e
ol

%{} HOKKAIDO UNIVERSITY
N

x‘

<\

Title Parameter-efficient feature-based transfer for paraphrase identification
Author(s) Liu, Xiaodong; Rzepka, Rafal; Araki, Kenji
laittem Natu_ral Language Engineering, 1-31
https://doi.org/10.1017/S135132492200050X
Issue Date 2022-12-19
Doc URL http://hdl.handle.net/2115/89905
Type article (author version)

File Information

Parameter-efficient feature-based transfer for paraphrase identification (final version).pdf

°

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Natural Language Engineering (2021), 1-00 CAMBRIDGE

doi:10.1017/xxxxx UNIVERSITY PRESS

ARTICLE

Parameter-efficient feature-based transfer for
paraphrase identification

Xiaodong Liu'*, Rafal Rzepka?, and Kenji Araki’

! Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
2Faculty of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
*Corresponding author. Email: xiaodongliu@ist.hokudai.ac.jp

(Received xx xxx xxx; revised XX XXX Xxx; accepted XX XXX XXX)

Abstract

There are many types of approaches for Paraphrase Identification (PI), an NLP task of determining whether
a sentence pair has equivalent semantics. Traditional approaches mainly consist of unsupervised learning
and feature engineering, which are computationally inexpensive. However, their task performance is mod-
erate nowadays. To seek a method that can preserve the low computational costs of traditional approaches
but yield better task performance, we take an investigation into neural network-based transfer learning
approaches. We discover that by improving the usage of parameters efficiently for feature-based transfer,
our research goal can be accomplished. Regarding the improvement, we propose a pre-trained task-specific
architecture. The fixed parameters of the pre-trained architecture can be shared by multiple classifiers with
small additional parameters. As a result, the computational cost left involving parameter update is only
generated from classifier-tuning: the features output from the architecture combined with lexical overlap
features are fed into a single classifier for tuning. Furthermore, the pre-trained task-specific architecture
can be applied to natural language inference and semantic textual similarity tasks as well. Such tech-
nical novelty leads to slight consumption of computational and memory resources for each task, and is
also conducive to power-efficient continual learning. The experimental results show that our proposed
method is competitive with adapter-BERT (a parameter-efficient fine-tuning approach) over some tasks
while consuming only 16% trainable parameters and saving 69-96% time for parameter update.

Keywords: Parameter-efficient feature-based transfer; Paraphrase identification; Natural language inference; Semantic
textual similarity; Continual learning

1. Introduction

Measuring semantic relatedness of two pieces of text entails a wide range of tasks in Natural
Language Processing (NLP). When the measurement comes to sentence level, it involves three
common NLP tasks: Paraphrase Identification (PI) for determining whether a sentence pair has
equivalent semantics; Natural Language Inference (NLI) for inferring relation between a sentence
pair; Semantic Textual Similarity (STS) for scoring semantic similarity of a sentence pair. Many
types of approaches have been published in the previous works (Chandrasekaran and Mago 2020)
for PI task and two of its variations (NLI and STS). In this article, we propose a new method to
improve the usage of parameters efficiently for feature-based transfer, a transfer learning approach
involving customizing a task-specific architecture for PI. In this section, we first introduce the
research goal that motivates our proposed method based on the relevant technical background.

© Cambridge University Press 2021

mailto:xiaodongliu@ist.hokudai.ac.jp

2 Liu, Rzepka, and Araki

orange background ——> parameters to be updated

) Conventional fine-tuning) Parameter-efficient fine-tuning

classifier H classifier

BERT layer

BERT layer gtz

module

L@ Conventional feature-based transfer L@ Parameter-efficient feature-based transfer

classifier : classifier

task-specific architecture | [pre-trained task-specific architecture }

pre-trained embedding model : [pre-trained embedding model }

Figure 1. Parameters that need to be updated for each PI, NLI, or STS task. The underlined denotes our work.

Then in the second subsection, we describe the benefit for a real-world scenario based on our
technical novelty.

1.1 Technical background & research goal

When it comes to PI, there exist a wide range of traditional approaches that are relatively effec-
tive for the task: (1) lexical overlap features such as n-gram overlap (Wan et al. 2006) and
machine translation evaluation metrics (Madnani et al. 2012); (2) using external lexical knowl-
edge like WordNet (Fellbaum 1998; Fernando and Stevenson 2008); (3) modeling divergence of
dependency syntax between two sentences Das and Smith (2009); (4) distributional models with
matrix factorization (Guo and Diab 2012; Ji and Eisenstein 2013). The traditional approaches
mainly consist of unsupervised methods and feature engineering. Their demand for computational
resources are low while task performance is moderate nowadays. For example, the computational
cost involving parameter update for processing the lexical overlap features is only consumed by
classifier-tuning, but the task performance is comparatively less effective as reflected by MRPC
task (Dolan et al. 2004) in the ACL link?. In light of that fact, we come up with our research ques-
tion — how can we preserve the low computational costs of traditional approaches but yield better
task performance? To seek an approach to it as our research goal, we take a further investigation
on current neural network-based transfer learning approaches.

