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Chapter 1

General Introduction

Human-induced environmental changes have been taking place around the globe (Ellis et al.

2010), which exposes biological populations to new selection pressures. Populations can

persist if they rapidly adapt to new environments before becoming critically small (Carlson

et al. 2014). Genetic diversity, or standing genetic variation, is one of the crucial components

of rapid adaptation to environmental changes. Populations with low genetic diversity would

have to wait for new beneficial mutations because of the scarcity of candidate adaptive genes,

which usually takes a long time (Orr and Unckless 2014). On the other hand, populations

with high genetic diversity possess a variety of alleles beforehand, which shortens the time

for adaptation. The rapidity achieved by genetic diversity prevents populations from severe

shrinkage and increases the chance of persistence under environmental changes (Agashe

et al. 2011, Ramsayer et al. 2013).

There is an increasing number of evidence that evolution occurs on the contemporary

time scale (Hairston et al. 2005, Schoener 2011), including species that rapidly adapt to

anthropogenic environmental changes (Anderson et al. 2012, Fukano et al. 2020). Therefore,

it could be said that rapid evolution from standing genetic variation is increasingly becoming

relevant in today’s biosphere. Understanding the determinant of genetic diversity is an

important study topic to predict population viability under ongoing environmental changes.

Classical population genetics predicts that population size is the primary determinant of

genetic diversity. This prediction is based on the theoretical analysis onWright-Fisher model
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(Fisher 1930, Wright 1931), which is an ideal population that satisfies constant population

size, random mating, and non-overlapping generations. In Wright-Fisher model, because

individuals randomlymatewith one another and are replaced by the same number of offspring

every generation, generation turnover is equivalent to random sampling of geneswith replacement.

Therefore, small population size leads to fewer sampling times, thus resulting in strong

stochastic genetic drift and reduced genetic diversity (Crow and Kimura 1970).

This theoretical prediction is often applied to wild populations that have undergone

habitat loss and fragmentation. In addition to the immediate effect of bottleneck, small

fragmented populations should be experiencing intensified genetic drift and resultant loss of

genetic diversity due to small population size. Although fragmentation surely decreased

genetic diversity in general (Aguilar et al. 2008, González et al. 2020), some perennial

plant species did not show a clear decline in genetic diversity with decreasing population

size (Bacles and Jump 2011, Bezemer et al. 2019, Kramer et al. 2008), indicating that

genetic diversity was not affected solely by population shrinkage. While the discrepancy

was once regarded as “fragmentation paradox” at first (Kramer et al. 2008), it turned out

that life history characteristics of the examined species played important roles in maintaining

genetic diversity under small population size. Contrary to Wright-Fisher model, many plant

species have overlapping generations due to their long lifespan, and populations consist

of individuals with different life history stages and ages. Some of the life history stages

consist of not only young but also old individuals and thus capture genetic variation of

old generations. These key life history stages serve as genetic reservoirs from the past,

contributing to the maintenance of genetic diversity (Aparicio et al. 2012, Cannon et al.

2022, Lowe et al. 2015).

The fact that genetic diversity is accumulated over the course of the life history (i.e., a
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lifetime trajectory of an individual from birth to death) is not special to fragmented populations

but a universal phenomenon. In the pioneering literature review (Loveless and Hamrick

1984), it was reported that long-lived plant species had generally higher genetic diversity

than short-lived ones. Similarly, Hamrick and Godt (1996) analyzed the correlation between

multiple life history traits and genetic diversity in plants, and showed that long generation

time contributed to genetic diversity. Austerlitz and Garnier-Géré (2003) showed that long

lifespan helps accumulate genetic variation during colonization to new habitats. In colonizing

plant populations, long generation time requires a longer time for founder individuals to

grow, reproduce, and dominate, thus suppressing the founder effect and allowing successive

multiple introductions from the original range. This leads to higher genetic diversity despite

the small population size at the frontier of the range expansion. Recent global assessment of

genetic diversity in plant populations also showed that life form (annual vs perennial vs shrub

vs tree) significantly affected genetic diversity, with stronger positive effects by long-lived

life forms (De Kort et al. 2021).

While increasing evidence shows that long life history contributes to the accumulation

of genetic diversity and sometimes obscures the impacts of small population size, preceding

studies did not go so far as to examine on what occasions life history became crucial in

maintaining genetic diversity under the influential effects of population size. This can be

partly attributed to the fact that most previous studies focused on the interspecific comparison

when assessing the impacts of life history. Because there has beenmuch less attention paid to

among-population comparison, it was difficult to jointly consider the impacts of population

size, which is a population-level determinant of genetic diversity. In general, life history

traits including longevity are different not only among species but also among populations

(Ehrlén and Lehtilä 2002, Hughes 2017). It has been shown that the intraspecific variation of
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life history has a non-negligible effect on the dynamics and the viability of populations. For

example, life history diversity contributes to asynchronous birth, growth and reproduction

among individuals and populations, which can stabilize population dynamics through portfolio

effects (Moore et al. 2014, Schindler et al. 2010,Waddle et al. 2019). The crucial population-

level consequences of life history variation might also apply to genetic diversity, influencing

the level of genetic diversity independently of population size. Consequences of among-

population life history variation on genetic diversity with comparison of that of population

size is a frontier in understanding the contribution of life history cycle to genetic diversity.

In my doctoral dissertation, I studied how the interpopulation variation in the life history

cycle and population size interact to drive the maintenance of genetic diversity in perennial

plants both theoretically and empirically. In Chapter 2, I focused on demographic genetic

structure, which is thewithin-population genetic composition structured by stage. I developed

amathematicalmodel that describes the temporal dynamics of the stage-wise genetic diversity,

and I formulated effective population size and the annual change rate of expected heterozygosity

from the model. By analyzing the model, I examined on what occasions life history plays

crucial roles inmaintaining genetic diversity under the effects of population size, and confirmed

that demographic genetic structure could be a useful tool to understand how genetic diversity

is accumulated over the course of life history. In Chapter 3, I empirically tested the theoretical

prediction of Chapter 2 using fragmented populations of a perennial herb Trillium camschatcense

in the Tokachi region of Hokkaido, northern Japan. I conducted population genetic analysis

using double digest restriction-site associated DNA sequencing (ddRAD-seq) to estimate

demographic genetic structure and effective population size. Besides, I carried out a field

census survey to estimate demographic rates (stage-specific survival rates and fecundity) and

population size of each population, which were subsequently used to calculate the theoretical
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expectation of demographic genetic structure and effective population size based on the

model developed in Chapter 2. The resultant theoretical expectations were compared with

observed values to examinewhether the influence of life history on genetic diversity predicted

by the theoretical model was in line with the observed data. In Chapter 4, I focused on the

gap between the empirical genetic data and the theoretical prediction. I inversely estimated

demographic rates and population size from the observed demographic genetic structure to

depict how genes were transferred among life history stages along the life cycle. I suggested

a concept of “genetically effective life history,” which was different from the life history

estimated from census survey and could bridge the gap between theoretical predictions and

empirical systems. In Chapter 5, to grasp a possible scenario in which genetic diversity

would help populations persist under environmental changes, I examined how the ongoing

climate change is affecting the phenological overlapwith pollinators in fragmented T. camschatcense

populations in the Tokachi region. In two populations differing in the long-term trend of

temperature rise, I tested whether pollinator visitation occurred during the entire flowering

period or was temporally limited. In summarizing the overall studies, I discussed the genetic

and evolutionary consequences of life history in Chapter 6.
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Chapter 2

Theoretical prediction on the dynamics of genetic diversity and
demographic genetic structure under a variety of plant life history
strategies

Abstract

In stage-structured populations, especially in perennial plant species, genetic diversity is
often compared among life history stages, such as seedlings, juveniles, and flowerings,
using neutral genetic markers. The stage-wise genetic diversity is sometimes referred to
as demographic genetic structure and has been regarded as a proxy of potential genetic
changes, because individuals in mature stages will die and be replaced by those in more
immature stages over the course of time. However, due to the lack of theoretical examination,
it remained unclear whether the stage-wise genetic diversity genuinely represented temporal
dynamics. To describe the dynamics and the inter-stage differences of genetic diversity
in stage-structured plant populations, I developed a matrix model which was made up of
difference equations of the probability of non-identical-by-descent of each life history stage.
Using the model, I examined the relationships of demographic genetic structure with the
annual change rate of expected heterozygosity (denoted by η), as well as with effective
population size Ne (the determinants of diversity loss per generation time). Demographic
genetic structure varied independently ofNe and η butwas subjected to stable stage distribution:
genetic diversity was higher in stages with more individuals. Especially, stages in which
individuals were detained due to slow or retrogressive growth possessed high genetic diversity,
probably because individuals with variable ages can be mixed and genetic variation from
broader time span can be stored. η was high in slow-paced life histories (long generation
time, higher age atmaturity, long life expectancy), which could be also attributed to generation
overlap because slow-paced life historywould promote coexistence of differently-aged individuals
within a population. These results indicate that demographic genetic structure does not
reflect temporal trends in genetic diversity, and that slow-paced life history contribute to
genetic diversity both at the stage- and at the population-level. The efficacy of demographic
genetic structure lies in identifying key developmental stages that accumulate genetic variation
from static and retrogressive life history processes to detect the contribution of life history
to the maintenance of genetic diversity.
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2.1 Introduction

Genetic diversity, or standing genetic variation, is a source of adaptive evolution (Barrett

and Schluter 2008). Populations with high genetic diversity are more likely to adapt to

environmental changes and to persist for a long period (Agashe et al. 2011, Ramsayer et al.

2013). Therefore, understanding how genetic diversity is maintained over time is important

for assessing population viability (Mimura et al. 2017).

The rate of change in genetic diversity per generation time is primarily determined by the

effective population size (Ne): the larger Ne, the weaker genetic drift, and the more likely

genetic diversity is maintained (Crow andKimura 1970). AlthoughNe was first theoretically

proposed for populationswithout generation overlap, many species have overlapping generations

and populations are made up of individuals differing in age or life history stage. For example,

tree populations can roughly divided into three stages: seedlings, saplings, and adults. Theoretical

studies have extended the concept of effective population size to populations structured by

age (Felsenstein 1971, Hill 1972, 1979, Johnson 1977) or by stage (Orive 1993, Yonezawa

et al. 2000) by formulating Ne with demographic rates (age- or stage-specific survival rates

and fecundities). These formulations enable us to calculate Ne and to assess the temporal

genetic dynamics in species with complex life histories (Waples et al. 2011, 2013).

Meanwhile, some empirical genetic studies do not examine Ne to predict future genetic

diversity of stage-structured populations. Instead, genetic diversity is comparatively estimated

for each life history stage at a single time point with neutral genetic markers (Aldrich et al.

1998, Ally and Ritland 2006, Kettle et al. 2007, Linhart et al. 1981, Murren 2003, Schmidt

et al. 2018, Vranckx et al. 2014). The resultant stage-wise genetic diversity is referred to

as demographic genetic structure (Aldrich et al. 1998) and is considered to reflect potential
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genetic changes that accompany the turnover of constituent individuals. For example, if

juvenile stage is less diverse than more mature stages, genetic diversity would decrease with

the replacement of mature individuals to juveniles. Because species with stage structure

are mostly long-lived and long-term genetic monitoring is impractical, demographic genetic

structure has been considered as a rough but a convenient empirical approach to infer the

temporal genetic dynamics (Mimura et al. 2017, Schmidt et al. 2018).

Despite its empirical usage, mathematical and theoretical basis of demographic genetic

structure has been in its infancy. Unlike Ne, demographic genetic structure has not been

formulated mathematically, and the lack of theoretical background draws concerns about the

current interpretation. While analysis on demographic genetic structure implicitly assumes

that individuals sequentially grow and die from juvenile tomature stage classes, this assumption

is potentially invalid in perennial plants. In most perennial plant species, whose life histories

depend on stage, not on age (Silvertown 1987), aging or passing of time does not necessarily

promote growth and maturation. Some individuals might keep proceeding to more mature

stages, while others remain in the same stage for a long period (stasis) or even reverse to more

juvenile stages (retrogression). For example, long-lived woodland perennial herbs of the

genus Trillium show stasis for more than ten years in juvenile stages as well as go back from

a mature reproductive stage to a pre-reproductive one in response to resource exhaustion

(Knight 2004, Ohara et al. 2001, Tomimatsu and Ohara 2010). The static and bidirectional

flows in the life cycle complicate the order of individual turnover in a population, potentially

obscuring the sign of temporal changes. It has not been theoretically confirmed if demographic

genetic structure still serves as a genuine proxy for temporal changes. Mathematical formulation

that encompasses demographic genetic structure, as well as the temporal change in genetic

diversity, in stage-structured populations will provide integrative understandings on these
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problems, but has never been achieved so far.

In this study, I develop a matrix model to describe the temporal dynamics of expected

heterozygosity, which is used as a common metric of genetic diversity, for a neutral locus of

a stage-structured perennial plant species. The model is constructed by deriving difference

equations of the probability that two genes randomly sampled from a given life history

stage are non-identical-by-descent. Based on the model, I formulate demographic genetic

structure and Ne. Thus, our model allows integrative analysis on demographic genetic

structure, temporal dynamics of genetic diversity, and their relationships. In the following

sections, I first describe the derivation procedures (section 2.2.1) and the validation of our

model (section 2.2.2). I then check whether demographic genetic structure reflects temporal

dynamics (section 2.2.3). Lastly, I examine the determinants of demographic genetic structure,

as well as effective population size, under a variety of plant life history strategies (section

2.2.4).

2.2 Materials and Methods

2.2.1 Model development

Overview

Felsenstein (1971) derived inbreeding effective population size for age-structured populations

by formulating recurrence equations of the probability of non-identical-by-descent, which is

also described in Charlesworth (1994). I partly follow mathematical formulation procedures

in Felsenstein (1971) while adding necessary modifications to extend it to stage-structured

populations. I develop difference equations of the probability of non-identical-by-descent at

a neutral locus for a closed, stage-structured population, supposing a diploid perennial plant
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species. I do not consider sex differences because most plants are hermaphrodite (Torices

et al. 2011). I assume that mutations do not newly occur. Besides, as in Felsenstein (1971),

I assume demographic equilibrium, where the census population size and its allocation to

each stage (stage distribution) are constant over time. Census population size is set to N ,

which is divided into n life history stages (N1, N2, · · · , Nn).

N =

n∑
i=1

Ni (2.1)

The probability of transition (either growth, stasis, or retrogression) from stage j to stage i

is tij per year. In each year, individuals randomly mate and fij newborns join stage i from

a parent in stage j. aij , which denotes the sum of tij and fij , describes the total rate of flow

from stage j to i between two successive years.

aij = tij + fij . (2.2)

In age-structured life histories, flows of individuals among age classes are sparse: survival

paths connect only adjacent ages in the direction from age i to i+1 (i.e., tij = 0when i 6= j+

1), and reproduction paths join only age class 1 (i.e., fij = 0when i 6= 1). In plants, however,

multiple survival paths come in and out from each stage by the combination of growth,

stasis, and retrogression. Moreover, newborns do not always join the first stage, because

newborn seeds either become dormant to join seed bank stage, or immediately germinate to

join juvenile stages, resulting inmultiple destinations (e.g., a perennial plantCarduus nutans,

whose life cycle is shown in figure 1 of Shea and Kelly (1998)). Therefore, stage is not

merely a pooling of successive age classes and stage-structured life histories are essentially

different from age-structured ones. I need to consider all possible transition and reproduction
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paths among stages, which is quite a distinct point compared to the age-structured model in

Felsenstein (1971).

Population dynamics can be modeled by the following matrix population model.



N1,t

...

Ni,t

...

Nn,t


=



a11 · · · a1j · · · a1n

...
...

...

ai1 · · · aij · · · ain

...
...

...

an1 · · · anj · · · ann





N1,t−1

...

Ni,t−1

...

Nn,t−1


. (2.3)

Ni,t denotes the number of individuals in stage i in year t, which is always equal to Ni for

any t because I assume demographic equilibrium. Stable stage distribution, which is the

relative number of individuals among stages in the equilibrium state, is proportional to the

leading right eigenvector of the transition matrix (Caswell 2001).

I define Hij,t as the probability that two genes randomly sampled from stage i and j

with replacement in year t are not identical-by-descent. Each gene has its own ancestry, and

two-gene pairs that are (non-)identical-by-descent at t = 0 will remain the same for any t.

Similarly, because I assume no mutations, two-gene pairs that are (non-)identical-by-state

at t = 0 will also remain the same over time. This means that Hij,t behaves in the same

manner as expected heterozygosity, which is the probability of non-identical-by-state and is

commonly used as a proxy of genetic diversity. The goal of this study is to formulate Hij,t

for all possible i and j, which enables us to obtain theoretical counterpart of demographic

genetic structure, that is, stage-wise genetic diversity at a particular time point.

Here, I provide key derivation procedures, highlighting the differenceswith the preceding

age-structured models in Felsenstein (1971). The complete derivation procedures are given
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in Appendix 1.1.

Difference equations of Hij,t

I begin with modeling the changes in Hij,t between two successive time points for all i

and j, which are the stage-structured version of equations 2 to 5 in Felsenstein (1971). I

separately consider two mutually exclusive situations: i 6= j (case 1) and i = j (case 2).

Both cases can be further split into six situations. Firstly, two genes randomly sampled

in year t were either in the same stage (say, stage m, case A) or in different stages (say,

stage k and l, case B) in year t − 1. Furthermore, genes can move among stages either by

survival (grow, stasis, and retrogression) or by reproduction. Survival and reproduction are

essentially different because reproduction allows one gene to be replicated and to move to

multiple stages simultaneously and independently, while survival does not. There are three

possibilities in how the two genes sampled were transferred from the previous year: both

genes were transferred by survival (case α), one by survival and the other by reproduction

(case β), and both by reproduction (case γ). Considering the combinations of where (case

A and B) and how (case α, β, and γ) the two genes sampled came from, there are 6 mutually

exclusive situations to be considered in both case 1 and 2 (Figure 2.1).

This classification scheme is original to my stage-structured model, and is not adopted

in Felsenstein (1971). Compared to age-structured life histories, classes are more densely

interconnected by survival and reproduction in stage-structured ones. It is necessary to

consider as many as 12 situations to handle the complexity in plant life histories.

In case 1 (i.e., i 6= j), Hij,t can be decomposed as follows.

Hij,t =Hij,t|1∩A∩α +Hij,t|1∩A∩β +Hij,t|1∩A∩γ
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+Hij,t|1∩B∩α +Hij,t|1∩B∩β +Hij,t|1∩B∩γ , (2.4)

where the cap symbol ∩ stands for the co-occurrence of multiple cases: Hij,t|1∩Y ∩Z stands

for Hij,t that simultaneously satisfies case 1, Y, and Z (Y = A,B; Z = α, β, γ). All six

Hij,t|1∩Y ∩Z on the right side of equation 2.4 are formulated as follows (see Appendix A1.1.1

for details).

Hij,t|1∩A∩α =

n∑
m=1

{
timtjmN2

m

NiNj
× 1

1− 1/(2Nm)
Hmm,t−1

}

Hij,t|1∩A∩β =

n∑
m=1

{
(timfjm + fimtjm)N2

m

NiNj
×Hmm,t−1

}

Hij,t|1∩A∩γ =

n∑
m=1

(
fimfjmN2

m

NiNj
×Hmm,t−1

)

Hij,t|1∩B∩α =

n∑
k=1

n∑
l>k

{
(tiktjl + tiltjk)NkNl

NiNj
×Hkl,t−1

}

Hij,t|1∩B∩β =

n∑
k=1

n∑
l>k

{
(tikfjl + fiktjl + tilfjk + filtjk)NkNl

NiNj
×Hkl,t−1

}

Hij,t|1∩B∩γ =

n∑
k=1

n∑
l>k

{
(fikfjl + filfjk)NkNl

NiNj
×Hkl,t−1

}
. (2.5)

EachHij,t|1∩Y ∩Z is shown as a summation of a multiplications of two terms. The first term

is a conditional probability of case 1 ∩ Y ∩ Z given case 1. For example, the first term of

Hij,t|1∩A∩α can be rewritten as (2timNm)/(2Ni)×(2tjmNm)/(2Nj), which is the number

of two-gene pairs that fall into case 1, A, and α simultaneously under a specific m (i.e.,

2timNm×2tjmNm) divided by the total number of pairs that satisfy case 1 (i.e., 2Ni×2Nj).

