

Instructions for use

Title Parameter-efficient feature-based transfer for paraphrase identification

Author(s) Liu, Xiaodong; Rzepka, Rafal; Araki, Kenji

Citation Natural Language Engineering, 1-31
https://doi.org/10.1017/S135132492200050X

Issue Date 2022-12-19

Doc URL http://hdl.handle.net/2115/89905

Type article (author version)

File Information Parameter-efficient feature-based transfer for paraphrase identification (final version).pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Natural Language Engineering (2021), 1–00
doi:10.1017/xxxxx

ARTICLE

Parameter-efficient feature-based transfer for
paraphrase identification

Xiaodong Liu1,*, Rafal Rzepka2, and Kenji Araki2

1Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
2Faculty of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
*Corresponding author. Email: xiaodongliu@ist.hokudai.ac.jp

(Received xx xxx xxx; revised xx xxx xxx; accepted xx xxx xxx)

Abstract
There are many types of approaches for Paraphrase Identification (PI), an NLP task of determining whether
a sentence pair has equivalent semantics. Traditional approaches mainly consist of unsupervised learning
and feature engineering, which are computationally inexpensive. However, their task performance is mod-
erate nowadays. To seek a method that can preserve the low computational costs of traditional approaches
but yield better task performance, we take an investigation into neural network-based transfer learning
approaches. We discover that by improving the usage of parameters efficiently for feature-based transfer,
our research goal can be accomplished. Regarding the improvement, we propose a pre-trained task-specific
architecture. The fixed parameters of the pre-trained architecture can be shared by multiple classifiers with
small additional parameters. As a result, the computational cost left involving parameter update is only
generated from classifier-tuning: the features output from the architecture combined with lexical overlap
features are fed into a single classifier for tuning. Furthermore, the pre-trained task-specific architecture
can be applied to natural language inference and semantic textual similarity tasks as well. Such tech-
nical novelty leads to slight consumption of computational and memory resources for each task, and is
also conducive to power-efficient continual learning. The experimental results show that our proposed
method is competitive with adapter-BERT (a parameter-efficient fine-tuning approach) over some tasks
while consuming only 16% trainable parameters and saving 69-96% time for parameter update.

Keywords: Parameter-efficient feature-based transfer; Paraphrase identification; Natural language inference; Semantic
textual similarity; Continual learning

1. Introduction
Measuring semantic relatedness of two pieces of text entails a wide range of tasks in Natural
Language Processing (NLP). When the measurement comes to sentence level, it involves three
common NLP tasks: Paraphrase Identification (PI) for determining whether a sentence pair has
equivalent semantics; Natural Language Inference (NLI) for inferring relation between a sentence
pair; Semantic Textual Similarity (STS) for scoring semantic similarity of a sentence pair. Many
types of approaches have been published in the previous works (Chandrasekaran and Mago 2020)
for PI task and two of its variations (NLI and STS). In this article, we propose a new method to
improve the usage of parameters efficiently for feature-based transfer, a transfer learning approach
involving customizing a task-specific architecture for PI. In this section, we first introduce the
research goal that motivates our proposed method based on the relevant technical background.

© Cambridge University Press 2021

mailto:xiaodongliu@ist.hokudai.ac.jp

2 Liu, Rzepka, and Araki

pre-trained embedding model

parameters to be updated

transparent background

orange background

fixed parameters

Conventional fine-tuning

classifier

BERT layer

Conventional feature-based transfer

classifier

task-specific architecture

pre-trained embedding model

Parameter-efficient fine-tuning

classifier

BERT layer

Parameter-efficient feature-based transfer

classifier

pre-trained task-specific architecture

adapter
module

(1)

(2)

(3)

(4)

Figure 1. Parameters that need to be updated for each PI, NLI, or STS task. The underlined denotes our work.

Then in the second subsection, we describe the benefit for a real-world scenario based on our
technical novelty.

1.1 Technical background & research goal
When it comes to PI, there exist a wide range of traditional approaches that are relatively effec-
tive for the task: (1) lexical overlap features such as n-gram overlap (Wan et al. 2006) and
machine translation evaluation metrics (Madnani et al. 2012); (2) using external lexical knowl-
edge like WordNet (Fellbaum 1998; Fernando and Stevenson 2008); (3) modeling divergence of
dependency syntax between two sentences Das and Smith (2009); (4) distributional models with
matrix factorization (Guo and Diab 2012; Ji and Eisenstein 2013). The traditional approaches
mainly consist of unsupervised methods and feature engineering. Their demand for computational
resources are low while task performance is moderate nowadays. For example, the computational
cost involving parameter update for processing the lexical overlap features is only consumed by
classifier-tuning, but the task performance is comparatively less effective as reflected by MRPC
task (Dolan et al. 2004) in the ACL linka. In light of that fact, we come up with our research ques-
tion — how can we preserve the low computational costs of traditional approaches but yield better
task performance? To seek an approach to it as our research goal, we take a further investigation
on current neural network-based transfer learning approaches.

With the advent of various deep neural network models (Dong et al. 2015; Vaswani et al. 2017;
Howard and Ruder 2018; Yang et al. 2019), transfer learning approaches have achieved state-
of-the-art performance on many NLP downstream tasks including PI. Basically, there are two
most common transfer learning techniques in NLP: fine-tuning and feature-based transfer. As for
fine-tuning, the parameters of pre-trained language models like BERT (Devlin et al. 2019) need
to be fine-tuned. On the other hand, feature-based transfer does not require parameter update of
pre-trained embedding models like ELMo (Peters et al. 2018); however, the parameters of any
customized task-specific architectures need to be updated. For both transfer learning techniques,
they follow the same convention: entire architectural parameters need to be initialized and then
updated for each individual task dataset (see 1 & 2 in Figure 1).

ahttps://aclweb.org/aclwiki/Paraphrase_Identification_(State_of_the_art)

https://aclweb.org/aclwiki/Paraphrase_Identification_(State_of_the_art)

Natural Language Engineering 3

Accompanied by the successful performance, there comes one challenge to transfer learn-
ing approaches: expensive computational resources (Strubell et al. 2019). As fine-tuning tends
to achieve better performance than feature-based transfer shown in recent works (Howard and
Ruder 2018; Devlin et al. 2019), recently proposed resource-lean approaches are mainly based
on BERT (Devlin et al. 2019) architecture, focusing on model compression such as network lay-
ers repeating (Lan et al. 2019) and knowledge distillation (Sanh et al. 2019). The effectiveness
of these compressed models can reduce the size of entire architectural parameters, but cannot go
beyond the aforementioned convention, and thus whether the usage of the parameters is efficient
remain uninvestigated.

Still, the adapter module proposed by Houlsby et al. (2019a) is based on the research direction
regarding parameter-efficiency – only a comparatively small number of task-specific parameters
are initialized and then updated for every single task (see 3 in Figure 1). Houlsby et al. (2019a)
applied the adapter module to BERT (Devlin et al. 2019) for testing effectiveness, and the adapter-
BERT attained within 0.4% of the performance of full fine-tuning, adding only 3.6% parameters
per task. Such performance level reflects the fact that there is no need to initialize and then to
update entire architectural parameters for each task. Instead, focus should be shed on the efficient
usage of parameters. Most recently, the research direction has a tendency to extract an optimal
subset of architectural parameters (de Wynter and Perry 2020), and also works for autoregressive
models like P-tuning (Liu et al. 2021) for GPT (Radford et al. 2019).

The efficient usage of architectural parameters also resonates with a current trendb in NLP
community, which encourages researchers to empirically justify the model complexity beyond
benchmark performance. However, to the best of our knowledge as of writing, direct research
attempts regarding parameter-efficiency are rarely made for feature-based transfer. In the last
two years, only one indirect attempt was conducted, the PAR (Paraphrase-Aware Retrofitting)
method proposed by Shi et al. (2019), aiming to address unstable semantics of contextualized
word embeddings of shared words when context is paraphrased. Besides, for any customized
task-specific architecture, although it is an option to train task datasets through continual learn-
ing (Thrun 1998), the parameters of the re-trained network are inclined to forget how to perform
previous tasks — catastrophic forgetting (McCloskey and Cohen 1989; French 1999).

While related works are centered around language model-based fine-tuning, we discover that
one advantage of feature-based transfer tends to be neglected and consequently left unexplored. As
various task-specific architectures are customized for a particular task like PI, we discover that it is
viable to fix the architectural parameters trained on a single task dataset and then transfer the fixed
parameters to other task datasets. With this discovery, while yielding better task performance,
feature-based transfer can enjoy the low computational costs as traditional approaches do: the
initialization of pre-trained architectural parameters is required only once and there is no need of
further parameter update for different tasks (see 4 in Figure 1), the only computational costs are
consumed by classifier-tuning. The technical scenario cannot be realized by language model-based
fine-tuning. For example, task-specific parameters of adapter module (Houlsby et al. 2019b) tuned
on task A cannot be directly used for task B without any modification. However, in this article, we
show that it is feasible to feature-based transfer.

For readability in the rest of this article, we use the acronym PEFBAT (Parameter-Efficient
Feature-BAsed Transfer) to denote our proposed method. The technical novelty of PEFBAT is
that the fixed parameters of the pre-trained task-specific architecture can be shared by multiple
classifiers with small additional parameters. This mechanism can address our research goal. For
each PI, NLI, or STS task, the computational cost left involving parameter update is only generated
from classifier-tuning: the features output from the architecture combined with lexical overlap
features are fed into a single classifier for tuning. Such technical novelty is also conducive to a
real-world scenario, which is another contribution of PEFBAT described in the next subsection.

bhttps://sites.google.com/view/sustainlp2020/home?authuser=0

https://sites.google.com/view/sustainlp2020/home?authuser=0

4 Liu, Rzepka, and Araki

1. pre-trained embedding model
2. pre-trained task-specific architecture

parameters to be updated

transparent background

orange background

fixed parameters

task 1
from

customer 1

task i
from

customer 1

task 1
from

customer 2

......

...... task i
from

customer n

Tasks arrive from customers.

parameter-efficient

a single
classifier

a single
classifier

a single
classifier

a single
classifier power-efficient

Figure 2. Parameter-efficient feature-based transfer for power-efficient continual learning.