With the advent of various deep neural network models (Dong et al. 2015; Vaswani et al. 2017;
Howard and Ruder 2018; Yang et al. 2019), transfer learning approaches have achieved state-
of-the-art performance on many NLP downstream tasks including PI. Basically, there are two
most common transfer learning techniques in NLP: fine-tuning and feature-based transfer. As for
fine-tuning, the parameters of pre-trained language models like BERT (Devlin et al. 2019) need
to be fine-tuned. On the other hand, feature-based transfer does not require parameter update of
pre-trained embedding models like ELMo (Peters et al. 2018); however, the parameters of any
customized task-specific architectures need to be updated. For both transfer learning techniques,
they follow the same convention: entire architectural parameters need to be initialized and then
updated for each individual task dataset (see 1 & 2 in Figure 1).

%https://aclueb.org/aclwiki/Paraphrase_Identification_(State_of_the_art)

https://aclweb.org/aclwiki/Paraphrase_Identification_(State_of_the_art)

Natural Language Engineering 3

Accompanied by the successful performance, there comes one challenge to transfer learn-
ing approaches: expensive computational resources (Strubell et al. 2019). As fine-tuning tends
to achieve better performance than feature-based transfer shown in recent works (Howard and
Ruder 2018; Devlin et al. 2019), recently proposed resource-lean approaches are mainly based
on BERT (Devlin et al. 2019) architecture, focusing on model compression such as network lay-
ers repeating (Lan et al. 2019) and knowledge distillation (Sanh et al. 2019). The effectiveness
of these compressed models can reduce the size of entire architectural parameters, but cannot go
beyond the aforementioned convention, and thus whether the usage of the parameters is efficient
remain uninvestigated.

Still, the adapter module proposed by Houlsby et al. (2019a) is based on the research direction
regarding parameter-efficiency — only a comparatively small number of task-specific parameters
are initialized and then updated for every single task (see 3 in Figure 1). Houlsby et al. (2019a)
applied the adapter module to BERT (Devlin et al. 2019) for testing effectiveness, and the adapter-
BERT attained within 0.4% of the performance of full fine-tuning, adding only 3.6% parameters
per task. Such performance level reflects the fact that there is no need to initialize and then to
update entire architectural parameters for each task. Instead, focus should be shed on the efficient
usage of parameters. Most recently, the research direction has a tendency to extract an optimal
subset of architectural parameters (de Wynter and Perry 2020), and also works for autoregressive
models like P-tuning (Liu et al. 2021) for GPT (Radford et al. 2019).

The efficient usage of architectural parameters also resonates with a current trend® in NLP
community, which encourages researchers to empirically justify the model complexity beyond
benchmark performance. However, to the best of our knowledge as of writing, direct research
attempts regarding parameter-efficiency are rarely made for feature-based transfer. In the last
two years, only one indirect attempt was conducted, the PAR (Paraphrase-Aware Retrofitting)
method proposed by Shi et al. (2019), aiming to address unstable semantics of contextualized
word embeddings of shared words when context is paraphrased. Besides, for any customized
task-specific architecture, although it is an option to train task datasets through continual learn-
ing (Thrun 1998), the parameters of the re-trained network are inclined to forget how to perform
previous tasks — catastrophic forgetting (McCloskey and Cohen 1989; French 1999).

While related works are centered around language model-based fine-tuning, we discover that
one advantage of feature-based transfer tends to be neglected and consequently left unexplored. As
various task-specific architectures are customized for a particular task like PI, we discover that it is
viable to fix the architectural parameters trained on a single task dataset and then transfer the fixed
parameters to other task datasets. With this discovery, while yielding better task performance,
feature-based transfer can enjoy the low computational costs as traditional approaches do: the
initialization of pre-trained architectural parameters is required only once and there is no need of
further parameter update for different tasks (see 4 in Figure 1), the only computational costs are
consumed by classifier-tuning. The technical scenario cannot be realized by language model-based
fine-tuning. For example, task-specific parameters of adapter module (Houlsby et al. 2019b) tuned
on task A cannot be directly used for task B without any modification. However, in this article, we
show that it is feasible to feature-based transfer.

For readability in the rest of this article, we use the acronym PEFBAT (Parameter-Efficient
Feature-BAsed Transfer) to denote our proposed method. The technical novelty of PEFBAT is
that the fixed parameters of the pre-trained task-specific architecture can be shared by multiple
classifiers with small additional parameters. This mechanism can address our research goal. For
each PI, NLI, or STS task, the computational cost left involving parameter update is only generated
from classifier-tuning: the features output from the architecture combined with lexical overlap
features are fed into a single classifier for tuning. Such technical novelty is also conducive to a
real-world scenario, which is another contribution of PEFBAT described in the next subsection.

Phttps://sites.google.com/view/sustainlp2020/home?authuser=0

https://sites.google.com/view/sustainlp2020/home?authuser=0

4 Liu, Rzepka, and Araki

orange background —— parameters to be updated

transparent background fixed parameters

Tasks arrive from customers.

e it o losiner| 0>
classifier classifier classifier 7 classifier power-efficient

S T.. A 7

1. pre-trained embedding model
[z. pre-trained task-specific architecture > | parameter-fficient

Figure 2. Parameter-efficient feature-based transfer for power-efficient continual learning.

