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Abstract

A mechanics-of-materials theory of the nonlinear deflection of helical spring

within and beyond the elasticity limit was developed. The theory examined

the nonlinearity due to the combined stresses of the torsion and bending

of spring element by assuming the elastic-perfect plastic material obeying

Tresca yield criterion. Free rotation of spring around the spring axis was

taken into account. It was shown in experiment that the stress-strain curve

of a piano wire was close to elastic-perfect plastic one. The outcome of

the theory was compared with the experimental result of nonlinear load-

deflection curves in plastically extended helical spring made of a piano wire.
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1. Introduction

Flexibility is sometimes needed, and springs are designed to fit designer’s

needs for carrying load with elastic displacement (Wahl, 1963; Shigley, 2015;

Kobelev, 2018). The slope of linear load-deflection relation is given by the

conventional formula of spring constant, k = Gd4/(8D3N), where d and D

are wire and coil radius, N , the number of turns, G, the shear modulus (Love,

1944; Timoshenko and Goodier, 1970).

Nonlinearity would appear in load–deflection relation of helical spring

when the deflection becomes large. One origin is the geometrical nonlinearity,

which is termed ”pitch angle effect” in classical work (Wahl, 1963). Note that

the above spring constant is obtained by considering only the torsion of spring

element due to external load. This approximation may be correct for small

deflection of closely pitched spring. In sparsely pitched springs, however, the

deflection due to the bending of spring element cannot be ignored. Moreover,

the combined deflection of torsion and bending would occur in any spring

when the deflection becomes large.

Another geometrical nonlinearity comes from the free rotation around

spring axis. The free rotation has been known to occur (Love, 1944; Wahl,

1963; Timoshenko and Goodier, 1970) and the elasticity analysis was given

(Burns, 2011). When the end of spring is fixed not to rotate, a certain

amount of torque should be subjected to the end. The magnitude of the

torque would increase with increasing the deflection of spring. Present study

considered the free-to-rotate end in order to simplify the boundary condition

of the analysis.

The other origin is the material’s nonlinearity due to plasticity in metals
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and alloys. The plasticity of springs is practically used in the cold-setting

operation, and the yield criterion was discussed (Wahl, 1963). Since former

studies were concerned with the elasticity limit, present study shall derive

the load–deflection relation in plastic range. Such theoretical argument of

plasticity may be of significance not only because of the advance in continuum

mechanics but also possible application to materials capable of restoring large

inelastic deflection, such as shape memory alloys (Tobushi and Tanaka, 1991;

Mirzaeifar et al., 2011; An et al., 2012; Savi et al., 2015; Koh, 2018) and some

kind of polymers. As for modern technology, shape memory polymer micro

springs have been fabricated by the novel 3D/4D printing (Ge et al., 2013).

This study examines plasticity under the approximations of (i) no cur-

vature effect in the assumption of large spring index, which is the ratio of

spring radius to element wire radius (Wahl, 1963; Shigley, 2015; Kobelev,

2018), and (ii) the elastic-perfect plastic materials. These are for the brevity

in developing formula. In principle, any realistic materials can be dealt with

by some numerical computation. Present theory may work for giving some

perspectives to understand the nonlinear phenomena.

2. Symbols and units

R, D, spring radius and diameter in mm

R0, D0, initial coil radius and diameter in mm

ρ, radius of curvature of element in mm

d, element diameter in mm

N , number of turns

ℓ, length of helical element per turn before deflection
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δ, deflection per turn in mm

Φ, rotation angle per turn around spring axis in rad. or deg.

φT , twisting angle per turn in rad. or deg.

φM , bending angle per turn in rad. or deg.

P , load on spring in N

T , torsion moment in N·mm

M , bending moment in N·mm

α, pitch angle in rad.