1.2 Practical use in real-world scenario
Similar to adapter module (Houlsby et al. 2019b), PEFBAT can be applied to continual learning,
but the differences exist from two aspects. Since the former is language model-based (e.g. adapter-
BERT when it is applied to BERT model), it can handle more than sentence-pair tasks. On the
other hand, although PEFBAT can address only three types of sentence-pair tasks, it exhibits a
more power-efficient manner: for each task arriving from customers, only a single classifier needs
to be instantiated (see Figure 2). The power cost is measured by the time required for parameter
update of each task, which directly reflects the demand for computational resources. For exam-
ple, in the case of Multi-Layer Perceptron (MLP)c with batch size 32 and epochs 100, for small
datasets like MRPC (Dolan et al. 2004) (4k training data), training a MLP takes up approximately
1 minute. For large datasets like QQP (Iyer et al. 2017) (363k training data), training a MLP
can be finished in 37 minutes. More importantly, each task performance is not compromised by
catastrophic forgetting as each classifier is tailored individually for each task.

Furthermore, additional parameters per task contained in each classifier are small (0.479M
trainable parameters explained in Section 4), which can be considered as parameter-efficient
model expansion, as the size of 230 classifiers for 230 tasks from customers amounts to a single
BERT-base model. Although using only engineered features also consumes less computational
and memory resources, PEFBAT can yield better task performance, and thus it is comparatively a
good fit in terms of power-efficient continual learning.

2. Related works
There have been many approaches proposed in the previous works for PI (Chandrasekaran and
Mago 2020). In this section, we discuss the traditional and transfer learning approaches that are
related to our work. The strengths of the traditional approaches are integrated into PEFBAT.
The transfer learning approaches, although adopt different strategies, are related to parameter-
efficiency. Besides, we extend our discussion on two topics: (1) task-specific DNNs, which are the
conventional strategy adopted for feature-based transfer; (2) the solutions to catastrophic forget-
ting in continual learning, because PEFBAT can be considered as a variant of parameter-efficient
model expansion.

cThe GPU device that we use for our experiments is NVIDIA RTX 2080 TI.

Natural Language Engineering 5

Figure 3. PAN. Figure 4. PAWS-wiki.

2.1 Traditional approaches
In PEFBAT, the lexical overlap features (Wan et al. 2006) are combined with the transferred
features (the features output from our pre-trained task-specific architecture) as input to each indi-
vidual classifier. This technique is not unusual for feature-based transfer; for example, Yin and
Schütze (2015a) combined the machine translation metrics (Madnani et al. 2012) with the flattened
features output from their Bi-CNN architecture. In our case, the combination is based on a par-
ticular consideration — mutual complementation. As the Jaccard distanced illustrated in Figures
3 and 4 for two paraphrase corporae, lexical overlap features are noticeably cost-effective for task
datasets like PAN (Madnani et al. 2012) (Figure 3); however, they become unviable when lexi-
cal overlaps are indistinguishable between paraphrase and non-paraphrase sentence pairs in task
datasets like PAWS-wiki (Zhang et al. 2019) (Figure 4). The combination can have the transferred
features enjoy their merits while their demerits can be improved by the transferred features. We
delve deeper into the mutual complementation in Section 4 based on our experimental results.
From another perspective that is not directly related to our work, lexical overlap features are
also beneficial to paraphrase generation task. While the quality of generated paraphrases can be
decided by state-of-the-art models like Sentence-BERT (Reimers and Gurevych 2019) shown in a
recent work (Corbeil and Abdi Ghavidel 2021) for data augmentation, some works still consider
lexical overlap features as criteria: Nighojkar and Licato (2021) use BLEURT (Sellam et al. 2020)
metric to calculate reward for sentence pairs that are mutually implicative but lexically and syn-
tactically disparate; Kadotani et al. (2021) use edit distance to decide whether source and target
sentences require drastic transformation, so that the training order of curriculum learning (Bengio
et al. 2009) can be determined for better performance of paraphrase generation; Jaccard distance
is used in Meng et al. (2021)’s work as one metric for filtering generated paraphrase candidates.

Ji and Eisenstein (2013) utilize TF-KLD weighting scheme to assign weights to each feature
(single word) in distributional models. The weighted distributional models then can generate dis-
criminative sentence latent representations after matrix factorization, which are conducive to PI.
This approach has achieved competitive performance on MRPC (Dolan et al. 2004) task with
this special feature engineering process. Inspired by Ji and Eisenstein (2013), the pre-trained
task-specific architecture of PEFBAT is also designed to generate the features containing discrim-
inative semantics (details are presented in Section 3). In the meanwhile, two of their limitations
are not reflected in PEFBAT: (1) the TF-KLD weighting scheme relies on transductive learning
(Gammerman et al. 1998) to weight unseen words for optimal performance; (2) the scheme is
strictly MRPC-dependent, and therefore it is not applicable to other PI task datasets or real-world

dAll the tokens are converted into small case without stemming or removing stopwords and punctuation.
eJaccard distance calculated for two PI corpora take into account training, development (if it exists), and test sets.

6 Liu, Rzepka, and Araki

scenarios. TF-KLD-KNN proposed by (Yin and Schütze 2015b) can address the first limitation,
but is not viable for the second limitation.

2.2 Transfer learning approaches
Shi et al. (2019) has discovered that in many cases, contextualized embeddings of shared words
in paraphrased contexts change drastically. To minimize the difference of the shared words, they
propose a PAR (Paraphrase-Aware Retrofitting) method: to reshape input representations of con-
textualized models with an orthogonal transformation matrix. They apply the PAR method to
ELMo (Peters et al. 2018) to test its effectiveness. The task-specific architecture (orthogonal
transformation matrix) placed prior to embedding models is referred to as retrofitting methods
(Faruqui et al. 2015; Yu et al. 2016; Glavaš and Vulić 2018): to incorporate semantic knowl-
edge from external resources into word embeddings. The external resources that Shi et al. (2019)
used to train their task-specific architecture are the paraphrase sentence pairs from three corpora:
PAN (Madnani et al. 2012), Sampled Quora (Iyer et al. 2017), and MRPC (Dolan et al. 2004).
The parameters of the trained architecture then can be used for PI, NLI and STS tasks, which is
parameter-efficient.

The adapter module (Houlsby et al. 2019a) comprises the network layers with comparatively
small size of parameters stitched into BERT (Devlin et al. 2019) layers, aiming to address param-
eter efficiency for language models. For every task, the parameters of BERT layers remain fixed
while the ones of adapter module are updated. Such design results in a model that is compact and
extensible: a small number of additional parameters per task without forgetting how to perform
previous tasks. The adapter module can be considered as a variation of layer transfer. The tech-
nique is commonly adopted in the field of computer vision. For example, in the task of image
classification (Deng et al. 2009), Yosinski et al. (2014) discovered that by transferring only the
bottom layer of the network trained on source data, decent performance can be obtained for target
data by only re-training the top layers, because the image data tend to share similar patterns at
the lower layers of the network. The adapter module exhibits similar property as it automatically
prioritizes higher layers (Houlsby et al. 2019a), which matches the popular strategy in fine-tuning
(Howard and Ruder 2018). PEFBAT also benefits from the strategy: pre-trained embeddings plus
task-specific architecture (fixed parameters at lower layers), and classifier (parameters at higher
layers updated for different tasks). In Section 4, adapter-BERT is considered as our upper bound.

2.3 Task-specific DNNs
When it comes to feature-based transfer, it is a vital step to customize a task-specific architecture.
The input of the architecture is pre-trained word embeddings (Mikolov et al. 2013; Pennington
et al. 2014; Mikolov et al. 2018; Peters et al. 2018), and output is typically flattened features
connected to a classifier. The conventional strategy adopted for the task-specific architecture
is task-specific DNNs. One successful embodiment is Siamese neural network (Bromley et al.
1993), which shows the key insight of extracting interaction features from input word embed-
dings of two sentences at multiple levels of granularity (unigram, short n-gram, long n-gram, and
sentence levels). A comparatively effective implementation of Siamese architecture is Bi-CNN
(Yin and Schütze 2015a; He et al. 2015; Yin et al. 2016): using two sub-networks (double con-
volutional layers) to process word embeddings of two sentences. In the Bi-CNN architecture,
each sentence of a sentence pair at the beginning is represented as a matrix, in which every col-
umn vector corresponds to a word embedding. Then the matrix representations of two sentences
are processed by convolution filters with n-gram width and multiple types of pooling at differ-
ent network layers, during which, interaction features representing multi-granular semantics are

Natural Language Engineering 7

extracted from the gradually-processed matrix representations. The final step is to connect the
flattened multi-granular interaction features to a classifier for supervised learning.

Siamese architecture implemented by Bi-CNN is not the only approach to extracting multi-
granular interaction features. For example, the RAE model proposed by (Socher et al. 2011) first
uses recursive neural network (also known as TreeRNN) to pre-train embeddings at word, phrase,
and sentence levels. Those pre-trained embedding representations are denoted as multi-granular
nodes. Then for the nodes of a sentence pair, a n1 × n2 similarity matrix is computed as interac-
tion features, where n1 and n2 are the number of nodes of two sentences respectively and each
similarity is the Euclidean distance between two nodes. Finally, the similarity matrix is fed into
a dynamic pooling layer to fix its size for supervised learning, as each sentence pair has different
size of nodes. The RAE model is comparatively less effective than Bi-CNN in terms of the perfor-
mance on MRPC task (Dolan et al. 2004). As explained in Yin and Schütze (2015a)’s work, this
is due to unavailability of highly accurate parsers for tree structure.

PEFBAT can yield competitive performance level compared to Bi-CNN (demonstrated in
Section 4), although its mechanism for PI (described in Section 3) is different. From technical
perspective, unlike Bi-CNN, the task-specific architecture of PEFBAT is pre-trained, and there-
fore there is no need of further parameter update for each task, which is parameter-efficient and
cost-friendly.

2.4 Continual learning
Continual learning (Thrun 1998), also known as lifelong learning, never ending learning, or incre-
mental learning, is a machine learning technique of training tasks sequentially using a single
instance of a model. The task range of continual learning nowadays is typically the same task but
in different domains; e.g. 20 QA tasks in bAbi corpus (Weston et al. 2015), permuted handwrit-
ten digits recognition (van de Ven and Tolias 2019), text classification tasks with different class
(de Masson d'Autume et al. 2019), and so on. A recent research attempt (Sun et al. 2020) has man-
aged to handle 5 disparate NLP tasks by following decaNLP (McCann et al. 2018) to treat all tasks
as QA format. The biggest problem for continual learning is catastrophic forgetting (McCloskey
and Cohen 1989; French 1999) — the network trained on a new task is inclined to forget how to
perform previous tasks. The common solutions to catastrophic forgetting can be concluded into
three categories listed below.