1.2 Practical use in real-world scenario

Similar to adapter module (Houlsby et al. 2019b), PEFBAT can be applied to continual learning,
but the differences exist from two aspects. Since the former is language model-based (e.g. adapter-
BERT when it is applied to BERT model), it can handle more than sentence-pair tasks. On the
other hand, although PEFBAT can address only three types of sentence-pair tasks, it exhibits a
more power-efficient manner: for each task arriving from customers, only a single classifier needs
to be instantiated (see Figure 2). The power cost is measured by the time required for parameter
update of each task, which directly reflects the demand for computational resources. For exam-
ple, in the case of Multi-Layer Perceptron (MLP)® with batch size 32 and epochs 100, for small
datasets like MRPC (Dolan et al. 2004) (4k training data), training a MLP takes up approximately
1 minute. For large datasets like QQP (Iyer et al. 2017) (363k training data), training a MLP
can be finished in 37 minutes. More importantly, each task performance is not compromised by
catastrophic forgetting as each classifier is tailored individually for each task.

Furthermore, additional parameters per task contained in each classifier are small (0.479M
trainable parameters explained in Section 4), which can be considered as parameter-efficient
model expansion, as the size of 230 classifiers for 230 tasks from customers amounts to a single
BERT-base model. Although using only engineered features also consumes less computational
and memory resources, PEFBAT can yield better task performance, and thus it is comparatively a
good fit in terms of power-efficient continual learning.

2. Related works

There have been many approaches proposed in the previous works for PI (Chandrasekaran and
Mago 2020). In this section, we discuss the traditional and transfer learning approaches that are
related to our work. The strengths of the traditional approaches are integrated into PEFBAT.
The transfer learning approaches, although adopt different strategies, are related to parameter-
efficiency. Besides, we extend our discussion on two topics: (1) task-specific DNNs, which are the
conventional strategy adopted for feature-based transfer; (2) the solutions to catastrophic forget-
ting in continual learning, because PEFBAT can be considered as a variant of parameter-efficient
model expansion.

“The GPU device that we use for our experiments is NVIDIA RTX 2080 TIL.

Natural Language Engineering 5

— paraphrase —— paraphrase
non-paraphrase non-paraphrase

o

Number of pairs
-

Number of pairs

w & w0 N @

/\\

0.0 02 04 06 08 10 0.0 02 04 0.6 08 10
Jaccard distance Jaccard distance

Figure 3. PAN. Figure 4. PAWS-wiki.

2.1 Traditional approaches

In PEFBAT, the lexical overlap features (Wan et al. 2006) are combined with the transferred
features (the features output from our pre-trained task-specific architecture) as input to each indi-
vidual classifier. This technique is not unusual for feature-based transfer; for example, Yin and
Schiitze (2015a) combined the machine translation metrics (Madnani et al. 2012) with the flattened
features output from their Bi-CNN architecture. In our case, the combination is based on a par-
ticular consideration — mutual complementation. As the Jaccard distance? illustrated in Figures
3 and 4 for two paraphrase corpora®, lexical overlap features are noticeably cost-effective for task
datasets like PAN (Madnani et al. 2012) (Figure 3); however, they become unviable when lexi-
cal overlaps are indistinguishable between paraphrase and non-paraphrase sentence pairs in task
datasets like PAWS-wiki (Zhang et al. 2019) (Figure 4). The combination can have the transferred
features enjoy their merits while their demerits can be improved by the transferred features. We
delve deeper into the mutual complementation in Section 4 based on our experimental results.
From another perspective that is not directly related to our work, lexical overlap features are
also beneficial to paraphrase generation task. While the quality of generated paraphrases can be
decided by state-of-the-art models like Sentence-BERT (Reimers and Gurevych 2019) shown in a
recent work (Corbeil and Abdi Ghavidel 2021) for data augmentation, some works still consider
lexical overlap features as criteria: Nighojkar and Licato (2021) use BLEURT (Sellam et al. 2020)
metric to calculate reward for sentence pairs that are mutually implicative but lexically and syn-
tactically disparate; Kadotani et al. (2021) use edit distance to decide whether source and target
sentences require drastic transformation, so that the training order of curriculum learning (Bengio
et al. 2009) can be determined for better performance of paraphrase generation; Jaccard distance
is used in Meng et al. (2021)’s work as one metric for filtering generated paraphrase candidates.
Ji and Eisenstein (2013) utilize TF-KLD weighting scheme to assign weights to each feature
(single word) in distributional models. The weighted distributional models then can generate dis-
criminative sentence latent representations after matrix factorization, which are conducive to PI.
This approach has achieved competitive performance on MRPC (Dolan et al. 2004) task with
this special feature engineering process. Inspired by Ji and Eisenstein (2013), the pre-trained
task-specific architecture of PEFBAT is also designed to generate the features containing discrim-
inative semantics (details are presented in Section 3). In the meanwhile, two of their limitations
are not reflected in PEFBAT: (1) the TF-KLD weighting scheme relies on transductive learning
(Gammerman et al. 1998) to weight unseen words for optimal performance; (2) the scheme is
strictly MRPC-dependent, and therefore it is not applicable to other PI task datasets or real-world

dAll the tokens are converted into small case without stemming or removing stopwords and punctuation.
€Jaccard distance calculated for two PI corpora take into account training, development (if it exists), and test sets.

6 Liu, Rzepka, and Araki

scenarios. TF-KLD-KNN proposed by (Yin and Schiitze 2015b) can address the first limitation,
but is not viable for the second limitation.

