

HOKKAIDO UNIVERSITY

Title	1-Aminocyclopropane-1-carboxylic acid and its analogs alleviate heat stress damage in the marine red alga Neopyropia yezoensis (Rhodophyta)
Author(s)	Uji, Toshiki; Mizuta, Hiroyuki
Citation	Journal of Applied Phycology, 34, 1527-1536 https://doi.org/10.1007/s10811-022-02727-w
Issue Date	2023-07-05
Doc URL	http://hdl.handle.net/2115/90123
Rights	This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature 's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10811-022-02727-w
Туре	article (author version)
File Information	1-Aminocyclopropane-1-carboxylic acid and its analogs alleviate heat stress damage in the marine red alga Neopyropia yezoensis (Rhodophyta).pdf

6

Instructions for use

1	1-aminocyclopropane-1-carboxylic acid and its analogs alleviate heat stress
2	damage in the marine red alga Neopyropia yezoensis (Rhodophyta)
3	
4	Toshiki Uji ^a and Hiroyuki Mizuta ^a
5	
6	^a Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
7	
8	Corresponding author:
9	Toshiki Uji
10	Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
11	Tel/Fax: +81-138-40-8864
12	E-mail: t-uji@fish.hokudai.ac.jp
13	
14	Running title: Effects of ACC on thermotolerance in red seaweed
15	
16	
17	
18	

19 Abstract

Heat stress disrupts algal growth, development, and physiological processes, such as 20photosynthesis, and eventually decreases seaweed productivity. Previous studies of crop 2122plants have revealed that exogenous application of phytohormones prior or parallel to stress can alleviate the negative effects of abiotic stressors, including heat stress. 2324However, there is limited information on phytohormone-induced tolerance to abiotic stressors in seaweed. In the present study, the application the major plant hormones 25abscisic acid and salicylic acid failed to mitigate the negative effects of heat stress on 26the marine red alga Neopyropia yezoensis, whereas 1-aminocyclopropane-1-carboxylic 27acid (ACC), the direct precursor of the plant hormone ethylene, regulates 28thermotolerance. In addition, the ACC analogs 1-aminocyclobutane-1-carboxylic acid 2930 and α-aminoisobutyric acid enhanced tolerance to heat stress. ACC increased the expression of genes involved in antioxidant defense systems to protect photosynthesis 3132and respiration. These results suggest ACC acts as a phytohormone to mitigate the impact on heat stress independent of ethylene in N. yezoensis. 33 Keywords: Neopyropia; red algae; heat stress; 1-aminocyclopropane-1-carboxylic acid; 3435plant hormone

36

 $\mathbf{2}$

37 **1. Introduction**

Marine red algae in the order Bangiales, which includes the genera Pyropia and 38 Neopyropia (formerly Porphyra), have been cultivated for several hundred years in 3940 Japan and are currently among the most successful aquaculture industries in East Asia, accounting for more than one billion USD in revenue annually (Blouin et al. 2011). 41 42Bangiales contains high level of minerals (e.g., iron and zinc), vitamins (e.g., B12 and C), and proteins (Noda 1993), in addition to the sulfated polysaccharide porphyran, 43which has diverse physiological activities beneficial to human health, including 44antitumor, immunomodulating, anti-inflammatory, and anti-hyperlipidemic effects 45(Isaka et al. 2015). These benefits could substantially increase the market demand for 46Bangiales in the near future. 4748 Abiotic stressors affect the growth, survival, cell division, photosynthesis, and subsequent quality and yield of Bangiales. Among potential abiotic stressors, heat stress 49can disrupt cellular homeostasis, leading to severe retardation of growth and 50development, and even death. Under heat stress conditions, the survival rate of 51conchospore germlings of Neoporphyra haitanensis, was reduced to 15.9% after 15 5253days of culture at 28°C (Yan et al. 2010). Thus, global warming is likely to significantly impact nori cultivation. Actually, during the early seeding period, nori farms are often 54

exposed to sustained high temperatures followed by a drop to temperatures suitable for
conchospore release, resulting in the inhibition of germling development, the induction
of disease, and large-scale blade decay, resulting in a dramatic reduction in yield (Yan et
al. 2010; Zhang et al. 2011).

59	Phytohormones are endogenous signaling molecules that play important roles in
60	growth, development, and responses to various biotic and abiotic stressors, including
61	heat stress (Verma et al. 2016; Li et al. 2021). The major plant hormones, including
62	abscisic acid (ABA), cytokinins, salicylic acid (SA), jasmonic acid, ethylene, and
63	brassinosteroids, play crucial roles in the response of land plants to heat stress (Verma et
64	al. 2016; Li et al. 2021). Numerous studies have reported that exogenous applications of
65	plant hormones prior or parallel to heat stress regulate thermotolerance of plants through
66	the reactive oxygen species (ROS) signaling network (Khan et al. 2015; Devireddy et al.
67	2021; Kothari and Lachowiec 2021). In contrast to land plants, there have been
68	relatively few reports of the effects of phytohormones on the thermotolerance of
69	seaweed.
70	The non-proteinogenic amino acid 1-aminocyclopropane-1-carboxylic acid (ACC),
71	the direct precursor of ethylene, is a simple two-carbon molecule with profound effects
72	in higher plants (Lin et al. 2009; Van de Poel et al. 2015). Exogenous application of