(1) regularization-based methods: the paradigm of this method is EWC (Elastic Weight
Consolidation) (Kirkpatrick et al. 2017), the key mechanism of which is to add constraints
to the parameters that are sensitive to previous tasks. As a result, those sensitive parameters
are not modified to a large extent when a new task is being trained.

(2) parameter-efficient model expansion: from earlier works like Net2Net (Chen et al. 2016) and
Progressive Neural Networks (Rusu et al. 2016) to adapter module (Houlsby et al. 2019b)
nowadays, the major concept of this solution is to expand a model by adding additional
parameters per task. It can also work out in a reverse way — initiate a large network at the
beginning and then distribute a portion of parameters to each task (Hung et al. 2019).

(3) memory replay: the main idea of this solution is to keep a small number of old data of
previous tasks, and the old data can be either real-data (de Masson d'Autume et al. 2019) or
generated pseudo-data (Sun et al. 2020). With this benefit, a new task can be trained together
with the old data in a multi-task learning manner (Caruana 1998), which is considered as the
upper bound of continual learning. It is also shown in GEM (Gradient Episodic Memory)
(Lopez-Paz and Ranzato 2017) that the old real-data can be used to prevent gradient update
from being biased towards a new task during optimization.

8 Liu, Rzepka, and Araki

Curriculum learning (Bengio et al. 2009), although not as common as the categories above,
is also a solution to catastrophic forgetting. It seeks to find out a proper learning order of tasks.
A well-known study of curriculum learning is taskonomy (task + taxonomy) proposed by Zamir
et al. (2018), which explores the learning order of various image-related tasks; e.g. detecting 3D
edges and normal vectors of images first can help learn point matching and reshading effectively.

PEFBAT can be considered as a variant of the second solution. The limitation of the sec-
ond solution is that when task number grows larger and larger, it will eventually use up memory
resources. However, as we discussed in Section 1.2, PEFBAT can alleviate this problem as param-
eters contained in each classifier is small — the size of 230 MLP classifiers for 230 tasks is equal
to a single BERT-base model. If we use SVM instead of MLP as the classifier for small tasks like
MRPC (Dolan et al. 2004) without sacrificing task performance, the total size becomes further
smaller. Hence, PEFBAT is not only a solution to catastrophic forgetting, but also competent in
power-efficient continual learning.

3. Proposed method
Our technical motivation towards PEFBAT is introduced in Section 1.1. In this section, we move
into the implementation details and mechanism of PEFBAT. We first describe the modeling of
initial sentence-pair representations and the objective of our pre-training. Then how to pre-train
the task-specific architecture of PEFBAT using the representations is described in the second sub-
section. The third subsection explains the discriminative features that our pre-trained task-specific
architecture can output, which are presented together with other features in the last subsection.

3.1 Initial sentence-pair representations & objective of pre-training
In this work, the crucial semantics conveyed in a single sentence are represented by the three
components (see the upper part of Figure 5). The entity and action components basically describe
“what is the state or activity that somebody or something is on”. The modification component
conveys the semantics that modify the entity and action components. For example, “in a particular
way” can be interpreted as either adverbs that modify verbs or determiners and adjectives that
modify nouns.

The concatenation of three components plays the important role in measuring semantic simi-
larity of a sentence pair (see the lower part of Figure 5). In addition, to facilitate PI, the reward
component (details explained in Sections 3.2.1 and 3.2.2) containing (non)paraphrase-like charac-
teristics is combined with the other three components to form the initial sentence representations
of a sentence pair. The objective of our pre-training, therefore, is to have the initial representations
generate discriminative latent representations. The latter contains discriminative features, which
is conducive to PI.

3.2 Latent space pre-training
To generate discriminative sentence latent representations, we refer to Ji and Eisenstein (2013)’s
work by taking advantage of labeled data, and our concrete strategy in this article is the dual
weighting scheme shown in Figure 6. The paraphrase weighting scheme is used to weight five
components of a sentence belonging to paraphrase sentence pairs. Then the concatenation of
five weighted components is mapped to its latent representation for pre-training the paraphrase
latent space. The same step is applied to pre-training the non-paraphrase latent space, where the
components of non-paraphrase sentences are weighted by the non-paraphrase weighting scheme.
Besides, two reward components are used to represent (non)paraphrase-like characteristics, which
is the best setting for pre-training. Later in Section 4, an ablation study is performed for validation.

Natural Language Engineering 9

entity component

green background

blue background

action component

a sentence-pair example:
sentence 1: The DVD-CCA then appealed to the state Supreme Court.
sentence 2: The DVD CCA appealed that decision to the U.S. Supreme Court.

a single sentence template: Somebody/something does/is somebody/something in a particular way.

yellow background modification component

single sentence representation

initial sentence-pair representations

The concatenation of three components
conveys crucial semantics.

appealed

DVD-CCA, state,
Supreme, Court

The, then, to, the

sentence 1

(non)paraphrase-like
characteristics

appealed

DVD, CCA, decision,
U.S., Supreme, Court

The, that, to, the

sentence 2

(non)paraphrase-like
characteristics

objective of pre-training:
to have two initial representations generate discriminative latent representations

grey background reward component

Figure 5. Modeling of initial sentence-pair representations.

weighted
action component

weighted
entity component

weighted
modification component

weighted
reward component 1

weighted
reward component 2

paraphrase latent space
(projection matrix)

paraphrase latent
representation

weighted
action component

weighed
entity component

weighted
modification component

reward component 1

reward component 2

paraphrase
weighting scheme

concatenation of five
weighted components

add weight

add weight

add weight

add weight

add weight

weighted
action component

weighted
entity component

weighted
modification component

weighted
reward component 1

weighted
reward component 2

non-paraphrase latent space
(projection matrix)

non-paraphrase latent
representation

weighted
action component

weighted
entity component

weighted
modification component

weighted
reward component 1

weighted
reward component 2

non-paraphrase
weighting scheme

concatenation of five
weighted components

add weight

add weight

add weight

add weight

add weight

weighted
reward component 2

weighted
reward component 1

action component

entity component

modification component

reward component 2

reward component 1

action component

entity component

modification component

reward component 2

reward component 1

paraphrase sentence pairs

non-paraphrase sentence pairs

a sentence

a sentence

target paraphrase latent
representation

target non-paraphrase
latent representation

LSE loss

LSE loss

backpropagation

backpropagation

Figure 6. Mapping mechanism of pre-training.

The two pre-trained latent spaces are namely our task-specific architecture, the fixed parameters
of which can be used for multiple PI, NLI, and STS tasks. During inference shown in Figure 7,
for each sentence of any sentence pairs, two types of weighted components based on the dual
weighting scheme are first concatenated respectively, and then two latent representations can be
obtained after two concatenations are projected from two pre-trained latent spaces respectively —
paraphrase and non-paraphrase latent representations. They contain discriminative features, which
is described at length in Section 3.3.

Before stepping into further implementation details, we introduce the embeddings, toolkits and
corpus resource that are employed for pre-training. As we consider the application to low-resource
natural languages with limited labeled and unlabeled data (Hedderich et al. 2021) as our future

10 Liu, Rzepka, and Araki

weighted
action component

weighted
entity component

weighted
modification component

weighted
reward component 1

weighted
reward component 2

paraphrase latent space
(projection matrix)

paraphrase latent
representation

weighted
action component

weighed
entity component

weighted
modification component

reward component 1

reward component 2

paraphrase
weighting scheme

concatenation of five
weighted components

add weight

add weight

add weight

add weight

add weight

weighted
action component

weighted
entity component

weighted
modification component

weighted
reward component 1

weighted
reward component 2

non-paraphrase latent space
(projection matrix)

non-paraphrase latent
representation

weighted
action component

weighted
entity component

weighted
modification component

weighted
reward component 1

weighted
reward component 2

non-paraphrase
weighting scheme

concatenation of five
weighted components

add weight

add weight

add weight

add weight

add weight

weighted
reward component 2

weighted
reward component 1

action component

entity component

modification component

reward component 2

reward component 1

action component

entity component

modification component

reward component 2

reward component 1

Sentence
S1

Sentence
S2

Figure 7. During inference, each sentence of any sentence pairs can obtain two types of latent representations.

work (discussed in the last section), the choice of the resources are based on the consideration of
“lightness”: requirement of small training data size and easy availability.

Corpus Resource: The corpus that we use is only the training dataset of Microsoft Research
Paraphrase Corpus (MRPC) (Dolan et al. 2004) consisting of 4,076 sentence pairs, in which 2,753
pairs are labeled as paraphrase, which is so far the smallest English paraphrase corpus.

Pre-trained Embeddings: We choose fastText (Mikolov et al. 2018) trained with subword
information on CommonCrawl as our pre-trained embeddings because it is not deep learning
architecture-based, which is applicable to low-resource natural languages (Mohiuddin and Joty
2020). Moreover, it achieves better performance than GloVe (Pennington et al. 2014) trained on
CommonCrawl in SentEval framework (Conneau and Kiela 2018).

Toolkits: Considering easy availability, we utilize part-of-speech tags (POS-tags) provided by
NLTKf for categorizing entity, action and modification components. The scikit-learn toolg is used
for distributional models and matrix factorization.

3.2.1 Five components
Categorizing words as the elements of entity, action, and modification components is based on
three specific sets of POS-tags shown below.

• Entity set: singular noun, plural noun, singular proper noun, plural proper noun, personal
noun

• Action set: base form verb, past tense verb, present particle verb, past participle verb,
present verb, third person present verb

• Modification set: determiner, predeterminer, adjective, comparative adjective, superla-
tive adjective, possessive pronoun, possessive ending, existential there, modal, adverb,
comparative adverb, superlative adverb, particle, to

fhttps://www.nltk.org/
ghttps://scikit-learn.org/stable/

https://www.nltk.org/
https://scikit-learn.org/stable/

Natural Language Engineering 11

Suppose the sentence “He likes apples.” has three word embeddings (0.1, 0.1, 0.1) for ‘he’,
(0.2, 0.2, 0.2) for ‘likes’, and (0.3, 0.3, 0.3) for ‘apples’, then the entity component is [(0.1, 0.1,
0.1) + (0.3, 0.3, 0.3)] / 2 = (0.2, 0.2, 0.2); the action component is (0.2, 0.2, 0.2) / 1 = (0.2, 0.2,
0.2); the modification component is (0, 0, 0). If the word embedding of a word does not exist in
the embedding space, our strategy is to skip it, because the sentences in MRPC corpus are derived
from old news resources, rarely containing newly-coined words like “infodemic”.