Here, the number of genes are twice the number of individuals because I assume diploid

species. Similarly, the first term in the other five equations stand for the corresponding

proportion of two-genes pairs. The second term stands for the probability of non-identical-
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by-descent. Considering which stages the two genes sampled belonged to in year t − 1, I

replace the probability with either Hmm,t−1 or Hkl,t−1, except Hij,t|1∩A∩α. In the case of

1∩A∩α, genes sampled from stage imust be mutually exclusive against those from stage j,

because one gene in stagem in year t−1 could not move to both stage i and j simultaneously

without being duplicated through reproduction. In other words, a gene that were in stagem in

the previous year cannot be sampled twice, which violates the assumption ofHmm,t−1, that

is, “sampling with replacement.” Therefore, Hij,t|1∩A∩α inherits the probability that two

genes randomly sampled from stagem “without” replacement in year t−1were not identical-

by-descent, which can be obtained by dividing Hmm,t−1 by the chance of not sampling the

same gene twice (= 1− 1/(2Nm)).

Substituting equations 2.5 to equation 2.4, Hij,t is formulated as follows.

Hij,t =

n∑
m=1

N2
m

NiNj

{
timtjm

1− 1/(2Nm)
+ fimtjm + timfjm + fimfjm

}
Hmm,t−1

+

n∑
k=1

n∑
l>k

NkNl

NiNj
(aikajl + ailajk)Hkl,t−1. (2.6)

As for case 2 (i.e., i = j), I decompose Hii,t into six conditional probabilities.

Hii,t =Hii,t|2∩A∩α +Hii,t|2∩A∩β +Hii,t|2∩A∩γ

+Hii,t|2∩B∩α +Hii,t|2∩B∩β +Hii,t|2∩B∩γ . (2.7)

The probabilities of non-identical-by-descent on the right side of equation 2.7 can be formulated

with Hmm,t−1 and Hkl,t−1, as previously done for Hij,t in case 1 (see Appendix A1.1.2 for
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details).

Hii,t|2∩A∩α =
n∑

m=1

{(
timNm

Ni

)2

× 1− 1/(2timNm)

1− 1/(2Nm)
Hmm,t−1

}

Hii,t|2∩A∩β =
n∑

m=1

(
2timfimN2

m

N2
i

×Hmm,t−1

)

Hii,t|2∩A∩γ =

n∑
m=1

{(
fimNm

Ni

)2

×
(
1− 1

2fimNm

)
Hmm,t−1

}

Hii,t|2∩B∩α =

n∑
k=1

n∑
l>k

(
2tiktilNkNl

N2
i

×Hkl,t−1

)

Hii,t|2∩B∩β =
n∑

k=1

n∑
l>k

{
2(tikfil + fiktil)NkNl

N2
i

×Hkl,t−1

}

Hii,t|2∩B∩γ =
n∑

k=1

n∑
l>k

(
2fikfilNkNl

N2
i

×Hkl,t−1

)
. (2.8)

Here, as withHij,t|1∩A∩α in case 1, the second term ofHii,t|2∩A∩α andHii,t|2∩A∩γ are not

exactly the same asHmm,t−1. This is because the sources fromwhich two genes are sampled

cannot be replaced with stage m of the previous year. Case 2∩A∩α and 2∩A∩ γ are the

same situations as the case of “i = j > 1” and “i = j = 1” of the age-structured model in

Felsenstein (1971), respectively. Therefore, I followed Felsenstein (1971) to adjustHmm,t−1

by multiplying (1− 1/(2timNm))/(1− 1/(2Nm)) and 1− 1/(2fimNm) in case 2∩A∩α

and 2∩A∩ γ. Improving the explanation of Felsenstein (1971) to fit to my stage-structured

model, I give detailed procedures on the adjustment of Hmm,t−1 in Appendix A1.1.2.

Substituting equations 2.8 to equation 2.7, Hii,t is formulated as follows.

Hii,t =

n∑
m=1

{(
timNm

Ni

)2 1− 1/(2timNm)

1− 1/(2Nm)
+

2timfimN2
m

N2
i

+

(
fimNm

Ni

)2(
1− 1

2fimNm

)}
Hmm,t−1
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+

n∑
k=1

n∑
l>k

2aikailNkNl

N2
i

Hkl,t−1. (2.9)

Combining case 1 (equation 2.6) and 2 (equation 2.9), I construct a matrix equation.

ht = Mht−1. (2.10)

ht and ht−1 are vectors, each of which consists ofHij,t andHij,t−1 for all possible pairs of

i and j (1 ≤ i ≤ n, 1 ≤ j ≤ n). As the number of two-stage pairs is n(n + 1)/2, both ht

and ht−1 have n(n+1)/2 elements. M is a square matrix whose dimension is n(n+1)/2

and whose elements are equal to the corresponding coefficients of Hmm,t−1 and Hkl,t−1 in

equations 2.6 and 2.9. The order of elements in ht is arbitrary as long as it matches with

that in ht−1 and M .

In general, multiplyingmatrixM is asymptotically the same asmultiplying the dominant

eigenvalue ofM , whileht converges to a scalarmultiplication of the leading right eigenvector,

for sufficiently large t.

ht = ηht−1, (2.11)

ht ∝ w, (2.12)

where η and w are the leading eigenvalue and its corresponding right eigenvector of matrix

M , respectively. I denote wij as the element of w that corresponds to Hij,t of ht.

Hij,t ∝ wij . (2.13)

Equation 2.11 means that Hij,t changes with a constant rate η over the course of time
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for all i and j. Here, I denoteHt as the probability of non-identical-by-descent of the whole

population in time t. Ht can be formulated as the sum of Hij,t weighted by the number of

individuals in stage i and j.

Ht =

n∑
i=1

n∑
j=1

NiNj

N2
Hij,t ∝

n∑
i=1

n∑
j=1

NiNj

N2
wij . (2.14)

Because I assume that population size (N ) and the number of individuals in a given stage i

(Ni) are constant, Ht changes with the same rate as Hij,t, that is, η.

Ht = ηHt−1. (2.15)

Felsenstein (1971) also reached an analogous conclusion in his age-structured model that

Hij,t and the probability of non-identical-by-descent of the overall population changed at

the same rate, which was the largest eigenvalue. However, the proportionality between the

array of Hij,t and the leading right eigenvector w, which is shown in equations 2.12 and

2.13, was not mentioned in Felsenstein (1971).

Demographic genetic structure

I use the logarithm of the ratio of Hii,t between different stages as a proxy of demographic

genetic structure, that is, comparison of genetic diversity among stages. With regard to the

comparison between stage i and j, the logarithmic ratio is formulated as follows, based on

equation 2.13.

log
(
Hii,t

Hjj,t

)
= log

(
wii

wjj

)
, (2.16)
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When log(Hii,t/Hjj,t) is positive, Hii,t is larger than Hjj,t (genetic diversity is higher in

stage i than in stage j), and when negative vice versa. It should be noted that log(Hii,t/Hjj,t)

is time-invariant, although Hii,t and Hjj,t themselves change with time.

Effective population size

As in Felsenstein (1971), I formulate effective population sizeNe using the dominant eigenvalue

η. The probability of non-identical-by-descent of the overall population decreases with the

rate of 1/(2Ne) per generation time (Crow and Kimura 1970).

Ht+T =

(
1− 1

2Ne

)
Ht, (2.17)

where T is generation time and is defined as the mean age of net fecundity in the cohort

(Carey and Roach (2020), see Appendix 1.1.3 for details). Considering thatHt changes with

the rate of η per year (equation 2.15), 1− 1/(2Ne) should be equivalent to ηT . Therefore, I

formulate Ne as follows.

Ne =
1

2(1− ηT )
(2.18)

To sum up, demographic genetic structure and effective population size are derived from

the leading right eigenvector and from the dominant eigenvalue of matrix M , respectively.

Therefore, my matrix model integrates the two proxies of the temporal genetic dynamics,

facilitating comprehensive understandings on demographic genetic structure.

2.2.2 Validation of the model

To ensure that my model was formulated adequately, I compared theoretically obtained η

and demographic genetic structure with observed ones computed by stochastic simulation. I
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arranged a set of life histories to be used for the comparison between theory and simulation.

I considered perennial plants with two (n = 2: juvenile and adult) and three stages (n = 3:

seed, juvenile, and adult; Figure 2.2). Equation 2.10 can be rewritten as follows.


H11,t

H22,t

H12,t

 = M2


H11,t−1

H22,t−1

H12,t−1

 , (2.19)

and 

H11,t

H22,t

H33,t

H12,t

H23,t

H13,t



= M3



H11,t−1

H22,t−1

H33,t−1

H12,t−1

H23,t−1

H13,t−1



. (2.20)

Equation 2.19 and 2.20 correspond to the case of n = 2 and n = 3, respectively. The

elements of M2 and M3 are functions of demographic rates (tij , fij) and the number of

individuals in each stage (Ni). For each of the two- and the three-stage model, I randomly

generated five hundreds life histories which differed in tij , fij , andNj , covering a wide range

of life history strategies (Figure A1). I indirectly determined parameter values of tij , fij , and

Nj . Firstly, the total population size N was set to 100, and then N was randomly divided

into all possible survival and reproduction paths (i.e., tijNj and fijNj). In the case of the

two-stage model, for example, 100 individuals were randomly split into five paths: stasis at

juvenile, growth from juvenile to adult, retrogression from adult to juvenile, stasis at adult,

and reproduction (Figure 2.2a). Next, Ni was calculated by
∑n

i=1(tijNj + fijNj), and
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finally tij and fij were calculated by tijNj/Nj and fijNj/Nj respectively (see Appendix

1.2 for details). By determining tijNj and fijNj first, I could easily search the parameter

space while keeping the number of individuals (i.e., Ni, tijNj , and fijNj for all i and j) to

be always integer. To consider the situation of N = 500 and N = 1, 000, I multiplied N1

andN2 (when n = 3,N3 as well) by 5 and 10 while keeping demographic rates unchanged.

In total, I considered 1,500 sets of parameter values (500 sets of demographic rates× 3 sets

of N ) for each of the two- and the three-stage model.

For each parameter set, I simulated 200 years of temporal dynamics of expected heterozygosity

at a neutral biallelic locus 100 times. I calculated the mean expected heterozygosity over the

100 replicates for the overall population and for all the two-stage pairs at every t, which

were denoted by Ĥt and Ĥij,t, respectively. All simulations were initiated with maximum

expected heterozygosity, in which two alleles share the gene pool half-and-half in all stages

(i.e., H0 = Hij,0 = 0.5 for all i and j). It should be noted that the initial state of equal gene

frequencies among classes corresponds to a genetic equilibrium under no evolutionary forces

(i.e., drift, selection, mutation and gene flow) (Charlesworth 1994). Therefore, it could be

said that my simulation results reflected how genetic drift solely decreased genetic diversity

in stage-structured populations.

I calculated the annual change rate of Ĥt by

rt =
Ĥt

Ĥt−1

, (2.21)

where 1 ≤ t ≤ 200. I took logarithm of rt and calculated its mean and standard error, which

were subsequently compared to η. η is the theoretical counterpart rt and was obtained as the

dominant eigenvalue of matrix M2 or M3.
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Using simulation results, I also calculated the mean of demographic genetic structure

over the 200 years. As for the two-stage model, I calculated log(Ĥ11,t/Ĥ22,t). I calculated

log(Ĥ11,t/Ĥ22,t), log(Ĥ22,t/Ĥ33,t) and log(Ĥ11,t/Ĥ33,t) in the case of the three-stagemodel.

These four proxies of observed demographic genetic structures were compared to theoretical

counterparts, that is, log(H11,t/H22,t) for the two-stage model, as well as log(H11,t/H22,t),

log(H22,t/H33,t) and log(H11,t/H33,t) for the three-stage model. These four logarithmic

ratios were obtained by solving the leading right eigenvector ofM2 andM3 and substituting

their elements to equation 2.16.

2.2.3 Analysis on demographic genetic structure

For the same 3,000 parameter sets as “Validation of themodel” section, I analytically obtained

η andNe, which reflect the change rate of allHij,t per year and per generation, respectively. η

was obtained by solving the dominant eigenvalue ofM2 andM3. Then, using η, I obtained

Ne based on equation 2.18. I examined if η and Ne, both of which genuinely represent

temporal dynamics of genetic diversity, were correlated with the four logarithmic ratios that

stood for demographic genetic structure (i.e., log(H11,t/H22,t) for the two-stage model, and

log(H11,t/H22,t), log(H22,t/H33,t) and log(H11,t/H33,t) for the three-stage model) to judge

if demographic genetic structure could serve as a proxy for temporal dynamics of genetic

diversity across a wide range of life history strategies.

2.2.4 Determinants of demographic genetic structure and Ne

To explore the determinants of demographic genetic structure, I analyzed the dependence of

demographic genetic structure on total population sizeN and stable stage distribution using

the 3,000 parameter sets. Stable stage distribution was quantified by the logarithm of the
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ratio among N1, N2, and N3 (i.e., log(N1/N2), log(N2/N3), and log(N1/N3)). Besides, to

understand whether static and retrogressive flows in the life history, which are characteristic

to stage-structured populations, affects demographic genetic structure, I divided the number

of individuals in each stage into progressive and static inflows. Here, I denote the number of

individuals that join stage i through progressive and static flows byNi,p andNi,s, respectively,

which can be obtained as follows.

Ni,p =
i−1∑
j=1

tijNj +
n∑

j=1

fijNj , (2.22)

Ni,s =

n∑
j=i

tijNj (2.23)

Here, the progressive flow includes not only growth but also reproduction, because both

growth and reproduction promotes generation turnover along the life cycle. I classified both

stasis and retrogression into the static flow, following Silvertown et al. (1993) and Silvertown

et al. (1996). I calculated the logarithmic ratios among stages (i.e., log(Ni,p/Nj,p) and

log(Ni,s/Nj,s) for all i and j) and examined their correlation with demographic genetic

structure log(Hii,t/Hjj,t).

I also analyzed the determinants of η and Ne with respect to total population size N

and eight life history traits: generation time (T ), survivorship curve type (H), age at sexual

maturity (Lα), mean probability of progressive growth (γ) and retrogressive growth (ρ),

the degree of iteroparity (S), mean reproductive rate (φ), and mature life expectancy (Lω).

These life history traits are known to explain the variation in life history strategies in plants

(Capdevila et al. 2020, Salguero-Gómez et al. 2016). I calculated these traits from demographic

rates following themethods of Caswell (2001) and Salguero-Gómez et al. (2016). Generation

time is the mean age of net fecundity in the cohort, as explained before. Survivorship
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curve type H is Keyfitz’ entropy, which is a continuous variable that reflects the shape

of survivorship curve from type I (high mortality at mature ages, H < 1), II (constant

mortality throughout the lifespan,H = 1), to III (high mortality at young ages,H > 1). age

at sexual maturity Lα is the average age to become sexually reproductive. Mean probability

of progressive and retrogressive growth (γ and ρ) and mean reproductive rate (φ) are the

number of individuals that grow, retrogress, and are born per year divided by the total

population size, respectively. The degree of iteroparity S represents the temporal spread

of reproductive events along lifespan and is quantified by Demetrius’ entropy. Mature life

expectancy Lω is estimated by subtracting Lα from life expectancy of a newborn. I carried

out principal component analysis (PCA) of the eight life history traits for each N and for

each of the two- and the three-stage model, and examined how the resultant components are

correlated with η and Ne.

2.3 Results

2.3.1 Validation of the model

The rate of change in expected heterozygosity of the overall populations (rt), which was

computed by simulation, took almost exactly the same value as the theoretical counterpart

η for all 1,500 sets of parameter values in both the two- and the three-stage models (Figure

2.3, A2).

Comparison of demographic genetic structure between simulation and analytical results

revealed that my theoretical model yielded almost equivalent logarithmic ratio of expected

heterozygosity among stages to that of simulation (Figure 2.4, A3, A4).

To further confirm the validity of my model, I checked the temporal dynamics of Ĥij,t

and compared it with theoretical expectation, that is, the repeated multiplication of matrix
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M2 orM3 to ht. I found that theoretical prediction fitted well to simulation results (Figure

A5).

Thus, my model seems to describe the dynamics and the inter-stage ratio of expected

heterozygosity validly across a wide range of parameter space.

2.3.2 Analysis on demographic genetic structure

All the four proxies of demographic genetic structure, which are theoretically obtained based

on equation 2.16, have an apparent correlation neither with Ne nor with η regardless of

N (Figure 2.5, A6, A7). Moreover, there is a strong positive correlation with stable stage

distribution: expected heterozygosity is higher in stages with more individuals (Figure 2.7).

When separating the number of individuals (Ni) into progressive and static flows (Ni,p and

Ni,r), the positive correlation with demographic genetic structure remains clearly in the

logarithmic ratios of static inflows: expected heterozygosity is high in stages that contain

larger number of static and retrogressive individuals. The correlation becomes weaker with

increasing N , as logarithmic ratios converge to zero.

2.3.3 Analysis on effective population size and η

With increasingN , effective population sizeNe increased and η converged to 1 (Figure 2.9),

indicating that expected heterozygosity is not likely to decay under large census population

size.

PCA yielded two axes that could jointly explain 75.5 % and 67.8 % of the total variation

in the eight life history traits in the two- and the three-stage model, respectively (Figure

2.10). Judging from the factor loadings, the first axis PC1 was negatively correlated with

mean reproductive rate φ and positively with generation time T , degree of iteroparity S, and
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survivorship curve typeH . In other words, PC1 reflected the gradient from long-lived (large

T ) and iteroparous (large S) life histories with low fecundity (low φ), to short-lived, highly

reproductive, and semelparous ones with high mortality at mature ages. This correlation

exactly corresponds to “the fast-slow continuum,” which describes that the high mortality

risk after sexual maturation is related to fast growth, high fecundity, and short lifespan.

When the total population sizeN was large, η was almost equivalent across the principal

component space (Figure A8, A9). Under small N , η became divergent among life history

strategies: η increased along the gradient from fast- to slow-paced life history (from large

to small PC1 scores, Figure 2.10 (a, c)). In other words, η was high under low annual

fecundity, long generation time, high degree of iteroparity, and survivorship curve type III

(concentrated death at the beginning of the life cycle). PC2 did not show strong correlation

with η (Figure 2.10 (a, c)). As forNe, no apparent correlation was found with either PC1 or

PC2 (Figure 2.10 (b, d)).

2.4 Discussion

2.4.1 Comparison with the age-structured model

In this study, I develop the matrix model that describes the dynamics of genetic diversity and

demographic genetic structure in stage-structured populations. Although the procedures of

model development are similar to the age-structured model in Felsenstein (1971), my model

has a much wider applicability. First of all, because age-structured models, in which the

probabilities of stasis and retrogression are zero, is a special case of stage-structured models,

my model is more comprehensive. Besides, many plant species do not show demographic

senescence (Jones et al. 2014), showing no age-dependent changes in demographic rates.

Using stage-dependent demographic parameters would bemore appropriate and predictive in
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plant populations. These points support the novelty of my stage-structured model, especially

in terms of expanding the applicability to many plant species.

2.4.2 Interpreting demographic genetic structure

A common interpretation on demographic genetic structure is that if juvenile stages are less

diverse than mature stages, genetic diversity would decrease with time over the course of

generation turnover (Aldrich et al. 1998, Ally and Ritland 2006, Kettle et al. 2007, Linhart

et al. 1981, Murren 2003, Schmidt et al. 2018, Vranckx et al. 2014). However, my model

shows that relative ratio of expected heterozygosity between stage classes does not correlate

with either Ne or η: even though Ne and η are small, expected heterozygosity does not

necessarily decline from mature to juvenile stages. Therefore, inferring temporal trends

in genetic diversity solely from demographic genetic structure is potentially misleading.

This study, to my knowledge, for the first time draws caution on the conventional use of

demographic genetic structure.

Many previous empirical studies that analyzed demographic genetic structure found that

genetic diversity did not decrease from the most mature to the most immature stages and

took comparable values among stages (Aldrich et al. 1998, Ally and Ritland 2006, Kettle

et al. 2007, Linhart et al. 1981, Murren 2003, Schmidt et al. 2018, Vranckx et al. 2014).

My model shows that the logarithmic ratio of expected heterozygosity is distributed around

zero, especially under large N , indicating that expected heterozygosity is basically almost

equivalent to one another. Therefore, my model might be in line with previous empirical

results.