2.2 Transfer learning approaches

Shi et al. (2019) has discovered that in many cases, contextualized embeddings of shared words
in paraphrased contexts change drastically. To minimize the difference of the shared words, they
propose a PAR (Paraphrase-Aware Retrofitting) method: to reshape input representations of con-
textualized models with an orthogonal transformation matrix. They apply the PAR method to
ELMo (Peters et al. 2018) to test its effectiveness. The task-specific architecture (orthogonal
transformation matrix) placed prior to embedding models is referred to as retrofitting methods
(Faruqui et al. 2015; Yu et al. 2016; Glavas and Vuli¢ 2018): to incorporate semantic knowl-
edge from external resources into word embeddings. The external resources that Shi et al. (2019)
used to train their task-specific architecture are the paraphrase sentence pairs from three corpora:
PAN (Madnani et al. 2012), Sampled Quora (Iyer et al. 2017), and MRPC (Dolan et al. 2004).
The parameters of the trained architecture then can be used for PI, NLI and STS tasks, which is
parameter-efficient.

The adapter module (Houlsby et al. 2019a) comprises the network layers with comparatively
small size of parameters stitched into BERT (Devlin et al. 2019) layers, aiming to address param-
eter efficiency for language models. For every task, the parameters of BERT layers remain fixed
while the ones of adapter module are updated. Such design results in a model that is compact and
extensible: a small number of additional parameters per task without forgetting how to perform
previous tasks. The adapter module can be considered as a variation of layer transfer. The tech-
nique is commonly adopted in the field of computer vision. For example, in the task of image
classification (Deng et al. 2009), Yosinski et al. (2014) discovered that by transferring only the
bottom layer of the network trained on source data, decent performance can be obtained for target
data by only re-training the top layers, because the image data tend to share similar patterns at
the lower layers of the network. The adapter module exhibits similar property as it automatically
prioritizes higher layers (Houlsby et al. 2019a), which matches the popular strategy in fine-tuning
(Howard and Ruder 2018). PEFBAT also benefits from the strategy: pre-trained embeddings plus
task-specific architecture (fixed parameters at lower layers), and classifier (parameters at higher
layers updated for different tasks). In Section 4, adapter-BERT is considered as our upper bound.

2.3 Task-specific DNNs

When it comes to feature-based transfer, it is a vital step to customize a task-specific architecture.
The input of the architecture is pre-trained word embeddings (Mikolov et al. 2013; Pennington
et al. 2014; Mikolov et al. 2018; Peters et al. 2018), and output is typically flattened features
connected to a classifier. The conventional strategy adopted for the task-specific architecture
is task-specific DNNs. One successful embodiment is Siamese neural network (Bromley et al.
1993), which shows the key insight of extracting interaction features from input word embed-
dings of two sentences at multiple levels of granularity (unigram, short n-gram, long n-gram, and
sentence levels). A comparatively effective implementation of Siamese architecture is Bi-CNN
(Yin and Schiitze 2015a; He et al. 2015; Yin et al. 2016): using two sub-networks (double con-
volutional layers) to process word embeddings of two sentences. In the Bi-CNN architecture,
each sentence of a sentence pair at the beginning is represented as a matrix, in which every col-
umn vector corresponds to a word embedding. Then the matrix representations of two sentences
are processed by convolution filters with n-gram width and multiple types of pooling at differ-
ent network layers, during which, interaction features representing multi-granular semantics are

Natural Language Engineering 7

extracted from the gradually-processed matrix representations. The final step is to connect the
flattened multi-granular interaction features to a classifier for supervised learning.

Siamese architecture implemented by Bi-CNN is not the only approach to extracting multi-
granular interaction features. For example, the RAE model proposed by (Socher et al. 2011) first
uses recursive neural network (also known as TreeRNN) to pre-train embeddings at word, phrase,
and sentence levels. Those pre-trained embedding representations are denoted as multi-granular
nodes. Then for the nodes of a sentence pair, a n; X ny similarity matrix is computed as interac-
tion features, where n; and n, are the number of nodes of two sentences respectively and each
similarity is the Euclidean distance between two nodes. Finally, the similarity matrix is fed into
a dynamic pooling layer to fix its size for supervised learning, as each sentence pair has different
size of nodes. The RAE model is comparatively less effective than Bi-CNN in terms of the perfor-
mance on MRPC task (Dolan et al. 2004). As explained in Yin and Schiitze (2015a)’s work, this
is due to unavailability of highly accurate parsers for tree structure.

PEFBAT can yield competitive performance level compared to Bi-CNN (demonstrated in
Section 4), although its mechanism for PI (described in Section 3) is different. From technical
perspective, unlike Bi-CNN, the task-specific architecture of PEFBAT is pre-trained, and there-
fore there is no need of further parameter update for each task, which is parameter-efficient and
cost-friendly.

2.4 Continual learning

Continual learning (Thrun 1998), also known as lifelong learning, never ending learning, or incre-
mental learning, is a machine learning technique of training tasks sequentially using a single
instance of a model. The task range of continual learning nowadays is typically the same task but
in different domains; e.g. 20 QA tasks in bAbi corpus (Weston et al. 2015), permuted handwrit-
ten digits recognition (van de Ven and Tolias 2019), text classification tasks with different class
(de Masson d'Autume et al. 2019), and so on. A recent research attempt (Sun et al. 2020) has man-
aged to handle 5 disparate NLP tasks by following decaNLP (McCann et al. 2018) to treat all tasks
as QA format. The biggest problem for continual learning is catastrophic forgetting (McCloskey
and Cohen 1989; French 1999) — the network trained on a new task is inclined to forget how to
perform previous tasks. The common solutions to catastrophic forgetting can be concluded into
three categories listed below.