Each reward component is initiated as a vector with the same length as fastText word embed-
dings (300), and the values of all dimensions are initially set to 1.0. Two weighted reward
components are meant to provide strong or weak rewards for the concatenation of components.
With their functionality, sentence pairs that have (non)paraphrase-like characteristics tend to
obtain similar latent representations in (non)paraphrase latent spaces.

3.2.2 Dual weighting scheme
Our dual weighting scheme is summarized in Table 1, which is utilized to determine whether a
component should be strongly or weakly weighted. In the scheme, our weighting criteria are based
on two elements: “label” (universal to all task datasets) and “occurrence difference” (manually
adjustable for different task datasets).

For both reward components, our weighting criterion is “occurrence difference”. We utilize the
characteristics-based thresholds (see Figures 8, 9, and 10) to determine strong or weak rewards.
The main threshold is Jaccard distance (abbreviated as j-dist shown in Figure 10) (Jaccard 1912).
We perform PI on MRPC (Dolan et al. 2004) using Jaccard distance, and found out at 0.6, accuracy
and F1 score increase significantly. Thus, the threshold of 0.6 is utilized to determine one reward
component. However, during inference, when the threshold of j-dist is adjusted for other task
datasets, using the weighting criterion of “occurrence difference” is empirically proved enough
in Section 4, which is time-saving. Only for pre-training our latent spaces, we need to ensure
every default setting is well set. The sentence length (abbreviated as sent-len shown in Figure 8)
and absolute difference of sentence length (abbreviated as sent-len-diff shown in Figure 9) are the
main factors that can affect Jaccard distance, so we combine their thresholds together to determine
another reward component so as to assist the one determined by j-dist. To briefly sum up, the
three thresholds are considered as a whole package to determine whether two reward components
should be weighted strongly or weakly, which is the way to represent whether a sentence pair
exhibits (non)paraphrase-like characteristics.

For the three word-embedding components (entity, action and modification), our weighting
criterion is “label”. As adverbs like negation (not) convey discriminative semantics, we assign
more weight to the modification component if a sentence pair is labeled as non-paraphrase. On
the other hand, the entity and action components basically describe “what is the state or activity
that somebody or something is on” (mentioned earlier in this subsection), which is the principal
requirement for semantic similarity of sentences, so we assign more weight to the entity and
action components if a sentence pair is labeled as paraphrase. The weighting criterion of “label”
is universal to all task datasets. The digit-count threshold (see Figure 11) is the assumption we
make that when there are too many digital numbers occurring in a sentence pair, the influence
of semantics represented in the entity component should be lessened. To verify this assumption,
we also pre-train another two latent spaces without the threshold. In Section 4, we conduct the
experiments using the latent spaces pre-trained ‘with digit-count’ or ‘without digit-count’. Below
we provide an example from MRPC training dataset, where the sentence pair is labeled as non-
paraphrase and digit-count is 6 (6 digital numbers in total are included in both sentences).

(1) Yucaipa owned Dominick’s before selling the chain to Safeway in 1998 for $2.5 billion.
(2) Yucaipa bought Dominick’s in 1995 for $693 million and sold it to Safeway for $1.8 billion

in 1998.

12 Liu, Rzepka, and Araki

Table 1. Dual weighting scheme.

Components Paraphrase weighting scheme Non-paraphrase weighting scheme

Entity

if digit-count ≤ 4:

Entity = 1.5 * Entity Component

else:

Entity = 0.5 * Entity Component

if digit-count > 4:

Entity = 1.5 * Entity Component

else:

Entity = 0.5 * Entity Component
. .

Action Action = 1.5 * Action Component Action = 0.5 * Action Component
. .

Modi. Modi. = 0.5 * Modification Component Modi. = 1.5 * Modification Component
. .

RC1

if sent-len ≥ 23 or sent-len-diff ≤ 5:

RC1 = 1 * Reward Component 1

else:

RC1 = 0.2 * Reward Component 1

if sent-len < 23 or sent-len-diff > 5:

RC1 = 1 * Reward Component 1

else:

RC1 = 0.2 * Reward Component 1
. .

RC2

if Jaccard-distance ≤ 0.6:

RC2 = 1 * Reward Component 2

else:

RC2 = 0.2 * Reward Component 2

if Jaccard-distance > 0.6:

RC2 = 1 * Reward Component 2

else:

RC2 = 0.2 * Reward Component 2

Figure 8. sentence length. Figure 9. absolute difference of sentence length.

Figure 10. Jaccard distance. Figure 11. digit-count.

3.2.3 Target latent representations
We use distributional models with matrix factorization to generate latent representations for all
sentences in the training dataset of MRPC (Dolan et al. 2004). For factorization, we follow Guo
and Diab (2012)’s work by choosing Singular Value Decomposition (Deerwester et al. 1990) and
the length of 100 for latent dimensionality. Moreover, we normalize the factorized matrix, as the
latent representations are the target layer of our architecture, and the activation function is tanh.
As a result, all values in the factorized matrix are included within an open interval (-1, 1).

Natural Language Engineering 13

Furthermore, we refine the latent representations for paraphrase pairs. Suppose the latent rep-
resentations for a sentence S1 and a sentence S2 of a sentence pair are (0.9, 0.8, 0) and (0.7, 0.8,
0.6) respectively, the pair shares a latent representation by averaging the elementwise addition of
two vectors; in this case, the shared latent representation is (0.8, 0.8, 0.3). The rationale of sharing
is that paraphrase pairs should have similar or even identical dimension values. By doing so, two
initial sentence representations of any paraphrase sentence pair can be mapped to the same latent
representation during pre-training, and therefore during inference, paraphrase pairs tend to obtain
similar latent representations after mapping from paraphrase latent space.

3.2.4 Hyperparameters of pre-training & method of determining weights
For each sentence in the training dataset of MRPC (Dolan et al. 2004), the concatenation of its
five weighted components is mapped to its latent representation. As mentioned earlier in this sub-
section shown in Figure 6, all (non)paraphrase sentences are used to pre-train the (non)paraphrase
latent space based on (non)paraphrase weighting scheme.

Since the size of training dataset is small, back-propagation is performed for each mapping,
following vanilla Stochastic Gradient Descent (vanilla SGD). The loss is accumulated from all
samples of each training epoch, and the accumulation is averaged at the end of each epoch.
The hyperparameters of our pre-training are input vector length (1,500), target vector length
(100), activation function (tanh), loss function (LSE), epochs (500), learning rate (5e-4), and
optimization (vanilla SGD).

Before formal pre-training, we first tune the weights with small training epochs (≤ 50). The
determined weights are illustrated in Table 1. For both reward components, the strong and weak
weights are 1 and 0.2 respectively; 1.5 and 0.5 (we call it “weight pair”) are set for the three
word-embedding components. How they are determined is described below.

(1) First, we hypothesize that 1 is the optimal strong weight for both reward components,
because if too big it will make the dimensions of other input components less significant;
when too small it cannot be considered as a strong weight.

(2) Then we keep the “weight pair” (1.5 & 0.5) as it is, and begin to tune the weak weight from
0.1 to 0.2 for the best optimization of pre-training. After only 3 epochs of pre-training, we
observe that the error loss decreases significantly in case of 0.2, and hardly drops when 0.1
is used. Therefore, we decide 0.2 as the weak weight for both reward components.

(3) After the decision of the weak weight, we start to tune the “weight pair”. We use only 50
epochs to pre-train our latent spaces, and experiment with different pairs from (1.1, 0.9) to
(1.9, 0.1) at the pivot of 1. We found out that with the pair of (1.5, 0.5), better discriminative
similarity (explained in the next subsection) can be achieved.

After the weights are determined, we set out to formally pre-train the two latent spaces with
the full training epochs of 500 (4 GPUc hours). We save the latent spaces at every 50 epochs
during pre-training, and choose the optimally pre-trained ones — that can be used to achieve the
optimal PI performance on the test dataset of MRPC — for different PI, NLI, and STS tasks. The
experimental results in Section 4 show that our pre-trained latent spaces are not overfitting and
limited to MRPC. As for reproducibility, we conduct pre-training several times without setting a
particular seed, and the experimental results do not fluctuate extremely (details are provided in the
next subsection).

14 Liu, Rzepka, and Araki

Table 2. Dsicriminative similarities are shown for the spaces pre-trained ‘with digit-count’.

Sentence pairs
Lp(S1) & Lp(S2)

mean

Lp(S1) & Lp(S2)

std.

Lnp(S1) & Lnp(S2)

mean

Lnp(S1) & Lnp(S2)

std.

paraphrase 0.808 0.150 0.810 (+0.002) 0.143
. .

non-paraphrase 0.681 0.192 0.728 (+0.047) 0.158

Table 3. Dsicriminative similarities are shown for the spaces pre-trained ‘without digit-count’.

Sentence pairs
Lp(S1) & Lp(S2)

mean

Lp(S1) & Lp(S2)

std.

Lnp(S1) & Lnp(S2)

mean

Lnp(S1) & Lnp(S2)

std.

paraphrase 0.817 0.139 0.808 (-0.009) 0.142
. .

non-paraphrase 0.711 0.167 0.730 (+0.019) 0.164

Figure 12. Reproducibility test for ‘with digit-count’. Figure 13. Reproducibility test for ‘without digit-count’.

3.3 Discriminative similarity
As mentioned earlier in Section 3.1, the objective of our pre-training is to have two initial sentence-
pair representations to generate the latent representations containing discriminative features. This
effect is reflected by discriminative similarity, which is explained in this subsection.

As shown earlier in Figure 7, each sentence of any sentence pairs can obtain two types of
latent representations based on two pre-trained latent spaces. For conciseness, paraphrase latent
representation obtained for a sentence is abbreviated as Lp(S), and Lnp(S) is an abbreviation
for non-paraphrase latent representation. Based on the optimally pre-trained latent spaces, we
calculate the cosine similarities for Lp(S1) & Lp(S2) and Lnp(S1) & Lnp(S2), using the sentence
pairs in the training dataset of MRPC. The results are shown in Tables 2 and 3.