While demographic genetic structure is irrelevant to temporal dynamics, it is tightly

linked to stable stage distribution and especially the number of static and retrogressive individuals:
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expected heterozygosity is relatively higher in stagewithmore static and retrogressive inflows

(Figure 2.6). In general, small number of individuals intensifies stochastic genetic drift

due to increased sampling bias in gene frequencies (Crow and Kimura 1970). When stage

distribution is skewed, the degree of stochasticity will vary among stages. Stage with smaller

number of individuals is made up of genes that were sampled fewer times from the gene

pool of the previous year, thus suffering random perturbation in gene frequencies to a greater

extent. The amplified stochasticitymust have resulted in the lower genetic diversity. Importantly,

the inter-stage difference is mainly driven by the amount of stasis and retrogression. Stasis

and retrogressionmixes differently-aged cohorts within and among stages: when retrogressive

inflows are large, individuals old in age can remain in, or come back to, juvenile stages

and coexist with younger ones. Overlap of cohorts could offset temporal random changes

caused by genetic drift, accumulating genetic variation across a wide temporal breadth. This

mechanism is similar with the storage effect, which was previously suggested by studies

showing that generation overlapmaintains genetic diversity under fluctuating selection pressures

(Ellner and Hairston Jr 1994, Ellner 1996).

As the total population sizeN increases, inter-stage difference in genetic diversity disappears

even when the stage distribution and the retrogressive inflows are skewed (Figure 2.7). This

result indicates that the number of individuals of each stage is large enough to reduce stochasticity

under large N , leading to comparable level of genetic diversity among stages.

To sum up, it can be said that genetic diversity becomes uneven among life history

stages under small population size, and that the unevenness among stages reflects stable

stage distribution and inflows of static and retrogressive individuals rather than the temporal

dynamics of genetic diversity.
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2.4.3 Temporal dynamics of genetic diversity under a variety of life history strategies

η became large with increasing PC1 scores (Figure 2.10), indicating that high η is realized

in slow-paced life histories. The reason why slow-paced strategies maintain higher genetic

diversity can be attributed to generation overlap. In populations with long generation time,

old individuals remain alive and coexist with young ones, which facilitates generation overlap

and the accumulation of genetic variation across broader time span (Ellner and Hairston Jr

1994). Although the contribution of longevity to genetic diversity had been suggested (Austerlitz

and Garnier-Géré 2003, Hamrick and Godt 1996, Tsuzuki et al. 2022a, Aparicio et al. 2012),

most studies handled only a limited number of life history strategies. Combined with the

results on demographic genetic structure, my results successfully showed that slow and static

growth along the life history contributes to the maintenance of genetic diversity at the level

of life history stage and of the whole population in the overall life history spectrum.

On the other hand, the relation ship with the fast-slow continuum is less clear inNe than

in η. Considering the positive correlation between η and generation time, it might be that

although life histories with high η do not lose genetic diversity very much annually, they

spend much more time for generation turnover, thereby losing equivalent level of genetic

diversity with fast-paced life histories per generation time.

Population size also contributes to the maintenance of genetic diversity, because Ne

increases and η approaches to 1 with increasingN (Figure 2.9). Under largeN , the variation

in η among life history strategies is small, indicating that population size is large enough

to diminish stochastic diversity loss in all types of life history strategies. Ne shows the

contrasting pattern: the variation in Ne becomes large with increasing N . This is probably

due to the mathematical relationships between Ne and η. Because the two statistics are
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inversely related (Equation 2.18), large variation in one hand corresponds to small variation

in the other.

Overall, the temporal dynamics of genetic diversity of the overall population are similarly

subjected to life history and census population size as stage-wise genetic diversity. Large

census population size diminishes stochastic diversity loss and obscures the impacts of generation

overlap. Under smallN , the contribution of generation overlap to genetic diversity becomes

apparent, and life histories, or life history stages, with high degree of generation overlap

possesses large amount of genetic variation.

2.4.4 Efficacy of theoretical prediction on demographic genetic structure

Providing theoretical background of demographic genetic structure, my model has some

potential for application. One possibility is to compare raw demographic genetic structure,

which is obtained by any neutral genetic markers, with the theoretical expectation calculated

based on my model. Because our model can handle life histories with any number of classes

and with any form of survival and reproduction flows among stages, a wide range of life

histories including both inter- and intraspecific variation can be analyzed. The deviations

of observed structure from expectation should reflect factors unexplored in the model. My

model can work as a null model of demographic genetic structure. To make the most use of

my model, it is necessary to monitor individuals from year to year to estimate demographic

rates of each stage class. If long-term demographic monitoring is unavailable or impractical

for some reasons, recording relative number of individuals among stage classes at a single

time point would be at least desirable to consider stage distribution, which turned out to be

a major determinant of demographic genetic structure.

While the conventional interpretation as a proxy of temporal trends seems to be invalid,
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theoretical prediction on demographic genetic structure can also provide insights into how

life history controls the maintenance of genetic diversity and adaptive evolution. It is known

that a particular life history stage serves as a reservoir of genetic variation within a population

and potentially contribute to adaptation to environmental changes (Yamamichi et al. 2019).

For example, dormant seed bank stage possesses high standing genetic variation compared

to vegetative stages (Nunney 2002). The accumulated genetic diversity in the seed bank

contributes to rapid adaptation to above-ground environmental changes by supplying a variety

of genotypes to vegetative stages through recursive germination (Agrawal et al. 2021, Orsini

et al. 2013). In tree species, the above-ground adult stage consist of variety ages, thereby

accumulating genetic diversity and increasing the adaptive capacity neutrally (Cannon et al.

2022). By estimating demographic genetic structure theoretically, we can understand which

life history stages possess high genetic diversity, and can identify life history processes

that are crucial in accumulating genetic variation and rapid adaptation. Considering that

demographic genetic structure is variable under smallN , the analysis on demographic genetic

structure is especially applicable to small endangered populations, highlighting crucial life

history stageswhere conservation actions are needed. The efficacy of predicting demographic

genetic structure from my model should be further evaluated in wild populations.
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Figure 2.1: Temporal trajectories from time t− 1 to t with regard to the two genes sampled
in time t. Rounded rectangles stand for life history stages. Arrows stand for the temporal
movements of genes either by survival (single line) or reproduction (double line). There
are 12 mutually exclusive situations based on three criteria: (1) whether the destinations are
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Figure 2.2: The two model used in analysis: (a) two-stage model and (b) three stage
model. Arrows represent flow of individuals, or genes, either by survival (single line) or
reproduction (double line)

(a) Two-stage model (b) Three-stage model

Theoretical expectation (η)

S
im

u
la

ti
o
n

 r
e
s
u

lt
s
 (

r t
)

Figure 2.3: Comparison between the theoretical expectation of the annual change rate of
the probability of non-identical-by-descent (η) and the simulation results of that of expected
heterozygosity (rt) for (a) the two-stage and (b) the three-stage model when N = 100.
Each gray semi-transparent point corresponds to one of the 500 parameter sets. As for rt,
geometric mean over 1 ≤ t ≤ 200 is shown with standard error (vertical bar). The red lines
represent η = rt
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(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model
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Figure 2.4: Comparison of demographic genetic structure between the theoretical
expectations (log(Hii,t/Hjj,t)) and the simulation results (log(Ĥii,t/Ĥjj,t)) whenN = 100.
Each gray semi-transparent point corresponds to one of the 500 parameter sets. As for the
simulation results, mean and standard error (vertical bar) over 1 ≤ t ≤ 200 are shown.
There is one proxy for the two-stage model (a: i = 1 and j = 2), while there are three
proxies for the three-stage model (b: i = 1 and j = 2; c: i = 2 and j = 3; d: i = 1 and
j = 3). The theoretical expectations exactly match with the simulation results when plotted
on the red lines
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(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model
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Demographic genetic structure (log(Hii,t ∕ Hjj,t))

(e) i = 1, j = 2, two-stage model (f) i = 1, j = 2, three-stage model

(g) i = 2, j = 3, three-stage model (h) i = 1, j = 3, three-stage model

Figure 2.5: Comparison of demographic genetic structure (log(Hii,t/Hjj,t)) with effective
population sizeNe (a-d) and the annual change rate of expected heterozygosity η (e-h) when
N = 100. (a, e) i = 1 and j = 2 of the two-stage model, (b, f) i = 1 and j = 2, (c, g) i = 2
and j = 3, (d, h) i = 1 and j = 3 of the three-stage model
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(a) i = 1, j = 2, 

two-stage model

(b) i = 1, j = 2, 

three-stage model

(c) i = 2, j = 3, 

three-stage model
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three-stage model
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Figure 2.6: Histogram of demographic genetic structure (log(Hii,t/Hjj,t)) with varying N .
(a) log(H11,t/H22,t) of the two-stage model, (b) log(H11,t/H22,t), (c) log(H22,t/H33,t), (d)
log(H11,t/H33,t) of the three-stage model
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(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model
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Figure 2.7: Relationships between stable stage distribution (log(Ni/Nj)) and demographic
genetic structure (log(Hii,t/Hjj,t)) with varying N
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Figure 2.8: Relationships between logarithmic ratio of static and progressive flows
(log(Ni,s/Nj,s) and log(Ni,p/Nj,p)) and demographic genetic structure (log(Hii,t/Hjj,t))
with varying N . (a, c, e, f) Static flows and (b, d, f, h) progressive flows. (a, b) i = 1, j = 2
of the two-stage model, (c, d) i = 1, j = 2 of the three-stage model, (e, f) i = 2, j = 3 of
the three-stage model, (g, h) i = 1, j = 3 of the three-stage model
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Figure 2.9: Effective population size (Ne) and the annual change rate of expected
heterozygosity (η) of the 500 parameter sets for each of N = 100, 500, and 1000. (a) Ne of
the two-stage model, (b) Ne of the three-stage model, (c) η of the two-stage model, (d) η of
the three-stage model
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Figure 2.10: Principal components of the eight life history traits of the 500 parameter sets
in the two- and the three stage model. Color denotes either annual change rate of expected
heterozygosity (η) or effective population size (Ne) when N = 100. (a) η of the two-stage
model, (b) Ne of the two-stage model, (c) η of the three-stage model, (d) Ne of the three-
stage model
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Chapter 3

Genetic impacts of intraspecific demographic variation in fragmented
populations of a perennial herb Trillium camschatcense

Abstract

Generally, genetic diversity decreases over time in small populations due to genetic drift.
While it has been shown that some life history characteristics, such as long lifetime and
slow maturation, promote generation overlap and maintain genetic diversity despite small
population size, the relative importance in determining the level of genetic diversity between
population size and life history are not empirically clarified. In this study, I examined the
determinants of genetic diversity by comparing theoretical expectation and empirical data of
genetic diversity in 11 fragmented populations of a perennial herb Trillium camschatcense
in Tokachi region, Hokkaido, northern Japan. The life history of T. camschatcense can be
split into 5 developmental stages (seed, seedling, one-leaf, three-leaves, flowering), and
I estimated stage-specific survival rates and fecundities and population size through four
years of demographic field census. The estimated values were used to obtain theoretical
expectation of demographic genetic structure, which is the stage-wise genetic diversity, and
effective population size, using the model developed in Chapter 2. In parallel, I collected
a total of 512 samples to empirically estimate demographic genetic structure and effective
population size by double digest restriction site associated DNA sequencing (ddRAD-seq).
Although genetic diversity was predicted to be very close among life history stages in the
theoretical expectation, the observed genetic diversity was uneven among stages, which is the
symptoms of small population size. As for effective population size, theoretical prediction
was larger than the observation. These mismatches between the theoretical prediction and
the observation can be explained by the possibility that not all individuals within a population
survive and reproduce randomly in terms of genes and that individuals that effectively serve
as ‘population’ would be spatially limited and be much more smaller than the total number
of individuals. Because uneven demographic genetic structure indicates that a particular life
history stage serves as a reservoir of genetic diversity in the life cycle, the empirical results
suggest that the contribution of life history to maintaining genetic diversity could be larger
than expected from the theory.
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3.1 Introduction

Anthropogenic land-use change has been causing habitat loss and fragmentation worldwide

(Fahrig 2003), which is predicted to decrease genetic diversity of remnant populations through

bottleneck, genetic drift, restricted gene flow and inbreeding (Aguilar et al. 2008, Lowe et al.

2005, Young et al. 1996). Reduction in genetic diversity not only constrains the evolutionary

potential (Bakker et al. 2010, Ramsayer et al. 2013), but could also suppress individual

fitness and population growth (Reed and Frankham 2003, Williams 2001), thus threatening

population viability. Hence, it is necessary to evaluate andmitigate the genetic consequences

of habitat fragmentation on remnant populations.

Although many studies indicate that population shrinkage is a major driver of genetic

diversity loss in fragmented landscapes (Leimu et al. 2006, Lowe et al. 2005), the susceptibility

to population shrinkage differs among species depending on their life history characteristics

(González et al. 2020, Kramer et al. 2008). Life history is a lifetime trajectory of individuals

from birth to death, and because genetic information is stored in individuals, genetic dynamics

is fundamentally subjected to how individuals survive, grow, and reproduce over the course

of life history. In perennial plants, for example, slow growth and prolonged lifespan could

allow individuals to persist for many years, resulting in slow generation turnover and delayed

loss of genetic diversity (Aparicio et al. 2012, Martins et al. 2015). It is important, therefore,

to account for life history cycle for assessing the genetic impacts of habitat fragmentation.

Meanwhile, it has been shown that habitat loss and fragmentation not only downsizes

population but also alters survival and reproductive performance of individuals in remnant

populations through environmental changes (Fahrig 2003). In general, environmental conditions

are different between the core and the edge within a habitat, and small fragmented habitats
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become more subjected to edge environments, which is known as edge effect. The edge

effect influences survival and reproduction at various stages of life history. In some plant

species, it is known that the survival of seedlings, as well as reproductive success of flowering

stages, are restricted in small fragmented populations due to deteriorated environmental

conditions (Aguilar et al. 2019, Benítez-Malvido et al. 2018, Tomimatsu and Ohara 2004).

The changes in the demographic performance caused by edge effects can affect how genes

are transferred and distributed among stage classes, potentially influencing the temporal

dynamics of genetic diversity. However, it remained unclear how the changes in life history

interact with population shrinkage and affect genetic diversity. This is mainly because of

methodological limitation: the mathematical relationships between genetic diversity and

stage-specific demographic parameters were theoretically unclear. Tsuzuki et al. (2022b),

which is Chapter 2 of my dissertation, formulated genetic diversity of each life history

stage (i.e., demographic genetic structure) and its temporal dynamics using stage-specific

demographic rates and population size. The model allows us to predict how genetic diversity

changes over time and which life history stage serves as a reservoir of genetic diversity under

a given life history and a population size, and has paved the road to predict the genetic

consequences of habitat fragmentation.

Here, I focused on fragmented populations of an understory perennial herb Trillium

camschatcense. As with many other understory perennials, T. camschatcense grows slowly

with limited sunlight, taking a long period of years to become sexuallymature. The prolonged

life cycle can be categorized into five distinct life history stages: seed (SE), seedling (SD),

one-leaf (1L), three-leaves (3L), and flowering (FL) (Figure 3.1, Ohara and Kawano (2005)).

Although T. camschatcense is widely distributed in northeast Asia, especially in Hokkaido,

northern Japan, its habitats have been destroyed and fragmented due to agricultural and
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residential land development. One of the most striking habitat fragmentation events took

place in the Tokachi region (Figure 3.2a). According to the records in the early time of the

settlement, this region had been almost completely forested, and understory plants including

T. camschatcense were extensively distributed. However, intensive land development which

started in the 1880s resulted in many small forest fragments within an agricultural matrix.

Previous studies showed that genetic diversity of fragmented T. camschatcense populations

was not solely explained by population size. Although bottleneck was slightly detected

using allozyme marker, the correlation between genetic diversity and population size was

statistically marginal (Tomimatsu and Ohara 2003b). On the other hand, life history seemed

to play an important role in maintaining genetic diversity. Tsuzuki et al. (2022a) analyzed

stage-wise genetic diversity in two (large and small) populations using neutral single nucleotide

polymorphisms (SNPs), and found that genetic diversity was higher in more mature stages in

the examined two populations. The results indicated that stasis during juvenile and flowering

stages (i.e., slow growth and long lifespan), which are the life history features ofT. camschatcense,

might have resulted in the incremental storage of genetic diversity along the life cycle. Due

to the small number of population-level replicates and the absence of data on demographic

rates, it is left unclear whether the supposed contribution of life history to genetic diversity

is general and can be theoretically supported under the anthropogenically altered population

size and demographic rates (stage-specific survival probabilities and fecundities).

In this study, I carried out demographic census survey to estimate demographic rates and

population size in fragmented Trillium camschatcense populations in the Tokachi region.

Then, using the model developed in chapter 2, I calculated demographic genetic structure

(i.e., the among-stage ratio of genetic diversity) and effective population size Ne (i.e., the

rate of diversity loss per generation) to predict stage-wise genetic diversity and its temporal

45



dynamics under the observed life history and population size. In parallel, I conducted

population genetic analysis by double digest restriction-site associated DNA sequencing

(ddRAD-seq) to obtain observed demographic genetic structure andNe. Lastly, I checked if

the theoretical expectation matched with observed counterparts to evaluate the contribution

of life history to genetic diversity could be theoretically supported.

3.2 Materials and Methods

3.2.1 Study species and study sites

Trillium camschatcense is an understory spring ephemeral that sprouts and flowers around

April and May in temperate deciduous forests. After the development of the canopy layer in

summer, there is much less sunlight available for understory plants, and T. camschatcense

becomes dormant underground during the rest of the year. Every spring, aboveground stems

and leaves are regenerated and at that time the life history stage of each individual is updated.

The life history ofT. camschatcense consists of progressive, static, and retrogressive transitions

among the five stage classes (Figure 3.1). Seeds (SE) germinate after two years of dormancy

and grow as seedlings (SD) in the second year. From the third year on, individuals continue

to grow as one leaf (1L) and subsequently as three-leaves (3L). It is not until they store

enough assimilated resources that they become flowering (FL). Flowering individuals are

long-lived and remain reproductive for years, and sometimes retrogress to three-leaves due

to resource exhaustion. Retrogression occasionally occurs from three-leaves to one-leaf as

well (Ohara and Kawano 2005).

In 2018, I randomly established two to five 1 m × 1 m quadrats in 11 remnant forests in

the Tokachi region, in total 39 quadrats (Figure 3.2b, Table 3.1). While Trillium camschatcense

was distributed on the entire forest floor, co-occurring species such as Sasa chartacea and
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Carex cespitosa were heterogeneously distributed (Tomimatsu et al. 2011), and each forest

could be split into several compartments based on the difference in understory vegetation.

The quadrats were placed in different compartments to cover the heterogeneity of the understory

vegetation within a population. I counted the number of individuals of each life history

stage except underground seed in the quadrats. As a result, stage structure, or the relative

abundance among stage classes, varied among populations (Figure 3.2c). Because stage

structure is dependent on the balance of growth, stasis, retrogression, and reproduction of

each stage (Caswell 2001), the result indicated the presence of interpopulation life history

variation tentatively. Therefore, I selected the 11 populations as study sites.

3.2.2 Field census

From 2019 to 2022, I carried out (1) individual monitoring (capture-mark-recapture) and (2)

fecundity survey to estimate demographic rates and population size.

As for (1) individual monitoring, I marked all individuals in the quadrats and recorded

their two-dimensional coordinates, using tags made with a steel wire and a numbering tape.

Every year except 2020, in which field survey was cancelled due to the COVID-19 pandemic,

I monitored the presence/absence of previously marked individuals as well as tagged newly

emerged ones until 2022 (Figure 3.3a). The monitoring was carried out in mid May, when

foliage leaves are fully expanded and the flowering phenology is at its peak. Seedling and

one-leaf individuals sometimes formed clumps and densely aggregated (Figure 3.3b) and it

was hard to tell apart which individual was which when the aboveground stems and leaves

were once withered and then regenerated in the next spring. Therefore, I tagged each clump

as a whole, and monitored its composition (the number of individuals in each stage). As a

result, I obtained the time-series state of solitary individuals and clumps, as well as that of
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the total number of individuals in each stage (i.e., stage structure).

As for (2) fecundity survey, I recorded the number of flowers and fruits of each flowering

individual in the quadrats in the same years as the individual monitoring survey (i.e., from

2019 to 2022 except 2020). I collected matured fruits in 2021 and 2022 in July, and counted

the number of seeds within them (Figure 3.3c, d). I did not collected fruits in 2019, because

seeds produced in 2019 would be recruited as seedlings in 2021 and had to be left intact to

avoid interfering with the individual monitoring survey.