73	ACC has been used as a proxy for ethylene in numerous experiments over decades of
74	research on ethylene signaling. However, recent findings have suggested that ACC also
75	acts as a signaling molecule to regulate plant development and growth, independent of
76	ethylene in the model plant Arabidopsis thaliana (Polko and Kieber 2019; Van de Poel
77	2020) and the basal land plant Marchantia polymorpha (Li al. 2020; Katayose et al.
78	2021). Previous studies by our group showed that ACC stimulates the formation of
79	sexual cells and protects gametophytes of Pyropia/Neopyropia species against oxidative
80	stress (Uji et al. 2016; Yanagisawa et al. 2019). In addition, the exogenous ACC analog
81	1-aminocyclobutane-1-carboxylic acid (ACBC) induced gametogenesis and oxidative
82	stress tolerance in the same manner as ACC, but not ethephon, an ethylene-releasing
83	compound (Uji et al. 2020). Similarly, α-aminoisobutyric acid (AIB), a structural analog
84	of ACC that blocks the conversion of ACC to ethylene in higher plants, mimics the
85	effect of ACC to induce sexual reproduction without endogenous ACC accumulation
86	(Endo et al. 2021). These findings suggest a possible role of ACC as a signaling
87	molecule independent of ethylene in the regulation of sexual reproduction and stress
88	tolerance in Bangiales.
89	An effective approach to improve heat tolerance in Bangiales is important for
90	continued production in response to global warming. The objective of the present study

91	was to assess the effect of exogenous plant hormones, including ACC, on conferring
92	tolerance to heat stress in Neopyropia yezoensis, which is widely cultivated in Japan.
93	The results revealed that the activation of ACC signaling can promote heat tolerance of
94	N. yezoensis gametophytes by activation of genes associated with antioxidant defense
95	systems by supporting photosynthesis and respiration.

2. Materials and methods

2.1. Algal material culture and pretreatment

99	The leafy gametophytes of <i>P. yezoensis</i> strain TU-1 were cultured in sterile vitamin-free
100	Provasoli's enriched seawater (PES; Provasoli, 1968) as described previously (Uji and
101	Mizuta, 2021). Immature gametophytes (blade length, ~20 mm) were grown in a 90-mm
102	diameter Petri dish with 40 mL of PES at 15°C under a 10:14-h light:dark photoperiod
103	using cool white fluorescent lamps at 40 μ mol photons m ⁻² s ⁻¹ . Our previous study
104	showed that 50 μ M ACC was satisfactory to induce sexual reproduction in <i>N. yezoensis</i>
105	(Uji et al. 2020), but application of 5 μ M ACC weakly promoted it. In addition, a
106	previous experiment revealed that ACC content in the gametophytes was in fairly small
107	amounts (Endo et al. 2021). Based on these results, prior to heat stress treatment, the

108	gametophytes were treated with 0, 5, 25, or 50 μ M ACC (Tokyo Chemical Industry,
109	Tokyo, Japan), 50 µM SA (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan),
110	or 50 μ M ABA (Tokyo Chemical Industry). To assess the effects of the ACC analogs,
111	the gametophytes were also treated with 5 or 50 μM ACBC (Tokyo Chemical Industry)
112	or AIB (Tokyo Chemical Industry). SA and ABA were dissolved in dimethyl sulfoxide
113	(DMSO) to create stock solutions of 100 mM. ACC, ACBC, and AIB were dissolved in
114	PES medium. Control experiments were performed with DMSO at concentrations
115	corresponding to the maximum volume of the reagents.

117 **2.2. Evaluation of tolerance to heat stress**

118	To examine the effects of plant hormones on tolerance to heat stress, gametophytes were
119	treated with chemical reagents for 7 days in a chamber at 15°C under a 10:14-h
120	light:dark photoperiod at 40 μmol photons $m^{-2}s^{-1}$ and then transferred into a Petri dish
121	containing new PES medium without chemical reagents and exposed to heat stress. The
122	gametophytes were cultured for 2 weeks in a chamber at 28°C under a 10:14-h
123	light:dark photoperiod at 40 μ mol photons m ⁻² s ⁻¹ . After the stress treatments, thalli
124	were used for measurement of the maximum photochemical efficiency of

125	photosystem II (PS II) (F_v/F_m) to evaluate heat stress-induced damage using a portable
126	chlorophyll fluorometer (Opti-Science, Inc., Hudson, NH, USA.). Data are expressed as
127	the mean \pm standard deviation (SD) of five thalli for each condition.

2.3. Transcriptional analysis

130	Vegetative gametophytes (blade length, ~20 mm; 0.1 g fresh weight) were cultured in
131	100 mL of medium containing 50 μ M ACC for 0, 3, or 7 days, then were frozen with
132	liquid nitrogen and stored at -80°C until RNA extraction. RNA extraction and
133	quantitative real-time polymerase chain reaction (qRT-PCR) analysis were performed as
134	described by Uji et al. (2019). Total RNA was extracted using the RNeasy Plant Mini
135	Kit (Qiagen, Hilden, Germany) in liquid nitrogen with a mortar and pestle, in
136	accordance with the manufacturer's instructions. The extracted RNA was purified with
137	the TURBO DNA-free kit (Invitrogen/Life Technologies, Carlsbad, CA, USA) to obtain
138	DNA-free RNA. First-strand cDNA was synthesized from 0.5 μ g of total RNA using
139	the PrimeScript II 1st strand cDNA Synthesis Kit (TaKaRa Bio, Inc., Shiga, Japan). For
140	qRT-PCR analysis, each 20- μ L reaction volume consisted of 1.0 μ L of cDNA diluted
141	by 10-fold as a template with KOD SYBR® qPCR Mix (Toyobo Co., Ltd., Osaka,