(1) regularization-based methods: the paradigm of this method is EWC (Elastic Weight
Consolidation) (Kirkpatrick et al. 2017), the key mechanism of which is to add constraints
to the parameters that are sensitive to previous tasks. As a result, those sensitive parameters
are not modified to a large extent when a new task is being trained.

(2) parameter-efficient model expansion: from earlier works like Net2Net (Chen et al. 2016) and
Progressive Neural Networks (Rusu et al. 2016) to adapter module (Houlsby et al. 2019b)
nowadays, the major concept of this solution is to expand a model by adding additional
parameters per task. It can also work out in a reverse way — initiate a large network at the
beginning and then distribute a portion of parameters to each task (Hung et al. 2019).

(3) memory replay: the main idea of this solution is to keep a small number of old data of
previous tasks, and the old data can be either real-data (de Masson d'Autume et al. 2019) or
generated pseudo-data (Sun et al. 2020). With this benefit, a new task can be trained together
with the old data in a multi-task learning manner (Caruana 1998), which is considered as the
upper bound of continual learning. It is also shown in GEM (Gradient Episodic Memory)
(Lopez-Paz and Ranzato 2017) that the old real-data can be used to prevent gradient update
from being biased towards a new task during optimization.

8 Liu, Rzepka, and Araki

Curriculum learning (Bengio et al. 2009), although not as common as the categories above,
is also a solution to catastrophic forgetting. It seeks to find out a proper learning order of tasks.
A well-known study of curriculum learning is taskonomy (task + taxonomy) proposed by Zamir
et al. (2018), which explores the learning order of various image-related tasks; e.g. detecting 3D
edges and normal vectors of images first can help learn point matching and reshading effectively.

PEFBAT can be considered as a variant of the second solution. The limitation of the sec-
ond solution is that when task number grows larger and larger, it will eventually use up memory
resources. However, as we discussed in Section 1.2, PEFBAT can alleviate this problem as param-
eters contained in each classifier is small — the size of 230 MLP classifiers for 230 tasks is equal
to a single BERT-base model. If we use SVM instead of MLP as the classifier for small tasks like
MRPC (Dolan et al. 2004) without sacrificing task performance, the total size becomes further
smaller. Hence, PEFBAT is not only a solution to catastrophic forgetting, but also competent in
power-efficient continual learning.

3. Proposed method

Our technical motivation towards PEFBAT is introduced in Section 1.1. In this section, we move
into the implementation details and mechanism of PEFBAT. We first describe the modeling of
initial sentence-pair representations and the objective of our pre-training. Then how to pre-train
the task-specific architecture of PEFBAT using the representations is described in the second sub-
section. The third subsection explains the discriminative features that our pre-trained task-specific
architecture can output, which are presented together with other features in the last subsection.

3.1 Initial sentence-pair representations & objective of pre-training

In this work, the crucial semantics conveyed in a single sentence are represented by the three
components (see the upper part of Figure 5). The entity and action components basically describe
“what is the state or activity that somebody or something is on”. The modification component
conveys the semantics that modify the entity and action components. For example, “in a particular
way” can be interpreted as either adverbs that modify verbs or determiners and adjectives that
modify nouns.

The concatenation of three components plays the important role in measuring semantic simi-
larity of a sentence pair (see the lower part of Figure 5). In addition, to facilitate PI, the reward
component (details explained in Sections 3.2.1 and 3.2.2) containing (non)paraphrase-like charac-
teristics is combined with the other three components to form the initial sentence representations
of a sentence pair. The objective of our pre-training, therefore, is to have the initial representations
generate discriminative latent representations. The latter contains discriminative features, which
is conducive to PI.

3.2 Latent space pre-training

To generate discriminative sentence latent representations, we refer to Ji and Eisenstein (2013)’s
work by taking advantage of labeled data, and our concrete strategy in this article is the dual
weighting scheme shown in Figure 6. The paraphrase weighting scheme is used to weight five
components of a sentence belonging to paraphrase sentence pairs. Then the concatenation of
five weighted components is mapped to its latent representation for pre-training the paraphrase
latent space. The same step is applied to pre-training the non-paraphrase latent space, where the
components of non-paraphrase sentences are weighted by the non-paraphrase weighting scheme.
Besides, two reward components are used to represent (non)paraphrase-like characteristics, which
is the best setting for pre-training. Later in Section 4, an ablation study is performed for validation.

Natural Language Engineering 9

P R e e T '

i single sentence representation | |

a single sentence template: Somebody/something /is somebody/something

blue background entity component

green background ——> action component

The concatenation of three components
conveys crucial semantics.

yellow background —» modification component

grey background reward component !
a sentence-pair example: :

1 sentence 1: DVD-CCA state Supreme Court. ‘
! sentence 2: DVD CCA decision U.S. Supreme Court. B
H sentence 1 sentence 2 |
: DVD-CCA, state DVD, CCA, decision, :
H Supreme, Court U.S., Supreme, Court H
E appealed appealed ,
: The, then, to, the The, that, to, the :

| objective of pre-training: |
to have two initial representations generate discriminative latent representations

Figure 5. Modeling of initial sentence-pair representations.