3.2.3 Integrated population model

I constructed an integrated population model (IPM) to estimate the probabilities of growth,

stasis, and retrogression of each stage class, fecundity of the flowering stage, and population

size that were best fitted to the field census data in the Bayesian framework. The model was

separately constructed for each population. IPM is an integration of multiple sub-models

that correspond to different aspects of population dynamics (Schaub and Kéry 2021). In my

case, four sub-models were constructed in correspondence to the four types of data: time-

series state of solitary individuals, time-series composition of clumps, time series of stage

structure, and the number of seeds per flowering individual (Figure 3.4). In IPM, because

parameter estimation is based on the overall likelihood across the sub-models, estimation is

more precise compared to fitting each sub-model to each data set independently (Schaub and

Kéry 2021).

I used a multi-state capture-recapture model for the sub-model of the time-series state of

solitary individuals. I distinguished the observed state yq,i,t and the latent true state zq,i,t for

individual i in quadrat q in year t. The year 2019, which was the first year of the individual

monitoring, was treated as t = 1. The observed state was either 1 (SD), 2 (1L), 3 (3L),
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4 (FL), or 5 (absence). The fifth state included the possibilities of oversight, vegetative

dormancy, death, or pre-germination. Because individuals were alive in the case of oversight

and vegetative dormancy, the latent state of the two situations had to be categorized as either

of the four life history stages, while the other two situations (death and pre-germnation) as

distinct latent states. Therefore, I arranged six latent states: 1 (SD), 2 (1L), 3 (3L), 4 (FL),

5 (dead), and 6 (pre-germination). The transition from zq,i,t to zq,i,t+1 was modeled by a

categorical distribution with state-specific probabilities of growth, stasis, and retrogression

among states (Equation 3.1). The observed state yq,i,t+1 was modeled by a categorical

distribution with the state-dependent detection probabilities (Equation 3.2).

zq,i,t+1 ∼ Categorical(Tq,zq,i,t), (3.1)

yq,i,t ∼ Categorical(Pq,zq,i,t), (3.2)

where Tq,zq,i,t and Pq,zq,i,t were the zq,i,t-th column of the matrix Tq and Pq, respectively.

Tq =



0 0 0 0 0 bq,t

g1,q s2,q r3,q 0 0 0

0 g2,q s3,q r4,q 0 0

0 0 g3,q s4,q 0 0

m1,q m2,q m3,q m4,q 1 0

0 0 0 0 0 1− bq,t



, (3.3)
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Pq =



d1,q 0 0 0 0 0

0 d2,q 0 0 0 0

0 0 d3,q 0 0 0

0 0 0 d4,q 0 0

1− d1,q 1− d2,q 1− d3,q 1− d4,q 1 1


. (3.4)

Here, mi,q was the mortality of the i-th state in quadrat q.

m1,q = 1− g1,q (3.5)

m2,q = 1− s2,q − g2,q (3.6)

m3,q = 1− r3,q − s3,q − g3,q (3.7)

m4,q = 1− r4,q − s4,q (3.8)

bq,t was the entry probability at time t in quadrat q, which was the probability that a solitary

individual that had not germinated and therefore had not been recorded before year t became

seedling in year t + 1. As for the observation process, individuals in the latent state i (1 ≤

i ≤ 4) in quadrat q were observed as state i with the detection probability di,q, otherwise

they were observed as absent (i.e., observation state 5) due to either oversight or vegetative

dormancy. Because the fifth and the sixth latent states (dead and pre-germination) must

have been always observed as absent, the fifth elements of the corresponding columns of the

detection matrix Pq were set to 1 while other elements were zero.

With regard to the sub-model of the time-series composition of clumps, vq,i,j,t denoted

the latent true number of individuals of stage j (1 ≤ j ≤ 4) in clump i of quadrat q in

year t, while uq,i,j,t was the corresponding observed number. I modeled the latent process
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as follows.

v′
q,i,j,t ∼ Multinomial(vq,i,j,t,Tq,j), (1 ≤ j ≤ 4) (3.9)

vq,i,j,t+1 =
4∑

k=1

(j-th elements of v′
q,i,k,t), (2 ≤ j ≤ 4) (3.10)

where v′
q,i,j,t was the vector whose k-th element represented the number of individuals that

moved from latent state j to k in clump i of quadrat q between year t and t + 1. Because

the seedling stage always consists of new recruitment, not of the survival transition from the

other stages, I used negative binomial distribution to model the latent number of seedlings

vq,i,1,j,t.

u′q,i,1,t ∼ NB(uq,i,1,t + 1, dq,1), (3.11)

vq,i,1,t = uq,i,1,t + u′q,i,1,t, (3.12)

where u′q,i,1,t was the number of undetected seedlings. The observation process of the other

three stages was modeled using binomial distribution.

uq,i,j,t ∼ Binomial(vq,i,j,t, dq,j), (2 ≤ j ≤ 4) (3.13)

The sub-model of stage structure was constructed as almost the same as that of clumps.

x′
q,i,t ∼ Multinomial(xq,i,t,Tq,i), (1 ≤ i ≤ 4) (3.14)

xq,i,t+1 =

4∑
j=1

(
i-th elements of x′

q,j,t

)
, (2 ≤ i ≤ 4) (3.15)

xq,1,t = Poisson(fqg0,qxq,4,t−2), (3.16)
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wq,i,t ∼ Binomial(xq,i,t, dq,i), (3.17)

where xq,i,t was the latent true number of individuals of stage i in quadrat q in year t,

while wq,i,t was the observed counterpart. Here, Stage 1 to 4 stood for SD, 1L, 3L, and

FL, respectively. x′
q,i,t was the vector of length 6 and represented the transition from stage

i to the six latent states. Here, the true number of seedlings (i.e., xq,1,t) was modeled by

Poisson distribution using fecundity (fq), germination rate (g0,q), and the number of FL in

two years before (xq,4,t−2, Equation (3.16)). When t ≤ 2, xq,4,t−2 was substituted with

xq,4,1 in Equation (3.16).

Sub-model for fecundity was composed of three models, each of which handled the

number of flowers, fruits, and seeds per flowering individual. Firstly, because the number of

flowers per individual ranged from one to three, I used a categorical distribution as follows.

nfl,q,i,t ∼ Categorical(lq). (3.18)

nfl,q,i,t was the number of flowers of individual i in quadrat q in year t while lq was the

vector with three elements which corresponds to the probability of having one, two, and

three flowers, respectively.

nfr,q,i,t and nse,q,i,t, which were the number of fruits and seeds of a flowering individual

i in quadrat q in year t, were modeled by binomial and Poisson distribution, respectively.

nfr,q,i,t ∼ Binomial(nfl,q,i,t, ff,q) (3.19)

nse,q,i,t ∼ Poisson(nfr,q,i,tfs,q) (3.20)
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ff,q and fs,q were fruit set and the number of seeds per fruit in quadrat q, respectively.

I defined a vector a = t(1, 2, 3) where t mean transpose. Then, the mean number of

flowers per individual was obtained by 〈lq,a〉, that is, the inner product between lq and

a. The net fecundity per flowering individual in quadrat q, which was denoted by fq, was

calculated by the multiplication of 〈lq,a〉, ff,q and fs,q.

fq = 〈lq,a〉 × ff,qfs,q. (3.21)

I calculated the populationmean of each parameter by taking the average across quadrats.

The population mean parameters were denoted by the same character as the quadrat-level

counterparts, while the subscript q was removed. For example, the number of individuals in

stage i in year t was denoted by xi,t. The mean numbers of SD, 1L, 3L, and FL individuals

per year were denoted by x1, x2, x3,and x4, respectively, and was calculated as follows.

xi =

4∑
t=1

xi,t/4. (1 ≤ i ≤ 4) (3.22)

Treating seed as stage 0, the expected number of underground seeds x0 was calculated by

the product of the mean net fecundity and the mean number of FL individuals.

x0 = fx4. (3.23)

The summation of xi (0 ≤ i ≤ 4) was equal to the population density per 1 m2, which was

denoted by D.

D =
4∑

i=0

xi (3.24)

Then, xi (0 ≤ i ≤ 4) and D were multiplied by the area of the study sites A (Table 3.1) to
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obtain the total number of individuals in each stage (Ni, 0 ≤ i ≤ 4) and population size N .

Ni = Axi, (0 ≤ i ≤ 4) (3.25)

N = AD = A
4∑

i=0

xi. (3.26)

The IPMwas implemented in JAGS 4.3.0 using an R package “jagsUI” (Kellner 2021) in

R 4.1.2 (R Core Team 2021). The number ofMarkov ChainMonte Carlo (MCMC) iterations

was set to 1,000,000, including 100,000 steps for burn-in. The number of adaptation steps,

chains, and thinning were 10,000, 3, and 10, respectively.

3.2.4 Theoretical prediction on demographic genetic structure and effective population

size

A total of 2,700,000 sets of parameter values (= (1,000,000 iterations - 100,000 burn-in steps)

× 3 chains) obtained byMCMCwere used to calculate the posterior distribution ofmatrixM

of Equation (2.10). In calculating M , seed (SE), seedling (SD), one-leaf (1L), three-leaves

(3L), and flowering (FL) were regarded as stage 0, 1, 2, 3, and 4, respectively. The detailed

equations for each element of M are shown in Appendix 2. Then, the dominant eigenvalue

η and the leading right eigenvector w of matrix M were calculated. Here, fecundity (f )

was adjusted so that population growth rate became equal to unity. To obtain the theoretical

expectation of demographic genetic structure, the elements of w that correspond to Hii,t

(1 ≤ i ≤ 4) were log transformed. By taking the logarithm, the ratio among wii was

transformed to the difference among logwii, whichwas equal to the difference of the corresponding
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logHii,t based on equation (2.16).

logHii,t − logHjj,t = log
Hii,t

Hjj,t

= log
wii

wjj

= logwii − logwjj . (3.27)

Therefore, the logarithm of wii represents the relative height of Hii,t among SD, 1L, 3L,

and FL stages. I subtracted the mean of logwii (1 ≤ i ≤ 4) from all logwii so that their

distributional center was adjusted to 0.

To quantify the change rate of genetic diversity over time, I obtained theoretical expectation

of effective population size based on Equation (2.18), which is mentioned as demographic

Ne (Ne[DE]) hereafter. Effective population size represents the degree of diversity loss per

generation: the larger Ne is, the more likely genetic diversity is maintained.

3.2.5 DNA extraction and SNP call

To confirm the theoretical expectation obtained in section 3.2.4 empirically, I carried out

genetic analysis using genome-wide single nucleotide polymorphisms (SNPs). InMay 2021,

I randomly collected leaves of 16 flowering (FL) individuals from the 11 populations for

estimating genetic diversity and effective population size. Among the 11 populations, I

chose seven core populations (population A-G), in which 16 individuals were additionally

randomly sampled from each of seedling (SD), one-leaf (1L), and three-leaves (3L) stages

to estimate demographic genetic structure. The sampled leaves were first stored in the

refrigerator and were subsequently dried using silica gel. Genome DNA was extracted

from the dried leaves following the modified CTAB method (Murray and Thompson 1980).
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The extracted DNA was used for double digest restriction-site associated DNA sequencing

(ddRAD-seq) (Peterson et al. 2012, 2014). ddRAD-seq is one of the reduced-representation

DNA sequencing techniques and detects genome-wide SNPs fromDNA fragments cut out by

two restriction enzymes, for which I used PstI and MspI. Library preparation and sequencing

was performed in Kazusa DNA Research Institute using a DNBSEQ sequencer (MGI Tech

Co., Ltd., Shenzhen, China, 150 bases, paired-end).

Primer regions, adapter sequences and low-quality reads were removed from the raw

sequence data using Trimmomatic (Bolger et al. 2014). The remaining reads were used

for de novo assembly. SNPs were called using Stacks ver. 2.6 (Rochette et al. 2019). The

parameter values used in alignment and SNP identification (from ustacks to gstacks) were

m = 3,M = 2,N = 4, and n = 2, which are the default of Stacks de novo assembly. SNPs

that were successfully typed in at least 80% of all samples (r = 0.8, p = 1) were filtered

with two additional criteria: minimum allele frequency must exceed 0.05 (min-maf=0.05)

and observed heterozygosity must below or equal to 0.6 (max-obs-het=0.6). Among the

extracted SNPs, one SNP was randomly chosen per locus to avoid strong linkage (write-

random-snp). To delete SNPs that were potentially under selection, the output vcf files were

reformatted to bed files by PLINK v2 (Chang et al. 2015) and were examined by PCAdapt

package in R (Luu et al. 2017). SNPs whose adjusted P values were not below 0.1 were

regarded as neutral and were used for the following analyses. The above procedures of SNP

call were run separately for the eight sets of samples: (1) FL stage of all the 11 populations,

and (2-7) the four stages (SD, 1L, 3L, and FL) of each of the 7 core populations (Table 3.2).
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3.2.6 Population genetic analysis

Using SNPs called from FL individuals of the 11 populations (sample set 1 in Table 3.2), I

carried out principle component analysis (PCA) to grasp the spatial genetic structure over the

study region. Then, expected heterozygosity (He), observed heterozygosity (Ho), and allelic

richness (Ar) were estimated and their correlation with population size (N ) and density

per 1 m2 (D) were examined. Besides, effective population size were estimated for each

population using NeEstimator2 (Do et al. 2014) with the linkage disequilibrium method.

The estimated value was denoted by Ne[LD] hereafter.

Stage-wise expected heterozygosity (Hii,t) was calculated for each of the 7 core populations,

using SNPs called from the sample set 2 to 7, respectively. BecauseHii,t is obtained for only

year 2021 and there is no need to note t, I omit t from Hii,t hereafter for tidiness. For each

SNP, I calculated Hii as follows:

Hii = 2pi(1− pi), (3.28)

where pi is the frequency of one of the two alleles in stage i. I calculated the mean of Hii

over all SNPs, which was used as the observed Hii in the following analyses. To test if

the observed Hii were significantly different among stages, I implemented permutation test

with 1,000 iterations with Holm correction. Then, the observed Hii were log transformed

and centered as previously done for theoretically obtained wii.
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3.3 Results

3.3.1 Interpopulation demographic variations

On average, 240.7 solitary individuals and 45.1 clumps were found per population during

the census survey. A total of 136.6 flowering individuals were observed during the entire

study period and were used for the sub-model of fecundity (Table 3.1).

Demographic rates (stage-specific probabilities of growth, stasis, and retrogression and

fecundity) varied among the 11 populations (Figure 3.5, 3.6), yet sharing some common

characteristics. The probabilities of growth (g0, g1, g2, and g3) and retrogression (r3 and

r4) were generally lower than those of stasis (s2, s3, and s4). Especially, g0 (germination)

and g2 (growth from 1L to 3L) was consistently low in all populations, ranging from 0.02

to 0.21 and from 0.02 to 0.31, respectively. Fecundity (f ) ranged from 32.19 (population J)

to 103.06 (population H). Overall, posterior distributions of population J were broad for all

parameters. This is probably due to the small sample size compared to the other populations

(Table 3.1). There were no apparent correlations between demographic rates and habitat

area (Figure 3.7). Population size (N ) was above one hundred thousand in all populations,

with the smallest in population J (105.62) and the largest in population I (108.37).

3.3.2 Genetic diversity and differentiation among populations

Using the 176 flowering individuals of the 11 populations, 4,823 SNPswere called by Stacks,

from which 717 SNPs were removed by PCAdapt as potentially being under selection (Table

3.2). Based on the remaining 4,176 SNPs, the 11 populations were split into two clusters

by PCA, which strongly reflected the geographical locations: three southern populations

(population H, J, and K) and eight northern populations (population A-G, I, Figure 3.8).
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Expected heterozygosity (He), observed heterozygosity (Ho) and allelic richness (Ar) did

not have a significant positive correlation with population size (Figure 3.9a, c, e), indicating

that the current population size is not the primary determinant of genetic diversity of the

whole population. On the other hand, population density was significantly correlated with

the three proxies of genetic diversity (Figure 3.9b, d, f). It should be noted that genetic

diversity of the three southern populations (population H, J, andK)were generally lower than

the northern cluster of populations (Figure 3.9), indicating the possibility of geographic/phylogenetic

constraint on genetic diversity.

3.3.3 Theoretical and observed demographic genetic structure and effective population

size

The centered logarithms of the theoretically obtained Hii(1 ≤ i ≤ 4) were distributed

around zero in all populations, indicating that Hii were almost equivalent to one another

(Figure 3.10).

The de novo assembly of the 64 samples (= 16 individuals per stage × 4 stages) of each

core population detected 6,455 SNPs on average. Subsequently, 480.4 SNPs were removed

by PCAdapt as being potentially non-neutral, and the remaining 5974.6 SNPs were used for

estimating Hii (1 ≤ i ≤ 4). Unlike the theoretical expectation, the observed Hii varied

significantly among stages. Although no statistically significant difference was detected

among stages in population A and B (Figure 3.7a, b), H33 were consistently significantly

higher than H11 in the other five populations, indicating that the three-leaves stage was

genetically more diverse than the seedling stage. H22 (one-leaf) was also higher than H11

(seedling) in population C, D, and G. There were always no significant difference between

flowering and seedling in all the core populations.
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Theoretical expectation of effective population sizeNe[DE] was higher than observation

Ne[LD] by an order of approximately 2 to 4 (Figure 3.11). Therewas no significant correlation

between the two estimated values (correlation coefficient = 0.57, p = 0.07, Figure 3.11).

3.4 Discussion

3.4.1 Demography of the fragmented T. camschatcense populations

Demographic rates and population size N were different among populations (Figure 3.6).

Overall, there were no apparent relationships between habitat area and demographic rates

(Figure 3.7). Therefore, the life history variation among populations cannot be attributed

to the difference in habitat area and the resultant edge effects, which is not in line with the

previous study showing the signs of edge effects in fragmented T. camschatcense populations

(Tomimatsu and Ohara 2004). It might be that the environmental conditions of remnant

forests have changed from 2000s, duringwhich the previous studieswere carried out (Tomimatsu

and Ohara 2002, 2004, 2010). For example, during the field work, I noticed that there were

recently-formed gaps in forest crown in most populations due to fallen trees, regardless of

the habitat area. The formation of crown gaps would lead to more intense sunlight and

drier understory. Besides, agricultural land development is still ongoing in this region,

and the construction of underground drainage is taking place around the study sites, which

would make the remnant forests drier. The dry forests are more likely to be invaded by

dwarf bamboo Sasa chartacea, which is a competitively strong species and decreases the

abundance of understory herbaceous plants (Tomimatsu et al. 2011). Moreover, I also noticed

that disturbance such as mowing by humans and herbivory by deer took place, which might

also affect the demographic performance of Trillium camschatcense. Assessing these recent

abiotic and biotic environmental changes and their effects on demographic rates would be
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necessary to understand how the life history of fragmented T. camschatcense is currently

determined.

Although the duration of the field census survey was relatively shorter than those of the

preceding studies (4 years in this study, while 12 years in Ohara et al. (2006) and 7 years in

Tomimatsu and Ohara (2010)), the results of the present study satisfies the basic life history

characteristics of T. camschatcense. In T. camschatcense, most individuals are likely to die

at young and even if they survive, they spend more than 10 years in pre-reproductive juvenile

stages in general (Ohara et al. 2006). The overall low probabilities of growth observed

in this study (g0, 0.02-0.21; g1, 0.04-0.68; g2, 0.02-0.31; g3, 0.05-0.40, Figures 3.5 and

3.6) correspond to the high mortality and the slow progressive growth of T. camschatcense.

Besides, flowering individuals of T. camschatcense are generally long-lived and survive for

many years, reaching 40-50 years old (Ohara et al. 2006). The high survival rate of FL

individuals (the sum of s4 and r4, 0.84-0.98, 3.5) is in line with the long life expectancy of

flowering individuals.

It should be noted that previous studies on the demography of Trillium camschatcense

did not estimate germination rate, although estimated in other Trillium species (Knight et al.

2009). In this study, I succeeded in estimating g0 by adopting the integrated population

model (IPM). The strength of IPM lies in incorporating and estimating unobserved variables

in the model (Schaub and Kéry 2021). It was pointed out that the underground seeds should

generally be taken into consideration for successful assessment of plant population dynamics

(Arroyo-Cosultchi et al. 2022). While previous studies highlighted reduced seed production

as a limiting factor of new recruitment in fragmented T. camschatcense populations (Tomimatsu

and Ohara 2002), the present study showed that the germination rate was consistently low

(ranging from 0.02 to 0.21), indicating that not only seed production but also germination
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are limiting newborn seedlings.

