

HOKKAIDO UNIVERSITY

Title	Chunnel debranching for hybrid repair of thoracoabdominal aortic aneurysm
Author(s)	Satoru, Wakasa; Koji, Sato; Takahiro, Ishigaki; Watabe, Yoshinobu; Abe, Shinji
Citation	General Thoracic and Cardiovascular Surgery, 70(6), 588-590 https://doi.org/10.1007/s11748-022-01805-7
Issue Date	2022-06
Doc URL	http://hdl.handle.net/2115/89788
Rights	This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature 's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11748-022-01805-7
Туре	article (author version)
File Information	GTCS 70 588-590.pdf

Instructions for use

1 How to do it

2	Chunnel debranching for hybrid repair of thoracoabdominal aortic aneurysm
3	
4	Satoru Wakasa, MD, PhD ¹ , Koji Sato, MD, PhD ² , Takahiro Ishigaki, MD ¹ , Yoshinobu
5	Watabe, MD ¹ , and Shinji Abe, MD ¹
6	
7	¹ Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine and Graduate
8	School of Medicine, Hokkaido University, Sapporo, Japan
9	² Department of Cardiovascular Surgery, Kushiro City General Hospital, Kushiro, Japan
10	
11	Corresponding author:
12	Satoru Wakasa, MD, PhD
13	Department of Cardiovascular and Thoracic Surgery,
14	Faculty of Medicine and Graduate School of Medicine, Hokkaido University
15	Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
16	Tel: +81-11-706-6042; Fax: +81-11-706-7612
17	E-mail: wakasa@med.hokudai.ac.jp
18	Keywords: thoracoabdominal aortic repair, debranching, hybrid repair

20 Abstract

Hybrid repair of a thoracoabdominal aortic aneurysm comprising thoracic endovascular 21 22 aortic repair and total renovisceral debranching is a feasible alternative to open repair, 23 especially for high-risk patients. However, transperitoneal debranching is a relatively complicated procedure that requires deep dissection around vital abdominal organs. 24 25 Therefore, we developed a new debranching technique called Chunnel debranching, 26 which was characterized by transaortic tunneling using a covered stent between the target 27 artery and the prosthetic graft anastomosed on the aneurysmal wall using an inclusion 28 technique. This procedure increases the feasibility of renovisceral debranching with fewer dissections than conventional transperitoneal debranching. 29

30

32 Introduction

33 Open repair of a thoracoabdominal aortic aneurysm (TAAA) is a highly invasive procedure and is associated with higher hospital mortality [1]. Thus, for high-risk patients, 34 thoracic endovascular aortic repair (TEVAR) with total renovisceral debranching through 35 a laparotomy is a feasible alternative [2]. However, this procedure has several concerns, 36 37 such as the need for a deeper dissection around the proximal segment of the renovisceral arteries that are surrounded by vital abdominal organs, the difficult application in those 38 with severe intraperitoneal adhesions, the possible risk of graft infection [3], and 39 40 relatively high mortality and morbidity rates [4]. Therefore, for further feasibility of total 41 renovisceral debranching, we developed a novel debranching procedure named as 42 "Chunnel technique" using a covered stent. 43

44 Technique

The Chunnel technique is characterized by trans-aortic tunneling using an endoprosthesis (Viabahn, W.L. Gore & Associates, Flagstaff, AZ) similar to the tunnel under the English Channel. In this procedure, the Viabahn is placed from the renovisceral branch through the intra-aortic cavity to the prosthetic graft that is anastomosed on the aneurysmal wall (Figure 1). All procedures were performed using a retroperitoneal approach with an

50	oblique incision in the left lateral abdomen. After dissection around the thoracoabdominal
51	aorta, a 9-12 mm Dacron prosthesis was anastomosed as an inflow to the left common
52	iliac artery or a prosthetic graft used to replace the abdominal aorta in the presence of
53	severe atherosclerosis, such as an aortic aneurysm. Once the inflow was established, an
54	outflow graft for debranching with an appropriate size for the branch artery (7-9 mm
55	Dacron prosthesis) was anastomosed on the aneurysmal wall with an inclusion technique,
56	using 5-0 or 6-0 polypropylene sutures (Figure 1A). Then a 7F sheath was inserted into
57	the graft apart from the anastomosis, considering the length of the landing zone for the
58	Viabahn. Subsequently, the sheath was moved forward into the aorta by penetrating the
59	aortic wall in the anastomosis. A guidewire was inserted into the target artery using epi-
60	aortic echocardiography and fluoroscopy (Figure 1B). The Viabahn (8–9 mm \times 100 mm)
61	was then inserted and deployed between the branch artery and the debranching graft
62	(Figure 1C). Post-ballooning using a balloon catheter was required because the Viabahn
63	should constrict after deployment at the crossing of the aortic wall. Then, the outflow
64	grafts were anastomosed to the inflow graft to complete debranching. The segmental
65	arteries were clipped externally as much as possible using this approach. After all the
66	target branch arteries were debranched, TEVAR was performed concomitantly with or
67	several days after debranching (Figure 1D). To date, this procedure has been performed