τ0, shear stress of perfect plasticity

E,G, modulus of elasticity and shear modulus,

Iy, moment of inertia of area in mm4

Ip, polar moment of inertia of area in mm4

a, b, short and long axes of ellipsoid in mm

c, spring index, = D/d

K, curvature correction factor (Wahl, 1963; Timoshenko and Goodier, 1970;

Shigley, 2015),

K =
4c− 1

4c− 4
+

0.615

c
. (1)

k, elastic spring constant (Wahl, 1963; Timoshenko and Goodier, 1970; Shigley,

2015),

k =
Gd4

8ND3
0

. (2)

3. Analysis

3.1. Geometry of helical spring

As it used to be assumed (Wahl, 1963; Shigley, 2015; Kobelev, 2018), the

length of spring element is unchanged during deflection, since the axial strain
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is negligibly small. The length per turn in the natural length ℓ is equal to

2πR0. Figure 1(a) is a helix with the radius R equal to the radius of the

tangent cylinder where the element diameter is ignored. The helix line with

the pitch angle α in the rectangular O-x1x2x3 coordinate is

x1 = R cos θ, x2 = R sin θ, x3 = Rθ tanα . (3)

Since the length of element in dθ is

ds = R secα dθ , (4)

the length of element of one turn is

L =

∮
L

ds = 2πR secα . (5)

These variables form a triangle (a), which defines the conventional value of

the pitch p equal to L sinα.

As illustrated in Fig.1(b), the rotation of the free end of spring occurs

during extension (Wahl, 1963; Burns, 2011). The angle Φ is defined along

the element of length ℓ as

ℓ =

∫
ℓ

ds = R secα

∫ 2π−Φ

0

dθ , (6)

or

(2π − Φ)R = ℓ cosα . (7)

These variables form a triangle (b). Accordingly, the deflection is

δ = ℓ (sinα− sinα0) . (8)

This study deals with closely pitched springs, so that the offset due to the

initial pitch angle sinα0 shall be ignored for brevity.
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(a) (b)

Figure 1: (a) The geometrical parameters of helix line and (b) the rotation of spring

element around the spring axis. The angle is positive in the unwinding direction.

The load P forms a moment PR on the wire element. The moment is

resolved into the axial components T and the tangential one M (Fig.2),

T = −PR cosα and M = −PR sinα . (9)

The minus sign is required since the direction in the right hand screw is

opposite to the outward normal of the cross section. The same expressions

are seen in literatures (Burns, 2011; Kobelev, 2018). Hereafter, the moment

PR = X is taken as an independent variable in place of P .

When the spring element is subjected to the twisting (torsion) angle per

pitch φT , the change in the twist angle along the infinitesimally small length

ds is given as dφT = (φT/ℓ)ds. Similarly, when the bending angle per pitch is

φM , the change in the bending angle is dφM = (φM/ℓ)ds. Then, the changes
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in angle tangential and parallel to the coil axis in infinitesimally small length

ds are (Fig.2),

dφ1 = dφT cosα + dφM sinα , (10)

dφ2 = −dφT sinα + dφM cosα . (11)

These are related to the deflection per pitch and the rotation angle per pitch

δ = −
∫

Rdφ1 , (12)

Φ =

∫
dφ2 . (13)

By integrating these along the pitch, we get

δ = −R(φT cosα + φM sinα), (14)

Φ = −φT sinα + φM cosα. (15)

The simultaneous equations are solved with Eq.7 and 8 have the solutions

φT = −2π sinα, (16)

φM = 2π

(
cosα− R0

R

)
. (17)

3.2. Elasticity

At the onset of loading, the deflection occurs elastically. In elasticity, the

polar area moment of inertia Ip is πd4/32 and the area moment of inertia

around the y-axis Iy is πd4/64. The twist angle per pitch φT is given by the

elementary elasticity formula

φT =
Tℓ

GIp
= −32Xℓ cosα

πGd4
. (18)
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(a) (b)

(c)

Figure 2: The applied moment PR, (a), the components of torsion moment T and bending

M , (b), and the torsion angle φT and bending angle φM , (c).

