

HOKKAIDO UNIVERSITY

Title	Study on the Epitaxial Strain Effects on Optoelectronic Properties of Functional Oxides with Rutile Structure [an abstract of dissertation and a summary of dissertation review]
Author(s)	陳, 斌杰
Citation	北海道大学. 博士(工学) 甲第15542号
Issue Date	2023-03-23
Doc URL	http://hdl.handle.net/2115/89795
Rights(URL)	https://creativecommons.org/licenses/by/4.0/
Туре	theses (doctoral - abstract and summary of review)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Binjie_Chen_abstract.pdf (論文内容の要旨)

学 位 文 内 容 要 旨 論 の 博士の専攻分野の名称 博士 (工学) 氏名 陳 斌杰 学 位 論 名 文 題

Study on the Epitaxial Strain Effects on Optoelectronic Properties of Functional Oxides with Rutile Structure

(ルチル構造を有する機能性酸化物の光電子特性に及ぼすエピタキシャル歪の効果に関する研究)

Rutile-structured oxides (MO_2 , space group: $P4_2/mnm$) are known that exhibit diverse optoelectronic properties such as photocatalytic activity, gas sensing properties, transparent conductivity, etc [1-6]. For example, TiO₂ is a well-known photoelectrode material for water splitting. The energy level of the conduction band minimum and the valence band maximum is appropriate for water splitting through photo-excitation-induced band-to-band transition [4]. Electron-doped SnO₂ is a well-known transparent conducting oxide owing to its large optical bandgap and the small carrier effective mass [5]. VO₂ exhibits monoclinic-to-rutile phase transition at $T_c \sim 68$ °C. The monoclinic phase is IR transparent insulator and the rutile phase is IR opaque metal. Therefore, VO₂ is a promising candidate for thermochromic materials [6]. The potential applications of these rutile-structured oxides are highly dependent on their optoelectronic properties.

Generally, there are various ways to modulate the optoelectronic properties of a material, each with its own suitability and advantages. In the case of VO₂, reducing the T_c to around room temperature is crucial. Chemical doping of higher valance cations than V⁴⁺ (e.g. Nb⁵⁺, W⁶⁺, etc.) [7], field effect regulation [8], and introducing lattice strain [9] have been proposed. In 2002, Muraoka and Hiroi reported that the epitaxial VO₂ film grown on (001) TiO₂ substrates shows an abrupt IMT with reduced T_c around room temperature (25 °C). Therefore, the strain effect from (001) TiO₂ substrates was considered the most effective way to reduce T_c of VO₂ film. Still, there are two limitations for use of TiO₂ substrate: On the one hand, the use of TiO₂ substrate is not realistic in large-scale applications like the smart window because of the size limitation of Verneuil-grown TiO₂ crystal. On the other hand, the film thickness is limited due to strain relaxation through crack formation [10].

To address the difficulties in the practical application of VO₂, and further investigate the strain effects on the optoelectronic properties of VO₂ as well as other rutile-type oxides, in this thesis, I selected Mplane α -Al₂O₃ (M-sapphire) substrate for the epitaxial growth of VO₂, TiO₂, and SnO₂ films. There are several reasons: First, large-scale α -Al₂O₃ substrate has been already industrialized. Second, the M-sapphire was verified to allow the growth of *c*-axis-oriented rutile-structured films. By fabricating VO₂/TiO₂ bilayer on M-sapphire substrate, the effectiveness of M-sapphire substrate to reduce the *T*_c of VO₂ was verified. Then, I additionally investigated the methods to suppress strain relaxation and crack formation of VO₂ film grown on TiO₂ substrate. Furthermore, noting that M-sapphire shows anisotropic in-plane lattice parameters, which provide a possibility to introduce strain-induced orthorhombic distortion. Based on this, I systematically studied the effects of such distortion on the optoelectronic properties of VO₂, TiO₂, and SnO₂ films. This thesis is composed of the following chapters:

In chapter 1, the background and purposes of related studies are introduced.