Compared to the mean cosine similarity in the paraphrase latent space, non-paraphrase sen-
tence pairs tend to have higher cosine similarity (≈ 0.73) in the non-paraphrase latent space, while
paraphrase sentence pairs tend to remain the same or decrease marginally (≈ 0.81). We call this
phenomenon “discriminative similarity”. The ‘with digit-count’ assumption makes the discrimi-
native similarity comparatively more noticeable, as the mean cosine similarity of non-paraphrase
sentence pairs is 0.681 in the paraphrase latent space , which is lower than 0.711 when ‘without
digit-count’ is the case.

To exploit the advantage of discriminative similarity for PI, the cosine similarities for Lp(S1)
& Lp(S2) and Lnp(S1) & Lnp(S2) are incorporated into our feature set as the primary features. All
the features are collectively presented in the next subsection.

Furthermore, we use the discriminative similarities (the examples with concrete figures are
shown in the parentheses of Tables 2 and 3) to measure the reproducibility of our latent space pre-
training. We additionally pre-train both types of latent spaces for 5 times respectively, using the
same hyperparameter setting mentioned in Section 3.2.4 with different random seeds. The results

Natural Language Engineering 15

Table 4. Latent space-related features and lexical overlap
features.

Features

1 Lp(S1) + Lp(S2)
. .

2 |Lp(S1) - Lp(S2)|
. .

3 Lnp(S1) + Lnp(S2)
. .

4 |Lnp(S1) - Lnp(S2)|
. .

5 cosine similarity between Lp(S1) & Lp(S2)
. .

6 cosine similarity between Lnp(S1) & Lnp(S2)
. .

7 euclidean distance from Lp(S1) to Lnp(S1)
. .

8 euclidean distance from Lp(S2) to Lnp(S2)
. .

9 |entity count(S1) – entity count(S2)|
. .

10 |action count(S1) – action count(S2)|
. .

11 |digit count(S1) – digit count(S2)|
. .

12 word mover distance(entity action tokens S1, entity action tokens S2)
. .

13 Levenshtein edit distance(S1, S2)
. .

14 unigram recall/precision
. .

15 bigram recall/precision
. .

16 trigram recall/precision
. .

17 BLEU recall/precision
. .

18 absolute difference of sentence length
. .

19 chrf recall/precision (1-6)

are shown in Figures 12 and 13. In both figures, it is consistent that non-paraphrase pairs tend
to have high similarities in non-paraphrase latent space while paraphrase pairs tend to maintain
the same or decrease slightly. Out of five runs of pre-training, compared to the previously pre-
trained spaces whose discriminative similarities shown in Tables 2 and 3, the results of 5th run of
both types can yield nearly identical PI, NLI, or STS task performance while the others decrease
marginally. The results of reproducibilty test confirm that our pre-training is robust for random
seeds.

3.4 Features
Our latent space-related features (1-12) and lexical overlap features (13-19) are summarized in
Table 4. The features serve as input to multiple independent classifiers for different task datasets.
Inspired by Ji and Eisenstein (2013), 1-4 are concatenated as basic features. Although 9-12 are not
directly related to our latent spaces, they are created along with 7-8 to augment the discriminative
similarity (5-6) for every sentence pair. Besides the fine-grained n-gram overlap features (14-18)
(Wan et al. 2006), we also enrich the granularity level by 13 (sentence level) and 19 (character
level) (Popović 2015). As mentioned first in Section 2.1, both types of features are mutually
complementary to each other, and we delve deeper into this by performing a concrete analysis
in Section 4.

16 Liu, Rzepka, and Araki

4. Experimental results
The experimental results presented in this section is to verify what we claimed in the previous
sections. First, to test the effectiveness of two weighted reward components, the ablation study
is performed. Then we apply the pre-trained latent spaces to multiple PI, NLI, and STS bench-
marks to confirm the pre-trained task-specific architecture of PEFBAT is useful for different tasks.
The experimental results presented in the last subsection explain the mutual complementation
mentioned in Sections 2.1 and 3.4.

4.1 Ablation study for reward components
As the implementation details introduced in Section 3.2.2, three thresholds (sent-len with sent-
len-diff to assist j-dist) are considered as a whole package to determine whether two reward
components should be weighted strongly or weakly, which is the way to represent whether
a sentence pair exhibits (non)paraphrase-like characteristics. With their functionality, sentence
pairs that have (non)paraphrase-like characteristics tend to obtain similar latent representations in
(non)paraphrase latent spaces, which is conducive to the generation of discriminative features.

To verify our claim, the results of ablation study are presented in this subsection. Note that two
things listed below are invariable in the study.

(1) No matter for a single sentence or a sentence pair, three word-embedding components
(entity, action, and modification) convey the principal semantics in the initial sentence rep-
resentation, so they are deemed as a must in our work and not changed in the study. This is
validated by one good experimental result produced by the latent spaces pre-trained without
the participation of two weighted reward components.

(2) The maximum number of the reward component is two, namely total dimensionality is 600
(300 each), because when the number exceeds two, the latent spaces are not trainable —
the error loss hardly drops. Even though the spaces were trainable, we would not increase
the number as too many reward components would depreciate the effectiveness of word-
embedding components.

The models that participate in the ablation study are concluded below.

• baseline: our baseline is pure feature engineering: the lexical overlap features (13-19) in
Table 4.

• origin: the two latent spaces are pre-trained based on the implementation details described
in Section 3.2.

• no j-dist: the two latent spaces are pre-trained based on the implementation details described
in Section 3.2 except that the reward component weighted by j-dist is removed during pre-
training.

• no sent-factor: the two latent spaces are pre-trained based on the implementation details
described in Section 3.2 except that the reward component weighted by the combination of
sent-len and sent-len-diff is removed during pre-training.

• no reward: the two latent spaces are pre-trained based on the implementation details
described in Section 3.2 except that the two weighted reward components are removed
during pre-training.

• extra factor: the total dimensionality of two reward components is 600. So besides j-dist,
sent-len and sent-len-diff, we include the thresholds of the lexical overlap features (13-19)
in Table 4 to weight two reward components together. The 600 dimensionality is evenly
distributed by the thresholds. Accordingly, this model is the two latent spaces pre-trained

Natural Language Engineering 17

Table 5. The experimental results of the ablation study. The bold
values indicate the best performance for both pre-trained types.

Models Pre-trained type Accuracy (%) F1 score (%)

baseline - 75.2 82.6

origin ‘with digit-count’ 77.6 84.4
. .

no j-dist ‘with digit-count’ 76.8 83.9
. .

no sent-factor ‘with digit-count’ 76.9 84.1
. .

no reward ‘with digit-count’ 77.2 84.1
. .

extra factor ‘with digit-count’ 76.5 83.4

origin ‘without digit-count’ 78.2 84.8
. .

no j-dist ‘without digit-count’ 76.4 83.5
. .

no sent-factor ‘without digit-count’ 77.3 84.0
. .

no reward ‘without digit-count’ 77.1 84.0
. .

extra factor ‘without digit-count’ 76.6 83.5

Table 6. Discriminative similarity is not reflected by “no reward” model ‘with digit-count’.

Sentence pairs
Lp(S1) & Lp(S2)

mean

Lp(S1) & Lp(S2)

std.

Lnp(S1) & Lnp(S2)

mean

Lnp(S1) & Lnp(S2)

std.

paraphrase 0.778 0.164 0.763 (-0.015) 0.174
. .

non-paraphrase 0.682 0.182 0.654 (-0.028) 0.207

Table 7. Dsicriminative similarity is not reflected by “no reward” model ‘without digit-count’.

Sentence pairs
Lp(S1) & Lp(S2)

mean

Lp(S1) & Lp(S2)

std.

Lnp(S1) & Lnp(S2)

mean

Lnp(S1) & Lnp(S2)

std.

paraphrase 0.755 0.170 0.746 (-0.009) 0.184
. .

non-paraphrase 0.644 0.196 0.644 (0.000) 0.201

based on the implementation details described in Section 3.2 except that the two reward
components are weighted by multiple thresholds during pre-training.

As for evaluation, we perform PI on MRPC (Dolan et al. 2004) using the SVMg with linear
kernel as the classifier, and metric is accuracy and F1 scoreh. Except the baseline, the other models
produce the latent space-related features (1-12), which are combined with the lexical overlap
features (13-19) in Table 4 as input to the classifier. The experimental results are shown in Table
5, from which we can conclude the following three main points.

Firstly, the performance of “extra factor” model, regardless of pre-trained type, is not satisfac-
tory. The results are within our expectation, because using lots of characteristics-based thresholds
to weight two reward components is tantamount to pure feature engineering, as the effectiveness
of three word-embedding components is lessened.

hUnlike other tasks like VUA-18 (Leong et al. 2018) and VUA-20 (Leong et al. 2020) for metaphor detection, target
labels are extremely unevenly-distributed with 90% and 10%, where recall should also be considered as a critical metric for
evaluation given similar F1 score. However, since there is no such task in our experiments, we use the two metrics only.

18 Liu, Rzepka, and Araki

Secondly, the performance of “no reward” model, although is lower than “origin” in both pre-
trained types, reflects the fact that the three weighted word-embedding components are fairly
robust to convey important semantics in the initial sentence-pair representations. As shown in the
table, it is competitive with the other two models (“no j-dist” & “no sent-factor”) containing a
single weighted reward component in the initial sentence-pair representations.

Thirdly, the performance of “origin” is competitive with various task-specific DNNsa. While
performance level is similar, our pre-trained latent spaces have an additional advantage: the
fixed parameters can be used for other task datasets as well, which is parameter-efficient and
demonstrated in the next subsection. In addition, two sub-points listed below need to be further
explained.

(a) The pre-trained type ‘with digit-count’ is the assumption we make in Section 3.2.2 that when
there are too many digital numbers occurring in a sentence pair, the influence of semantics
represented in the entity component should be lessened. Therefore, the threshold of digit-
count is used to determine whether the entity component should be weighted strongly or
weakly. Although the assumption is less effective for MRPC, it can indeed take effect in
some other benchmarks, which is shown in the experimental results in Section 4.2.

(b) The functionality of two weighted reward components is to have sentence pairs
with (non)paraphrase-like characteristics tend to obtain similar latent representations in
(non)paraphrase latent spaces. As a result shown in Tables 2 and 3, non-paraphrase sentence
pairs tend to have higher cosine similarity (≈ 0.73) in the non-paraphrase latent space, while
paraphrase sentence pairs have the tendency to remain the same or decrease marginally (≈
0.81). The discriminative similarity is further justified in this ablation study. As shown in
Tables 6 and 7, the phenomenon is not reflected by “no reward” model: for both types of
sentence-pairs, they all tend to have higher cosine similarities in paraphrase latent spaces.
This is the main reason why “origin” outperforms “no reward”. Later in Section 4.3, we
delve deeper into the utility of discriminative similarity.