142	Japan) in accordance with the manufacturer's instructions. qRT-PCR was performed
143	with a LightCycler [®] 480 System (Roche Diagnostics, Basel, Switzerland) in accordance
144	with the following cycling conditions: an initial denaturation step at 95°C for 30 s,
145	followed by 40 cycles at 95°C for 5 s and at 55°C for 31 s. Relative gene expression
146	levels were calculated using the $2^{-\triangle \triangle Ct}$ method with the 18S ribosomal RNA
147	(Ny18SrRNA) gene as an internal reference. The relative expression level was calculated
148	as a ratio of the mRNA level to the transcription level on day 0 of ACC treatment. All
149	qRT-PCR analyses were performed in triplicate. The primers used in this study are
150	listed in Table 1. The sequences of the analyzed genes were retrieved from the genome
151	sequence data of <i>N. yezoensis</i> (Nakamura et al. 2013).
152	
153	2.4. Statistical analysis

154 All data are expressed as the mean \pm SD. The Mann–Whitney U test was used to 155 identify statistically significant differences following treatment with and without plant 156 hormones. For all analyses, p < 0.05 (significant) and p < 0.01 (highly significant) were 157 considered thresholds of statistical significance.

160	3. Results
161	N. yezoensis gametophytes cultured at 15°C were subjected to heat stress (28°C) after
162	treatment with SA, ABA, or ACC to assess the role of plant hormones in heat tolerance.
163	After heat stress treatment, spots of discoloration, which indicate a drastic decrease in
164	photosynthetic pigments, were observed in N. yezoensis pretreated with DMSO
165	(control), 50 μM SA, or 50 μM ABA, whereas pretreatment with 50 μM ACC mitigated
166	the discolored spots (Fig. 1). In response to heat stress, gametophytes pretreated with
167	DMSO, SA, or ABA had cells with yellow-green chloroplasts, enlarged cells or dead
168	cells. In contrast, pretreatment with ACC prevented the formation of cells with
169	yellow-green chloroplasts or enlarged cells (Fig. 1).
170	Maximum quantum efficiency (F_v/F_m) using pulse amplitude modulation techniques
171	was employed to assess the impact of heat stress on the photosynthetic capacity in N .
172	<i>yezoensis</i> . The F_v/F_m value of gametophytes treated with DMSO, SA, or ABA ranged
173	from 0.17 to 0.23, whereas that of gametophytes supplemented with ACC was 0.47 (Fig.
174	2).
175	Next, the effects of different concentrations of ACC against heat stress in
176	gametophytes supplemented with ACC were compared. There was a significant

177difference in the F_v/F_m values of gametophytes pretreated with and without ACC (Fig. 3). The F_v/F_m value of gametophytes pretreated with a lower concentration of ACC (5 178179 μ M) slightly decreased as compared with those treated with higher concentrations (25 180 or 50 μ M) in response to heat stress. Also, the effects of the ACC analogs ACBC and AIB on heat stress tolerance in 181 gametophytes was investigated. The F_v/F_m values of thalli treated with 5 or 50 μ M ACC 182or 50 µM ACC analogs were relatively high in response to heat stress (5 µM ACC, 1830.33; 50 µM ACC, 0.47; 50 µM ACBC, 0.46; 50 µM AIB, 0.46) (Fig. 4). However, 184 there was no significant difference in the F_v/F_m values of thalli treated with 5 μ M 185ACBC or 5 µM AIB as compared to the control (Fig. 4). These results indicate that the 186ACC analogs were less effective than ACC, and ACC enhanced heat stress tolerance 187188independent of ethylene. To understand the role of ACC treatment in acquired thermotolerance, the 189 190 expression profiles of genes involved in stress responses were examined (Fig. 5). Based 191on our previous RNA-seq data in response to ACC (Uji et al., 2016), four candidate genes associated with thermotolerance were selected (Table 2). The mRNA levels of 192193NyALDH (encoding aldehyde dehydrogenase), NyHLIP (encoding high light-inducible protein), and NyPOD (encoding haem peroxidase) had gradually increased after ACC 194

treatment. The exogenous application of ACC resulted in the up-regulation of *NyBCS1L*(encoding BCS1-like ATPase) to similar levels at 3 and 7 days after ACC treatment.

198 **4. Discussion**

199	In the present study, we revealed that pretreatment with ACC for 1 week can mitigate
200	the negative impacts of heat stress in N. yezoensis thalli. Thus, exogenous application of
201	ACC to nori seedlings before setting seeding nets in bays and inland seas could
202	significantly increase the yields under climate change. However, previous studies by our
203	group showed that ACC treatment inhibited the growth of N. yezoensis (Uji et al. 2016;
204	2019). Organisms have evolved diverse mechanisms of "tradeoff" that enable the
205	allocation of resources for growth to adapt life-threatening stress (Takatsuji 2017).
206	Elucidating the mechanisms mediating tradeoffs between the stress tolerance and the
207	growth under ACC signaling should be necessary to apply ACC as a tool in nori
208	aquaculture.
209	Phytohormones are endogenous signaling molecules that play important roles in
210	various aspects of plant development, growth, and stress responses (Verma et al. 2016;
211	Gray 2004; Yu et al. 2020). Many studies have found that exogenous application of

