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 Fast Topology Optimization for PM Motors Using Variational 

Autoencoder and Neural Networks with Dropout  
 

Hayaho Sato1 and Hajime Igarashi1 
 

1Graduate School of Information Science and Technology, Hokkaido University, Hokkaido 060-0814, Japan 

 

This study proposes a novel topology optimization (TO) method for permanent magnet (PM) motors based on a variational 

autoencoder (VAE) and a neural network (NN). The VAE is trained to embed various shapes generated from the TO into the latent 

space. The NN is trained to predict the characteristics of the PM motor from its latent representation derived using the VAE. After 

training, TO is performed in the latent space based on the prediction using the NN. We adopt the Monte Carlo dropout to maintain 

prediction reliability using the NN during optimization, where prediction deviation is evaluated and used to eliminate unreliable solutions. 

The proposed method yields Pareto solutions within 80 s in a single-thread CPU machine, which is considerably faster than numerical 

analysis-based optimization, such as finite element analysis.  

 
Index Terms—Design optimization, neural networks, permanent magnet (PM) motors.  

 

I. INTRODUCTION 

HAPE OPTIMIZATION, aimed at realizing high-performance 

electric machines in the industry, has attracted significant 

attention. Among these, the optimization of permanent magnet 

(PM) motors used in electric vehicles is becoming increasingly 

significant. Topology optimization (TO) has proven to be 

effective in the performance enhancement of PM motors, such 

as torque and efficiency. In TO, the magnetic core of the PM 

motor is modified by the generation and annihilation of holes. 

The PMs equipped in the rotor can also be modified using the 

multiphase TO method to represent more than three materials 

[1]. Moreover, a method exists in which the TO of the magnetic 

core and parameter optimization (PO) of PMs are hybridized 

[2].  However, performing such TOs requires hundreds to tens 

of thousands of numerical analyses using, for example, the 

finite element method (FEM), which is computationally 

expensive. Developing a TO method that can be performed with 

laptop computers in which every engineer in the industry can 

address is desirable. 

To realize such a fast method, deep generative models, such 

as variational autoencoders (VAE) and generative adversarial 

networks, to design PM motors have been developed in recent 

years [3], [4]. Deep generative models are advantageous in that 

high-dimensional motor shapes (shape parameters or images) 

can be embedded into a low-dimensional latent space. After 

embedding the shapes, a surrogate model to predict their 

performance is built for the latent variables such that 

optimization can be performed in the latent space. This enables 

us to obtain optimal shapes without field computations at a low 

cost. Although these methods have been proven effective, the 

variety of motor shapes is restricted because they are generated 

based only on PO. Moreover, they can converge to the incorrect 

solution which are misjudged and having high performance by 

a surrogate model. This is because surrogate model-based 

optimization is often associated with regions of low prediction 

accuracy.  

This study proposes a novel TO method using a VAE and a 

neural network (NN) trained with dropout. The VAE model is 

used to embed various shapes generated from TO. The NN 

model is used as a surrogate model. To evaluate the reliability 

of NN-based predictions, we used Monte Carlo (MC) dropout 

[5], which estimates the standard deviation of predictions by 

sampling from NNs with different dropout states. The proposed 

method is applied to multi-objective TO of a virtual PM motor 

under speed-torque characteristic conditions.  

II. FAST TOPOLOGY OPTIMIZATION METHOD 

A. Overview of the Proposed Method 

An overview of the proposed method is shown in Fig. 1. The 

proposed method comprises three models. 

1. VAE model. This model embeds various images of 

motors generated from TO into a latent space via the 

encoder. Furthermore, it reconstructs the embedded 

images using the decoder. A latent vector, that is, an 

embedded motor image is represented as � hereinafter.  

2. NN model. This model accepts � as input and predicts 
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Fig. 1.  Overview of proposed method.  
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the characteristics of the corresponding motor shape. 

The prediction targets are the linkage fluxes of �- and �- 

axis, �� and ��, and the area of PM, �. 

3. Optimization model. After training the VAE and NN 

models, we optimize the latent vector � , which is 

associated with the motor shape, as explained. The 

objective functions �	
�� are evaluated only from the 

prediction of the NN model.  

Because the dataset generated from TO is embedded and 

represented in the latent space, TO can be performed in the 

latent space using this method, which is cost-effective because 

field computations are not required and the dimension of the 

latent space is set smaller than that of the original space.  

B. Variational Autoencoder for Embedding Shapes 

The VAE model is shown in Fig. 2. The rotor of a PM motor 

is optimized in this study. The cross-sectional image of the 

motor is converted into a square image and used as the input �. 

The VAE model accepts � and outputs the reconstructed image 

� through the latent vector �. The network architecture is based 

on that in [6]. 