In addition, the latent spaces with randomly initialized parameters without pre-training achieve
on-par performance with the baseline, which justifies the usefulness of pre-training. We also take
a probe into the replacement; for example, we replace j-dist with the Levenshtein distance (feature
13 in Table 4) to weight one reward component, but the results do not outperform “origin”.

4.2 Pre-trained latent spaces with manually adjustable thresholds
The experimental results shown in this subsection is to verify three of our claims: (1) the pre-
trained latent spaces are not limited to MRPC (Dolan et al. 2004); (2) PEFBAT can also handle
NLI and STS tasks other than PI tasks; (3) PEFBAT is capable of power-efficient continual learn-
ing. We apply the pre-trained latent spaces to multiple benchmarks including six PI tasks, two NLI
tasks, and two STS tasks. Besides, the task performance achieved by adapter-BERT (Houlsby et al.
2019b) is considered as our upper bound, because without the consideration of power-efficiency,
it is so far a relatively high-end implementation of parameter-efficient method. Before stepping
into the details, we underline that all the tasks are tested with the fixed parameters of pre-trained
latent spaces without task-specific re-training. Our open-source code is available under this linki.

Metrics & adjusted thresholds: We experiment with six PI tasks, two NLI and STS tasks
respectively, and the results are summarized in Table 8. For the PI tasks including MRPC (Dolan
et al. 2004), PAN (Madnani et al. 2012), QQPj (Iyer et al. 2017), Twitter-URL (Lan et al. 2017),

ihttps://github.com/ryuliuxiaodong/latentspace
jDue to the unavailable labels of test dataset constrained by the policy of GLUE benchmark (Wang et al. 2018), the task

performance of QQP is reported on the development dataset.

https://github.com/ryuliuxiaodong/latentspace

Natural Language Engineering 19

Table 8. The experimental results scored on ten tasks. For clear illustration, the omitted unit of all accuracy met-
rics is %. The number below each task name is the size of training dataset. The underlined values indicate better
performance than the upper bound.

MRPC

4k

PAN

10k

QQP

363k

Twitter-URL

42.2k

PAWS-wiki

49.4k

PARADE

7.5k

SICK-R

4.4k

STS-B

5.7k

SICK-E

4.4k

SciTail

23k

Default thresholds

‘with digit-count’
77.6/84.4 93.3/93.3 81.2/74.5 88.3/69.3 74.1/78.6 74.5/71.4 82.1/76.7 72.3/72.0 85.6 79.3

. .

Adjusted thresholds

‘with digit-count’
- 93.5/93.5 81.4/74.6 88.4/70.1 74.7/79.6 75.0/71.1 - - - 79.4

. .

Default thresholds

‘without digit-count’
78.2/84.8 93.5/93.4 81.5/74.7 88.3/68.6 74.5/79.9 73.6/68.4 82.3/76.9 72.3/71.8 85.2 79.4

. .

Adjusted thresholds

‘without digit-count’
- 93.6/93.5 81.3/75.1 88.3/69.1 74.8/80.4 73.7/68.6 - - - 79.8

. .

Trainable parameters < 0.001M ≈ 0.48M ≈ 0.48M ≈ 0.48M ≈ 0.48M ≈ 0.48M ≈ 0.48M ≈ 0.48M ≈ 0.48M ≈ 0.48M
. .

Parameter update

(minutes)
10 3 37 5 6 2 3 3 3 4

Upper bound

(adapter-BERT)
82.5/86.7 95.4/95.4 84.7/79.6 88.2/73.9 86.7/93.6 72.7/70.9 86.2/80.4 83.2/81.4 84.8 88.6

. .

Trainable parameters ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M
. .

Training epochs 20 10 3 10 10 20 50 50 50 3
. .

Parameter update

(minutes)
17 21 183 70 86 30 50 60 50 13

and PARADE (He et al. 2020), accuracy/F1 scores are reported; except for PAWS-wiki (Zhang
et al. 2019), we report accuracy/AUC scores complying with the metric presented in the orig-
inal paper. Accuracy scores are reported for two NLI tasks: SICK-E (Marelli et al. 2014) and
SciTail (Khot et al. 2018). Pearson/Spearman correlations are reported for two STS tasks: SICK-R
(Marelli et al. 2014) and STS-B (Cer et al. 2017).

The “default thresholds” are namely the thresholds shown in Table 1, which are determined by
the characteristics of the training dataset of MRPC (Dolan et al. 2004). The “adjusted thresholds”
indicate that we manually adjust the thresholds to weight corresponding components according to
the characteristics of different training datasets. For example, the thresholds of sent-len-diff and
j-dist are adjusted to 8 and 0.8 respectively for PARADE (He et al. 2020) task. In addition, the
“adjusted thresholds” only works for the task datasets labeled with binary class, including five PI
tasks and one NLI task SciTail (Khot et al. 2018) whose sentence pairs are labeled with entails or
neutral.

Classifier settings & adapter-BERT implementation: For small task datasets like MRPC
containing less than 10k sentence pairs, we make attempts on both the SVMg with linear kernel
and MLP, and report the one with better task performance. The rest of tasks with relatively big
data size are tested with only MLP. Accuracy is our measurement to tune classifiers. When tuning
the SVM, we use development dataset to determine hyperparameter c by means of grid search,
and then combine it with training dataset to train the classifier. As for MLP, we use the widely-
adopted hyperparameters for fine-tuning BERT (Devlin et al. 2019); the small difference is that
our training epochs are 100 for all tasks and batch size is in {8, 16, 32}. Thus, the development
dataset is directly combined with the training dataset to train the classifier. Our MLP structure for
PI tasks is “432 - 900 (ReLU) - 100 (ReLU) - 2 (softmax + cross entropy)” (0.479M parameters
in total).

20 Liu, Rzepka, and Araki

For NLI and STS tasks, the hidden layers of MLP are the same, but output length and loss
function might be different (see classifier-tuning examples in our open-source codei). As reflected
in Yin et al. (2016)’s work, seven linguistic features like the number of hypernyms in a sentence
pair are particularly useful for NLI tasks. We append them to our PI features and thus the input
length of MLP for NLI tasks is 439. However, the seven additional linguistic features improve
STS tasks marginally and can bring side effect to PI tasks, and therefore are not utilized.

Our MLP structure is uniform and heuristics-based. Although it is possible to achieve better
task performance by tailoring task-specific settings — such as different layer length, dropout rate,
layer normalization, etc. — for different tasks, we decide to use the simplest classifier setting to
test the effectiveness of PEFBAT for a pure academic demonstration.

We use bert-for-tf2k implementation for adapter-BERT. In light of adapter’s performance on
GLUE benchmark (Wang et al. 2018), we choose the adapter size 64 based on BERT-base (≈
3M trainable parameters), and follow the recommended hyperparameters presented in the original
paper. For each task, we perform fine-tuning with four different training epochs {3, 10, 20, 50},
and report the one that achieves optimal performance. An exception is QQP (Iyer et al. 2017),
because 3 epochs are sufficient to process its large size of data.

Discussion on performance: We discuss our task performance from three facets: the effect of
‘with digit-count’ assumption; default and adjusted thresholds; the consumption of computational
and memory resources.

The with digit-count model works for the task datasets that are sensitive to digits. In partic-
ular, PARADE (He et al. 2020) comprises computer science-related literature, and thus digits
are common in its sentence pairs. As a result, the latent spaces pre-trained with the digit-count
threshold contained in the dual weighting scheme is comparatively effective for this task, which
validates the assumption that when there are too many digits occurring in a sentence pair, the influ-
ence of semantics represented in the entity component should be lessened. On the other hand, the
assumption is not always effective. For example, PAWS (Zhang et al. 2019) is created to measure
models’ sensitivity to word order and syntactic structure. As expected, the without digit-count
model is comparatively effective for this task. To summarize, there is no absolutely right or wrong
about this assumption, because from the perspective of continual learning, tasks from customers
definitely vary to some extent — some resemble PARADE while some not.

The adjusted thresholds can improve corresponding tasks to some extent but not significantly,
which reflects the fact that our latent spaces pre-trained with default thresholds are already useful
for various tasks, and not only limited to MRPC (Dolan et al. 2004). This is further validated by
the task performance of PARADE and SICK-E: the default thresholds based on the with digit-
count model outperform the upper bound. As mentioned earlier in this subsection, the adjustment
only works for the task datasets labeled with binary class, and we recommend it for practical use.
To make the reuse of PEFBAT convenient, we have coded programming interfaces including the
function of adjusting thresholds, which can be found in our open-source codei.

Our task performance can be categorized into three groups: the ones that outperform the upper
bound (Twitter-URL and SICK-E in terms of accuracy, PARADE in terms of accuracy and F1
score); moderate difference to the upper bound (MRPC, PAN, QQP, and SICK-R); noticeable
difference to the upper bound (PAWS-wiki, STS-B, and SciTail). The performance level is fairly
competitive as the consumption of computational and memory resources are substantially light.
As shown in Table 8, the trainable parameters are only 16% of the upper bound in the case of
MLP, and the time saved for parameter update ranges from 69% (1 - 4/13) to 96% (1 - 2/50). An
exception is the classifier tuned for MRPC, but this case is based on the SVM classifier, which
consumes CPU resource not as expensively as GPU computation (Strubell et al. 2019). It is obvi-
ous that tuning adapter-BERT (Houlsby et al. 2019b) on the small tasks is more expensive than
fine-tuning original BERT (Devlin et al. 2019). This is mainly because of the requirement of large

khttps://github.com/kpe/bert-for-tf2

https://github.com/kpe/bert-for-tf2

Natural Language Engineering 21

Table 9. The experimental results of ten tasks tuned with only 3 training epochs on adapter-BERT. The underlined
values indicate decreased performance. The bold underlined values indicate significantly decreased performance.

MRPC

4k

PAN

10k

QQP

363k

Twitter-URL

42.2k

PAWS-wiki

49.4k

PARADE

7.5k

SICK-R

4.4k

STS-B

5.7k

SICK-E

4.4k

SciTail

23k

adapter-BERT 74.3/83.0 94.2/94.1 84.7/79.6 87.3/72.2 57.7/58.4 71.0/70.4 58.9/53.5 69.1/65.2 56.9 88.6
. .