By Eq.16, we get

X =
π2Gd4 tanα

16ℓ
. (19)

Next, let us consider the bending of curved beam with the curvature

changing from the initial magnitude of 1/ρ0 to 1/ρ (ρ > ρ0). The curvature

is related to the bending moment M and the rigidity EIy

1

ρ0
=

1

ρ
+

M

EIy
, (20)

This equation is derived in Appendix A. The pitch angle α and the radius of

curvature are related to the spring radius

ρ = R secα, (21)

and ρ0 = R0. Alternatively, the change in the radius of curvature is related
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to the bending angle (see Appendix B)

φM = 2π

(
1− ρ0

ρ

)
. (22)

By Eq.20 and 21, we get

φM =
2πρ0M

EIy
= −128R0X sinα

Ed4
. (23)

Equating this to Eq.17, R is obtained by Eq.19,

1

R
=

cosα

R0

(
1 +

2G tan2 α

E

)
. (24)

Once R is known as Eq.24, the load P is determined from Eq.19 through

P = XR−1. Using the standard expression of the elastic spring constant k

of Eq.2, the load vs δ relation is

P = kδ

(
1 +

2G tan2 α

E

)
. (25)

This formula modifies the conventional relation P = kδ to include the pitch

angle effect. The pitch angle α is given by δ through Eq. 8. A similar but

different form of the formula is seen (Shigley, 2015). The difference is due to

the bending term involved in the present analysis.

Next, the rotation angle per turn is by Eq.7

Φ = 2π

(
1− R0

R
cosα

)
. (26)

By Eq.24, we get the expression:

Φ = 2π(1− 2G/E) sin2 α =
2πν

1 + ν
sin2 α . (27)

The right side is positive, indicating that the elastic rotation occurs always

in the unwinding direction.
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Figure 3: The combined stress-state of bending, (a), and torsion, (b), of the element wire.

3.3. Yield criterion

When the applied stress goes beyond the elasticity limit of wire, plasticity

would appear. The plasticity of steels occurs by slip at room temperature

and results in permanent plastic strain. The larger the pitch angle α is, the

larger the bending moment M becomes. It follows that bending cannot be

ignored in the deflection of any spring at large deflection(Wahl, 1963; Shigley,

2015). Then, the shearing stress of torsion τ is combined with the bending

stress σ, as illustrated in Fig.3.

Present study takes the z-y rectangular coordinate on the cross section of

wire, as shown in Fig.3. The plastic yielding occurs first by torsion, since τ

is much larger than σ at the onset of yielding. The Tresca yielding criterion

with the equivalent stress of τ0 = Y/2, where Y is the flow stress in uniaxial

tensile testing, is given as (σ
2

)2

+ τ 2 = τ 20 , (28)
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where the bending stress in elastic range is

σ =
M

Iy
z =

2M

Ip
z , (29)

and the shearing stress of torsion is

τ =
T

Ip
r . (30)

Then, the yield locus or the elastic–plastic boundary is an ellipsoid(z
a

)2

+
(y
b

)2

= 1, (31)

where

a =
Ipτ0√

M2 + T 2
=

Ipτ0
X

, (32)

b =
Ipτ0
T

=
Ipτ0 secα

X
. (33)

The length of short axis a and that of the long axis b decrease and the axial

ratio b/a increases with increasing the moment X.

During elastic deformation the yield locus is outside the cross section, as

illustrated in Fig.4(a). The yielding occurs when the a-axis touches the outer

surface, such that a = d/2, as in Fig.4(b). It occurs when the moment is at

the critical magnitude.

X∗ =
πd3τ0
16

. (34)

As deflected further, the ellipsoid is inside in the cross section. It occurs when

the long axis b is shorter than the radius d/2, as in Fig.4(c). The critical

moment is X∗∗ = X∗ secα.
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(a) X < X* (b) X = X* (c) X > X**

plastic zone

Figure 4: Schematic drawings of the development of yield surface of plasticity. The yield

locus is outside the cross-section area in (a), attached to the outer surface in (b), and

inside the area in (c).