In the VAE, prior �
�� is assumed to have a standard normal 

distribution �
�, ��. The encoder approximates the posterior to 

be a multivariate Gaussian with a diagonal covariance matrix, 

such that �  is generated from the approximated posterior 

�
�|��: 

�~�
�|�� � ���, diag
���, (1) 

where � and � are the encoder outputs. Consequently, the loss 

function of the �-th input �
�� can be derived as follows [7]: 

 !"# � $�
�� % �
��$& ' ()* +���|�
���||�
�, ��, , (2) 

where ()*
⋅� is the KL-divergence that regularizes ���|�
��� 

to be close to the prior, a standard normal distribution. 

C. Neural Network for Performance Prediction 

The NN model is shown in Fig. 3. The objective is to predict 

the �- and �-axis linkage fluxes of the PM motor, �� and ��, 

to calculate the average torque. The linkage fluxes depend on 

the � -and � -axis currents ��  and �� . To represent this 

dependency, we approximate them using the quadratic forms 

[3], [8]: 

����� , ��� � .�,/ ' .�,&�� ' .�,0�� ' .�,1��
&

' .�,2���� ' .�,3��&, 
(3a) 

����� , ��� � .�,/ ' .�,&�� ' .�,0�� ' .�,1��
&

' .�,2���� ' .�,3��&, 
(3b) 

whose coefficients are determined using the least-squares 

method. Consequently, the prediction targets of the NN model 

are the coefficients of the quadratic forms, 5� � 6.�,789
 and 

5� � 6.�,789
 
: � 1, … ,6�. In addition,  the area of the PMs, �, 

for optimization in the latent space should be evaluated. Finally, 

the output of the NN model is  > � 65�
9 , 5�9 , �89 ∈ ℝ/0. The 

loss function of the NN model is 

 AA � $>
�� % >
��$&
, (4) 

where >
�� denotes the NN model-based prediction. 

D. Optimization Using Monte Carlo Dropout 

After training the VAE and NN models, we optimize �. The 

optimization problem is defined as follows: 

min. �/ � %EFGH
I/�, (5a) 

min. �& � �, (5b) 

sub. to EFGH
I�� % EFGH
OFPHQO
I�� R 0    
� � 1,2�, (5c) 

where EFGH
I� denotes the average torque at rotation speed I 

under maximum torque control, which is calculated as 

EFGH
I� � max
�V,�W

6XY����� % �����8 . (6) 

where XY is the number of pairs of poles which is 2 in this paper. 

An example of EFGH
I� is shown in Fig. 4. At a high rotation 

speed, the induction voltage Z ∝ I reaches the limitation of the 

input inverter. To suppress this, flux weakening control is 

applied, which results in decreasing speed-torque 

 
Fig. 2.  VAE model to embed motor shapes into a latent space where � denotes 

the dimension of the latent space.  

 

 
Fig. 3.  NN-based model for the prediction of motor characteristics.  

 

 
Fig. 5.  Overview of MC dropout.  

 

 
Fig. 4.  Example of torque-speed characteristics of motors.  
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characteristics. We impose constraints (5c) to maintain EFGH at 

a low speed I/ and high speed I&. 

However, surrogate model-based optimization often 

misleads the individuals, which are misjudged as having high 

performance by a surrogate model. This is significant for VAE 

because misleading in the latent space may result in collapsed 

images. To prevent this and improve reliability of optimization, 

we adopted the MC dropout method to evaluate the reliability 

of the solutions [5]. An overview of MC dropout is shown in 

Fig. 5. In this method, NNs with different dropout states were 

randomly generated to make different predictions. This 

corresponds to sampling from the predictive distribution, where 

the weights of the NN model were regarded as stochastic 

variables. The average >FGH and standard deviation >\O] were 

estimated from the sampled predictions. During optimization, 

the individual with an estimated >\O] higher than ^ 
%� of >FGH 

was eliminated by a heavy penalty: 

�	̀ � �	 ' ab   
c � 1,2�, (7a) 

a � d1
0

 if �̂7,\O] g ^h�̂7,FGHh for any :
otherwise

. (7b) 

In this study, the number of samples, threshold ^, and penalty 

b  are set to 100, 30%, and 100. This strategy eliminates 

individuals for which the prediction of the NN model was 

highly variable and unreliable.  

III. NUMERICAL RESULTS 

A. Training Results of VAE and NN 

The VAE and NN models were trained. The training data 

were obtained by preliminary solving the multi-objective 

optimization problem (5a), (5b), and (5c) using NSGA-II [9] 

under the torque conditions in Table I. During optimization, 

connection of the magnetic core was imposed by adding a 

penalty when it was separated. We obtained 32,052 training 

data from three optimization trials, where the type of PM was 

assumed to be I-, V-, and U-shaped. The image data resolution 

was set to 224n224 which is enough fine to represent the rotor 

shape. The VAE and NN models were simultaneously trained 

[4], [10] using these data. The training settings are listed in 

Table II. The dimension of the latent space was determined to 

make the number of optimization variables as small as possible 

while keeping the accuracy in image reconstruction and 

regression by VAE.  