In chapter 2, I report the strain effects on the IMT behaviors of VO_2/TiO_2 epitaxial bilayer films grown on M-sapphire substrate [11]. A systematic study with varied thicknesses of TiO₂ and VO₂ layer is conducted. By changing the VO₂ thickness from 40 to 5.5 nm while fixing the TiO₂ thickness to 200 nm, the T_c gradually decreased from 320 K to 305 K, which is highly reduced compared to that of bulk VO₂, suggesting that TiO₂-buffered M-sapphire substrate plays a similar effect to the TiO₂ substrate. Note that orthorhombic distortion is introduced to the film due to the anisotropic lattice parameter of M-sapphire substrate in the in-plane directions. Such distortion is enlarged when reducing TiO₂ thickness, resulting in the suppression of IMT behavior.

In chapter 3, I propose a solution for the strain relaxation and crack formation of VO₂ film grown on TiO₂ substrate. A TiO₂ strain compensation layer (SCL) was inserted between two VO₂ layers to maintain the strain condition of VO₂. The recovery of abrupt IMT behavior and absence of cracks suggest that high strain condition of VO₂ is maintained when TiO₂ thickness exceeds 9 nm. By further alternately stacking VO₂ and TiO₂ layers, I demonstrate that the use of TiO₂ SCL is useful to maintain clear clockwise IMT behavior even when the overall VO₂ thickness is ~50 nm, far thicker than the theoretical thickness ($T_c \sim 15$ nm) of VO₂ relaxation.

In chapter 4, I report the effects of orthorhombic distortion on the properties of rutile TiO₂ films. I fabricated 0.5% Nb:TiO₂ films on M-sapphire substrate [12]. By varying the thickness ranging from 300 to 10 nm, the degree of orthorhombic distortion (lattice parameter, b/a) was regulated from ~1.01 to ~1.035. Correspondingly, the carrier effective mass (m^*) decreases from 35 m_0 to 3 m_0 (m_0 : electron mass) but the optical bandgap increases, suggesting the optoelectronic properties of rutile TiO₂ is modulated by introducing the lattice distortion.

In chapter 5, I report a comparison study between TiO_2 film and SnO_2 film grown on M-sapphire substrates. Nb: TiO_2 film is distorted as shown in chapter 4, indicating the strained condition, whereas the lattice parameters of SnO_2 films are consistent with the bulk value, suggesting complete strain relaxation. STEM observation revealed that the complete strain release of SnO_2 is due to the combination of large mismatch-induced high strain relaxation and the negligible mismatch-induced strain absence. By contrast, the moderate mismatch between TiO_2/VO_2 and substrate results in the strained condition. Correspondingly, their properties are significantly regulated.

In chapter 6, the above studies are summarized.

In short, I systematically studied the epitaxial strain effects on optoelectronic properties of rutilestructured VO₂, TiO₂, and SnO₂ epitaxial films. The related results would provide useful guidance for the property design of rutile-type oxides and the development of related devices.

- [1] D. B. Rogers et al., Inorg. Chem 1969, 8, 841-849.
- [2] A. A. Bolzan et al., Acta. Cryst. 1997, B53, 373-380.
- [3] Y. Wang et al., J. Am. Chem. Soc. 2003, 125, 16176–16177.
- [4] A. Fujishima and K. Honda, Nature 1972, 238, 37-38.
- [5] B. A. Williamson et al., Chem. Mater. 2020, 32, 1964–1973.
- [6] X. Cao et al., Matter 2020, 2, 862-881.
- [7] K. Liu et al., Mater. Today 2018, 21, 875-896.
- [8] J. Jeong et al., Science 2013, 339, 1402–1405.
- [9] Y. Muraoka and Z. Hiroi, Appl. Phys. Lett. 2002, 80, 583.
- [10] K. Nagashima et al., Phys. Rev. B 2006, 74, 172106.
- [11] B. Chen et al., Adv. Electron. Mater. 2021, 8, 2100687.
- [12] B. Chen et al., J. Appl. Phys. 2022, 132, 185301.