212	phytohormones, such as ABA and SA, significantly ameliorated heat-induced damage
213	and improved heat tolerance in land plants (Li et al. 2021; Devireddy et al. 2021).
214	Although current knowledge of plant hormone-mediated stress tolerance in algae
215	remains limited, SA is reported to alleviate the adverse effects of high-temperature
216	stress in the red alga Gracilariopsis lemaneiformis (Wang et al. 2017). In the current
217	study, SA and ABA had no effect on heat stress tolerance in N. yezoensis. In contrast,
218	the exogenous application of ACC as well as the analogs ACBC and AIB induced the
219	acquisition of heat stress tolerance. In addition to classical phytohormones, recent
220	studies have proposed that ACC, the direct precursor of the plant hormone ethylene, acts
221	as a signaling molecule to regulate development and growth independent of ethylene
222	biosynthesis in land plants and red algae (Van de Poel 2020). This report is the first to
223	describe the involvement of ACC signaling in tolerance to heat stress of land plants and
224	algae, independent of ethylene signaling.
225	Heat stress enhances production of ROS (superoxide [O ⁻ ₂], hydroxyl radicals
226	$[OH^-]$, hydrogen peroxide $[H_2O_2]$, and singlet oxygen $[^1O_2]$), which leads to oxidative
227	damage of proteins, nucleic acids, and lipids, and eventual disruption of cellular
228	homeostasis (Suzuki and Mittler 2006; Awasthi et al. 2015). For ROS detoxification,
229	plants produce antioxidants, such as ascorbic acid (AsA) and glutathione, as well as

230	ROS-scavenging enzymes (Choudhury et al. 2017), such as ascorbate peroxidase (APX),
231	which is among the most important antioxidant enzymes in land plants (Shigeoka et al.
232	2002). Our previous study showed that ACC increased AsA synthesis in N. yezoensis
233	gametophytes, while the expression levels of three APX genes of <i>N. yezoensis</i> were only
234	slightly increased or decreased in the thalli after ACC treatment (Uji et al. 2020). In the
235	present study, NyPOD transcripts had accumulated in gametophytes after ACC
236	treatment, implying that NyPOD may play an important role as a ROS-scavenging
237	enzyme during abiotic stress in N. yezoensis.
238	Excessive ROS accumulation also induced the production of aldehydes, which
239	can cause genotoxic effects, such as lipid peroxidation, resulting in the loss of
240	membrane integrity and subsequent cellular and developmental arrest (Kotchoni et al.
241	2006; Stiti et al. 2011). Thus, genomes of organisms encode aldehyde dehydrogenase
242	(ALDH) enzymes that catalyze the oxidation of various aldehydes to carboxylic acids,
243	thereby reducing lipid peroxidation (Stiti et al. 2011). Increased fluidity of the thylakoid
244	membranes at high temperature causes light-harvesting complexes, located in the core
245	of photosystem II (PSII), to become dislodged from the thylakoid membrane (Mathur et
246	al. 2014). Previous studies of gain- and loss-of-function mutations in land plants suggest
247	that ALDH enzymes reduce lipid peroxidation of thylakoid membranes under oxidative

248	stress conditions (Kotchoni et al. 2006; Zhao et al. 2017). In addition, ALDH protein
249	expression was elevated in N. yezoensis under high temperature and H ₂ O ₂ stress
250	conditions, and recombinant NyALDH enhanced salinity and oxidative stress tolerance
251	in E. coli (Lee and Choi, 2018). In this study, the application of ACC increased
252	<i>NyALDH</i> expression, suggesting that detoxification of aldehydes is important to protect
253	peroxidation of lipid membranes to maintain photosynthetic capacity under heat stress
254	conditions.
255	Photosynthesis is among the most heat-sensitive physiological processes
256	because chloroplast is the primary sites of ROS production in response to heat stress
257	(Hu et al. 2020). ROS, which are produced by PSI and PSII as well as the Calvin-
258	Benson cycle, can cause irreversible oxidative damage to plant cells subjected to heat
259	stress (Suzuki et al. 2012; Wang et al. 2018). In the present study, N. yezoensis cells
260	subjected to heat stress contained yellow-green chloroplasts and the F_v/F_m value was
261	decreased. However, ACC pretreatment mitigated these changes. As described above,
262	ACC treatment greatly increased the AsA content of <i>N. yezoensis</i> thalli (Uji et al. 2020).
263	AsA plays a protective role in photoinactivation by serving as a PSII electron donor,
264	which can alleviate photodamage to PSII reaction centers caused by the accumulation of
265	ROS under abiotic stress, including heat stress, conditions (Tóth et al. 2009; 2011).

266	Thus, an increase in AsA during ACC treatment may retard the photoinactivation of
267	PSII under heat stress in N. yezoensis, thereby alleviating damage to the photosynthetic
268	machinery. Furthermore, exogenous application of ACC increased the NyHLIP
269	transcripts encoding a homolog of HLIP of cyanobacteria, which is similar to
270	light-harvesting chlorophyll a/b-binding proteins (Komenda and Sobotka 2016).
271	Transcript levels of cyanobacterial HLIPs increase in response to high light conditions
272	(Dolganov et al. 1995; He et al. 2001) and play a protective role against generation of
273	singlet oxygen to prevent photoinactivation of PSII (Sinha et al. 2012; Komenda and
274	Sobotka 2016). In a previous report, NyHLIP transcripts were upregulated under high
275	irradiation and low temperature conditions, suggesting that NyHLIP functions not only
276	in response to excess light, but also to protect the cell against other stressors (Kong et al.
277	2012). In this study, the activation of NyHLIP in response to ACC may have also
278	contributed to protect the photosynthetic apparatus against heat stress.
279	In addition to chloroplasts, the mitochondria are also main targets of oxidative
280	damage under abiotic stress conditions (Bartoli et al. 2004). A previous study reported
281	that BCS1 mRNA levels of Arabidopsis, an ortholog of yeast BCS1 involved in
282	biogenesis of the cytochrome bc_1 complex (Nobrega et al. 1992), increased in response
283	to SA and H ₂ O ₂ (Ho et al. 2008). Similarly, in the present study, exogenous application