3.4. Plastic torsion

When X > X∗, the torque T acting on the element is the sum of the

elastic torque Te and the plastic torque Tp

T = Te + Tp . (35)

This relation has been originally suggested by Wahl (1963). Present analysis

shall gives further discussion. Let the torsion angle per pitch be φT and the

elastic torque acting on the area inside the ellipsoid is

Te =
1

ℓ

∫
in

GφT r
2dA =

GφT

ℓ

∫
in

r2dA =
GφT

ℓ
Ĩp , (36)

where the polar area moment of inertia Ĩp of the ellipsoid is

Ĩp = π
a3b3

a2 + b2
. (37)
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The plastic torsion occurs on the section outside the ellipsoid.

Tp = −
∫
out

τrdA = 4

∫ π/2

0

dϕ

∫ d/2

r0

r2τdr , (38)

where

r0 =

(
cos2 ϕ

a2
+

sin2 ϕ

b2

)−1/2

. (39)

The minus sign is required from the sign convention of Fig.2. If we assume

that the plasticity occurs at a constant shearing stress of τ0, we get

Tp = −4τ0

∫ π/2

0

dϕ

∫ d/2

r0

r2dr (40)

= −4τ0
3

∫ π/2

0

[
d3

8
−

(
cos2 ϕ

a2
+

sin2 ϕ

b2

)−3/2
]
dϕ (41)

= −πd3

12
τ0 +

4a3τ0
3

∫ π/2

0

(1− k̄2 sin2 ϕ)−3/2dϕ, (42)

where k̄ is defined as

k̄2 = 1− (a/b)2 = sin2 α , (43)

Since 0 < k̄ < 1, the positive root is taken.

k̄ = sinα (44)

The second term of the right side of Tp is the elliptic integral (Moriguchi

et al., 1960; Lebedev, 1972) and k̄ is the modulus of elliptic integral.∫ π/2

0

(1− k̄2 sin2 ϕ)−3/2dϕ = (
b

a
)2E(k̄) , (45)

so that

Tp =

[
−πd3

12
+

4ab2

3
E(k̄)

]
τ0 . (46)
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As a result, a torsion angle is

φT =
(T − Tp)ℓ

GĨp
(47)

=

[
−X cosα +

(
πd3

12
−

4I3p
3X3 cos2 α

E(k̄)

)
τ0

]
ℓ

GĨp
. (48)

Equating this with Eq.16, we get the equation with respect to X. The

equation was solved numerically, since φT of Eq.48 includes the elliptic in-

tegral. Calculation was done by choosing δ as the controlling variable, as

follows.

(i) At a given value of δ, the pitch angle α was determined by Eq.8.

(ii) By equating Eq.16 and 48 and inputting a of Eq.32 and b of Eq.33, the

fifth order equation with respect to X was obtained.

X5 + c4X
4 + c3X

3 + c2X
2 + c1X + c0 = 0, (49)

where

c4 = − πd3τ0
12 cosα

,

c1 =
4π3d12τ 40E[k̄]

3(32)3 cos4 α
,

c0 = − Gπ5d16τ 4 tanα

R0(32)4 cosα(1 + cos2 α)

c3 = c2 = 0. (50)

It was found that the equation had unique solution X > 0 for the α

varying in the range [0, π/2]. The solution was obtained numerically

by the Newton-Raphson method.

(iii) The radius R was calculated by equating φM of Eq.17 with Eq.23,

R =

[
cosα

R0

+
X sinα

EIy

]−1

. (51)
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(iv) The load P was calculated through P = X/R,

(v) The rotation angle Φ was calculated by Eq.26.

3.5. Approximation of large spring index

The sum of shearing stresses of torsion and simple shear acting on the

circular section of wire under the load P is (Wahl, 1963; Shigley, 2015)

K
8PD

πd3
+

4P

πd2
. (52)

The first term is the shearing stress of the torsion of a straight rod multiplied

by the curvature correction factor K of Eq.1. Using the index c, the sum

is(Wahl, 1963; Shigley, 2015)

8PD

πd3

(
1 +

1

2c

)
. (53)

The parenthesis is the factor of the curvature effect.