3.4.2 Mismatch between theoretical and observed demographic genetic structure and

effective population size

Demographic genetic structure was different between the observed data and the theoretical

expectation. In all the seven core populations, the centered logarithms of theoretically obtained

Hii were almost equivalent to one another and were distributed close to zero. In chapter 2, I

showed that inter-stage difference inHii was erased under large population size (N = 1, 000)

in the two and in the three stage model. Considering that the estimated population size N

were far above one thousand (105.62 ≤ N ≤ 108.37, Figures 3.5 and 3.6), the largeN should

have been responsible for the insignificant inter-stage difference.

Contrary to the theoretical expectation, observed demographic genetic structure showed

the signs of small population size (N ). The observedHii were uneven and were significantly

different between some pairs of stages (Figure 3.10). Considering that inter-stage difference

in Hii is amplified under small N due to strong genetic drift, as shown in the theoretical

model analysis in Chapter 2, the results suggests that population size was small enough for

demographic genetic structure to be uneven in the seven populations.

The discrepancy between the theoretical expectation and the observation was also seen in

effective population size (Ne). The estimates based on demographic dataNe[DE]were larger

than those based on linkage disequilibrium of flowering individuals Ne[LD]. Again, the

largeN used in obtaining the theoretical expectation should be responsible for the difference

between the two estimates, because large N leads to large Ne, as shown in the theoretical

model analysis (Figure 2.9). This result is in line with the previous studies which showed

that demographic Ne was relatively larger than the genetic counterpart (Rowe and Beebee
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2004, Schmeller and Merilä 2007).

One possible explanation for the discrepancy between the theoretical expectation and

the observed data was that not all individuals in the same forest effectively serve as one

”population” in terms of genes. As for the theoretical prediction, I used the total number of

individuals in the study site as population size, which was estimated by the extrapolation of

the fine-scale population density (m−2). In other words, the theoretical expectation implicitly

assumed that individuals survive and reproduce randomly across thewhole population. However,

because plants are sessile and the dispersal of pollen and seed is often spatially limited,

not all flowering individuals randomly mate with one another and only nearby individuals

effectively serve as population, resulting in spatial aggregation of similar genotypes (fine-

scale genetic structure) (Hardy et al. 2006, Vekemans and Hardy 2004). A previous study

showed the presence of fine-scale genetic structure in T. camschatcense populations in the

Tokachi region (Yamagishi et al. 2007). Therefore, population might not be a one unit but

could be spatially sub-structured and the spatial range that effectively serves as an ideal

population might be far limited than the whole population, resulting in the symptoms of

small population size with regard to demographic genetic structure and effective population

size. Although the possibility of confounding phylogenetic constraint should be carefully

considered, the results that the population-level genetic diversity was not correlated with

population size but with population density per 1 m2 (Figure 3.9) also suggests that the

amount of nearby individuals, not the whole individuals, is relevant to genetic diversity.

3.4.3 Life history stage as a genetic reservoir

Contrary to the theoretical expectation, observed demographic genetic structure was not flat,

indicating that some life history stages serve as reservoirs of genetic diversity compared
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to the other stages. Especially, three-leaves (3L) stage showed relatively higher genetic

diversity than the others (Figure 3.10), indicating genetic variation was likely to be stored

in 3L stage. Previous studies on demographic genetic structure of the fragmented Trillium

camschatcense populations in the Tokachi region showed that not only 3L but also FL had

comparably high genetic diversity due to the stasis of individuals (Tsuzuki et al. 2022a),

which is not in line with the present results. The inconsistency might be explained by the

presence of a fine-scale spatial genetic structurewithin a population, aswith the inconsistency

with the theoretical prediction discussed in the previous section. While the samples were

randomly collected from the whole population in this study, Tsuzuki et al. (2022a) collected

the samples from a fine-scale 5 m× 5 m quadrat within a population. Because the fine-scale

genetic structure would decay towards mature stages due to random thinning of individuals

(Berens et al. 2014, Chung et al. 2003), genetic composition could bemore spatially divergent

in more juvenile stages. Therefore, 3L might be more spatially heterogeneous than FL,

resulting in comparable genetic diversity at the fine scale (5 m × 5 m) but higher diversity

at the population level.

To sumup, the fact that 3L stage possessed high genetic diversity in spite of the theoretical

prediction suggests that the life history trajectory interacts with spatial heterogeneity under

small “genetically effective” population size andmaintains genetic diversity at 3L stage at the

population level in the fragmented T. camschatcense populations. Incorporating the genetic

effectiveness and the within-population spatial genetic heterogeneity into the theoretical

model would be necessary to predict the life history stage that serves as the genetic reservoir

more realistically.
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3.4.4 Conclusion and future direction

In accordancewith the previous studies that evaluated genetic diversity of fragmented Trillium

camschatcense populations (Tomimatsu and Ohara 2003b, Tsuzuki et al. 2022a), empirical

genetic analyses showed that population size was not significantly related to genetic diversity

(Figure 3.9) while genetic diversity was accumulated at particular stages over the course of

life history (Figure 3.10). The discrepancy with the theoretical model might be attributed

to the small number of individuals that effectively serve as population in terms of genes.

The dispersal limitation of pollens and seeds, which are candidate factors that downsize the

”effective population,” are known to differ in their degrees among species depending on

the types of vectors and the demographic trajectories from birth to death (Epperson 2000,

Vekemans and Hardy 2004), which would interfere with the generality of the present results.

How many individuals are actually form the ”effective” population and the candidate factors

that control the effective size should be further studied in the future.

65



SE

g0

g1

g2 g3

r4r3

s2 s3 s4

3L FL1LSD

f

Figure 3.1: Life history of Trillium camschatcense. Arrows represent the possible annual
trajectories of individuals. Demographic rates are denoted by the alphabets with numerical
subscripts. g0, g1, g2, and g3 represent growth, s2, s3, and s4 stasis, r3 and r4 retrogression,
and f reproduction. SE, seed; SD, seedling; 1L, one-leaf; 3L, three-leaves; FL, flowering
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Figure 3.2: (a) Geographical location of the Tokachi region, which is shown in gray. (b) The
enlarged view of the rectangle in (a), in which the 11 study sites are distributed. population
C-F are shown in the top-right window, which is the enlargement of the rectangle that is
located between population A and G. (c) Stage structure of the 11 populations in 2018
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Figure 3.3: (a) The spatial distribution of individuals recorded during the field census in one
quadrat established in population B. (b) Clump of seedlings. (c) Fruit. (d) Mature seeds
with elaiosomes, which are to be dispersed by ants
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Figure 3.4: Graphical overview of the integrated population model (IPM). At the quadrat
level, each sub-model was used to estimate parameters shadowed with the corresponding
color. In each sub-model, latent and observed variables are shown in circle and rectangle,
respectively
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Figure 3.5: The mean of posterior distributions of demographic rates and population size.
The top-left alphabet in each panel (a-k) corresponds to population A-K, respectively
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Figure 3.7: The relationship between habitat area and demographic rates. Demographic
rates are shown with mean and 95% Bayesian confidence interval
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Figure 3.8: The results of principal component analysis of 176 samples (= 16 flowering
individuals × 11 populations)
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Figure 3.9: The relationships of genetic diversity (expected heterozygosity He, observed
heterozygosityHo, allelic richness Ar) with population sizeN (a, c, e) and with population
density D (b, d, f). Genetic diversity was estimated from the 176 FL samples of the 11
populations. Population size N and density D were the mean of the posterior distributions
estimated by the integrated population model. Pearson correlation coefficient and its P value
are shown at the top-left corner of each panel
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Figure 3.10: Demographic genetic structure of the seven core populations (Population A-G).
The theoretical expectation and the observed data are shown in gray and black, respectively.
Hii (i = 1: SD; i = 2: 1L; i = 3: 3L; i = 4: FL) was log transformed and
centered. The alphabet in the parentage corresponds to the population. As for the observed
data, significant difference was detected by permutation test for pairs marked with different
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Figure 3.11: The comparison of effective population size Ne between estimation based
on the linkage disequilibrium of the flowering stages (Ne[LD], x-axis) and the theoretical
expectation obtained by using the demographic rates and population size estimated from
IPM (Ne[DE] y-axis). The red line represents Ne[LD] = Ne[DE]. The Pearson correlation
coefficient and its P value, which are shown at the bottom-right corner, indicate that the two
estimated values were not significantly correlated
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Table 3.1: Geographic location and the basic information on census survey for each study
site. The number of solitary individuals, clumps, and FL individuals are the sum over
quadrats
Population Longitude Latitude Area No. of No. of No. of No. of

(◦E) (◦N) (log10m2) quadrat solitary indv. clumps FL indv.

A 143.215 42.774 3.85 2 222 41 73
B 143.218 42.787 4.05 3 359 76 136
C 143.095 42.795 4.77 5 515 89 212
D 143.096 42.797 4.50 4 359 30 183
E 143.100 42.801 4.22 3 268 76 175
F 143.103 42.801 4.55 5 347 81 207
G 143.027 42.770 4.55 2 129 27 107
H 143.307 42.513 3.79 2 44 24 33
I 143.055 42.968 5.35 5 238 25 230
J 143.345 42.567 3.67 2 32 2 13
K 143.324 42.315 4.94 5 135 25 134

Average 4.67 3.5 240.7 45.1 136.6

Table 3.2: The number of SNPs obtained through Stacks and PCAdapt. The first row
corresponds the result of the de novo assembly of 176 flowering individuals from the all
populations (16 indv. × 11 populations). The second to eighth rows correspond to the
assembly of 64 individuals (16 indv. × 4 stages) in the seven core populations (population
A-G). The last row is the average of the seven core populations.
Sample set Population Output of Removed by PCAdapt Remaining

Stacks (potentially under selection) (neutral)

1 A-K (only FL stage) 4,823 717 4,176
2 A 6,834 502 6,332
3 B 6,590 402 6,188
4 C 6,905 570 6,335
5 D 6,490 525 5,965
6 E 6,986 460 6,526
7 F 5,554 419 5,135
8 G 5,826 485 5,341

Average of 2-8 6,455 480.4 5974.6
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Chapter 4

Genetically effective life history that represents the flow of genes
along the life cycle

Abstract

How individual survive and reproduce along the life cycle can be parameterized by demographic
rates, which are survival probabilities and fecundities of each developmental stage. Demographic
rates determine not only the life history trajectory from birth to death but also the temporal
changes in population size and genetic composition of a population. Therefore, estimating
demographic rates is important to understand ecological and evolutionary dynamics of a
population. Previous studies usually carried out field demographic census (capture-mark-
recapture survey) to estimate demographic rates, which requires long time and large number
of replicates to obtain reliable results. In this study, I propose a new method that makes
the most use of genetic information to estimate demographic rates of seven populations of
the perennial herb Trillium camschatcense in the Tokachi region, Hokkaido, northern Japan.
Using double digest restriction site associated DNA sequencing (ddRAD-seq), I quantified
genetic diversity of each life history stage and pairwise genetic differentiation among stages,
from which I inversely estimated stage-specific demographic rates and population size based
on the theoretical model developed in Chapter 2. Besides, I carried out field demographic
census to estimate the same parameters by the conventionalmethods. As a result, the estimated
values were different between the two methods, which could potentially attributed to the
difference in the spatio-temporal scale each method can handle. While the conventional
census well describes contemporary fine-scale demography, the results of the new method
reflects life history of the recent past that formed the present genetic data at the whole
population level. Although previousmethods based on field census have been poor at describing
the observed population genetic data, the new method might reflect genetically effective life
history and is suitable to explain and predict genetic dynamics of a population.

4.1 Introduction

Demography, or life history, is the lifetime trajectory of individual from birth to death. In

many species, life history can be divided into multiple stage classes. In perennial plants, for
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example, newly germinated individuals belong to the seedling stage at first and subsequently

to the juvenile stages for multiple years. After vegetative growth, they become reproductive

and join the flowering stage. How individuals survive and reproduce along the life history

can be described by stage-specific demographic rates, that is, probabilities of growth, stasis,

and retrogression and fecundity of each stage class (Caswell 2001, Lefkovitch 1965).

Demographic rates are different among species and populations, which raises variation

in life history traits, such as survivorship curve type, age at sexual maturity, and longevity

(Capdevila et al. 2020, Caswell 2001, Salguero-Gómez et al. 2016). In addition to these

life history traits, population growth rate is subjected to demographic rates: changes in

survivorship and fecundity of each stage class will impact the population dynamics of the

whole population (Caswell 2001). Moreover, genetic dynamics also depends on demographic

rates. Effective population size, which determines the strength of genetic drift per generation

time, is a function of demographic rates (Felsenstein 1971, Hill 1972, Waples et al. 2011).

The probability of fixation of adaptive and neutral alleles are also subjected to demographic

rates (Li et al. 2016). Therefore, stage-specific demographic rates are the basic parameter to

understand ecological and evolutionary dynamics of stage-structured populations (Metcalf

and Pavard 2007, Silvertown 1987).

Many previous studies estimated demographic rates by long-term field census survey

(Kéry and Schaub 2011, Schaub and Kéry 2021), in which individuals are marked one by

one and their fate is tracked by capture-mark-recapture with the fixed time interval. Based

on the relative occurrence of progressive, static, and retrogressive growth between the two

consecutive observation time steps, the probabilities of growth, stasis, and retrogression are

estimated. Fecundity is estimated by the fraction of newborns per reproductive individuals.

Because survival and reproduction are stochastic processes, it is necessary to obtain enough
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replicates over space and time to improve the accuracy of parameter estimation (Doak et al.

2005).

Here, I propose a new method that makes the most use of stage-wise genetic data to

estimate demographic rates while easing the demand for survey duration. Assuming that life

history stage is a sub-population, growth, retrogression, and reproduction can be regarded

as gene flow among sub-populations, which erases the genetic differentiation among stages

while increases genetic diversity per stage. Stasis would contribute to genetic diversity of

each stage class, by maintaining existing variation in the same stage over time. In other

words, genetic diversity and genetic differentiation at the stage-level at a one time point

should have information on the movement of genes in the life cycle, and can be potentially

used for estimating the probabilities of growth, stasis, and retrogression as well as fecundity.

A recent theoretical model (Tsuzuki et al. 2022b), which was developed in Chapter

2 of my dissertation, revealed mathematical relationships between demographic rates and

the stage-level genetic diversity and differentiation. In the model, genetic diversity and

differentiation is quantified by the metric Hij,t, which is the probability that two genes

randomly sampled from stage i and j with replacement at time t are non-identical-by-descent.

Hii,t represents expected heterozygosity of stage i, while Hij,t (i 6= j) reflects the genetic

differentiation between stage i and j. The array of Hij,t for all i and j is asymptotically

proportional to the leading eigenvector of matrix M , which is the coefficient matrix of the

difference equations of Hij,t and is parameterized by the stage-specific demographic rates

and population size (Equation 2.10). Using the model, we can explore the parameter space

to yield almost the same ratio of Hij,t as the empirically observed data.

In this study, based on the theoretical model developed in Chapter 2, I inversely estimated

demographic rates and population size from observedHij,t in seven populations of a perennial
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herb Trillium camschatcense using approximate Bayesian computation. At the same time,

I carried out a field census survey for four years to estimate the same parameters by the

conventional field census method. Then, I compared the results between the two methods to

discuss the applicability of the newly developed genetic-based estimation approach.

4.2 Materials and Methods

4.2.1 Study species and study sites

Trillium camschatcense is an understory polycarpic perennial herb. The life history of T.

camschatcense consists of five stages: seed (SE), seedling (SD), one-leaf (1L), three-leaves

(3L), and flowering (FL) (Ohara and Kawano 2005). Individuals annually move among the

five stages through nine possible transition paths including growth, stasis, and retrogression,

as described in Chapter 3 (Figure 3.1). There is also a reproduction path from FL to SE. The

study was conducted in population A-G in the Tokachi region (Figure 2.2b).

4.2.2 Stage-wise genetic diversity and differentiation

As explained in Chapter 3, I randomly collected leaves of 16 individuals of seedling (SD),

one-leaf (1L), three-leaves (3L), and flowering (FL) from each population in May 2021,

whichwere genotyped by double digest restriction-site associatedDNA sequencing technique

(ddRAD-seq). Details on the procedures of SNP call are explained in chapter 3. Using the

resultant SNPs, I calculated Hij,t for all pairs of i and j (1 ≤ i ≤ 4, i ≤ j ≤ 4) for each

population separately. Here, I treated SD, 1L, 3L, and FL as stage 1, 2, 3, and 4, respectively.

As in Chapter 3, I omit t fromHij,t hereafter for tidiness. Denoting pi as the allele frequency
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in stage i, Hij is calculated for each SNP as follows:

Hij = pi(1− pj) + (1− pi)pj (4.1)

I calculated the mean of Hij over all SNPs, which was used as the observed Hij in the

following analyses.

4.2.3 Inverse estimation of life history parameters

I adopted approximate Bayesian computation (ABC) based on sequentialMonte Carlo (SMC)

to estimate demographic rates and populations size from observedHij . ABC is a computational

approach to estimate parameters: instead of evaluating the exact likelihoods, ABC computes

a predefined summary statistics for numerous sets of parameter values which are randomly

drawn from a given prior distribution. The parameter values that yield close summary

statistics compared to the observed one are accepted to form the posterior distribution. Therefore,

ABC can be applicable to situations where likelihoods are too complicated to calculate

(Beaumont 2010, Bertorelle et al. 2010, Csilléry et al. 2010). I defined the summary statistics

S as the array of Hij whose sum is scaled to be unity.

S = h/
4∑

i=1

4∑
j≥i

Hij , (4.2)

h = t(H11 H22 H33 H44 H12 H13 H14 H23 H24 H34), (4.3)

where t indicates transpose. Here I denote the observed and the computed summary statistics

as S̃ and Ŝ, and their elements as {H̃ij} and {Ĥij}, respectively. Ŝ can be computed

from the leading right eigenvector w of the matrix M in Equation (2.10). Because Hij
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is proportional to the elements of w, as shown in Equation (2.13), Ĥij is formulated as

follows:

Ĥij = wij/

4∑
i=1

4∑
j≥i

wij . (4.4)

The detailed elements of the matrix M is shown in Appendix 2.

The comparison between observed and simulated summary statistics is based on the

distance metrics which can be flexibly defined. I evaluated the distance between S̃ and Ŝ,

which is denoted by D, by the sum of squared errors between the corresponding elements.

D =

4∑
i=1

4∑
j≥i

(Ĥij − H̃ij)
2 (4.5)

ABC-SMC searches the parameter values that yield smallD using a large set of parameter

values called “population” (Figure 4.1a) (Fountain et al. 2018, Scranton et al. 2014, Speich

et al. 2021). The member of the “population” is called “particle,” to which a set of parameter

values is assigned. The parameter values of particles are updated towards smaller D step

by step (Figure 4.1). After updating the particles for sufficient time steps, the parameter

values of the final population approximates the posterior distributions. The advantage of

SMCmethod lies in tuning parameter values of a large number of particles in parallel, which

allows us to avoid being stuck in local optima.

In implementingABC-SMC, I first determined prior distributions of all parameters (Table

4.1). The number of particles (Np) were set to 10,000, and I randomly drew parameter values

Np times from the prior distributions to arrange the initial particles. For each particle, the

summary statistics Ŝ and the distance to the observed summary statistics D was calculated.

Then, I assigned weight of 1/Np to each particle. To update the population, particles were

sampled with replacement Np times based on their assigned weights. Parameter values
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of the resampled particles were perturbed by a multivariate Gaussian kernel with means

equal to the original parameter values and twice the variance-covariance of the particles

before resampling. Random perturbation was repeated until D became smaller than the 30

percentile of the population before resampling. By perturbing the 10,000 resampled particles

in parallel, I updated the particle assemblages to fit more to the observed data. Weights were

also updated with the same method as Beaumont et al. (2009). The updated particles were

used as a new population. These procedures were repeated 15 times, and the parameter

values of the final particles were used as the posterior distribution. The percentile used for

the threshold of accepting perturbed particles was set to become smaller by a factor of 0.95

per step (see Figure 4.1b for the pseudocode).

4.2.4 Estimation based on the field census

I used the estimation results of the integrated population model (IPM) in Chapter 3, which

were 2,700,000 (= 900,000 iterations × 3 chains) sets of parameter values obtained by

Markov Chain Monte Carlo (MCMC).

