

## HOKKAIDO UNIVERSITY

| Title                  | Plasmon Enhanced Photocurrent Generation and Water Splitting on Photoanode of Gold Nanoparticles Loaded Gallium<br>Oxide [an abstract of dissertation and a summary of dissertation review] |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author(s)              | 王, 亜光                                                                                                                                                                                       |
| Citation               | 北海道大学. 博士(情報科学) 甲第15558号                                                                                                                                                                    |
| Issue Date             | 2023-03-23                                                                                                                                                                                  |
| Doc URL                | http://hdl.handle.net/2115/89673                                                                                                                                                            |
| Rights(URL)            | https://creativecommons.org/licenses/by/4.0/                                                                                                                                                |
| Туре                   | theses (doctoral - abstract and summary of review)                                                                                                                                          |
| Additional Information | There are other files related to this item in HUSCAP. Check the above URL.                                                                                                                  |
| File Information       | Yaguang_Wang_abstract.pdf (論文内容の要旨)                                                                                                                                                         |



学 位 論 文 内 容 要 旨 の 博士の専攻分野の名称 博士 (情報科学) 氏名 E 亜光 学 位 論 文 題 名

Plasmon Enhanced Photocurrent Generation and Water Splitting on Photoanode of Gold Nanoparticles Loaded Gallium Oxide

(金ナノ粒子を担持した酸化ガリウム光アノードによるプラズモン増強光電流発生と水分解)

Gallium (III) oxide (Ga<sub>2</sub>O<sub>3</sub>) is a wide bandgap semiconductor ( $\sim$ 4.8 eV) with a very negative conduction band (CB) potential, making it applicable not only for the reduction of water but also for the reduction of CO<sub>2</sub> and other substances requiring negative reduction potentials. However, the large band gap of Ga<sub>2</sub>O<sub>3</sub> has made it difficult to use visible light. To resolve this problem, in this thesis, the photocurrent generation and water splitting under the visible irradiation using a plasmonic photoanode based on gold nanoparticles (Au-NPs)/Ga<sub>2</sub>O<sub>3</sub> were mainly studied.

To harvest visible light, Au-NPs with different sizes were loaded on each single crystal  $Ga_2O_3$  (SC- $Ga_2O_3$ ) substrate by annealing of deposited Au-films on the substrates with different thicknesses. As a result, generation of photocurrent by visible light irradiation was observed in Au-NPs loaded SC- $Ga_2O_3$  substrate as the photoanode due to hot carrier generation based on localized surface plasmon resonance (LSPR) of Au-NPs. In addition, the 15 nm-sized Au-NPs loaded SC- $Ga_2O_3$  substrate exhibited the largest incident photon to current conversion efficiency (IPCE) (Chapter 2).

To further enhance the IPCE of Au-NPs/SC-Ga<sub>2</sub>O<sub>3</sub> as a photoanode, an attempt was made to deposit a thin TiO<sub>2</sub> layer at the Au-NPs/SC-Ga<sub>2</sub>O<sub>3</sub> interface because it is known that TiO<sub>2</sub> is effective in trapping hot holes. First, it was found that depositing a TiO<sub>2</sub> thin layer between the Au-NPs and the Ga<sub>2</sub>O<sub>3</sub> substrate suppresses hot electron injection from the Au-NPs to Ga<sub>2</sub>O<sub>3</sub>, resulting in a decrease in IPCE. On the other hand, when the Au-NPs on the Ga<sub>2</sub>O<sub>3</sub> substrate were partially embedded by TiO<sub>2</sub>, the hole-trapping ability was enhanced and IPCE was found to increase obviously. Furthermore, the thickness dependence of the TiO<sub>2</sub> layer on IPCE was also revealed that 2 nm TiO<sub>2</sub>-modified Au-NPs/SC-Ga<sub>2</sub>O<sub>3</sub> exhibited the highest IPCE, 1.5 times higher than that of Au-NPs/SC-Ga<sub>2</sub>O<sub>3</sub> (Chapter 3).

To further improve the light harvesting and water oxidation reaction efficiency, a structure of  $TiO_2/Au-NPs/Ga_2O_3/TiN/Au-film$  (TAGA) to achieve modal strong coupling between the LSPR of Au-NPs and the Fabry-Pérot nanocavity was employed. In the TAGA, TiN acted as a protection layer for Au-film and  $Ga_2O_3$  film, which exhibited excellent semiconductor properties, was deposited on the TiN/Au-film reflective mirror. The TiN/Au-film exhibited satisfactory electrochemical properties and served as a reflective mirror for the nanocavity. The modal strong coupling was constructed by overlapping the resonance wavelength of the nanocavity with the LSPR wavelength of the Au-NPs partially embedded in the TiO\_2 layer. Under the modal strong coupling condition, the optical absorption increased dramatically and the IPCE was enhanced. In this structure, the Au-NPs partially embedded in the TiO\_2 layer showed an important role in enhancing the strength of the modal strong coupling and hole-trapping

ability. The use of the TAGA with very negative CB potential led to successful water splitting at zero bias potential under visible light irradiation (Chapter 4).

In summary, it was demonstrated that hot carriers generated by the LSPR of Au-NPs were injected into the CB of  $Ga_2O_3$ , and hot holes could further induce water oxidation, generating a photocurrent under visible irradiation. In addition, partial embedding of Au-NPs in a TiO<sub>2</sub> layer, which had a higher hole-capturing ability than  $Ga_2O_3$ , improved the efficiency of charge separation of hot carriers generated in the Au-NPs, resulting in improved IPCE. Furthermore, it was found that modal strong coupling between the LSPR of Au-NPs and the nanocavity that was expressed in the TAGA photoanodes improved their visible light-harvesting ability and effectively increased IPCE. Finally, visible light-driven water splitting at zero bias potential was also achieved using the TAGA photoanodes.