Conventional springs are designed to have the geometry with the spring

index c in the range between 3 and 12(Wahl, 1963; Shigley, 2015; Kobelev,

2018). The index of the piano wire spring, 18.2, was relatively large, which

give the factor of Eq.53 equal to 1.027. It suggests that the approximation of

taking the factor equal to unity would result in error as large as 2.7 %. In or-

der to simplify the stress analysis, present study shall take the approximation

by admitting errors of these magnitude. The validity of the approximation

will be judged by comparing the result of calculation with experimental re-

sults.

4. Materials and methods

A piano wire, SWP-A grade of JIS (JIS3522, 2014), of d =0.5 mm was

used. The straight wire was annealed at 350 ◦C and was tensile-tested at
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Table 1: Dimensions and material properties of piano wire spring

initial coil diameter [mm] D0 9.1

wire diameter [mm] d 0.50

spring index c 18.2

curvature factor K 1.08

element length per turn [mm] ℓ 28.9

number of turns N 64

initial pitch angle [deg] α0 3

flow stress [MPa] Y 2,000

shearing stress [MPa] τ0 1,000

modulus of elasticity [GPa] E 208

shear modulus [GPa] G 80

elastic spring constant [Nmm−1] k 0.84

room temperature with an Instron type testing machine, Shimadzu DSS-

500. The stress-strain curve of the specimen with the gauge length of 100

mm is shown in Fig. 5. The elastic limit indicated by an arrow was at 1680

MPa and the flow stress was about 2000 MPa. The elastic-perfect plastic

model used for the present calculation is drawn by dotted lines in this figure.

A closely pitched spring of D0 =9.1 mm was hand-wound and annealed

at 350 ◦C. The spring index c = D/d was 18.2 and the other dimensions are

listed in Table 1.
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Figure 5: The stress-strain curve of piano wire at room temperature. The elasticity limit

indicated by arrow was 1680 MPa. The dotted thick lines are the elastic-perfect plastic

model of E =208 GPa and Y =2000 MPa.
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Φ

Figure 6: A schematic drawing of the method of loading to spring. The spring was fixed

at the upper end and static load was applied to the other end. The deflection and the

rotation angle at a given load were measured simultaneously.

5. Results and Discussion

5.1. Deflection of piano wire spring

Load weight was subjected incrementally to the spring. As illustrated in

Fig. 6, one end of the spring was fixed to rigid bar and the other was clipped

to the cage which can carry a few pieces of weight. As a weight was added to

the cage, the displacement of the cage and its rotation angle were measured

simultaneously. A protractor was placed beneath the cage. The angle of

rotation was large enough to measure by eyes with the protractor.

The piano wire spring was extended up to the weight of P=13 N giv-

ing the deflection per pitch δ =25 mm. In order to enlarged views of the

load-deflection (P–δ) and the rotation angle-deflection (Φ–δ) curves in the

elasticity range are shown in Fig. 7, where δ <12 mm are shown in Fig. 7. In
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the two figures the experimental data were plotted by closed circles and the

calculated values by lines. The error bars in load are the measure the largest

effect of dynamic loading, which is as large as the increment of weight. The

increment was 10 g for P ≤ 100 g, 50 g for or 100 < P ≤ 400 g, and 100 g

for P > 400 g. The error bars in rotation angle are expressed by

∆Φ = 4.93× 10−3P∆P, (54)

which is the first derivative of the equation Φ = 2.47× 10−3P 2 derived from

Eq.2, 8, and 27 for ν=0.3.