4.2.5 Effective population size

For each of the seven populations, parameter values of the 10,000 final particles of ABC-

SMCwere used to calculate demographic effective population size (Ne[DE]) based on Equation

(2.18). Ne[DE] was also calculated using the parameter values estimated by the IPM of

the field census data. The resultant two posterior distributions of Ne[DE] were compared

with Ne[LD], which was the Ne estimated from linkage disequilibrium of the flowering

individuals in Chapter 3.
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4.3 Results

4.3.1 Demographic parameters estimated from observed Hij

Hij ranged approximately from 0.155 to 0.185 (Figure 4.2). ABC-SMC yielded posterior

distributions of demographic rates and population size from the observed Hij (Figure 4.3).

Except germination rate (g0), posterior distributions converged to a unimodal shape. The

peak of the distributions differed among populations. As for g0, posterior distributions

depicted a flat and broad shape.

4.3.2 Comparison with the estimation based on field census

The parameter values estimated from the genetic data did not match with those estimated

from the field census data (Figure 4.4). Fecundity and the probabilities of stasis (s2, s3, and

s4) tended to be estimated larger in demographic census, while retrogression and growth

rateswere larger in genetic estimates. Population size (N ) was smaller in the genetic estimates

by approximately six orders of 10.

4.3.3 Effective population size

When using demographic rates estimated from the field census data,Ne[DE] was larger than

Ne[LD], as shown in chapter 3. On the other hand, When using parameter values estimated

from the observedHij ,Ne[DE] ranged 10 to 100, whichwere smaller thanNe[LD] estimated

from linkage disequilibrium. Taking the logarithm of 10, it turned out that parameter values

estimated from the observed geneticHij yielded close order ofNe[DE] toNe[LD] compared

to those estimated from the field census (Figure 4.5).
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4.4 Discussion

4.4.1 Difference in the spatio-temporal scale between the field census and the genetic

data

I found that the estimated demographic rates and population size differed between the newly-

developed method based on genetic data (Hij) and the conventional method based on the

field census data. A similar discrepancy is reported when estimating dispersal rate (Cayuela

et al. 2018, Lowe and Allendorf 2010, Moore et al. 2017, Yu et al. 2010). Dispersal rate

is often estimated either by interpopulation genetic differentiation or by individual capture-

mark-recapture. Estimated values generally differ between the two methods, which is often

attributed to the mismatch in the spatial and temporal scale between the two types of data

(Cayuela et al. 2018). Field census survey that monitors individual over time is often carried

out with limited number of samples, and is more vulnerable to missing rare dispersal events.

On the other hand, genetic data is the result of all dispersal events including irregular and

stochastic movements, and would potentially reflect the net dispersal rate. Besides, while

field census captures contemporary movements per se, genetic data reflects dispersal of

recent past that constructed the present genetic structure.

The same explanation on the mismatch in the spatio-temporal scale might apply to the

present study. As for the spatial scale, the field census was carried out in a limited area of

the population (several 1 m2 quadrats), while genetic samples were collected from the entire

population. The mismatch of the spatial scale becomes more serious when considering the

within-population spatial genetic structure. When there is a spatial genetic structure within a

population, as discussed in Chapter 3 and as shown in Yamagishi et al. (2007), the estimation

based on the field census data could only apply to a small portion of the gene pool with
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limited spatial area, and the extrapolation to the whole population would be inappropriate

to describe the overall genetic dynamics of the population. The same possibility is also

discussed in Smith et al. (2020), which revealed that demographic census did not explain

the population-level genetic diversity in a perennial plant Plantago lanceolata. In terms

of the temporal scale, the estimated value of the newly-developed genetic method would

reflect growth, stasis, retrogression, and reproduction of the recent past that contributed

to the present stage-wise genetic diversity and inter-stage genetic differentiation, while the

demographic census reflects the contemporary life history.

4.4.2 Genetically effective life history and population size

Demographic rates estimated from the observed Hij did not satisfy the typical life history

characteristics of Trillium camschatcense in some populations. T. camschatcense is characterized

by slow progressive growth and high stasis during juvenile stages (Ohara and Kawano 2005).

Although the demography estimated from field census is consistent with the basic life history

characteristics, as shown in Chapter 3, the growth rates of 1L and 3L stages (g1 and g2) were

high in some populations and the stasis rates (s2 and s3) were generally low when estimated

based on the genetic data. It might be that demographic rates varied over space and time,

resulting in the stage-wise genetic composition which cannot be explained by the typical

life history of T. camschatcense. There are several possible factors that alter demographic

rates over space and time. In the fragmented forests in the Tokachi region, strong wind

has been causing tree falling and subsequent recovery of the aboveground tree biomass

(Tomimatsu et al. 2015), indicating that the openness of the forest crown is changing over

time. Besides, human-induced disturbances in relation to the adjacent agricultural fields,

such as drainage construction and partial logging, are continuously taking place, influencing
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the available sunlight and water. These spatio-temporal environmental changes might have

altered demographic rates over space and time, resulting in the necessity to account for quite

different life history cycle when describing long-term population-level genetic dynamics.

As for the estimated values of N (the number of individuals in population), the genetic

method yielded smaller estimates. While the field census data estimated the raw number of

individuals that exist in a whole study site, the new method could have estimated the number

of individuals that effectively fulfill the premises of the theoretical model, such as random

mating and equal probabilities of growth, stasis, and retrogression among genotypes.

Overall, the new method can estimate life history cycle and population size that explain

the observed stage-wise genetic diversity and differentiation at the population level, rather

than the fine-scale contemporary population dynamics. The effectiveness in explaining

genetic data might be supported by the consistency betweenNe[DE] andNe[LD] compared

to the field census data (Figure 4.5).

4.4.3 Problems to be solved

There are some methodological problems to be solved to guarantee the validity of the new

method. Firstly, parameter identifiability should be examined. The posterior distribution of

g0, which is the germination rate of seed, did not converge to a unimodal shape, indicating

that the estimation was not successful. This is probably because seed (i.e., stage 0) was

not sampled and genotyped and Hij that involves with seed (i.e., H00, H01, H02, H03,

and H04) were omitted during parameter estimation. Secondly, the robustness to annual

variation in genetic sampling remains unclear, which should be examined by estimating the

demographic rates and population size with the same protocol in different years. Lastly,

the spatio-temporal gaps with field census should be further confirmed. One solution is to
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carry out spatially explicit simulation with fine-scale genetic structure to check if the field

census and the new method yielded a similar mismatch in silico. Another solution is to fit

the scale of census data to that of genetic data. Species for which long-term and large-scale

demographic census data is available is a promising target to try the new genetic method.

These methodological examination will deepen the understanding on the efficacy of the new

method to reconstruct life history from stage-structured genetic data and to describe genetic

dynamics of a population.
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Figure 4.1: (a) A graphical overview of ABC-SMC (approximate Bayesian computation
based on sequential Monte Carlo) procedures. (b) Pseudo-code of the ABC-SMC algorithm
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Figure 4.2: ObservedHij in the 7 populations of Trillium camschatcense (population A-G).
Color denotes population
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Figure 4.3: (a) The posterior distributions of demographic rates and population size
estimated from genetic data (Hij). Color represents populationA-G. (b) Life history diagram
of Trillium camschatcense showing which parameter corresponds to which life history
process
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Parameter values estimated from field census data

P
a

ra
m

e
te

r
v
a

lu
e
s

e
s
ti
m

a
te

d
 f
ro

m
 g

e
n
e

ti
c
 d

a
ta

 (
H

ij)

Figure 4.4: The comparison between parameter values estimated from field census data and
those estimated from genetic data (Hij). Dots and bars represent the means and the 95%
Bayesian credible intervals of the posterior distribution. The red diagonal line in each panel
represents x = y
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Figure 4.5: Effective population size estimated from linkage disequilibrium (Ne[LD]) was
compared with effective population size calculated using demographic rates and population
sizeNe[DE]. There are two variants inNe[DE]: those estimated from field census data using
integrated population model (shown in purple), and those estimated from genetic data using
approximate Bayesian computation based on sequential Monte Carlo (shown in green). The
estimated values ofNe[DE] are shown with 95% Bayesian credible interval, WhileNe[LD]
shown with 95% confidential interval
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Table 4.1: Prior distributions of the demographic rates and population size used in ABC-
SMC analysis. Uniform distributions were used for all parameters. Because the sum of s2
and g2, which is the survival rate of stage 2 (1L), should not exceed 1, the upper limit of g2
was set to 1 − s2. Similarly, the sum of r3, s3, and g3 (survival rate of 3L), and that of r4
and s4 (survival rate of FL) were set to range from 0 to 1

Parameter Prior distribution

g0 U(0, 1)

g1 U(0, 1)

s2 U(0, 1)

g2 U(0, 1− s2)

r3 U(0, 1)

s3 U(0, 1− r3)

g3 U(0, 1− r3 − s3)

r4 U(0, 1)

s4 U(0, 1− r4)

N U(0, 1000)

92



Chapter 5

Temporal skewness of pollination success in the spring ephemeral
Trillum camschatcense

Abstract

Phenological overlap with pollinators is crucial for reproductive success in insect-pollinated
plants. In this study, I examined whether pollinator visitation successfully occurred during
an entire flowering season in two populations of the insect-pollinated spring ephemeral
Trillium camschatcense in the Tokachi region of Hokkaido, northern Japan. I bagged flowers
and excluded pollinator visitation during either the first or the last half of the entire flowering
season to compare pollination success between the two periods. The two populations have
experienced differing levels of climatewarming in the last 60 years, which impacted pollinator
visitation. In the population experiencing temperature risemore rapidly, fertilization rate and
seed set decreased sharply when bagged during the first half period, indicating that pollinator
visitation is skewed to the early part of the flowering season. The temporal skewness of
pollination success would be an early warning signal of the impacts of climate warming on
the reproductive success of T. camschatcense.

5.1 Introduction

Climate warming is altering the flowering phenology of many plant species (Root et al.

2003, Walther et al. 2002), particularly in early blooming spring ephemerals that sprout and

flower directly after snowmelt (Fitter and Fitter 2002). Because the phenological response to

rising temperature differs between taxa and species (Parmesan 2007, Post 2019), pollinator

activities does not necessarily shift in synchrony with flowering, potentially resulting in a

temporal mismatch and reduced pollinator visitation (Kudo and Cooper 2019). It is crucial

to evaluate the degree of phenological overlap with pollinators for insect-pollinated spring

ephemeral plants as temperatures continue to rise.
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Trillium camschatcense is an insect-pollinated, long-lived spring ephemeral that sprouts

in mid to late April and flowers in May in temperate deciduous forests. Although most

populations of T. camschatcense in Japan are self-compatible, those in the Tokachi region

of Hokkaido, northern Japan, are self-incompatible and owe seed production completely to

insect pollinators (Ohara et al. 1996). Therefore, a phenological mismatch with pollinators

could be a serious threat to the reproductive success of T. camschatcense.

In this study, I examined whether pollination successfully occurred during a complete

flowering season of Trillium camschatcense at two locations in the Tokachi region, where

long-term temperature datawas available. I hypothesized that pollinationwasmore temporally

limited due to a phenological mismatch at the location experiencing more rapid warming.

5.2 Materials and Methods

5.2.1 Study species

Trillium camschatcense is an understory herb whose primary pollinators are Coleoptera and

Diptera (Tomimatsu and Ohara 2003a). T. camschatcense does not produce inflorescences

made up ofmultiple flowers. Flowering individuals usually have one flowering stem (sometimes

two stems), with one flower and three leaves per stem. T. camschatcense does not compensate

for reproductive failure by producing additional flowers later in the flowering season: the

number of flowers per individual is pre-determined before flowering onset. Most flowering

stems synchronously sprout in April, start anthesis in early May, and finish flowing around

late May to early June. After the flowering season, fruits ripen in July (Ohara and Kawano

2005, Ohara et al. 2006).
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5.2.2 Study Sites

The present study was conducted in two populations located in: Obihiro (inland, 42.802

◦N, 143.103 ◦E) and Hiroo (seacoast, 42.316 ◦N, 143.324 ◦E) (Figure 5.1 (a)). The two

populations were approximately 57 kilometers apart. Obihiro is a remnant forest surrounded

by agricultural lands. Hiroo is a part of a windbreak forest that stretches along the coastline.

The two populations were relatively large for the region in terms of population density and

habitat area (Figures 5.2 and 5.3).

5.2.3 Temperature

I obtained the daily temperature of Obihiro and Hiroo from 1958 to 2019 from the website of

the JapanMeteorological Agency (JMA, https://www.jma.go.jp/jma/index.html). I extracted

the data for April and May, the growing and flowering months of Trillium camschatcense.

For each site, I carried out a linear regression against the mean daily temperature per year,

using year as an explanatory variable.

5.2.4 Flowering phenology and precipitation

In early April 2021, I randomly established two 3 m × 3 m quadrats in each population.

Before flowering onset, I labeled all flowering stems within the quadrats in late April (Figure

5.4a). Flowering stems that sprouted later were labeled right after I noticed their emergence.

I monitored the labeled flowers at an interval of 2 to 11 days. I defined the first and the last day

of the anthesis of each flower as the date on which we first confirmed that the flower became

open/withered. Along with phenological surveys, daily precipitation during the flowering

season in the study year (2021), as well as that in the past years (from 1958 to 2019), was

obtained from the website of the JMA.
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5.2.5 Bagging experiment

I divided the entire flowering period of Trillium camschatcense into two parts, the first half

and last half, and implemented three treatments: (1) the control, in which flowers were left

intact throughout the flowering period; (2) the first half, in which flowers were left intact

during the first half, but then bagged with cellophane bags during the last half, (3) and the

last half, in which flowers were bagged prior to anthesis and then opened during the last half

(Figure 5.4b). The cellophane bags excluded pollinators from flowers. Therefore, comparing

seed production among the three treatments could reveal the relative frequency of pollinator

visitation during an unbagged period.

Before flowering onset, I randomly selected 30 individuals for the first half and the last

half treatments around each 3 m× 3 m quadrat, as well as 30 individuals within the quadrat

for control. Approximately 40 flowers were selected for each treatment in each quadrat.

Flowers for the last half treatment were bagged at that time. Because Trillium camschatcense

in the Tokachi region usually flowers in May and early June, I opened flowers for the last half

treatment but bagged those for the first half treatment within one week from the midpoint

of May (May 16): on May 17 and 22 in Obihiro and Hiroo, respectively (Figure 5.4c). I

measured the length andwidth of a leaf of each flowering stem to account for the confounding

effects of plant size on reproduction.

In early July, I collected fruits and counted the number of unfertilized ovules, fertilized

ovules that did not develop to seeds due to abortion, and seeds (Figure 5.4d). I recorded the

presence/absence of stem injury caused by trampling and herbivory on seeds by caterpillars,

both of which took place before collecting fruits and might have overridden the effects of

bagging treatments by decreasing the number of seeds. I defined “fertilization rate” and
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“seed set” as follows:

fertilization rate =
sum of fertilized ovules and seeds

total sum of ovules and seeds
(5.1)

seed set =
sum of seeds

total sum of ovules and seeds
(5.2)

I constructed a generalized linear mixed model (GLMM) with binomial error and logit link

for fertilization rate and seed set, using the function “glmer” in the R package “lme4” (Bates

et al. 2015). Models were separately constructed for Obihiro and Hiroo. For each response

variable, I incorporated the treatment, size (= leaf length × leaf width), presence/absence

of herbivory and stem injury as fixed effects, and individual and quadrat as random effects.

I carried out a multiple comparison test for treatment by a Tukey method with Benjamini-

Hochberg correction, using the R package “multcomp” (Hothorn et al. 2008).

5.3 Results

5.3.1 Temperature

The mean daily temperature of April and May in Obihiro significantly increased from 1958

to 2019 at a rate of 0.021 ◦C per year (P = 0.005, Figure 5.1b). Although the temperature

in Hiroo was also rising, the rate of 0.012 ◦C per year was not statistically significant (P =

0.106), indicating that Obihiro was experiencing more rapid warming compared to Hiroo.

5.3.2 Flowering phenology and precipitation

In the four quadrats used for phenological survey (two in each population), all flowers continued

anthesis across the first and the last half period, depicting unimodal trajectories (Figure

5.5a). The timing of the onset, the peak, and the end of flowering was earlier overall in
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Obihiro than in Hiroo. Daily precipitation of the study year (2021), as well as the average

daily precipitation over the past 60 years (1958-2019), mostly remained low throughout the

flowering period in both sites (Figure 5.5b).

5.3.3 Bagging experiment

The fertilization rate of the last half treatment was lower than that of control and first half

treatment in Obihiro (Figure 5.6a). On the other hand, there were no significant differences

among the three treatments in Hiroo (Figure 5.6b). The seed set followed the same pattern as

the fertilization rate: the last half treatment was significantly lower than the others in Obihiro

(Figure 5.6c), while no significant differences were detected in Hiroo (Figure 5.6d).

5.4 Discussion

In Obihiro, the last half treatment decreased both fertilization rate and seed set, while the

first half treatment was comparable to the control (Figure 5.6a, c), suggesting that pollinators

mostly visited flowers during the first half period, and that pollinator visitationwas infrequent

during the last half. On the other hand, inHiroo, neither bagging treatment caused reproductive

failure compared to the control (Figure 5.6b, d), indicating that pollinators actively visited

flowers during the entire flowering period.

Pollinator scarcity during the last half period in Obihiro may be a result of climate

warming. Temperature rise was more pronounced in Obihiro than in Hiroo (Figure 5.1b).

Because phenological advance in response to warming is generally slower in plants than

in other taxa (Parmesan 2007, Post 2019), T. camschatcense may not have caught up with

the accelerating phenology of pollinators during the 60 years of rapid temperature rise.

Another possibility is pollinator-mediated plant-plant competition (Rathcke 1983), in which
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the flowering onset of other plant species that had formerly flowered after T. camschatcense

advanced and overlapped with the last half period. I think it is less likely because the

study sites were thoroughly dominated by T. camschatcense during its flowering period, and

no other species appeared to compete evenly (Figure 5.3). Considering that precipitation

remained low throughout the flowering season (Figure 5.5b), it was also unlikely that precipitation

specifically inhibited pollinator visitation during the last half period in Obihiro.

There are some remaining issues to be solved in future studies. Firstly, the seed set was

lower than the fertilization rate (Figure 5.6c, d), indicating not all fertilized ovules acquired

enough resources to become seeds (i.e., resource limitation). A pollen supplementation

experiment is necessary to examine if the lowered reproductive success during the last half

period in Obihiro could be entirely attributed to reduced pollination or could be partly caused

by resource limitation as well. Secondly, the pollinating fauna of Obihiro is not completely

the same as that of Hiroo at a species level (Tomimatsu and Ohara 2003a). Considering the

species-specific phenological shifts under climate warming (Parmesan 2007, Post 2019),

not only do the trends of temperature rise but the pollinators’ response might be essentially

different between the two populations. Direct observation of pollinating insects will help

reassess the temporal skewness of visitationwith special attention to pollinator species composition.