Trainable parameters ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M
. .

Training epochs 3 3 3 3 3 3 3 3 3 3
. .

Parameter update

(minutes)
3 7 183 22 26 5 3 4 4 13

training epochs: 20 epochs for MRPC and PARADE; 50 epochs for SICK-E, SICK-R and STS-B.
It can be argued that tuning adapter-BERT with only 3 training epochs for each task can consume
less computing time and outperforms PEFBAT. To confirm if this is the case, we perform addi-
tional experiments, and the results are presented in Table 9. Except for QQP and SciTail whose
previous epochs are 3, only the performance of three tasks (PAN, Twitter-URL, and PARADE)
decreases marginally, but the rest drops significantly. Besides, although corresponding computing
time indeed decreases a lot, it is still above ours. With the advantage of slight consumption of com-
putational and memory resources for each task, PEFBAT is capable of power-efficient continual
learning, especially when tasks arriving from customers increase exponentially.

4.3 Analysis of discriminative similarity
Two experimental results are quite surprising to us. Firstly, PARADE (He et al. 2020) is so far
the most difficult PI task for the BERT-family, according to the evidence provided in the original
paper. However, PEFBAT (75.0/71.1) outperforms not only adapter-BERT (72.7/70.9) (Houlsby
et al. 2019a) but also BERT-large (73.6/70.9) (Devlin et al. 2019) and SciBERT (74.1/72.3)
(Beltagy et al. 2019) in terms of accuracy. Secondly, PAWS (Zhang et al. 2019) is created to mea-
sure models’ sensitivity to word order and syntactic structure. Supposedly, our performance level
should not be satisfactory, but when compared to the experimental results reported in the original
paper, PEFBAT outperforms the baseline BOW (55.8/41.1) significantly and is better than most
task-specific DNNs without pre-training using PAWS unlabeled corpus.

To explore the rationale behind the performance, we perform statistical analysis to examine
the effectiveness of our discriminative similarity, namely the features 5-6 in Table 4. At the same
level of Jaccard distance between sentence pairs, lexical overlap features are supposedly hard to
differentiate between paraphrase pairs and non-paraphrase pairs, then to what degree does our
discriminative similarity enhance the ability of differentiation? The visualization to illustrate the
analysis is presented in Figures 14, 15 and 16.

The analysis is performed during the process of evaluating the test dataset of PARADE (based
on with digit-count adjusted thresholds). At 0.78 of Jaccard distance shown in Figure 14, we
discover that paraphrase and non-paraphrase have nearly identical number of sentence pairs (10
and 11 respectively), and the accuracy of PI is 67% (see Figure 15) surpassing 52% if twenty-one
sentence pairs are all guessed as true negative. Then the cosine similarities of those sentence pairs
in paraphrase and non-paraphrase latent spaces are presented in Figure 16 corresponding to the
features 5-6 in Table 4. In Figure 16, a hypothetical boundary line is drawn, which can have the
two features achieve accuracy of 67% already with 9 true positive pairs and 5 true negative pairs,
although the real numbers of true positive and negative pairs are 8 and 6 respectively as shown in
Figure 14. The combination of 8 and 6 is better than 9 and 5 as the numbers of paraphrase and
non-paraphrase sentence pairs are 10 and 11 respectively at 0.78 of Jaccard distance. We believe
that it is our design of the features 7-12 (explained in Section 3.4) that augments the features 5-6.

22 Liu, Rzepka, and Araki

Figure 14. Sentence-pair distributions (predicted test dataset of PARADE) at each level of Jaccard distance from
0.70 to 0.80.

Figure 15. Accuracies of paraphrase identification (predicted test dataset of PARADE) at each level of Jaccard
distance from 0.70 to 0.80.

Figure 16. Cosine similarities in (non)paraphrase space for sentence pairs (PARADE test dataset) at Jaccard
distance 0.78.

To respond to what we mentioned in Sections 2.1 and 3.4, our latent space-related features
are crucial when lexical overlaps are indistinguishable between paraphrase and non-paraphrase
sentence pairs, while lexical overlap features are the strong basis when dealing with task datasets
like PAN (Madnani et al. 2012) (see Figure 3). Both types of features are mutually complementary
to each other.

Natural Language Engineering 23

5. Conclusion & future work
In this article, for PI task, we proposed a new method (PEFBAT) to improve the usage of parame-
ters efficiently for feature-based transfer. Our motivation, research goal and implementation details
were described in Sections 1 and 3 respectively. PEFBAT can also handle NLI and STS tasks, and
its essence is a pre-trained task-specific architecture, the fixed parameters of which can be shared
by multiple classifiers with small additional parameters. As a result, for each task, the computa-
tional cost left involving parameter update is only generated from classifier-tuning: the features
output from the architecture combined with lexical overlap features are fed into a single classifier
for tuning. Such technical novelty can lead to slight consumption of computational and memory
resources for each task, and is also capable of power-efficient continual learning. In Section 4,
we experimented with multiple benchmarks, and the results showed that PEFBAT is competitive
with adapter-BERT over some tasks while consuming only 16% trainable parameters and saving
69-96% time for parameter update. We also performed the ablation study and technical analysis
to help further understand the mechanism of PEFBAT.

One of our future work is to apply PEFBAT to low-resource natural languages with limited
labeled and unlabeled data (Hedderich et al. 2021). Given any research project, we will put this
idea into practice, as there are three main reasons listed below that PEFBAT is implementable to
low-resource settings.

(1) Nowadays, what we can benefit from transfer learning mechanism becomes a common
sense: transferring the parameters of a network trained on large corpora to the related prob-
lems with little data. However, we have managed to leverage the mechanism in a reverse
fashion. Our task-specific architecture (two latent spaces) is pre-trained with the training
dataset of MRPC (Dolan et al. 2004), which is the smallest English paraphrase corpus.
Nevertheless, the fixed parameters of pre-trained latent spaces can be used by other task
datasets as well, which is beneficial to the scenario of limited labeled data.

(2) It is shown in Mohiuddin and Joty (2020)’s work that fastText (Mikolov et al. 2018) is
implementable to low-resource natural languages. The rationale is obvious as fastText is
not deep learning architecture-based, which is beneficial to the scenario of limited unlabeled
data.

(3) POS-tags provided by the NLTKf can be implemented using HMMs (Hidden Markov
Models)l, a probabilistic approach to assigning tags. Since the approach is also not deep
learning architecture-based, there is no strict requirement of large labeled data for training
parameters.

We also consider another future work by applying PEFBAT to cloud environment (Houlsby
et al. 2019b). As PEFBAT is capable of power-efficient continual learning, and thus given enough
research funds, whether it can also provide the same power-efficient manner for cloud environ-
ment is an interesting topic for us. We plan to launch an AWS EC2 instance to deploy PEFBAT,
and then provide classifier interfaces for customers. Suppose the MLP classifiers that customers
use have the same size as we use in this article (0.479M parameters per classifier), then each
classifier accounts only for approximately 3.7MB memory given that one parameter needs 8 byte
memory. We hold an positive attitude towards this future work, as when we perform simulation by
running 20 classifiers in parallel on our local devicec, parameter update is as fast as we run them
individually. Our goal is to guarantee at least 1,000 classifiers can run in parallel given a powerful
EC2 instance, as tasks arriving from customers can be simultaneous.

lhttp://www.nltk.org/api/nltk.tag.html?highlight=hmm

http://www.nltk.org/api/nltk.tag.html?highlight=hmm

24 Liu, Rzepka, and Araki

References
Beltagy, I., Lo, K., and Cohan, A. 2019. SciBERT: A pretrained language model for scientific text. In Proceedings of

the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 3615–3620, Hong Kong, China. Association for Computational
Linguistics.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. 2009. Curriculum learning. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, 41–48, New York, NY, USA. Association for Computing
Machinery.

Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Säckinger, E., and Shah, R. 1993. Signature
verification using a “siamese” time delay neural network. International Journal of Pattern Recognition and Artificial
Intelligence, 7(04):669–688.

Caruana, R. 1998. Multitask Learning, pp. 95–133. Springer US, Boston, MA.
Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., and Specia, L. 2017. SemEval-2017 task 1: Semantic textual similar-

ity multilingual and crosslingual focused evaluation. In Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pp. 1–14, Vancouver, Canada. Association for Computational Linguistics.

Chandrasekaran, D. and Mago, V. 2020. Evolution of semantic similarity - A survey. CoRR, abs/2004.13820.
Chen, T., Goodfellow, I., and Shlens, J. 2016. Net2net: Accelerating learning via knowledge transfer.
Conneau, A. and Kiela, D. 2018. SentEval: An evaluation toolkit for universal sentence representations. In Proceedings of

the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Corbeil, J.-P. and Abdi Ghavidel, H. 2021. Assessing the eligibility of backtranslated samples based on semantic similarity
for the paraphrase identification task. In Proceedings of the International Conference on Recent Advances in Natural
Language Processing (RANLP 2021), pp. 301–308, Held Online. INCOMA Ltd.

Das, D. and Smith, N. A. 2009. Paraphrase identification as probabilistic quasi-synchronous recognition. In Proceedings
of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pp. 468–476, Suntec, Singapore. Association for Computational Linguistics.

de Masson d'Autume, C., Ruder, S., Kong, L., and Yogatama, D. 2019. Episodic memory in lifelong language learning. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc.

de Wynter, A. and Perry, D. J. 2020. Optimal subarchitecture extraction for bert.
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. 1990. Indexing by latent semantic

analysis. Journal of the American society for information science, 41(6):391–407.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. 2009. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. 2019. BERT: Pre-training of deep bidirectional transformers for

language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186,
Minneapolis, Minnesota. Association for Computational Linguistics.

Dolan, B., Quirk, C., and Brockett, C. 2004. Unsupervised construction of large paraphrase corpora: Exploiting massively
parallel news sources. In COLING 2004: Proceedings of the 20th International Conference on Computational Linguistics,
pp. 350–356, Geneva, Switzerland. COLING.

Dong, D., Wu, H., He, W., Yu, D., and Wang, H. 2015. Multi-task learning for multiple language translation. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 1723–1732, Beijing, China. Association for Computational
Linguistics.

Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., and Smith, N. A. 2015. Retrofitting word vectors
to semantic lexicons. In Proceedings of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 1606–1615, Denver, Colorado. Association for
Computational Linguistics.