75	Comment
74	
73	(Figure 1E).
72	successful debranching was confirmed on postoperative computed tomography images
71	minutes and 7-54 minutes, respectively. Both patients recovered uneventfully, and
70	performed, and an ischemic time and fluoroscopic time for each branch were 15-20
69	and the volume of blood loss was 1300-4900 ml. All the debranching were successfully
68	in two patients with a high risk of open TAAA repair; the operation time was 9–11 hours,

76 Transperitoneal debranching is a gold standard but relatively invasive because it requires 77 deep dissection around vital abdominal organs. The use of covered stents can simplify 78 this procedure and has previously been reported [5,6]. In such procedures, the deployment 79 of a covered stent in the target artery results in bypass grafting and proximal stumping 80 simultaneously, so that a direct access to the proximal segment of the artery was required. 81 However, these procedures may not be suitable for debranching the celiac trunk and 82 superior mesenteric artery through a laparotomy because of the inconvenient direction for 83 placement of the covered stent, although a laparotomy is required to access the proximal 84 segments of all the renovisceral branches directly and simultaneously. The Chunnel debranching technique using the Viabahn covered stent is a novel procedure that can 85

86	resolve such dilemmas through a retroperitoneal approach. Although the debranching of
87	the right renal artery has not been performed because the artery was coincidentally
88	occluded in two cases we experienced, all renovisceral branches, including those located
89	on the opposite side of the aorta, can be debranched without intraperitoneal manipulations.
90	In contrast, we consider the debranching in the narrow aorta and penetration of the aortic
91	wall with a rich intraluminal thrombus are contraindications of this procedure. The former
92	would result in the interference between TEVAR and the Viabahn in the aorta, while the
93	latter is associated with a potential risk of embolic complications. In addition, a possible
94	occlusion of the debranched graft could be fatal. However, in the initial 2-year experience,
95	no procedure-related adverse events were not observed. So far, the use of Viabahn for
96	debranching is off-labeled and requires approval by the institutional review boards.
97	Nevertheless, the Chunnel debranching is a useful option for the hybrid repair of TAAA,
98	especially for high-risk patients for whom neither thoracotomy nor laparotomy would be
99	preferable because of lower respiratory function and history of the previous laparotomy.
100	To date, it requires a relatively long time to perform the procedure because of a highly
101	limited experience and disease complexity. Further improvement of the maneuver will be
102	required to reduce the invasiveness of the procedure.

106		References
107		
108	1.	Committee for Scientific Affairs, The Japanese Association for Thoracic Surgery,
109		Shimizu H, Okada M, Tangoku A, Doki Y, Endo S, et al. Thoracic and
110		cardiovascular surgeries in Japan during 2017 : Annual report by the Japanese
111		Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2020; 68: 414-
112		49.
113	2.	Quinones-Baldrich WJ, Panetta TF, Vescera CL, Kashyap VS. Repair of type IV
114		thoracoabdominal aneurysm with a combined endovascular and surgical approach.
115		J Vasc Surg. 1999; 30: 555-60.
116	3.	Hurie J, Patel HJ, Criado E, Eliason JL, Deeb GM, Upchurch GR, Jr.
117		Postoperative fluid collection after hybrid debranching and endovascular repair of
118		thoracoabdominal aortic aneurysms. J Vasc Surg. 2011; 54: 1623-28.
119	4.	Arnaoutakis DJ, Scali ST, Beck AW, Kubilis P, Huber TS, Martin AJ, et al.
120		Comparative outcomes of open, hybrid, and fenestrated branched endovascular
121		repair of extent II and III thoracoabdominal aortic aneurysms. J Vasc Surg. 2020;
122		71: 1503-14.
123	5.	Lachat M, Mayer D, Criado FJ, Pfammatter T, Rancic Z, Genoni M, et al. New

124		technique to facilitate renal revascularization with use of telescoping self-
125		expanding stent grafts: VORTEC. Vascular. 2008; 16: 69-72.
126	6.	Setacci F, Pecoraro F, Chaykovska L, Mangialardi N, Shingaki M, Veith FJ, et al.
127		The Gore Hybrid Vascular Graft in renovisceral debranching for complex aortic
128		aneurysm repair. J Vasc Surg. 2016; 64: 33-38.
129		
130		

132 Figure legends

134	Figure 1. Schematic presentation of the Chunnel debranching: (A) anastomosis of the
135	graft on the aneurysmal wall; (B) guidewire engagement into the target artery; (D)
136	deployment of Viabahn across the aortic wall; (D) TEVAR after completion of
137	debranching; (E) inflow graft anastomosed on the iliac artery (white arrow) connected to
138	the CT and the SMA with the Viabahn and the LRA with direct anastomosis.
139	CT, celiac trunk; LRA, left renal artery; SMA, superior mesenteric artery; TEVAR,
140	thoracic endovascular aortic repair.
141	