paraphrase sentence pairs paraphrase concatenation of five paraphrase latent space paraphrase latent target paraphrase latent
weighting scheme weighted components (projection matrix)
add weight weighed
| entity component " N .
entity componen weighted ‘
. entity component o
i o |_add weight weighted iy G
1 action component RN OB et [T e | weighted

action component LSE loss

i i
'_/

backpropagation

add weight weighted
‘modification component

weighted -
reward component |

weighted
reward component 2

weighted 1.
n component

asentence ¢

add weight

D
1 reward component 1
reward component 2

add weight

. non-paraphrase concatenation of five non-paraphrase latent space non-paraphrase latent target non-paraphrase
non-paraphrase sentence pairs on-pa " P N " 3
weighting scheme weighted components (projection matrix) representation latent representation
add weight weighted
4 enity component ..
P enity component eighted
" entity component Tl
[o o |add weight weighted . ty compor -
action component —HHCHEE TR et [T e weighted

action component LSE loss

i i
_/

backpropagation

add weight weighted
‘modification component

weighted)
reward component 1

weighted
reward component 2

weighted 1.
‘modification component

i P
reward component 1
reward component 2

add weight

add weight

Figure 6. Mapping mechanism of pre-training.

The two pre-trained latent spaces are namely our task-specific architecture, the fixed parameters
of which can be used for multiple PI, NLI, and STS tasks. During inference shown in Figure 7,
for each sentence of any sentence pairs, two types of weighted components based on the dual
weighting scheme are first concatenated respectively, and then two latent representations can be
obtained after two concatenations are projected from two pre-trained latent spaces respectively —
paraphrase and non-paraphrase latent representations. They contain discriminative features, which
is described at length in Section 3.3.

Before stepping into further implementation details, we introduce the embeddings, toolkits and
corpus resource that are employed for pre-training. As we consider the application to low-resource
natural languages with limited labeled and unlabeled data (Hedderich et al. 2021) as our future

10 Liu, Rzepka, and Araki

paraphrase concatenation of five paraphrase latent space paraphrase latent
weighting scheme weighted components (projection matrix) representation
add weight weighed
4 entity component CE—
entity component weighted
s tity co t T
[acii o |_addweight weighted Catltyjcompoel -
action component action component | 7Tt eeeaal_ weighted
action component
add weight weighted || weighted

modification component

add weight weighted
reward component 1 = ©
. reward component |
weighted
reward component 2

modification component

add weight

reward component 2

Sentence
S1

non-paraphrase concatenation of five non-paraphrase latent space non-paraphrase latent
Sentence weighting scheme weighted components (projection matrix) representation
S2
. ght i
| entity component | —2ddweie weighted
B entity component e T
. entity component | -~

add weight weighted
action component ———————»

action component | TTTTTteeeo_ weighted [
action component

add weight weighted
modification component

add weight weighted
N reward component | &
reward component |
weighted
reward component 2

Figure 7. During inference, each sentence of any sentence pairs can obtain two types of latent representations.

weighted
modification component

add weight

reward component 2

work (discussed in the last section), the choice of the resources are based on the consideration of
“lightness”: requirement of small training data size and easy availability.

Corpus Resource: The corpus that we use is only the training dataset of Microsoft Research
Paraphrase Corpus (MRPC) (Dolan et al. 2004) consisting of 4,076 sentence pairs, in which 2,753
pairs are labeled as paraphrase, which is so far the smallest English paraphrase corpus.

Pre-trained Embeddings: We choose fastText (Mikolov et al. 2018) trained with subword
information on CommonCrawl as our pre-trained embeddings because it is not deep learning
architecture-based, which is applicable to low-resource natural languages (Mohiuddin and Joty
2020). Moreover, it achieves better performance than GloVe (Pennington et al. 2014) trained on
CommonCrawl in SentEval framework (Conneau and Kiela 2018).

Toolkits: Considering easy availability, we utilize part-of-speech tags (POS-tags) provided by
NLTK! for categorizing entity, action and modification components. The scikit-learn tool? is used
for distributional models and matrix factorization.

3.2.1 Five components
Categorizing words as the elements of entity, action, and modification components is based on
three specific sets of POS-tags shown below.

 Entity set: singular noun, plural noun, singular proper noun, plural proper noun, personal
noun

* Action set: base form verb, past tense verb, present particle verb, past participle verb,
present verb, third person present verb

* Modification set: determiner, predeterminer, adjective, comparative adjective, superla-
tive adjective, possessive pronoun, possessive ending, existential there, modal, adverb,
comparative adverb, superlative adverb, particle, to

fhttps://www.nltk.org/
Shttps://scikit-learn.org/stable/

https://www.nltk.org/
https://scikit-learn.org/stable/

Natural Language Engineering 11

Suppose the sentence “He likes apples.” has three word embeddings (0.1, 0.1, 0.1) for ‘he’,
(0.2, 0.2, 0.2) for ‘likes’, and (0.3, 0.3, 0.3) for ‘apples’, then the entity component is [(0.1, 0.1,
0.1) + (0.3, 0.3, 0.3)] / 2 = (0.2, 0.2, 0.2); the action component is (0.2, 0.2, 0.2) / 1 = (0.2, 0.2,
0.2); the modification component is (0, 0, 0). If the word embedding of a word does not exist in
the embedding space, our strategy is to skip it, because the sentences in MRPC corpus are derived
from old news resources, rarely containing newly-coined words like “infodemic”.

Each reward component is initiated as a vector with the same length as fastText word embed-
dings (300), and the values of all dimensions are initially set to 1.0. Two weighted reward
components are meant to provide strong or weak rewards for the concatenation of components.
With their functionality, sentence pairs that have (non)paraphrase-like characteristics tend to
obtain similar latent representations in (non)paraphrase latent spaces.