Fellbaum, C., editor 1998. WordNet: An Electronic Lexical Database. Language, Speech, and Communication. MIT Press,
Cambridge, MA.

Fernando, S. and Stevenson, M. 2008. A semantic similarity approach to paraphrase detection. In Proceedings of the 11th
Annual Research Colloquium of the UK Special Interest Group for Computational Linguistics, pp. 45–52.

French, R. M. 1999. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences, 3(4):128 – 135.
Gammerman, A., Vovk, V., and Vapnik, V. 1998. Learning by transduction. In Proceedings of the Fourteenth conference

on Uncertainty in artificial intelligence, pp. 148–155. Morgan Kaufmann Publishers Inc.
Glavaš, G. and Vulić, I. 2018. Explicit retrofitting of distributional word vectors. In Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 34–45, Melbourne, Australia. Association
for Computational Linguistics.

Natural Language Engineering 25

Guo, W. and Diab, M. 2012. Modeling sentences in the latent space. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long Papers-volume 1, pp. 864–872. Association for Computational
Linguistics.

He, H., Gimpel, K., and Lin, J. 2015. Multi-perspective sentence similarity modeling with convolutional neural networks.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1576–1586, Lisbon,
Portugal. Association for Computational Linguistics.

He, Y., Wang, Z., Zhang, Y., Huang, R., and Caverlee, J. 2020. PARADE: A New Dataset for Paraphrase Identification
Requiring Computer Science Domain Knowledge. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 7572–7582, Online. Association for Computational Linguistics.

Hedderich, M. A., Lange, L., Adel, H., Strötgen, J., and Klakow, D. 2021. A survey on recent approaches for natural
language processing in low-resource scenarios. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 2545–2568, Online. Association for
Computational Linguistics.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and Gelly, S.
2019a. Parameter-efficient transfer learning for NLP. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
2790–2799. PMLR.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., de Laroussilhe, Q., Gesmundo, A., Attariyan, M., and Gelly, S.
2019b. Parameter-efficient transfer learning for nlp.

Howard, J. and Ruder, S. 2018. Universal language model fine-tuning for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 328–339, Melbourne,
Australia. Association for Computational Linguistics.

Hung, C.-Y., Tu, C.-H., Wu, C.-E., Chen, C.-H., Chan, Y.-M., and Chen, C.-S. 2019. Compacting, picking and growing
for unforgetting continual learning. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R., editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Iyer, S., Dandekar, N., and Csernai, K. 2017. First Quora Dataset Release: Question Pairs.
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs.

Jaccard, P. 1912. The distribution of the flora in the alpine zone. 1. New phytologist, 11(2):37–50.
Ji, Y. and Eisenstein, J. 2013. Discriminative improvements to distributional sentence similarity. In Proceedings of the 2013

Conference on Empirical Methods in Natural Language Processing, pp. 891–896.
Kadotani, S., Kajiwara, T., Arase, Y., and Onizuka, M. 2021. Edit distance based curriculum learning for paraphrase

generation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: Student Research Workshop, pp. 229–234, Online.
Association for Computational Linguistics.

Khot, T., Sabharwal, A., and Clark, P. 2018. SciTail: A textual entailment dataset from science question answering. In
AAAI.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho,
T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D., and Hadsell, R. 2017. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526.

Lan, W., Qiu, S., He, H., and Xu, W. 2017. A continuously growing dataset of sentential paraphrases. In Proceedings of
The 2017 Conference on Empirical Methods on Natural Language Processing (EMNLP), pp. 1235–1245. Association for
Computational Linguistics.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. 2019. ALBERT: A lite BERT for self-supervised
learning of language representations. CoRR, abs/1909.11942.

Leong, C. W. B., Beigman Klebanov, B., Hamill, C., Stemle, E., Ubale, R., and Chen, X. 2020. A report on the 2020 VUA
and TOEFL metaphor detection shared task. In Proceedings of the Second Workshop on Figurative Language Processing,
pp. 18–29, Online. Association for Computational Linguistics.

Leong, C. W. B., Beigman Klebanov, B., and Shutova, E. 2018. A report on the 2018 VUA metaphor detection shared task.
In Proceedings of the Workshop on Figurative Language Processing, pp. 56–66, New Orleans, Louisiana. Association for
Computational Linguistics.

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., and Tang, J. 2021. Gpt understands, too.
Lopez-Paz, D. and Ranzato, M. A. 2017. Gradient episodic memory for continual learning. In Guyon, I., Luxburg, U. V.,

Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

Madnani, N., Tetreault, J., and Chodorow, M. 2012. Re-examining machine translation metrics for paraphrase identi-
fication. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 182–190, Montréal, Canada. Association for Computational Linguistics.

Marelli, M., Bentivogli, L., Baroni, M., Bernardi, R., Menini, S., and Zamparelli, R. 2014. SemEval-2014 task 1:
Evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

26 Liu, Rzepka, and Araki

entailment. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 1–8, Dublin,
Ireland. Association for Computational Linguistics.

McCann, B., Keskar, N. S., Xiong, C., and Socher, R. 2018. The natural language decathlon: Multitask learning as question
answering. CoRR, abs/1806.08730.

McCloskey, M. and Cohen, N. J. 1989. Catastrophic interference in connectionist networks: The sequential learning
problem. volume 24 of Psychology of Learning and Motivation, pp. 109 – 165. Academic Press.

Meng, Y., Ao, X., He, Q., Sun, X., Han, Q., Wu, F., Fan, C., and Li, J. 2021. ConRPG: Paraphrase generation using
contexts as regularizer. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pp. 2551–2562, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and Joulin, A. 2018. Advances in pre-training distributed word
representations. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Resources Association (ELRA).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. 2013. Distributed representations of words and phrases
and their compositionality. In Advances in neural information processing systems, pp. 3111–3119.

Mohiuddin, T. and Joty, S. 2020. Unsupervised Word Translation with Adversarial Autoencoder. Computational Linguistics,
46(2):257–288.

Nighojkar, A. and Licato, J. 2021. Improving paraphrase detection with the adversarial paraphrasing task. CoRR,
abs/2106.07691.

Pennington, J., Socher, R., and Manning, C. 2014. GloVe: Global vectors for word representation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L. 2018. Deep contextual-
ized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 2227–2237, New Orleans,
Louisiana. Association for Computational Linguistics.

Popović, M. 2015. chrF: character n-gram f-score for automatic MT evaluation. In Proceedings of the Tenth Workshop on
Statistical Machine Translation, pp. 392–395, Lisbon, Portugal. Association for Computational Linguistics.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. 2019. Language models are unsupervised multitask
learners.

Reimers, N. and Gurevych, I. 2019. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–3992, Hong Kong, China. Association for Computational
Linguistics.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Hadsell,
R. 2016. Progressive neural networks.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. 2019. Distilbert, a distilled version of BERT: smaller, faster, cheaper and
lighter. CoRR, abs/1910.01108.

Sellam, T., Das, D., and Parikh, A. P. 2020. BLEURT: learning robust metrics for text generation. CoRR, abs/2004.04696.
Shi, W., Chen, M., Zhou, P., and Chang, K.-W. 2019. Retrofitting contextualized word embeddings with paraphrases. In

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 1198–1203, Hong Kong, China. Association
for Computational Linguistics.

Socher, R., Huang, E. H., Pennin, J., Manning, C. D., and Ng, A. Y. 2011. Dynamic pooling and unfolding recursive
autoencoders for paraphrase detection. In Advances in neural information processing systems, pp. 801–809.

Strubell, E., Ganesh, A., and McCallum, A. 2019. Energy and policy considerations for deep learning in NLP. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3645–3650, Florence,
Italy. Association for Computational Linguistics.

Sun, F.-K., Ho, C.-H., and Lee, H.-Y. 2020. LAMOL: LAnguage MOdeling for Lifelong Language Learning. In
International Conference on Learning Representations.

Thrun, S. 1998. Lifelong Learning Algorithms, pp. 181–209. Springer US, Boston, MA.
van de Ven, G. M. and Tolias, A. S. 2019. Three scenarios for continual learning.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. 2017.

Attention is all you need. In Advances in neural information processing systems, pp. 5998–6008.
Wan, S., Dras, M., Dale, R., and Paris, C. 2006. Using dependency-based features to take the’para-farce’out of paraphrase.

In Proceedings of the Australasian Language Technology Workshop 2006, pp. 131–138.
Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. 2018. GLUE: A multi-task benchmark and analysis

platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pp. 353–355, Brussels, Belgium. Association for Computational Linguistics.

Weston, J., Bordes, A., Chopra, S., Rush, A. M., van Merriënboer, B., Joulin, A., and Mikolov, T. 2015. Towards

Natural Language Engineering 27

ai-complete question answering: A set of prerequisite toy tasks.
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. 2019. Xlnet: Generalized autoregressive

pretraining for language understanding. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R., editors, Advances in Neural Information Processing Systems 32, pp. 5753–5763. Curran Associates, Inc.

Yin, W. and Schütze, H. 2015a. Convolutional neural network for paraphrase identification. In Proceedings of the
2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 901–911, Denver, Colorado. Association for Computational Linguistics.

Yin, W. and Schütze, H. 2015b. Discriminative phrase embedding for paraphrase identification. In Proceedings of the
2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 1368–1373, Denver, Colorado. Association for Computational Linguistics.

Yin, W., Schütze, H., Xiang, B., and Zhou, B. 2016. ABCNN: Attention-based convolutional neural network for modeling
sentence pairs. Transactions of the Association for Computational Linguistics, 4:259–272.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. 2014. How transferable are features in deep neural networks? In
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems, volume 27. Curran Associates, Inc.

Yu, Z., Cohen, T., Wallace, B., Bernstam, E., and Johnson, T. 2016. Retrofitting word vectors of MeSH terms to
improve semantic similarity measures. In Proceedings of the Seventh International Workshop on Health Text Mining and
Information Analysis, pp. 43–51, Auxtin, TX. Association for Computational Linguistics.

Zamir, A. R., Sax, A., Shen, W., Guibas, L. J., Malik, J., and Savarese, S. 2018. Taskonomy: Disentangling task transfer
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Zhang, Y., Baldridge, J., and He, L. 2019. PAWS: Paraphrase adversaries from word scrambling. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 1298–1308, Minneapolis, Minnesota. Association for Computational
Linguistics.

	Introduction
	Related works
	Proposed method
	Experimental results
	Conclusion & future work

