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Abstract 

The diagnosis of mosaicism is challenging in patients with NF2 subset due to low variant 

allele frequency. In this study, we generated induced pluripotent stem cells (iPSCs) were 

generated from a patient clinically diagnosed with NF2 based on multiple schwannomas, 

including bilateral vestibular schwannomas and meningiomas. Genetic analysis of the 

patient’s mononuclear cells (MNCs) from peripheral blood failed to detect NF2 alteration but 

successfully found p.Q65X (c.193C > T) mutation in all separate tumors with three 

intracranial meningiomas and one intraorbital schwannoma, and confirming mosaicism 

diagnosis in NF2 alteration using deep sequencing. Five different clones with patient-derived 

iPSCs were established from MNCs in peripheral blood, which showed sufficient expression 

of pluripotent markers. Genetic analysis showed that one of five generated iPSC lines from 

MNCs had the same p.Q65X mutation as that found in NF2. There was no significant 

difference in the expression of genes related to NF2 between iPSC clones with the wild-type 

and mutant NF2. In this case, clonal expansion of mononuclear bone marrow-derived stem 

cells recapitulated mosaicism’s genetic alteration in NF2. Patient-derived iPSCs from mosaic 

NF2 would contribute to further functional research of NF2 alteration. 

 

Keywords: neurofibromatosis type 2, mosaicism, induced pluripotent stem cells 
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INTRODUCTION 

Neurofibromatosis type 2 (NF2) is an autosomal-dominant disease caused by germline 

alterations in the NF2 tumor-suppressor gene. Patients with NF2 develop multiple intracranial 

and spinal tumors, including schwannomas and meningiomas (Asthagiri et al., 2009). The 

major forms of NF2 alterations are nonsense, frameshift, splice-site, and missense mutations 

as well as large exon and in-frame deletions (Asthagiri et al., 2009; Evans et al., 2020; Evans 

et al., 2007; Moyhuddin et al., 2003; Teranishi et al., 2020). These genetic alterations in NF2 

are detected in peripheral blood samples of most patients with familial NF2, while many 

sporadic patients present with mosaicism of an NF2 alteration (Evans et al., 2007; Halliday et 

al., 2017; Moyhuddin et al., 2003; Teranishi et al., 2020). Mosaicism is generally diagnosed 

based on low variant allele frequency (VAF) in blood DNA or due to the presence of identical 

mutations in separate tumors (Moyhuddin et al., 2003). However, it is sometimes challenging 

to diagnose mosaicism in patients with NF2 due to low VAF in the bone marrow derived 

peripheral mononuclear cells (Evans et al., 2020; Teranishi et al., 2020).  

Recently, induced pluripotent stem cells (iPSCs), established by somatic reprogramming 

using Yamanaka factors (Oct3/4, Sox2, KLF4, and c-Myc) (Takahashi et al., 2007), have 

been applied to analyze various genetic disorders (Soga et al., 2015). In this report, we 

present the case of a woman with NF2, in whom mutation in bone marrow derived peripheral 

mononuclear cells was not detected by Sanger sequencing, but the mosaicism of NF2 

alteration in peripheral blood mononuclear cells was identified in the one of five clones of 

patient-derived iPSCs. 

METHODS 

Editorial Policies and Ethical Considerations 
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Approval was obtained from the Institutional Review Board (approval number: 015-0101). 

Written informed consent was obtained from the patient. 

Clinical Report 

A woman, who presented with bilateral hearing loss and was detected multiple intracranial 

schwannomas, including bilateral vestibular schwannomas, and meningiomas on radiological 

examinations, was diagnosed with NF2 based on the Manchester criteria (Evans et al., 1992; 

Smith et al., 2017) when she was 33 years. The patient underwent resection surgery for 

anatomically distinct intracranial meningiomas in the left parietal convex, right parasagittal, 

and right falx at ages 37, 39, and 43 years, respectively. She also underwent resection surgery 

for intraorbital schwannoma at age of 43 years. We generated iPSCs from mononuclear cells 

(MNCs) present in the patient’s peripheral blood using a Sendai virus (SeV) vector as 

previously described (Soga et al., 2015). 

RESULTS 

Patient-derived iPSCs were generated from peripheral blood MNCs, and the induction 

efficacy was 1.55%. We collected five clones of patient-derived iPSCs. All five clones with 

patient-derived iPSCs showed sufficient expression of pluripotent markers, and the 

disappearance of SeV was verified through nested reverse transcriptase-polymerase chain 

reaction (RT–PCR), fluorescent immunohistochemistry, and alkaline phosphatase staining, 

showing sufficient pluripotency in iPSCs derived from the patient with NF2 (Figure 1). 