3.2.2 Dual weighting scheme

Our dual weighting scheme is summarized in Table 1, which is utilized to determine whether a
component should be strongly or weakly weighted. In the scheme, our weighting criteria are based
on two elements: “label” (universal to all task datasets) and “occurrence difference” (manually
adjustable for different task datasets).

For both reward components, our weighting criterion is “occurrence difference”. We utilize the
characteristics-based thresholds (see Figures 8, 9, and 10) to determine strong or weak rewards.
The main threshold is Jaccard distance (abbreviated as j-dist shown in Figure 10) (Jaccard 1912).
We perform PI on MRPC (Dolan et al. 2004) using Jaccard distance, and found out at 0.6, accuracy
and F1 score increase significantly. Thus, the threshold of 0.6 is utilized to determine one reward
component. However, during inference, when the threshold of j-dist is adjusted for other task
datasets, using the weighting criterion of “occurrence difference” is empirically proved enough
in Section 4, which is time-saving. Only for pre-training our latent spaces, we need to ensure
every default setting is well set. The sentence length (abbreviated as sent-len shown in Figure 8)
and absolute difference of sentence length (abbreviated as sent-len-diff shown in Figure 9) are the
main factors that can affect Jaccard distance, so we combine their thresholds together to determine
another reward component so as to assist the one determined by j-dist. To briefly sum up, the
three thresholds are considered as a whole package to determine whether two reward components
should be weighted strongly or weakly, which is the way to represent whether a sentence pair
exhibits (non)paraphrase-like characteristics.

For the three word-embedding components (entity, action and modification), our weighting
criterion is “label”. As adverbs like negation (not) convey discriminative semantics, we assign
more weight to the modification component if a sentence pair is labeled as non-paraphrase. On
the other hand, the entity and action components basically describe “what is the state or activity
that somebody or something is on” (mentioned earlier in this subsection), which is the principal
requirement for semantic similarity of sentences, so we assign more weight to the entity and
action components if a sentence pair is labeled as paraphrase. The weighting criterion of “label”
is universal to all task datasets. The digit-count threshold (see Figure 11) is the assumption we
make that when there are too many digital numbers occurring in a sentence pair, the influence
of semantics represented in the entity component should be lessened. To verify this assumption,
we also pre-train another two latent spaces without the threshold. In Section 4, we conduct the
experiments using the latent spaces pre-trained ‘with digit-count’ or ‘without digit-count’. Below
we provide an example from MRPC training dataset, where the sentence pair is labeled as non-
paraphrase and digit-count is 6 (6 digital numbers in total are included in both sentences).

(1) Yucaipa owned Dominick’s before selling the chain to Safeway in 1998 for $2.5 billion.
(2) Yucaipa bought Dominick’s in 1995 for $693 million and sold it to Safeway for $1.8 billion
in 1998.

12 Liu, Rzepka, and Araki

Table 1. Dual weighting scheme.

Components Paraphrase weighting scheme Non-paraphrase weighting scheme
if digit-count < 4: if digit-count > 4:
Entit Entity = 1.5 * Entity Component Entity = 1.5 * Entity Component
ntity
else: else:
Entity = 0.5 * Entity Component Entity = 0.5 * Entity Component
Action Action = 1.5 * Action Component Action = 0.5 * Action Component
Modi. Modi. = 0.5 * Modification Component Modi. = 1.5 * Modification Component
if sent-len > 23 or sent-len-diff <5: if sent-len < 23 or sent-len-diff > 5:
RC RC; =1 * Reward Component 1 RC; =1 * Reward Component 1
1
else: else:
RCy = 0.2 * Reward Component 1 RCy =0.2 * Reward Component 1
if Jaccard-distance < 0.6: if Jaccard-distance > 0.6:
RC RC; =1 * Reward Component 2 RC, =1 * Reward Component 2
2

else:

RC, = 0.2 * Reward Component 2

else:
RC, = 0.2 * Reward Component 2

— paraphrase
non-paraphrase
020

015

0.10

N

10 20 30 40 50
sentence length

Distribution of sentence pairs

Figure 8. sentence length.

— paraphrase
—— non-paraphrase

- o m

Distribution of sentence pairs

00 02 04 06 08
Jaccard distance

Figure 10. Jaccard distance.

3.2.3 Target latent representations

We use distributional models with matrix factorization to generate latent representations for all
sentences in the training dataset of MRPC (Dolan et al. 2004). For factorization, we follow Guo
and Diab (2012)’s work by choosing Singular Value Decomposition (Deerwester et al. 1990) and
the length of 100 for latent dimensionality. Moreover, we normalize the factorized matrix, as the
latent representations are the target layer of our architecture, and the activation function is tanh.

— paraphrase
10 non-paraphrase

/\

0

1 15 20
sentence length difference

Figure 9. absolute difference of sentence length.

— paraphrase
—— non-paraphrase

Distribution of sentence pairs

A

00 25 50 75 100 125 150 175
digit-count

=t

Figure 11. digit-count.

As aresult, all values in the factorized matrix are included within an open interval (-1, 1).