284	of ACC upregulated NyBCS1 expression, suggesting that BCS1 is key to protect
285	mitochondria against abiotic stress in both red and green lineage. Hence, future studies
286	are warranted to elucidate the role of BCS1 in the stress response.
287	As mentioned above, ROS can cause oxidative damage to cells during
288	environmental stress. However, ROS also play a key role as signal transduction
289	molecules in plants by mediating various stress responses through interactions with
290	hormonal signaling (Mittler et al. 2004; Torres and Dangl 2005; Suzuki et al. 2013). In
291	signal transduction-associated ROS, respiratory burst oxidase homolog (Rboh) genes,
292	encoding nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, are the
293	main producers of ROS (Mittler et al. 2004; Torres and Dangl 2005). Loss of function of
294	NADPH oxidase is reported to impair the heat stress response in Arabidopsis
295	(Larkindale et al. 2005, Miller et al. 2009). In Bangiales, the formation of sporophytes
296	(also called as the conchocelis phase), which grow in the summer, produce significantly
297	higher levels of H ₂ O ₂ accompanied with higher activities of NADPH oxidase as
298	compared to gametophytes, which usually grow in the winter (Luo et al. 2014). In
299	addition, the induction of H ₂ O ₂ and mRNA levels of <i>Rboh</i> was observed in Bangiale
300	species under high-temperature conditions (Luo et al. 2014). The results of our previous
301	study revealed that ROS generation in N. yezoensis gametophytes treated with ACC was

302	accompanied by an increase in Rboh transcripts (Uji et al. 2020), implying that
303	fine-tuning the balance of ROS by ACC treatment contributed to prevent oxidative
304	damage caused by heat stress in N. yezoensis gametophytes.
305	Heat shock proteins (HSPs), which function as molecular chaperones in
306	maintaining homeostasis in protein folding, are assumed to play a central role in
307	acquired thermotolerance in plants (Wang et al. 2004; Kotak et al. 2007). To date, five
308	families of HSPs have been defined based on molecular sizes: Hsp100, Hsp90, Hsp70,
309	Hsp60, and small HSPs (sHSPs/HSP20). In addition to HSPs, multiprotein bridging
310	factor 1 (MBF1), which functions as a non-DNA-binding transcription co-factor or a
311	bona fide transcription factor, plays an important role in response to abiotic stressors,
312	particularly heat stress, in land plants (Suzuki et al. 2011; Jaimes-Miranda and Chávez
313	Montes 2020). Although there is limited evidence of thermotolerance mechanisms in
314	seaweed, the mRNA levels of NysHSPs and NyMBF1 were increased in N. yezoensis
315	gametophytes under heat stress conditions (Uji et al. 2013; 2019). On the other hand,
316	the transcript levels of NysHSPs were only slightly increased in response to ACC
317	treatment as compared to under heat stress conditions (Uji et al. 2019). Moreover, our
318	RNA-seq data showed that <i>NyMBF1</i> was not identified as an ACC-responsive gene in <i>N</i> .
319	<i>yezoensis</i> . These findings raise the possibility that ACC enhances heat tolerance in <i>N</i> .

320	vezoensis v	/ia a	somewhat	different	response t	o heat s	stress.	Similarly	/,
	~				1			2	

- 322 land plants (Kagale et al. 2007). Future comparisons of thermoprotective mechanisms
- acquired by ACC application and moderate heat stress will further the current
- 324 understanding of the pathways that protect *N. yezoensis* against stress-induced damage.

```
326 5. Conclusion
```

327 The results of this study present evidence that ACC can serve as a priming hormone that

328 enables *N. yezoensis* to resistant to heat stress. On the other hand, treatment with the

329 plant hormones ABA and SA, which are regulators of the stress responses in land plants,

- failed to improve heat stress resistance in *N. yezoensis*. ACC can activate the expression
- of genes associated with antioxidant defense systems, such as NyHLIP and NyBSC1, to
- 332 protect against impaired function of chloroplasts and mitochondria cause by
- heat-induced oxidative damage. A future challenge will be to elucidate the
- ACC-associated signaling pathways leading to heat stress tolerance in *N. yezoensis*,
- which could provide opportunities to generate thermotolerant varieties of Bangiales.

336

337 Author statement

338 TU was responsible for the design of the experiments and interpretation of the data. TU
339 performed the experiments. TU and HM wrote the manuscript. All authors have read
340 and approved the final version of the manuscript.

341

342 Acknowledgments

343 We wish to thank Drs. Katsutoshi Arai and Takafumi Fujimoto (Hokkaido University,

Japan) for kindly providing the LightCycler 480 system.

345

346 **Conflict of interest**

- 347 The authors declare that this research was conducted in the absence of any commercial
- 348 or financial relationships that could be construed as a potential conflict of interest.