Genetic analysis of MNCs with DNA sequencing (Supplemental Methods, Supplemental 

Table) did not exhibit any pathogenic mutations in 17 exons and NF2 splice sites. However, 

p.Q65X (c.193C > T) nonsense mutation in one NF2 allele in separate tumors with three 

intracranial meningiomas and one schwannoma was detected [Figure 2(a)]. Although the 
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imperceptible mutant signal was observed on the Sanger sequencing of MNC, it was 

challenging to distinguish from noise [Figure 2(a)]. Deep sequencing with amplicon 

sequencing (Supplemental Methods) for MNC was conducted and its VAF in this allele was 

identified as 7.92% [Figure 2(b)]. For the first sample of meningioma (meningioma 1), 

targeted amplicon sequencing of NF2 was performed as previously described (Yuzawa et al., 

2016), and the loss of NF2 was identified [Figure 2(c)]. Because complete loss of NF2 is 

frequent in meningiomas but uncommon as a germline mutation of NF2 (Moyhuddin et al., 

2003; Teranishi et al., 2020; Yuzawa et al., 2016), NF2 p.Q65X nonsense mutation was 

considered an initial post-zygotic somatic mutation. Based on the peripheral blood genetic 

analysis, the patient was genetically diagnosed as a mosaic patient. Among the five clones of 

iPSCs, one iPSC line from MNCs had the same heterozygous mutation as that in NF2 [Figure 

2(d)]. Thus, clonal expansion of mononuclear bone marrow-derived stem cells using somatic 

reprogramming recapitulated mosaicism of genetic alteration in the patient with NF2. 

Because merlin, a protein coded by NF2, suppresses various signaling pathways, including 

RhoGTPase family signaling, PI3K/mTOR/AKT signaling, and mammalian Hippo signaling 

(Petrilli & Fernandez-Valle, 2016), quantitative RT–PCR was conducted (Supplemental 

Methods) to assess the expression of genes in these pathways. However, there was no 

evidence of different expressions of these genes in the iPSC with NF2 mutation compared to 

iPSC with wild-type NF2 [Figure 2(e)]. 

DISCUSSION 

The NF2 genetic analysis methods commonly consisted of DNA sequencing in all 17 exons 

and multiple ligation-dependent probe amplification (Evans et al., 2020; Evans et al., 2007). 

Although NF2 mutation is undetected in the blood, the same mutation in two separate tumors 
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indicates a mosaic (Evans et al., 2007). The combination of DNA sequencing and multiplex 

ligation-dependent probe amplification for blood and separate tumors has revealed mosaicism 

in 25%–33% of patients with NF2 (Evans et al., 2020; Moyhuddin et al., 2003). Recent 

studies have reported higher sensitivity and proportions of predicted mosaicism with 37.7%–

59.7% using next-generation sequencing to detect NF2 alteration with low VAF in patients 

with mosaic NF2 (Evans et al., 2020; Teranishi et al., 2020). Mosaicism in patients with NF2 

has been speculated based on the VAF in the blood DNA or by identical mutations in different 

tumors in previous reports (Evans et al., 2020; Moyhuddin et al., 2003; Teranishi et al., 

2020). A previous report has indicated that 25% with VAF is detectable using conventional 

Sanger sequencing, but 6.25% with VAF was quite a low signal of the mutant allele (Paganini 

et al., 2014), and 7.92%, in this case, was consistent with their report. Consistent with our 

result, patient-derived iPSC induction has been applied to discover mosaicism in other 

diseases, such as facioscapulohumeral dystrophy type-1, Klinefelter syndrome, Dravet 

syndrome, and neonatal-onset multisystem inflammatory disease (Fiacco, Alowaysi, Astro, & 

Adamo, 2020; Kawasaki et al., 2017; Maeda et al., 2016; van der Wal et al., 2019). 

Mosaicism detection in NF2 using somatic reprogramming can manufacture isogenic control 

for NF2 functional research since these clones have the same genetic background, except for 

NF2 alteration. Our gene expression analysis exhibited no significant difference in expression 

of merlin-associated pathways. It was consistent with the fact that NF2 is a tumor suppressor 

gene, and loss of heterogeneity is needed to cause aberrant activation or suppression in 

merlin-associated pathways. In this study, we firstly proved that monoallelic inactivating 

alteration in NF2 does not affect to merlin-associated pathways using patient-derived iPSCs. 

However, because our analysis was conducted only in iPSC, expression of these genes in 

somatic cells is still unclear. Further analysis with differentiation induction for different kinds 
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of somatic cells or models with induction of biallelic inactivation of NF2 would be needed. In 

addition, iPSCs derived from patient with mosaic NF2, including isogenic control with wild-

type NF2, would contribute to discover novel functions of merlin. 