Natural Language Engineering 13

Furthermore, we refine the latent representations for paraphrase pairs. Suppose the latent rep-
resentations for a sentence S; and a sentence S of a sentence pair are (0.9, 0.8, 0) and (0.7, 0.8,
0.6) respectively, the pair shares a latent representation by averaging the elementwise addition of
two vectors; in this case, the shared latent representation is (0.8, 0.8, 0.3). The rationale of sharing
is that paraphrase pairs should have similar or even identical dimension values. By doing so, two
initial sentence representations of any paraphrase sentence pair can be mapped to the same latent
representation during pre-training, and therefore during inference, paraphrase pairs tend to obtain
similar latent representations after mapping from paraphrase latent space.

3.2.4 Hyperparameters of pre-training & method of determining weights

For each sentence in the training dataset of MRPC (Dolan et al. 2004), the concatenation of its
five weighted components is mapped to its latent representation. As mentioned earlier in this sub-
section shown in Figure 6, all (non)paraphrase sentences are used to pre-train the (non)paraphrase
latent space based on (non)paraphrase weighting scheme.

Since the size of training dataset is small, back-propagation is performed for each mapping,
following vanilla Stochastic Gradient Descent (vanilla SGD). The loss is accumulated from all
samples of each training epoch, and the accumulation is averaged at the end of each epoch.
The hyperparameters of our pre-training are input vector length (1,500), target vector length
(100), activation function (tanh), loss function (LSE), epochs (500), learning rate (5e-4), and
optimization (vanilla SGD).

Before formal pre-training, we first tune the weights with small training epochs (< 50). The
determined weights are illustrated in Table 1. For both reward components, the strong and weak
weights are 1 and 0.2 respectively; 1.5 and 0.5 (we call it “weight pair”) are set for the three
word-embedding components. How they are determined is described below.

(1) First, we hypothesize that 1 is the optimal strong weight for both reward components,
because if too big it will make the dimensions of other input components less significant;
when too small it cannot be considered as a strong weight.

(2) Then we keep the “weight pair” (1.5 & 0.5) as it is, and begin to tune the weak weight from
0.1 to 0.2 for the best optimization of pre-training. After only 3 epochs of pre-training, we
observe that the error loss decreases significantly in case of 0.2, and hardly drops when 0.1
is used. Therefore, we decide 0.2 as the weak weight for both reward components.

(3) After the decision of the weak weight, we start to tune the “weight pair”. We use only 50
epochs to pre-train our latent spaces, and experiment with different pairs from (1.1, 0.9) to
(1.9, 0.1) at the pivot of 1. We found out that with the pair of (1.5, 0.5), better discriminative
similarity (explained in the next subsection) can be achieved.

After the weights are determined, we set out to formally pre-train the two latent spaces with
the full training epochs of 500 (4 GPU® hours). We save the latent spaces at every 50 epochs
during pre-training, and choose the optimally pre-trained ones — that can be used to achieve the
optimal PI performance on the test dataset of MRPC — for different PI, NLI, and STS tasks. The
experimental results in Section 4 show that our pre-trained latent spaces are not overfitting and
limited to MRPC. As for reproducibility, we conduct pre-training several times without setting a
particular seed, and the experimental results do not fluctuate extremely (details are provided in the
next subsection).

14 Liu, Rzepka, and Araki

Table 2. Dsicriminative similarities are shown for the spaces pre-trained ‘with digit-count’.

. Lp(S1) & Lp(S2) Lp(S1) & Lp(S2) Lnp(S1) & Lnp(S2) Lnp(S1) & Lnp(S2)
Sentence pairs

mean std. mean std.
paraphrase 0.808 0.150 0.810 (+0.002) 0.143
non-paraphrase 0.681 0.192 0.728 (+0.047) 0.158

Table 3. Dsicriminative similarities are shown for the spaces pre-trained ‘without digit-count’.

. Lp(S1) & Lp(S2) Lp(S1) & Lp(S2) Lnp(S1) & Lnp(S2) Lnp(S1) & Lnp(S2)
Sentence pairs

mean std. mean std.
paraphrase 0.817 0.139 0.808 (-0.009) 0.142
non-paraphrase 0.711 0.167 0.730 (+0.019) 0.164

with digit-count without digit-count

—— paraphrase — paraphrase
005 nonparaphrase 005 nonparaphrase

discriminative similarities
°
8
discriminative similarities
°
°
0

0.00 T —— 0.00
o1 o1 \/\/
2 3 4 5 1 2 3 4 5
five runs of pretraining with different random seeds five runs of pretraining with different random seeds

Figure 12. Reproducibility test for ‘with digit-count’. Figure 13. Reproducibility test for ‘without digit-count'.

3.3 Discriminative similarity

As mentioned earlier in Section 3.1, the objective of our pre-training is to have two initial sentence-
pair representations to generate the latent representations containing discriminative features. This
effect is reflected by discriminative similarity, which is explained in this subsection.

As shown earlier in Figure 7, each sentence of any sentence pairs can obtain two types of
latent representations based on two pre-trained latent spaces. For conciseness, paraphrase latent
representation obtained for a sentence is abbreviated as Lp(S), and Lnp(S) is an abbreviation
for non-paraphrase latent representation. Based on the optimally pre-trained latent spaces, we
calculate the cosine similarities for Lp(S;) & Lp(S») and Lnp(S;) & Lnp(S>), using the sentence
pairs in the training dataset of MRPC. The results are shown in Tables 2 and 3.

Compared to the mean cosine similarity in the paraphrase latent space, non-paraphrase sen-
tence pairs tend to have higher cosine similarity (= 0.73) in the non-paraphrase latent space, while
paraphrase sentence pairs tend t