This study reported the possibility of a phenological mismatch in Trillium camschatcense

with their pollinators. While habitat fragmentation has been considered the primary threat

to reproductive success in T. camschatcense in the Tokachi region (Tomimatsu and Ohara

2002), phenological mismatches with pollinators have not been explored. The impacts of

the temporal skewness of pollination success on reproductive success should be further

examined in future studies.
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Figure 5.1: (a) The location of the Tokachi region (gray) and the two studied populations:
Obihiro and Hiroo in the Tokachi region of Hokkaido. (b) Mean daily temperature in April
and May from 1958 to 2019 at Obihiro city (dark) and Hiroo town (light). Regression lines
and their 95 % confidence intervals are shown. Solid and dotted lines indicate significant
and non-significant effects of year, respectively
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Figure 5.2: In May 2018, we selected 24 Trillium camschatcense populations in the
Tokachi region. We established one to three 5 m × 5 m quadrats in each population and
recorded the number of flowering individuals within the quadrats. We found a significant
positive correlation between the logarithm of habitat area and flowering density (correlation
coefficient = 0.602, P = 0.002). The two study sites, Obihiro and Hiroo, were relatively large
compared to the other populations
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(a) (b)

Figure 5.3: The study sites during the flowering season. a: Obihiro; b: Hiroo. One flower
of Trillium camschatcense consists of three white petals, forming a white triangular shape.
In both sites, flowering individuals of T. camschatcense distributed thoroughly on the forest
floor
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Figure 5.4: (a) Flower buds were labeled by attaching number tags to stems. (b) A schematic
view of the three treatments of the bagging experiments. Translucent circles overlaid on
flowers stand for cellophane bags, which keep pollinators away from flowers. (c) Individuals
bagged with cellophane bags. Left and right images show first- and last-half treatment,
respectively. (d) Three types of ovule/seed in fruits. A: an unfertilized ovule; B: a fertilized
ovule that did not developed to seed; C: a mature seed
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Figure 5.5: (a) Flowering phenology of the four quadrats: two in Obihiro (dark) and in Hiroo
(light), respectively. The intervals between observations (dots) are connected by straight
lines. Two quadrats in the same population are distinguished by the shape of dots. Dotted
vertical lines show the turning point days on which bagging was ceased in the last-half
treatment but was applied to the first-half instead. We labeled all flowering stems on the
first observation day. As for the two quadrats in Obihiro, 71 and 106 individuals with 98 and
141 flowers were found in each, while 54 and 70 individuals with 62 and 79 flowers were
found in Hiroo. In each quadrat, only one or two flowering stems sprouted later than the first
observation (in Obihiro 1, one stem on May 10; in Obihiro 2, two on May 10; in Hiroo 1,
one on May 11; in Hiroo 2, one on May 15). We confirmed the start of anthesis for these
delayed flowers on the same day as we first noticed their sprouting. (b) Daily precipitation
during flowering period. Two solid lines represent precipitation in the study year (2021) in
Obihiro (dark) and Hiroo (light). Two dotted lines represent the average from 1958 to 2019
in Obihiro (dark) and Hiroo (light). Precipitation remained low during flowering season in
the study year, which was the same as in the past years
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Figure 5.6: Fertilization rate (a and b) and seed set (c and d) of the three treatments in
Obihiro and Hiroo: control (unbagged), first half (bagged during the last half of the flowering
period), and last half (bagged during the first half). Significant difference was detected for
pairs marked with different letters in each panel (significance level = 0.05). No letters are
assigned when there were no significantly different pairs
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Chapter 6

General discussion

6.1 The genetic effectiveness of life history in perennial plant populations

In Chapter 2, I derived the theoretical model that describes demographic genetic structure

in stage-structured plant populations. Analyzing the model, I showed that life history stages

with high static and retrogressive inflows accumulated genetic diversity compared to the

other stages, and that slow growth and prolonged lifespan contributed to maintaining genetic

diversity over time. The effects of life history were concealed by large population size:

genetic diversitywasmaintained regardless of life history under large population size. Although

previous studies revealed that particular life history characteristics, such as long generation

time, contributed the maintenance of genetic diversity (Aparicio et al. 2012, Austerlitz and

Garnier-Géré 2003, Hamrick and Godt 1996, Loveless and Hamrick 1984), the conditions

on which the effects of life history was crucial to genetic diversity remained unclear. My

theoretical analysis revealed that stasis and retrogression were the key demographic process

for delaying generation turnover and accumulating genetic diversity under a small population

size (Figure 2.8). Besides, the results that the contribution of life history to maintaining

genetic diversity becomes apparent under small population size highlights the importance

of considering life history processes for evaluating genetic diversity in anthropogenically

impacted small populations.

In Chapter 3, I applied the theoretical model to the small fragmented populations of
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the understory perennial herb Trillium camschatcense in the Tokachi region, Hokkaido. I

estimated demographic rates and population size by the four years of field census survey,

and the estimated values were subsequently substituted to the model to obtain the theoretical

prediction of demographic genetic structure. The theory predicted no apparent difference

in genetic diversity among stage classes, indicating that the estimated population size N

was still large enough to obscure the effects of life history despite being fragmented and

downsized. However, empirical genetic analysis using ddRAD-seq technique revealed that

the theoretical expectation did not match the real demographic genetic structure. Genetic

diversity varied significantly among life history stages, with 3L stage possessed higher genetic

diversity than the others (Figure 3.10).

The discrepancy between observation and theoretical prediction is not special to the

present study, and has been continually on the agenda in the long history of population

genetics. Lewontin et al. (1974) pointed out that the observed genetic variation was much

more narrower among species than expected from the large variation in census population

size (Lewontin’s paradox). The explanation of this paradox has been sought for years (Bobay

and Ochman 2018, Buffalo 2021, Ellegren and Galtier 2016, Filatov 2019, Romiguier et al.

2014), and one flagship solution is to consider “effective” population size (Ne), which is the

size of the ideal discrete-generation population that can explain the observed level of genetic

diversity in parallel to the real population size. The term “effective” implies that the real

number of individuals, which is estimated by the census, is merely an apparent population

size and is ineffective in explaining genetic dynamics per generation. Effective population

size is usually far smaller than census population size (Frankham 1995, Leffler et al. 2012),

because wild populations violate the assumptions of the theoretical model such as constant

population size, random mating, and the even sex ratio (Peart et al. 2020).
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In analogous to the concept of effective population size, I propose the concept of “genetically

effective life history” to account for the observed demographic genetic structure. In Chapter

4, I inversely estimated demographic rates and population sizeN from the observed genetic

data, which turned out to be different from those estimated from the field census data (Figure

4.4). What deviates from the effective population in this study from the conventional effective

population size (Ne) is that this study evaluated the effectiveness in the form of stage-

structured populations with overlapping generation using the model developed in Chapter

2, not in the form of the discrete-generation population which was parameterized only by

population size. Therefore, the effective population in this study enables us to estimate

genetically effective stage-specific demographic rates and compare themwith those estimated

from the census. The discrepancy between the two might indicate that not only population

size but also the overall lifetime trajectory from birth to death should be evaluated through the

lens of genes, not through the lens of real individuals, when understanding genetic diversity

of stage-structured populations.

Considering the small size of the genetically effective population compared to that of

the census-based estimated values (Figure 4.4), the largeness of population size would only

slightly contributed to the maintenance of genetic diversity while life history might play an

important role in the fragmented Trillium camschatcense populations. Therefore, merely

maintaining the number of individuals may be insufficient in the conservation of genetic

diversity, and we also have to pay attention to whether the whole life history process from

birth to death is going as usual as undisturbed conditions.
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6.2 Trade-off between maintaining genetic diversity and rapid evolution

In Chapter 5, I showed that there is a temporal skewness of pollination success in Trillium

camschatcense in the Tokachi region. In Obihiro, in which relatively rapid climate warming

is taking place, successful pollination that contributed to seed set was concentrated during

the first-half period of the entire flowering season (Figure 5.6), indicating that phenological

overlap with its pollinators is temporally limited to the first-half period. The cause of the

temporal skewness might be the ongoing climate warming, which is known to provoke

phenologicalmismatch betweenmutually interacting plants and pollinators. Flowering phenology

of Trillium species is considered to be a trait under selection (Barfield et al. 2011, Knight

2004, Knight et al. 2008), and the ongoing climate change might work as a selection pressure

to facilitate phenological advance in the fragmented T. camschatcense populations. Genetic

diversity could play an important role in immediate and successful adaptation to climate

change.

It should be noted, however, that high genetic diversity does not necessarily result in

successful rapid adaptation. Maintaining genetic diversitymeans that the potential of adaptive

evolution increases on one hand, but it also means that not only adaptive genes but also

non-adaptive ones are more likely to be maintained on the other hand (Orive et al. 2017,

Yamamichi et al. 2019). In other words, life history strategies that can maintain high genetic

diversity can be poor at rapid adaptation. Both high genetic diversity and rapid adaptation

are required for successful evolutionary rescue, and the lack of either of the two requirements

threatens population viability. Previous studies showed that life history with dormant stages,

such as seed bank, leads to the accumulation of both adaptive and non-adaptive individuals,

and slows down the speed of adaptation, resulting in the collapse of the population in some
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conditions (Yamamichi et al. 2019).

Therefore, the trade-off betweenmaintaining genetic diversity and promoting rapid evolution

should be considered when evaluating viable life history strategies under environmental

changes. Viability along the fast-slow continuum of life history can change in response to the

mode of environmental changes, including the speed (abrupt or gradual), the stochasticity,

the frequency, and the intensity: the more stable population size is, the less necessary it

is to hurry up the population recovery, and thus long-lived life histories (i.e., the strategies

with high genetic diversity and slow adaptation) might be favored. Adaptive evolution from

standing genetic variation and the subsequent population persistence in stage-structured

populations, especially those with high stasis and retrogressive characteristics, is awaited

to be further examined under various scenarios of environmental changes in future studies.

6.3 Concluding remarks

In this dissertation, I showed the complex relationships between life history and genetic

diversity in stage-structured perennial plant populations, which was not appreciated until

recently. Charlesworth (1994), which is the pioneering textbook on the evolution in age-

structured populations, argues as follows:

“So far, such models [stage-structured models] have had little application to

population genetics and life-history evolution. This is partly due to the difficulty

of providing concise descriptions of evolutionary dynamics with these models,

and in part to the fact that they fail to include any direct effect of age on survival

and fecundity. They will not be considered further in this book.” (p. 11)

Stage-structured plant life histories are indeed complex and sometimes difficult to handle.

Contrary to most animals whose life history is age-dependent, individuals do not simply
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grow and reproduce with increasing age but also stay in the same stage for successive years

and retrogress to more juvenile stages. In Chapter 2, However, I showed that stasis and

retrogression, which are the emergent properties of stage-structured life histories, are the

key drivers of maintaining genetic diversity. Besides, it is acknowledged that the survival

and reproduction of plants usually do not show age-dependent changes over the course of

life (Jones et al. 2014) and are more subjected to developmental stage (Silvertown 1987).

Considering these things, there is no reason to look away from the stage-structured plant

life histories. Together with the recent theoretical achievements (Barfield et al. 2011, Cotto

et al. 2020), this study is a promising step towards the understanding of the genetic and

evolutionary dynamics of plant populations.

In evolutionary ecology, the life cycle as a whole is considered to be a trait of evolution

(Cole 1954), and life history strategy has been studied for its evolutionary background (Stearns

1992). The fact that life history affects genetic diversity (i.e., the potential capacity of future

adaptation) indicates that life history is one of the determinants of evolvability (Riederer

et al. 2022) and serves not only as a target but also a driver of adaptive evolution. The

bilateral aspect of life history might be a key factor in driving the chains of evolution in

biological populations. The genetic and evolutionary consequences of life history, which

are shown in my dissertation, would contribute to elucidating the possible roles life history

play in evolutionary ecology.
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Chapter A1

Appendix of chapter 2

A1.1 Model development

A1.1.1 Formulation of Hij,t

As explained in the main text, Hij,t is split into six subsets:

Hij,t =Hij,t|1∩A∩α +Hij,t|1∩A∩β +Hij,t|1∩A∩γ

+Hij,t|1∩B∩α +Hij,t|1∩B∩β +Hij,t|1∩B∩γ , (A1.1)

where Hij,t|X∩Y ∩Z stands for Hij,t under the concurrence of case X, Y, and Z (X = 1, 2;
Y = A,B; Z = α, β, γ).

We define sub-stage ims and imr, which consist of individuals transferred from stage
m to i by survival and by reproduction, respectively. Each Hij,t|1∩A∩Z can be formulated
usingHimsjms,t (case 1∩A∩α),Himsjmr,t,Himrjms,t (case 1∩A∩β), andHimrjmr,t (case
1 ∩A ∩ γ) weighted by the corresponding number of two-gene pairs.

Hij,t|1∩A∩α =
n∑

m=1

NimsNjms

NiNj
Himsjms,t (A1.2)

Hij,t|1∩A∩β =

n∑
m=1

(
NimsNjmr

NiNj
Himsjmr,t +

NimrNjms

NiNj
Himrjms,t

)
(A1.3)

Hij,t|1∩A∩γ =
n∑

m=1

NimrNjmr

NiNj
Himrjmr,t. (A1.4)

Here,Nims andNjms denote the number of individuals in sub-stage ims and jms, respectively.
As for case 1 ∩A ∩ α, two genes, each sampled from stage i and j, belong to sub-stage ims

and jms with the chance of 2Nims
2Ni

× 2Njms
2Nj

. The number of genes is twice as many as that of

individuals because we assume diploid species. Thus, Himsjms,t is weighted by NimsNjms
NiNj

,
as shown in equation A1.2 . Case 1∩A∩ β (equation A1.3 ) and 1∩A∩ γ ( equation A1.4
) are similarly formulated.

In the concurrence of case 1, A, and α, two genes, each sampled from sub-stage ims

and jms, cannot be the same gene because one gene in stage m in year t − 1 could not
move to both stage i and j simultaneously by survival. Therefore, Himsjms,t is equal to the
probability that two genes randomly sampled from stage m “without” replacement in time
t− 1 are not identical-by-descent.

Here, we define H ′
ij,t as the probability that two genes sampled from stage i and j
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“without” replacement in time t are non-identical-by-descent. BecauseHimsjms,t is equal to
H ′

mm,t−1 in case 1∩A∩α, we formulateH ′
mm,t−1. When sampling two genes from stagem

with replacement in year t− 1, the same gene can be sampled twice with the probability of
1

2Nm
× 1

2Nm
×2Nm = 1

2Nm
, which makes no contribution toHmm,t−1. Therefore,Hmm,t−1

can be formulated as follows.

Hmm,t−1 =
1

2Nm
× 0 +

(
1− 1

2Nm

)
×H ′

mm,t−1 (A1.5)

As a result, H ′
mm,t−1 is obtained.

Himsjms,t = H ′
mm,t−1 =

1

1− 1/(2Nm)
Hmm,t−1 (A1.6)

Unlike transfer by survival, transfer by reproduction allows the same gene tomovemultiple
pathways simultaneously, because genes are replicated. In the case of 1∩A∩β and 1∩A∩γ,
sampling in year t does not preclude the chance of sampling the same gene twice, because
at least one of the two genes are transferred by reproduction. Therefore,

Himsjmr,t = Himrjms,t = Himrjmr,t = Hmm,t−1 (A1.7)

The number of genes in each sub-stage is given by

Nims = timNm (A1.8)

Njms = tjmNm (A1.9)

Nimr = fimNm (A1.10)

Njmr = fjmNm. (A1.11)

Substituting equations A1.6 -A1.11 to equations A1.2 -A1.4 ,

Hij,t|1∩A∩α =

n∑
m=1

{
timtjmN2

m

NiNj
× 1

1− 1/(2Nm)
Hmm,t−1

}
(A1.12)

Hij,t|1∩A∩β =
n∑

m=1

{
(timfjm + fimtjm)N2

m

NiNj
×Hmm,t−1

}
(A1.13)

Hij,t|1∩A∩γ =

n∑
m=1

(
fimfjmN2

m

NiNj
×Hmm,t−1

)
. (A1.14)

As for Hij,t|1∩B∩Z (Z = α, β, γ), two genes, each sampled from stage i and j in time
t, were in stage k and l, or in stage l and k, in year t − 1 respectively. In either situation,
the probability of non-identical-by-descent remains the same as that in year t− 1, which is
Hkl,t−1, regardless of whether they were transferred only by survival (case 1∩B ∩α), both
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by survival and by reproduction (case 1∩B ∩ β), or only by reproduction (case 1∩B ∩ γ).

Hij,t|1∩B∩α =

n∑
k=1

n∑
l>k

(
NiksNjls

NiNj
Hiksjls,t +

NilsNjks

NiNj
Hilsjks,t

)

=

n∑
k=1

n∑
l>k

(
tiktjlNkNj

NiNj
Hkl,t−1 +

tiltjkNkNj

NiNj
Hkl,t−1

)

=

n∑
k=1

n∑
l>k

{
(tiktjl + tiltjk)NkNj

NiNj
Hkl,t−1

}
(A1.15)

Hij,t|1∩B∩β =

n∑
k=1

n∑
l>k

(
NiksNjlr

NiNj
Hiksjlr,t +

NikrNjls

NiNj
Hikrjls,t

+
NilsNjkr

NiNj
Hilsjkr,t +

NilrNjks

NiNj
Hilrjks,t

)
=

n∑
k=1

n∑
l>k

(
tikfjlNkNl

NiNj
Hkl,t−1 +

fiktjlNkNl

NiNj
Hkl,t−1

+
tilfjkNkNl

NiNj
Hkl,t−1 +

filtjkNkNl

NiNj
Hkl,t−1

)
=

n∑
k=1

n∑
l>k

{
(tikfjl + fiktjl + tilfjk + filtjk)NkNl

NiNj
Hkl,t−1

}
(A1.16)

Hij,t|1∩B∩γ =
n∑

k=1

n∑
l>k

(
NikrNjlr

NiNj
Hikrjlr,t +

NilrNjkr

NiNj
Hilrjkr,t

)

=

n∑
k=1

n∑
l>k

(
fikfjlNkNj

NiNj
Hkl,t−1 +

filfjkNkNj

NiNj
Hkl,t−1

)

=

n∑
k=1

n∑
l>k

{
(fikfjl + filfjk)NkNj

NiNj
Hkl,t−1

}
(A1.17)

Substituting equations A1.12 -A1.17 to equation A1.1 , we can formulate Hij,t as
follows.

Hij,t =
n∑

m=1

{
timtjmN2

m

NiNj
× 1

1− 1/(2Nm)
+

(timfjm + fimtjm)N2
m

NiNj

fimfjmN2
m

NiNj

}
Hmm,t−1

+
n∑

k=1

n∑
l>k

{
(tiktjl + tiltjk)NkNl

NiNj
+

(tikfjl + fiktjl + tilfjk + filtjk)NkNl

NiNj

+
(fikfjl + filfjk)NkNl

NiNj

}
Hkl,t−1

=
n∑

m=1

N2
m

NiNj

{
timtjm

1− 1/(2Nm)
+ fimtjm + timfjm + fimfjm

}
Hmm,t−1
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+

n∑
k=1

n∑
l>k

NkNl

NiNj
((tik + fik)(tjl + fjl) + (til + fil)(tjk + fjk))Hkl,t−1.

=

n∑
m=1

N2
m

NiNj

{
timtjm

1− 1/(2Nm)
+ fimtjm + timfjm + fimfjm

}
Hmm,t−1

+

n∑
k=1

n∑
l>k

NkNl

NiNj
(aikajl + ailajk)Hkl,t−1. (A1.18)

A1.1.2 Formulation of Hii,t

Hii,t is split into mutually exclusive six subsets:

Hii,t =Hii,t|2∩A∩α +Hii,t|2∩A∩β +Hii,t|2∩A∩γ

+Hii,t|2∩B∩α +Hii,t|2∩B∩β +Hii,t|2∩B∩γ , (A1.19)

Considering which sub-stages two genes are sampled from, we can formulate the six Hii,t

on the right side of equation A1.19 .

Hii,t|2∩A∩α =

n∑
m=1

{(
Nims

Ni

)2

Himsims,t

}

=

n∑
m=1

{(
timNm

Ni

)2

Himsims,t

}
(A1.20)

Hii,t|2∩A∩β =

n∑
m=1

(
NimsNimr

N2
i

Himsimr,t +
NimrNims

N2
i

Himrims,t

)

=

n∑
m=1

(
2NimsNimr

N2
i

Himsimr,t

)

=

n∑
m=1

(
2timfimN2

m

N2
i

Himsimr,t

)
(A1.21)

Hii,t|2∩A∩γ =
n∑

m=1

{(
Nimr

Ni

)2

Himrimr,t

}

=

n∑
m=1

{(
fimNm

Ni

)2

Himrimr,t

}
(A1.22)

Hii,t|2∩B∩α =
n∑

k=1

n∑
l>k

(
NiksNils

N2
i

Hiksjls,t +
NilsNiks

N2
i

Hilsjks,t

)

=

n∑
k=1

n∑
l>k

(
2NilsNiks

N2
i

Hilsjks,t

)

=

n∑
k=1

n∑
l>k

(
2tiktilNkNl

N2
i

Hilsjks,t

)
(A1.23)
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Hij,t|2∩B∩β =

n∑
k=1

n∑
l>k

(
NilsNikr

N2
i

Hikrils,t +
NikrNils

N2
i

Hikrils,t

+
NiksNilr

N2
i

Hiksilr,t +
NilrNiks

N2
i

Hiksilr,t

)
=

n∑
k=1

n∑
l>k

(
2NikrNils

N2
i

Hikrils,t +
2NiksNilr

N2
i

Hikrils,t

)

=

n∑
k=1

n∑
l>k

(
2fiktilNkNl

N2
i

Hikrils,t +
2tikfilNkNl

N2
i

Hiksilr,t

)
(A1.24)

Hii,t|2∩B∩γ =

n∑
k=1

n∑
l>k

(
NikrNilr

N2
i

Hikrjlr,t +
NilrNikr

N2
i

Hilrjkr,t

)

=

n∑
k=1

n∑
l>k

(
2NilrNikr

N2
i

Hilrjkr,t

)

=

n∑
k=1

n∑
l>k

(
2fikfilNkNl

N2
i

Hilrjkr,t

)
(A1.25)

As in the case ofHimsims,t, two genes are sampled from sub-stage ims with replacement.
Because all genes in sub-stage ims were transferred by survival from stagem, sub-stage ims

consist of genes that were randomly sampled 2timNm times ’without’ replacement from
stagem. Therefore, the probability of sampling two genes that are non-identical-by-descent
without replacement should remain the same between stage m in year t − 1 and sub-stage
ims in year t (i.e., H ′

mm,t−1 = H ′
imsims,t

). As with equation A1.5 , Himsims,t is formulated
as follows.