349

350 Data availability statement

- 351 The data that support the findings of this study are available from the corresponding
- author upon reasonable request.

2	F	2
υ	υ	J

354	Funding
355	This work was supported by the Grant-in-Aid for Young Scientists [grant
356	number19K15907 to TU] from the Japan Society for the Promotion of Science.
357	
358	References
$359\\360$	Awasthi R, Bhandari K, Nayyar H (2015) Temperature stress and redox homeostasis in agricultural crops. Front Environ Sci 3:11
361 362 363	Bartoli CG, Gomez F, Martinez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (<i>Triticum aestivum</i> L.). J Exp Bot 55:1663–1669
$364 \\ 365$	Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) <i>Porphyra</i> : a marine crop shaped by stress. Trends Plant Sci 16:29–37
$\frac{366}{367}$	Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90: 856–867
368 369	Devireddy AR, Zandalinas SI, Fichman Y, Mittler R (2021) Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J 105: 459–476
370 371 372	Dolganov NAM, Bhaya D, Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b-binding proteins of higher plants: evolution and regulation. Proc Natl Acad Sci USA 92: 636–640

373	Endo H, Mizuta H, Uji T (2021) α-aminoisobutyric acid mimics the effect of
374	1-aminocyclopropane-1-carboxylic acid to promote sexual reproduction in the marine
375	red alga Pyropia yezoensis (Rhodophyta). J Appl Phycol 33: 1081–1087
376	Gray WM (2004) Hormonal regulation of plant growth and development. PLoS
377	Biol 2: 1270–1273
378	He Q, Dolganov N, Bjorkman O, Grossman AR (2001) The high light-inducible
379	polypeptides in Synechocystis PCC 6803. Expression and function in high light. J
380	Biol Chem 276: 306–314
381	Ho LHM, Giraud E, Uggalla V, Lister R, Clifton R, Glen A, Thirkettle-Watts D, Van
382	Aken O, Whelan J (2008) Identification of regulatory pathways controlling gene
383	expression of stress-responsive mitochondrial proteins in Arabidopsis. Plant
384	Physiol 147: 1858–1873
385	Hu S, Ding Y, Zhu C (2020) Sensitivity and responses of chloroplasts to heat stress in
386	plants. Front Plant Sci 11: 375. doi: 10.3389/fpls.2020.00375
387	Isaka S, Cho K, Nakazono S, Abu R, Ueno M, Kim D, Oda T (2015) Antioxidant and
388	anti-inflammatory activities of porphyran isolated from discolored nori (Porphyra
389	yezoensis). Int J Biol Macromol 74: 68–75
390	Jaimes-Miranda F, Chávez Montes RA (2020) The plant MBF1 protein family: a bridge
391	between stress and transcription. J Exp Bot 71: 1782–1791
392	Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers
393	tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses.
394	Planta 225: 353–364
395	Katayose, A., Kanda, A., Kubo, Y., Takahashi, T., Motose, H., 2021. Distinct functions
396	of ethylene and ACC in the basal land plant Marchantia polymorpha. Plant Cell
397	Physiol. 62, 858–871
398	Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced
399	abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6: 462

400 401 402	Komenda J, Sobotka R (2016) Cyanobacterial high-light-inducible proteins - Protectors of chlorophyll-protein synthesis and assembly. Biochim Biophys Acta Bioenerg 1857: 288–295
403	Kong F, Mao Y, Yang H, Wang L, Liu L (2012) Cloning and characterization of the
404	HLIP gene encoding high light-inducible protein from <i>Porphyra yezoensis</i> . J Appl
405	Phycol 24: 685–692
406	Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007)
407	Complexity of the heat stress response in plants. Curr Opin Plant Biol 10: 310-316
408	Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D (2006) Over-expression of
409	different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to
410	abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant
411	Cell Environ 29: 1033–1048
412	Kothari A, Lachowiec J (2021) Roles of brassinosteroids in mitigating heat stress
413	damage in cereal crops. Int J Mol Sci 22: 2706
414	Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of
415	Arabidopsis mutants implicate multiple signaling pathways in the acquisition of heat
416	stress tolerance. Plant Physiol 138: 882-897
417	Lee HJ, Choi Ji (2018) Identification, characterization, and proteomic studies of an
418	aldehyde dehydognease (ALDH) from Pyropia yezoensis (Bangiales, Rhodophyta). J
419	Appl Phycol 30: 2117–2127
420	Li N, Euring DJ, Cha JY, Lin Z, Lu MZ, Huang LJ, Kim WY (2021) Plant
421	hormone-mediated regulation of heat tolerance in response to global climate
422	change. Front Plant Sci 11: 627969
423	Li DD, Flores-Sandoval E, Ahtesham U, Coleman A, Clay JM, Bowman JL, Chang CR
424	(2020) Ethylene-independent functions of the ethylene precursor ACC in Marchantia
425	polymorpha. Nature Plants 6: 1335–1344
426	Lin ZF, Zhong SL, Grierson D (2009) Recent advances in ethylene research. J Exp Bot
427	60: 3311–3336