The P–δ relation was linear at the onset of deformation and the slope was

in good agreement with Eq.25 for G =80 GPa. The Φ–δ curve was upper

concave as similarly to the curve of Eq.27. It is seen that the difference

between the theory and experiment increases with increasing δ when δ >4

mm. The yield criterion of Eq.34 indicates the yielding at P=9.1 N for the

flow stress of Y=1680 MPa or 10.8 N for Y=2000 MPa. On the other hand,

the experimental results showed the deviation from linearity at load as low as

5 N. Such early yielding at small load may be due to microplasticity in hard

steels, which occurs by pre-existing mobile dislocations. (Hull and Bacon,

1984; Dieter, 1986).

The P–δ curve of the piano wire spring for large δ is shown in Fig. 8,

in which the experimental data are plotted by solid circles. The data points

are on the S-shaped curve with the yielding at around P=5 N. The present

theory of plastic torsion is plotted as the solid lines with open symbols. The

three curves were calculated for the models of elastic-perfect plastic materials

with the different magnitude of Y ; 1680 MPa, 2000 MPa, and 2400 MPa. It

is seen that the experimental data agrees well with the model for Y=2000
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Figure 7: The initial parts of the load–deflection curve and the rotation angle–deflection

curve measured simultaneously.
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MPa, as seen in Fig. 5. The plasticity theory was out-of-range in elasticity

when the deflection was below 5 mm.

The Φ–δ curve is shown in Fig. 9, in which the experimental data are

plotted by solid circles. The three curves for different Y were calculated by

the present theory of plastic torsion. The dotted line is the present formula

in elasticity of Eq.27. These calculated curves show the similar trend with

the observed data. It is seen that the rotation angle observed in experiment

were bound by the present theories of elasticity and plasticity. The reason

why the measured values were smaller than the prediction of plasticity theory
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is not clear at present. Probable reasons are (i) the effects of microplasticity

and/or the residual stress in the piano wire, and (ii) the inertia moment of

weight in the experiment.

6. Conclusion

The nonlinear load carrying capacity of helical spring made of elastic-

perfect plastic material was examined. A mechanics-of-materials theory was

provided by accounting for the combined state of torsion and bending in plas-

ticity under the approximation of large spring index. The moving boundary

22



problem of tracing the moving yield locus during the plastic torsion was

solved. The explicit form of the solution for elastic-perfect plastic material

includes the elliptic integral. It was shown that the solutions agreed with the

load-deflection curve and the angle of rotation of free end that were measured

in the plastic extension of a piano wire spring with the spring index of 18.2.
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Appendix A.

Let us consider the bending of a curved beam or wire. The radius of

curvature ρ0 and the center angle ϕ0 are changed to the curvature ρ and

the angle ϕ after the bending, as illustrated in Fig. A. As the length of the

element is not changed,

ρ0ϕ0 = ρϕ (A.1)

The fiber length at the height z from the centroid axis changes from (ρ0+z)ϕ0

to (ρ+ z)ϕ. The fiber strain is

ϵ =
(ρ+ z)ϕ

(ρ0 + z)ϕ0

− 1 =
z

ρ0 + z

ϕ− ϕ0

ϕ0

. (A.2)

Since
ϕ

ϕ0

=
ρ0
ρ
, (A.3)

and ρ0 ≫ z,

ϵ =
z

ρ0 + z

(
ρ0
ρ

− 1

)
≈ z

(
1

ρ
− 1

ρ0

)
. (A.4)
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A B

Figure B.10: A; The bending strain in curved beam where the curvature radius is changed

from ρ0 to ρ, B; the change in the shape of a circular ring.

Then, the bending moment is given as∫
A

σzdA = E

(
1

ρ
− 1

ρ0

)∫
A

z2dA (A.5)

Defining the moment inertia of area, we get

M = E

(
1

ρ
− 1

ρ0

)
Iy (A.6)

Appendix B.

As illustrated in Fig. B, the element of curved beam with the initial radius

of curvature ρ0 and the center angle ϕ0 is bent to the curvature ρ and the

angle of 2π − φM .

2πρ0 = (2π − φM)ρ, (B.1)

which gives

φM = 2π

(
1− ρ0

ρ

)
(B.2)
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