There are some limitations in this study. Firstly, Low VAF of NF2 is a significant concern in 

diagnosing mosaicism. Although NF2 alterations were found in one of five iPSC clones, in 

this case, more clones would have been required to increase the diagnostic accuracy 

considering that 7.92% with VAF was identified using deep sequencing in this case. Current 

conventional methods hardly detect mosaicism since some patients harbor significantly low 

VAF with <1% germline NF2 alteration (Teranishi et al., 2020). The availability of iPSCs for 

mosaic diagnosis is limited because the frequency of mutant iPSC clones depends on the VAF 

in the germline NF2, and the diagnosis of mosaic would not be achieved if iPSC clones do 

not possess NF2 alteration. Furthermore, although blood samples can be used in the diagnosis 

of majority of mosaic NF-2 cases, which could not be diagnosed from blood but from the 

buccal mucosa or hair follicle was reported (Teranishi et al., 2020). No NF2 alteration would 

be detected from iPSC obtained from MNCs for such cases. Secondly, it is not sure whether 

the mutation frequency among iPSC clones completely reflects VAF in the germline. Because 

the culture condition for iPSC is different from the original environment of MNCs, a 

selective advantage might change the fraction of mutant iPSCs. Although data on gene 

expression analysis did not give the activation of merlin-associated pathways in iPSC 

harboring heterozygous NF2 mutation and haploinsufficiency in NF-2 were reported only in 

peripheral nerves with neuropathy (Hanemann, Diebold, & Kaufmann, 2007), and not in 

other tissues, iPSC with heterozygous NF2 alteration might have a selective advantage in 

culture conditions. Third, the cost and effort for iPSC generation cannot be ignored. Thus, 

iPSC establishment would be efficient for only a limited number of cases with NF2 to 
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diagnose mosaicism. However, as iPSC generation is increasingly common for regenerative 

medicine and disease research (Hanatani & Takasu, 2020; Yamanaka, 2020), it was 

considered essential to recognize that the technique of iPSC generation would recapitulate 

mosaicism. 
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Figure Legends 

Figure 1 

Induced pluripotent stem cells (iPSCs) derived from the patient with neurofibromatosis type 2 

and the genetic analysis results 

(a) Bright-field image presenting a colony of patient-derived iPSC 

(b) Nested reverse transcriptase-polymerase chain reaction exhibiting a positive expression of 

pluripotent markers and the absence of Sendai virus (SeV) contamination in five clones of the 

patient-derived iPSCs (PC1, positive control with human iPSC [201B7]; PC2, positive 

control with human iPSC with SeV contamination; NC, negative control with distilled water) 
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(c) Fluorescent immunohistochemical and alkaline phosphatase staining showing a positive 

expression of pluripotent markers 

 

Figure 2 

Genetic analysis of NF2 gene in mononuclear cells (MNCs), tumors, and patient-derived 

iPSC clones 

(a) Sanger sequencing showing a heterozygous p.Q65X mutation (black arrows) in exon-2 of 

NF2 in the tumor specimen of three meningiomas and one schwannoma in separate 

locations (white arrows). The signal with this mutation was perceptible in mononuclear 

cells (MNCs), which was challenging to distinguish from noise. 

(b) Read count of amplicon sequencing for NF2 exon 2 in MNCs presenting variant allele 

frequency of mutant T-allele in NF2 c.193 with 7.92%. 

(c) Targeted amplicon sequencing of ERBB2 in chromosome 17 (upper, 37855748—

37924426) and NF2 on chromosome 22 (lower, 29999919—30090863) presenting the 

whole deletion of NF2. The estimated copy number of NF2 was 1.4–1.6. A score Q of 

NF2 above 79 shows strong evidence for NF2 loss; The score Q was 112 in this case. 

(d) Sanger sequencing exhibiting a heterozygous p.Q65X mutation with a normal allele in 

exon 2 of NF2 in iPSC clone #5 (arrow), but not in the other four clones 

(e) Quantitative RT–PCR for genes of merlin-associated pathways in iPSC with wild-type 

NF2 (#1–4) and mutant NF2 (#5). Upper: Relative mRNA expression of Rac1 and PAK1 

in RhoGTPase family signaling. Middle: Relative mRNA expression of RICTOR and 

RAPTOR in PI3K/mTOR/AKT signaling. Lower: Relative mRNA expression of MST1 
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and YAP1 in Hippo signaling. No significant difference in mRNA expression between 

NF2-wild (#1–4) and NF2-mutant (#5) was observed in all these genes. 
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