The inputs and reconstructed images using the trained VAE 

are shown in Fig. 6. The inputs were successfully reconstructed. 

The correlation between the ground truth and prediction using 

the trained NN for �/ � .�,/ is shown in Fig. 7. The correlation 

coefficients for all targets �/, … , �/0 exceed 0.90, which would 

be sufficient for TO in the latent space.  

B. Optimization Problem I 

First, we consider the optimization problem, which is the 

same as the problem for training data collection, to validate the 

trained models. The parameters for NSGA-II are listed in Table 

III. In addition, the target torque in (5c) is set to 105% of  

EFGH
OFPHQO
I�� to allow margin for the optimization [3].  

The optimization results are shown in Fig. 8. For comparison, 

the training data were also plotted. The optimization in the 

latent space approximated the Pareto solutions of the training 

data, which included the U-shaped PM (i) and I-shaped PM (ii), 

(iii). Moreover, only 73.1 s was consumed in a single-thread 

machine, as shown in Table IV, which is considerably faster 

than FEM-based optimization.  

To validate the Pareto solutions obtained in the latent space 

based on the NN model-based prediction, we converted the 

solutions to the mesh model, as shown in Fig. 9, and then 

analyzed them using FEM. The results are also shown in Fig. 8. 

The predicted and analyzed values had no significant gap. It is 

concluded that the NN model with MC dropout maintained the 

reliability of the solutions even when they were constructed 

from various shapes generated by TO. The analysis result for 

solution (ii) in Fig. 8 is shown in Fig. 10. This result satisfied 

the torque constraint (5c). 

C. Optimization Problem II 

The trained models can be applied to other optimization 

problems. Here, we considered the torque condition shown in 

Table V, which differed from the previous one. The input 

current limitation was reduced to 20 A. The target torque for 

each rotation speed was also changed.  

The results are shown in Fig. 11. The Pareto solutions had U-

shaped PM (iv), (v), and (vi). Moreover, we validated the Pareto 

 
Fig. 7.  Correlation between ground truth and prediction using the trained NN 

for �/. Represented values are standardized.  

 

  
Fig. 6.  Input and reconstructed images using the trained VAE.  

 

TABLE II 

SETTINGS FOR TRAINING 

Parameter Value 

Dimension of the latent space 8 

Optimization method Adam 

Initial learning rate* 0.001 

Batch size 128 

Number of epochs 100 

*Exponential learning rate decay with a rate of 0.95 was applied. 

 

TABLE I 

TORQUE CONDITION FOR PROBLEM I 

Parameter Value 

Input current limitation (A) 40 

Induction voltage limitation (V) 300 

I/, I& (rpm) 1000, 5000 

EFGH
OFPHQO
I/�, EFGH

OFPHQO
I&� (Nm) 18.0, 15.0 
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solutions using FEM. The Pareto solutions were successfully 

obtained using the proposed method even when the torque 

condition was changed from the original one. The accuracy of 

solutions with a small PM are quite low because the VAE model 

occasionally fails to reconstruct the image, as shown in Fig. 11, 

solution (vii). However, such anomalous solutions with 

extremely low torque can be easily excluded.   

IV. CONCLUSION 

This paper proposed a novel TO method based on VAE and 

NN. In this method, various motor shapes generated by TO can 

be treated. Optimization in the latent space yielded reliable 

solutions with a NN to which MC dropout was applied. We plan 

to extend the proposed method to consider double-layer PMs 

and synchronous reluctance motors. Moreover, we will develop 

a method to create the CAD data from the image obtained by 

the proposed method. 
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TABLE III 

PARAMETERS FOR NSGA-II 

Parameter Value 

Gene size 8 

Population size 160 

Crossover method SBX 

Number of children 80 

Number of generations 50 

 

TABLE V 

TORQUE CONDITION FOR PROBLEM II 

Parameter Value 

Input current limitation (A) 20 

Induction voltage limitation (V) 300 

I/, I& (rpm) 1000, 5000 

EFGH
OFPHQO
I/�, EFGH

OFPHQO
I&� (Nm) 9.0, 7.0 

 

TABLE IV 

COMPUTATION TIME 

Stage Computer specs 
Computation 

Time  

Data collection CPU: 3.2 GHz, 64 threads 13.9 h 

Training 

CPU: 3.5 GHz, 16 threads 

GPU: NVIDIA Tesla 

V100 PCIE (16GB) x 2 

4.0 h 

Optimization in latent 

space (problem I) 
CPU: 3.2 GHz, 1 thread 73.1 s 

Optimization in latent 

space (problem II) 
CPU: 3.2 GHz, 1 thread 55.6 s 

 

 
Fig. 11.  Result of the multi-objective optimization (problem II).  

 
Fig. 9.  Conversion of the latent vector to mesh, for FEM analysis.  

 

  
Fig. 10.  Shape and speed-torque characteristics of solution (ii).  

 

 
Fig. 8.  Result of the multi-objective optimization (problem I).  

 