428	Luo Q, Zhu Z, Zhu Z, Yang R, Qian F, Chen H, Yan X (2014) Different responses to
429	heat shock stress revealed heteromorphic adaptation strategy of Pyropia haitanensis
430	(Bangiales, Rhodophyta). PLoS ONE 9: e94354
431	Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: Response to high temperature
432	stress. J Photoch Photobio B 137: 116–126
433	Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R
434	(2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in
435	response to diverse stimuli. Sci Signal 2: ra45
436	Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene
437	network of plants. Trends Plant Sci 9: 490–498
438	Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M,
439	Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K,
440	Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K (2013) The first
441	symbiont-free genome sequence of marine red alga, susabi-nori (Pyropia yezoensis).
442	PLoS One. 8: e57122
443	Nobrega FG, Nobrega MP, Tzagoloff A (1992) BCS1, a novel gene required for the
444	expression of functional rieske iron sulfur protein in Saccharomyces
445	<i>cerevisiae</i> . EMBO J 11: 3821–3829
446	Noda H (1993) Health benefits and nutritional properties of nori. J Appl Phycol 5: 255-
447	258
448	Polko JK, Kieber JJ (2019) 1-aminocyclopropane 1-carboxylic acid and its emerging
449	role as an ethylene-independent growth regulator. Front Plant Sci 10: 1602
450	Provasoli L (1968) Media and prospects for the cultivation of marine algae. In:
451	Watanabe A, Hattori A (eds) Culture and collections of algae, Proc U S-Japan Conf,
452	Hakone, September 1966. Jpn Soc Plant Physiol Tokyo, 63–75
453	Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K
454	(2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp
455	Bot 53: 1305–1319

456	Sinha RK, Komenda J, Knoppova J, Sedlarova M, Pospisil P (2012) Small CAB-like
457	proteins prevent formation of singlet oxygen in the damaged photosystem II complex
458	of the cyanobacterium Synechocystis sp PCC 6803. Plant Cell Environ 35: 806-818
459	Stiti N, Missihoun TD, Kotchoni SO, Kirch HH, Bartels D (2011) Aldehyde
460	dehydrogenases in Arabidopsis thaliana: biochemical requirements, metabolic
461	pathways, and functional analysis. Front Plant Sci 2: 65
462	Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the
463	response of plants to abiotic stress. Plant Cell Environ 35: 259-270
464	Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: A
465	delicate balance between signaling and destruction. Physiol Plant 126: 45-51
466	Takatsuji H (2017) Regulating tradeoffs to improve rice production. Front Plant Sci 8:
467	171
468	Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic
469	interactions, abiotic stress and development. Curr Opin Plant Biol 4: 397-403
470	Tóth SZ, Puthur JT, Nagy V, Garab G (2009) Experimental evidence for
471	ascorbate-dependent electron transport in leaves with inactive oxygen-evolving
472	complexes. Plant Physiol 149: 1568–1578
473	Tóth SZ, Nagy V, Puthur JT, Kovács L, Garab G (2011) The physiological role of
474	ascorbate as photosystem II electron donor: protection against photoinactivation in
475	heat-stressed leaves. Plant Physiol 156: 382-392
476	Uji T, Endo H, Mizuta H (2020) Sexual reproduction via a
477	1-aminocyclopropane-1-carboxylic acid-dependent pathway through redox modulation
478	in the marine red alga Pyropia yezoensis (Rhodophyta). Front Plant Sci 11: 60
479	Uji T, Gondaira Y, Fukuda S, Mizuta H, Saga N (2019) Characterization and expression
480	profiles of small heat shock proteins in the marine red alga Pyropia yezoensis. Cell
481	Stress Chaperones 24: 223–233
482	Uji T, Matsuda R, Takechi K, Takano H, Mizuta H, Takio S (2016) Ethylene regulation
483	of sexual reproduction in the marine red alga Pyropia yezoensis (Rhodophyta). J Appl
484	Phycol 28: 3501–3509

485 486 487	Uji T, Mizuta H (2021) Treatment with heat shock protein 90 (Hsp90) inhibitors induces asexual life cycle in the marine red alga <i>Neopyropia yezoensis</i> (Rhodophyta). Aquac Res 52: 6814–6817
488 489 490	Uji T, Sato R, Mizuta H, Saga N (2013) Changes in membrane fluidity and phospholipase D activity are required for heat activation of PyMBF1 in <i>Pyropia yezoensis</i> (Rhodophyta). J Appl Phycol 25: 1887–1893
491 492	Van de Poel B (2020) Ethylene's fraternal twin steals the spotlight. Nature Plants 6: 1309–1310
493 494	Van De Poel B, Smet D, Van Der Straeten D (2015) Ethylene and hormonal cross talk in vegetative growth and development. Plant Physiol 169: 61–72
495 496	Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16: 86
497 498	Wang QL, Chen JH, He NY, Guo FQ (2018) Metabolic reprogramming in chloroplasts under heat stress in plants. Int J Mol Sci 19: 849
499 500	Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperons in the abiotic stress response. Trends Plant Sci 9: 244–252
501 502 503	Wang F, Wang C, Zou T, Xu N, Sun X (2017) Comparative transcriptional profiling of <i>Gracilariopsis lemaneiformis</i> in response to salicylic acid- and methyl jasmonate-mediated heat resistance. PLoS One 12: e0176531
504 505 506	Yan XH, Lv F, Liu CJ, Zheng YF (2010) Selection and characterization of a high-temperature tolerant strain of <i>Porphyra haitanensis</i> Chang et Zheng (Bangiales, Rhodophyta). J Appl Phycol 22: 511–516
507 508 509 510	Yanagisawa R, Sekine N, Mizuta H, Uji T (2019) Transcriptomic analysis under ethylene precursor treatment uncovers the regulation of gene expression linked to sexual reproduction in the dioecious red alga <i>Pyropia pseudolinearis</i> . J Appl Phycol 31: 3317–3329
511	Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G (2020) How plant hormones mediate salt

stress responses. Trends Plant Sci 11: 1117-1130 512

513	Zhang BL, Yan XH, Huang LB (2011) Evaluation of an improved strain of Porphyra
514	yezoensis Ueda (Bangiales, Rhodophyta) with high-temperature tolerance. J Appl
515	Phycol 23: 841–847

