conditions in the present study, excluding such interconnections between the LULC change 

and climate change could be considered acceptable, as neither the forest coverage nor the built-

up area showed significant change relative to the present level. On the other hand, adopting 

such details to the present study could improve its general applicability in future applications. 

A meaningful insight suggested from this remaining limitation is that a combination of multiple 

methods on the future streamflow estimation, i.e., paired catchments, statistics-based analysis, 

and physical hydrological modeling, could be a challenging and meaningful continuity of the 

present study in the future. 

 

7. Conclusions 

 

In this study, the primary challenge and research target was to produce reliable future 

streamflow estimations using a hydrological model under limited data availability. A semi-

distributed hydrological model, SWAT, was applied to the Abashiri River basin (ARB) under a 

series of future climate and LULC conditions. Estimated future streamflow of the ARB showed: 

 

1. A significant decrease during the melting season, resulted from a significant decrease 

in winter precipitation. 
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2. A significant two-week early shift of the peak flow occurrence and a significant 

decrease in early summer, resulted from significantly increased temperature. 

3. A high variability with a likely increase in the quantity during autumn, resulted from 

highly variable precipitation. 

4. A difference in the winter spatial distribution between the future scenarios, resulted 

from a mixed impact of precipitation and temperature. 

5. An insignificant decrease throughout the year compared to the present level, resulted 

from slightly increased forest coverage. 

6. A significant difference in the relative change in midsummer, autumn, and winter, 

resulted from a significant difference between the LULC change in the future scenarios. 

 

While future LULC in the ARB may affect streamflow less significantly than the impact of 

climate change, an increasing risk of irrigation water shortage was suggested in both cases. In 

addition, a less stable condition for the fishery activities in Lake Abashiri was implied. To 

ensure the reliability of streamflow estimations, a consistent and physically meaningful 

sophistication on the parameter determination process was proposed and realized in SWAT, in 

which the chief intention was to minimize statistical tuning. The model simulation was 

successfully prepared and validated, by which the above future streamflow results were derived. 

In contrast to the conventional use of SWAT, this study demonstrated the practicality and 

necessity of minimizing the statistical tuning in SWAT when facing limited data availability. 

The method and results could serve as an emphasis on the physically meaningful sophistication 

of SWAT, particularly in its predictive applications. 
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