Himsims,t =
1

2timNm
× 0 +

(
1− 1

2timNm

)
×H ′

imsims,t, (A1.26)

From equations A1.5 and A1.26 ,

H ′
imsims,t = H ′

mm,t−1

Himsims,t =
1− 1/(2timNm)

1− 1/(2Nm)
Hmm,t−1. (A1.27)

It should be noted that Himsims,t should not be equal to Hmm, t− 1. Two genes are always
sampled from a common subset of stagem (i.e, sub-stage ims), which means that two genes
are not sampled from separate and independent surrogates of stage m of the previous year.
Therefore, sampling two genes from sub-stage ims with replacement is not equivalent to that
from stage m with replacement. Unlike Himsims,t, Himsimr,t should be equal to Hmm,t−1,
because sub-stage ims and imr, from which two genes are sampled, are independently
formed from stage m.

Himsimr,t = Hmm,t−1 (A1.28)
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In the case of Himrimr,t, the sources of two genes sampled are the same (i.e., sub-stage
imr) and thus are not independent surrogates of stage m of the previous year, as with the
case of Himsims,t. Sampling the same gene twice occurs with the probability of 1

2fimNm
,

which makes no contribution to Himrimr,t. In the remaining conditions where the two
genes are sampled without replacement, the two genes are not identical-by-descent with
a chance ofHmm,t−1 because sub-stage imr were formed by reproduction, or sampling with
replacement. Therefore, Hmm,t−1 is discounted by the fraction of 1

2fimNm
.

Himrimr =

(
1− 1

2fimNm

)
Hmm,t−1 (A1.29)

In the case of Hiksils,t, Hiksilr,t, Hikrils,t, and Hikrilr,t, two genes are sampled from
independent subset or copy of stage k and l of the previous year. Therefore,

Hiksils,t = Hiksilr,t = Hikrils,t = Hikrilr,t = Hkl,t−1 (A1.30)

Substituting equations A1.27 -A1.30 to equations A1.20 -A1.25 ,

Hii,t|2∩A∩α =

n∑
m=1

{(
timNm

Ni

)2

× 1− 1/(2timNm)

1− 1/(2Nm)
Hmm,t−1

}

Hii,t|2∩A∩β =

n∑
m=1

(
2timfimN2

m

N2
i

×Hmm,t−1

)

Hii,t|2∩A∩γ =

n∑
m=1

{(
fimNm

Ni

)2

×
(
1− 1

2fimNm

)
Hmm,t−1

}

Hii,t|2∩B∩α =

n∑
k=1

n∑
l>k

(
2tiktilNkNl

N2
i

×Hkl,t−1

)

Hii,t|2∩B∩β =

n∑
k=1

n∑
l>k

{
2(tikfil + fiktil)NkNl

N2
i

×Hkl,t−1

}

Hii,t|2∩B∩γ =

n∑
k=1

n∑
l>k

(
2fikfilNkNl

N2
i

×Hkl,t−1

)
. (A1.31)

Substituting equations A1.31 to A1.19 , we can formulate Hii,t.

Hii,t =
n∑

m=1

{(
timNm

Ni

)2 1− 1/(2timNm)

1− 1/(2Nm)
+

2timfimN2
m

N2
i

+

(
fimNm

Ni

)2(
1− 1

2fimNm

)}
Hmm,t−1

+
n∑

k=1

n∑
l>k

2(tiktil + tikfil + fiktil + fikfil)NkNl

N2
i

Hkl,t−1
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=

n∑
m=1

{(
timNm

Ni

)2 1− 1/(2timNm)

1− 1/(2Nm)
+

2timfimN2
m

N2
i

+

(
fimNm

Ni

)2(
1− 1

2fimNm

)}
Hmm,t−1

+
n∑

k=1

n∑
l>k

2aikailNkNl

N2
i

Hkl,t−1. (A1.32)

A1.1.3 Definition of generation time T

We use generation time T to formulate effective population size Ne. Here, we explain the
definition of generation time.

Firstly, we decompose the population projection matrix into two: U matrix, which is
made up of tij and describes the survival process, and F matrix, which is made up of stage-
specific fecundity fij . In the case of the two-stage model,(

t11 t12 + f12

t21 t22

)
=

(
t11 t12

t21 t22

)
+

(
0 f12

0 0

)
= U + F . (A1.33)

In the case of the three-stage model, t11 0 f13

t21 t22 t23

0 t32 t33

 =

 t11 0 0

t21 t22 t23

0 t32 t33

+

 0 0 f13

0 0 0

0 0 0

 = U + F . (A1.34)

By multiplying U matrix x times, we can obtain transition probabilities per x years. In
the case of the two-stage model,

Ux =

(
t11 t12

t21 t22

)x

=

(
ũ11 ũ12

ũ21 ũ22

)
. (A1.35)

Here, ũ11 and ũ21 are the probabilities that an individual in stage 1 remain in stage 1, or
move to stage 2, after x years, respectively. Now, we can formulate age-specific survival
rate lx, which denotes the probability of a newborn individual to survive until age x, and
age-specific fecundity mx, which is a expected number of newborns that an individual of
age x can make.

lx = ũ11 + ũ21 (A1.36)

mx = 0× ũ11
ũ11 + ũ21

+ f12 ×
ũ21

ũ11 + ũ21
. (A1.37)
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In the case of the three-stage,

Ux =

 t11 0 0

t21 t22 t23

0 t32 t33


x

=

 ũ11 ũ12 ũ13

ũ21 ũ22 ũ23

ũ31 ũ32 ũ33

 (A1.38)

lx = ũ11 + ũ21 + ũ31 (A1.39)

mx = f13 ×
ũ31

ũ11 + ũ21 + ũ31
. (A1.40)

Then, we formulate generation time (T ) as the expected age of a parent of a cohort.

T =

∑xmax
x=1 xlxmx∑xmax
x=1 lxmx

, (A1.41)

where xmax is the maximum age defined as the age at which either of the two criteria (quoted
from Waples et al. (2013)) is satisfied.

1. oldest age for which lx was ≥ 1 % of the value at age at maturity (Lα)

2. oldest age for which the product lxvx was ≥ 1 % of the maximum lxvx for any age,
where vx is the reproductive value of an individual of age x

Equation A1.41 is exactly the mean age of net fecundity in the cohort (Carey and Roach
2020).

A1.2 How to determine parameter values

We randomly produced 500 parameter sets for each of the two- and the three-stage model
for simulation and model analysis. Here, we explain how we determined the values of each
parameter (demographic rates and the number of individuals in each stage).

Step 1 We draw four random numbers from the uniform distribution U(0, 1) for the two-
stage model. In the case of the three-stage model, six random numbers are drawn from
the same uniform distribution.

Step 2 We rearrange the random numbers in an increasing order.

Step 3 Wemultiply the randomnumbers by 100, and round them off to be integers. Moreover,
we add 0 and 100 to the sequences.

Step 4 We take the difference between the neighboring numbers: we subtract each number
from its next smaller one. As a result, five and seven numbers are generated for the
two-stage and the three-stage models, respectively.

Step 5 Each number is assigned to one of the demographic processes (i.e., growth, stasis,
retrogression, and reproduction) of each stage. As for the two-stage model, the first
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to fifth numbers are assigned to (1) stasis at juvenile, (2) growth from juvenile to
adult, (3) retrogression from adult to juvenile, (4) stasis at adult, and (5) reproduction,
respectively. In the case of the three-stage model, seven numbers are sequentially
assigned to (1) stasis at seed, (2) growth from seed to juvenile, (3) stasis at juvenile,
(4) growth from juvenile to adult, (5) retrogression from adult to juvenile, (6) stasis at
adult, and (7) reproduction.

Step 6 We calculate the number of individuals of each stage as the sum of flows coming
into each stage.

Step 7 Wecalculate demographic rates by dividing the number of individuals of corresponding
flows by that of the stages from which the flows come out.

Step 8 Weassess if the parameter values calculated in step 7 completely satisfy the following
three criteria. If they do, the values are added to the parameter sets. If not, the values
are discarded and we restart the procedures from Step 1.

1. Growth probability and fecundity should be greater than 0, otherwise the life
cycle would be broken off.

2. Survival probability of each stage (i.e., sum of growth, stasis, and retrogression
probabilities of each stage) is within the range of [0, 1] to be a probability.

3. At least one stasis probability is not zero, otherwise genes in different stages do
not mix with one another and are segregated eternally.

Step 9 We repeated Step 1 to 8 until the number of parameter sets reached 500.

The resultant parameter sets range the parameter space widely both for the two-stage and
for the three-stagemodels, indicating that ourmodel is examined for a variety of demographic
strategies (Figure A1).
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t11

t21

t12

t22

f12

t11

t21

t22

t32

t23

t33

f13

(a) Two-stage model

(b) Three-stage model

Figure A1: The 500 parameter sets used in simulation and model analysis. One dot
corresponds to one parameter set. (a) Two-stage model, (b) three-stage model. There are
some parameter pairs where the dots occupy only the lower-left triangle (e.g., t11 and t21 in
(a); t22 and t32 in (b)). This is because of the second criterion in step 8, that is, their sum
should not exceed 1
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A1.3 Additional results

A1.3.1 Validation of our model

(a) Two-stage model, N = 500 (b) Three-stage model, N = 500
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(c) Two-stage model, N = 1000 (d) Three-stage model, N = 1000

Theoretical expectation (η)

Figure A2: Comparison between the theoretical expectation of the annual change rate of
the probability of non-identical-by-descent (η) and the simulation results of that of expected
heterozygosity (rt) when N =500 and 1000 for both the two- and the three-stage model.
(a) Two-stage model, N = 500, (b) three-stage model, N = 500, (c) two-stage model,
N = 1000, (d) three-stage model, N = 1000. Vertical bars represent standard error of rt.
The red lines indicate rt = η
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(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model

Theoretical expectation (log(Hii,t ∕ Hjj,t))
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Figure A3: Comparison of demographic genetic structure between theoretical expectation
(log(Hii,t/Hjj,t)) and simulation results (log(Ĥii,t/Ĥjj,t)) whenN =500 for both the two-
and the three-stage model. (a) i = 1, j = 2, two-stage model, (b)i = 1, j = 2, three-stage
model, (c) i = 2, j = 3, three-stage model, (d) i = 1, j = 3, three-stage model. Vertical
bars represent standard error of rt. The red lines indicate log(Hii,t/Hjj,t)=log(Ĥii,t/Ĥjj,t)
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(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model

Theoretical expectation (log(Hii,t ∕ Hjj,t))
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Figure A4: Comparison of demographic genetic structure between theoretical expectation
(log(Hii,t/Hjj,t)) and simulation results (log(Ĥii,t/Ĥjj,t)) whenN =1000 for both the two-
and the three-stage model. (a) i = 1, j = 2, two-stage model, (b)i = 1, j = 2, three-stage
model, (c) i = 2, j = 3, three-stage model, (d) i = 1, j = 3, three-stage model. Vertical
bars represent standard error of rt. The red lines indicate log(Hii,t/Hjj,t)=log(Ĥii,t/Ĥjj,t)
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Figure A5: Graphical comparison of temporal dynamics of expected heterozygosity between
theoretical expectation (i.e., dynamics of Hij,t) and simulation results (i.e., dynamics of
Ĥij,t) under a particular parameter set in the two- and the three-stage model. Colors stand for
combinations of i and j. (a) Theoretical expectations and (b) simulation results of the two-
stage model, (c) theoretical expectations and (d) simulation results of the three-stage model.
Parameter set of the two-stage model is t11 = 0.115, t21 = 0.750, t12 = 0.333, t22 =

0.188, f12 = 0.625, N1 = 52, N2 = 48, while that of the three-stage model is t11 =

0.476, t21 = 0.405, t22 = 0.568, t32 = 0.273, t23 = 0.143, t33 = 0.143, f13 = 1.57, N1 =

42, N2 = 44, N3 = 14. Each parameter set was randomly picked from the 500 parameter
sets under N = 100 as an example case
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A1.3.2 Comparison of demographic genetic structure with Ne and η
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(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model
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Demographic genetic structure (log(Hii,t ∕ Hjj,t))

(e) i = 1, j = 2, two-stage model (f) i = 1, j = 2, three-stage model

(g) i = 2, j = 3, three-stage model (h) i = 1, j = 3, three-stage model

Figure A6: Comparison of demographic genetic structure (log(Hii,t/Hjj,t)) with effective
population sizeNe (a-d) and the annual change rate of expected heterozygosity η (e-h) when
N = 500. (a, e) i = 1 and j = 2 of the two-stage model, (b, f) i = 1 and j = 2, (c, g) i = 2

and j = 3, (d, h) i = 1 and j = 3 of the three-stage model
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(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model
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(e) i = 1, j = 2, two-stage model (f) i = 1, j = 2, three-stage model

(g) i = 2, j = 3, three-stage model (h) i = 1, j = 3, three-stage model

Figure A7: Comparison of demographic genetic structure (log(Hii,t/Hjj,t)) with effective
population sizeNe (a-d) and the annual change rate of expected heterozygosity η (e-h) when
N = 1000. (a, e) i = 1 and j = 2 of the two-stage model, (b, f) i = 1 and j = 2, (c, g)
i = 2 and j = 3, (d, h) i = 1 and j = 3 of the three-stage model
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(a) η, two-stage

(c) η, three-stage

(b) Ne, two-stage

(d) Ne, three-stage
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Figure A8: Principal components of the eight life history traits of the 500 parameter sets
in the two- and the three stage model. Color denotes either annual change rate of expected
heterozygosity (η) or effective population size (Ne) when N = 500. (a) η of the two-stage
model, (b) Ne of the two-stage model, (c) η of the three-stage model, (d) Ne of the three-
stage model
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(a) η, two-stage

(c) η, three-stage

(b) Ne, two-stage

(d) Ne, three-stage
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Figure A9: Principal components of the eight life history traits of the 500 parameter sets
in the two- and the three stage model. Color denotes either annual change rate of expected
heterozygosity (η) or effective population size (Ne) when N = 1000. (a) η of the two-stage
model, (b) Ne of the two-stage model, (c) η of the three-stage model, (d) Ne of the three-
stage model

140



Chapter A2

Applying the model to Trillium camschatcense

A2.1 matrix M

Life history of Trillium camschatcense consists of 5 stages, which are seed (stage 0), seedling
(stage 1), one-leaf (stage 2), three-leaves (stage 3), and flowering (stage 4). Here, I define
the order of Hij,t in ht as follows.

ht =



H00,t

H11,t

H22,t

H33,t

H44,t

H01,t

H02,t

H03,t

H04,t

H12,t

H13,t

H14,t

H23,t

H24,t

H34,t



. (A2.1)

Quoting Equation (2.10), the difference equation of ht can be rewritten as follows.

ht+1 = Mht, (A2.2)

whereM is the 15× 15 square matrix. The detailed elements ofM are shown in Appendix
A2.2. For sufficiently large t, ht converges to the scalar multiplication of w, which is the
leading right eigenvector of M . Therefore, I can obtain the relative ratio among Hij,t by
calculating w.

For a given parameter set, I calculatedw by solving the eigenvalue problem of the matrix
M . Here, I denote wij as the element of w corresponding to Hij,t. Because seed (stage
0) was not sampled and genotyped, I omitted w00, w01, w02, w03, and w04 from w and
divided the remaining elements by their sum for normalization. Similarly, the observed
Hij (1 ≤ i ≤ 4, i ≤ j ≤ 4) were normalized. Then, the squared errors between the
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corresponding elements of the two normalized vectors were calculated and summed, which
was used as the distance metric between the observed and expected Hij .

A2.2 Elements of the matrix M

mi,j , which is the element of M in the i-th row and the j-th column, is zero except the
following 53 elements.

m1,5 =

(
fN4

N0

)2(
1− 1

2fN4

)
, (A2.3)

m2,1 =

(
g0N0

N1

)2 1− 1/(2g0N0)

1− 1/(2N0)
, (A2.4)

m3,2 =

(
g1N1

N2

)2 1− 1/(2g1N1)

1− 1/(2N1)
, (A2.5)

m3,3 = s22
1− 1/(2s2N2)

1− 1/(2N2)
, (A2.6)

m3,4 =

(
r3N3

N2

)2 1− 1/(2r3N3)

1− 1/(2N3)
, (A2.7)

m3,10 =
2g1s2N1

N2
, (A2.8)

m3,11 =
2g1r3N1N3

N2
2

, (A2.9)

m3,13 =
2s2r3N3

N2
, (A2.10)

m4,3 =

(
g2N2

N3

)2 1− 1/(2g2N2)

1− 1/(2N2)
, (A2.11)

m4,4 = s23
1− 1/(2s3N3)

1− 1/(2N3)
, (A2.12)

m4,5 =

(
r4N4

N3

)2 1− 1/(2r4N4)

1− 1/(2N4)
, (A2.13)

m4,13 =
2g2s3N2

N3
, (A2.14)

m4,14 =
2g2r4N2N4

N2
3

, (A2.15)

m4,15 =
2s3r4N4

N3
, (A2.16)

m5,4 =

(
g3N3

N4

)2 1− 1/(2g3N3)

1− 1/(2N3)
, (A2.17)

m5,5 = s24
1− 1/(2s4N4)

1− 1/(2N4)
, (A2.18)

m5,15 =
2g3s4N3

N4
, (A2.19)
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m6,9 = 1, (A2.20)

m7,12 =
g1N1

N2
, (A2.21)

m7,14 = s2, (A2.22)

m7,15 =
r3N3

N2
, (A2.23)

m8,5 =
r4N4

N3
, (A2.24)

m8,14 =
g2N2

N3
, (A2.25)

m8,15 = s3, (A2.26)

m9,5 = s4, (A2.27)

m9,15 =
g3N3

N4
, (A2.28)

m10,6 =
g1N1

N2
, (A2.29)

m10,7 = s2, (A2.30)

m10,8 =
r3N3

N2
, (A2.31)

m11,7 =
g2N2

N3
, (A2.32)

m11,8 = s3, (A2.33)

m11,9 =
r4N4

N3
, (A2.34)

m12,8 = 1− s4, (A2.35)

m12,9 = s4, (A2.36)

m13,3 =
N2

N3

s2g2
1− 1/(2N2)

, (A2.37)

m13,4 =
N3

N2

r3s3
1− 1/(2N3)

, (A2.38)

m13,10 =
g1g2N1

N3
, (A2.39)

m13,11 =
g1s3N1

N2
, (A2.40)

m13,12 =
g1r4N1N4

N2N3
, (A2.41)

m13,13 = s2s3 + g2r3, (A2.42)

m13,14 =
s2r4N4

N3
, (A2.43)

m13,15 =
r3r4N4

N2
, (A2.44)

143



m14,4 =
N2

3

N2N4

r3g3
1− 1/(2N3)

, (A2.45)

m14,11 =
g1(1− s4)N1

N2
, (A2.46)

m14,12 =
g1s4N1

N2
, (A2.47)

m14,13 = s2(1− s4), (A2.48)

m14,14 = s2s4, (A2.49)

m14,15 =
r3s4N3

N2
, (A2.50)

m15,4 =
s3(1− s4)

1− 1/(2N3)
, (A2.51)

m15,5 =
N4

N3

r4s4
1− 1/(2N4)

, (A2.52)

m15,13 =
g2g3N2

N4
, (A2.53)

m15,14 =
g2s4N2

N3
, (A2.54)

m15,15 = s3s4 + r4g3. (A2.55)
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