Zhao JY, Missihoun TD, Bartels D (2017) The role of *Arabidopsis* aldehyde
dehydrogenase genes in response to high temperature and stress combinations. J Exp
Bot 68: 4295–4308

519

520 Figure legends

- 521 Figure 1. Evaluation of exogenous applied plant hormones for heat stress tolerance in N.
- 522 yezoensis.
- 523 Gametophytes were subjected to heat stress at 28°C for 2 weeks after 1 week of
- 524 pretreatment with 0 (control), 0.05% DMSO (mock), 50 µM ABA, 50 µM SA, or 50
- 525 μ M ACC. Gametophytes grown at 15°C were used as controls (Non-HS). Scale bar =
- 526 100 mm (upper panel), 50 μm (lower panel).
- 527
- 528 Figure 2. Effect of exogenous plant hormones on the photosynthetic capacity in *N*.
- 529 *yezoensis* under heat stress conditions.
- 530 Maximum photochemical efficiency (F_v/F_m) was assessed in gametophytes subjected to
- heat stress at 28°C for 2 weeks after 1 week of pretreatment with 0 (control), 0.05%
- 532 DMSO (mock), 50 µM ABA, 50 µM SA, or 50 µM ACC. Data are expressed as the

533 mean \pm SD of five thalli for each condition. Double asterisks indicate significant

- 534 differences at p < 0.01 between controls and treatments.
- 535
- 536 Figure 3. Evaluation of different concentrations of exogenous ACC on the
- 537 photosynthetic capacity of *N. yezoensis* under heat stress conditions.
- 538 Maximum photochemical efficiency (F_v/F_m) was assessed in gametophytes subjected to
- heat stress at 28°C for 2 weeks after 1 week of pretreatment with 0 (control), 5, 20 or 50
- 540 μ M ACC. Data are expressed as the mean \pm SD of five thalli for each condition. Double
- asterisks indicate significant differences at p < 0.01 between controls and treatments.
- 542
- 543 Figure 4. Comparison of exogenous ACC and analogs on the photosynthetic capacity of
- 544 *N. yezoensis* under heat stress conditions.
- 545 (A) Structural formulas of ACC and the analogs used in this study
- 546 (B) Maximum photochemical efficiency (F_v/F_m) was assessed in gametophytes
- 547 subjected to heat stress at 28°C for 2 weeks after 1 week of pretreatment with 0 (control),
- 548 5, 50 μ M ACC, ACBC, or AIB. Data are expressed as the mean \pm SD of five thalli for
- each condition. Asterisks and double asterisks indicate significant differences at $p < 10^{-10}$
- 550 0.05 or 0.01, respectively, between controls and treatments.

552	Figure 5.	Relative expression	levels of genes	associated with	stress tolerance	of N.
-----	-----------	---------------------	-----------------	-----------------	------------------	-------

- 553 *yezoensis* in response to ACC.
- 554 RNA samples were prepared from gametophytes treated with 50 μM ACC for 0, 3, or 7
- days, and expression levels were normalized to *Ny18SrRNA*. The results are presented
- as relative expression as compared to non-treated gametophytes (day 0). The data are
- 557 presented as the mean \pm SD of three independent experiments. Asterisks indicate
- significant differences at p < 0.05 between controls and treatments.

Fig.2

Fig.3

Fig.4

Time of ACC treatment (days)

Primer name	contig ID	Sequence (5'-3')	
NyALDH-F1	contig_6867_g1587	TACCTGGGATTGGAAAGCTG	
NyALDH-R1	contig_6867_g1587	CCAATGAACAGCACATGGTC	
NyPOD-F1	contig_27674_g6814	GCACGTACGGCTACCACAC	
NyPOD-R1	contig_27674_g6814	CGACGACAATACCCACATCC	
NyBCS1L-F1	contig_11756_g2797	AAGGAGGTGAAGCGTGATGA	
NyBCS1L-R1	contig_11756_g2797	GGGGGCATACAGGAAAAATG	
NyHLIP-F1	contig_21247_g5217	CTTTGTCGGCTCTGCTGTT	
NyHLIP-R1	contig_21247_g5217	GGACTGCGCGTTGATCTT	
Ny18S-F1	* D79976	AGGGTTGATCCGCAGGGAAG	
Ny18S-R1	* D79976	GCTTGCGCCCACTCCATTAG	
*Accession number in	GenBank		

Table 1. The list of primers used for gene expression analysis by quantitative Real Time PCR

*Accession number in GenBank

Contig ID	Abbreviation	Functional categories	Description
contig_6867_g1587	ALDH	aldehyde scavengers	aldehyde dehydrogenase
contig_27674_g6814	POD	oxidation/reduction reaction	haem peroxidase
contig_11756_g2797	BCS1L	mitochondria chaperone	BCS1-like ATPase
contig_21247_g5217	HLIP	photoprotection of photosystem II	high light inducible protein

Table 2. The list of tested genes for ACC response in *N. yezoensis*