

HOKKAIDO UNIVERSITY

Title	Growth of nitrite-oxidizing Nitrospira and ammonia-oxidizing Nitrosomonas in marine recirculating trickling biofilter reactors
Author(s)	Oshiki, Mamoru; Netsu, Hirotoshi; Kuroda, Kyohei; Narihiro, Takashi; Fujii, Naoki; Kindaichi, Tomonori; Suzuki, Yoshiyuki; Watari, Takahiro; Hatamoto, Masashi; Yamaguchi, Takashi; Araki, Nobuo; Okabe, Satoshi
Citation	Environmental microbiology, 24(8), 3735-3750 https://doi.org/10.1111/1462-2920.16085
Issue Date	2022-08
Doc URL	http://hdl.handle.net/2115/90133
Rights	This is the peer reviewed version of the following article: Oshiki, M., Netsu, H., Kuroda, K., Narihiro, T., Fujii, N., Kindaichi, T., Suzuki, Y., Watari, T., Hatamoto, M., Yamaguchi, T., Araki, N. and Okabe, S. (2022), Growth of nitrite-oxidizing Nitrospira and ammonia-oxidizing Nitrosomonas in marine recirculating trickling biofilter reactors. Environ Microbiol, 24: 3735-3750, which has been published in final form at https://doi.org/10.1111/1462-2920.16085. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley 's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	cleaned_Manuscript_file_DHS_MO.pdf

1	For resubmission to Environmental microbiology (EMI-2022-0180)
2	Growth of nitrite-oxidizing Nitrospira and ammonia-oxidizing
3	Nitrosomonas in marine recirculating trickling biofilter reactors
4	Mamoru Oshiki ^{1, 2*} , Hirotoshi Netsu ^{2, 3} , Kyohei Kuroda ⁴ , Takashi Narihiro ⁴ ,
5	Naoki Fujii ⁵ , Tomonori Kindaichi ⁵ , Yoshiyuki Suzuki ² , Takashiro Watari ³ ,
6	Masashi Hatamoto ³ , Takashi Yamaguchi ⁶ , Nobuo Araki ² & Satoshi Okabe ¹
7 8	¹ Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
9 10	² Department of Civil Engineering, National Institute of Technology, Nagaoka College, 888 Nishikatakaimachi, Nagaoka, Niigata 940-8532, Japan.
11 12	³ Department of Environmental Systems Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
13 14 15	⁴ Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517 Japan
16 17 18	⁵ Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
19 20 21	⁶ Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
22	These authors contributed equally: Mamoru Oshiki, Hirotoshi Netsu, Kyouhei Kuroda
23	Article type: Research article
24	Running title: Growth of nitrifiers in trickling filter reactors
25	Declarations of interest: none
26 27	*Corresponding author:
27 28	F-mail: oshiki@eng hokudai ac in
29	Tel/Fax; +81-11-706-7597/7162

30

31 Originality-significance statement

Aerobic nitrite oxidation (NO2⁻ to NO3⁻) yields much less Gibbs free energy than aerobic
ammonia oxidation (NH3 to NO2⁻), while dominance of nitrite-oxidizing bacteria (NOB) over
ammonia-oxidizing bacteria (AOB) has been found in marine recirculating trickling biofilter
reactors. Specific mechanism responsible for the formation of this puzzling microbial
community has not been explored in detail, and the present study shed light on this subject.
The present study shows novel ecological aspects of nitrite-oxidizing *Nitrospira* and

38 ammonia-oxidizing *Nitrosomonas* proliferated in trickling biofilter reactors.

39 Summary (190 words)

40 Aerobic ammonia and nitrite oxidation reactions are fundamental biogeochemical reactions 41 contributing to the global nitrogen cycle. Although aerobic nitrite oxidation yields 4.8-folds 42 less Gibbs free energy (ΔG_r) than aerobic ammonia oxidation in the NH₄⁺-feeding marine recirculating trickling biofilter rectors operated in the present study, nitrite-oxidizing and not 43 ammonia-oxidizing Nitrospira (sublineage IV) outnumbered ammonia-oxidizing 44 Nitrosomonas (relative abundance; 53.8% and 7.59%, respectively). CO2 assimilation 45 efficiencies during ammonia or nitrite oxidation were 0.077 µmol-14CO₂/µmol-NH₃ and 0.053 46 47 to 0.054 μ mol-¹⁴CO₂/ μ mol-NO₂, respectively, and the difference between ammonia and 48 nitrite oxidation was much smaller than the difference of ΔG_r . Free-energy efficiency of nitrite oxidation was higher than ammonia oxidation (31-32% and 13%, respectively), and 49 high CO₂ assimilation and free-energy efficiencies were a determinant for the dominance of 50 51 Nitrospira over Nitrosomonas. Washout of Nitrospira and Nitrosomonas from the trickling 52 biofilter reactors was also examined by quantitative PCR assay. Normalized copy numbers of 53 Nitrosomonas amoA was 1.5- to 1.7-folds greater than Nitrospira nxrB and 16S rRNA gene in 54 the reactor effluents. Nitrosomonas was more susceptible for washout than Nitrospira in the 55 trickling biofilter reactors, which was another determinant for the dominance of Nitrospira in 56 the trickling biofilter reactors.

57 Introduction

58	Nitrification is a key microbial process in the global nitrogen cycle and also for biological
59	nitrogen removal from wastewater. In the nitrification process, ammonia is aerobically
60	oxidized to nitrite by aerobic ammonia-oxidizing bacteria and archaea (AOB and AOA,
61	respectively), and the formed nitrite is subsequently oxidized to nitrate by aerobic nitrite-
62	oxidizing bacteria (NOB). Phylogenetically diverse NOB such as Nitrospira (phylum
63	Nitrospirota), Nitrospina (Nitrospinota), Nitrobacter, Nitrotoga, Nitrococcus
64	(Proteobacteria), Nitrolancea (Chloroflexota) have been identified by culture-dependent and
65	-independent techniques (Daims et al., 2016). The genus Nitrospira consists of
66	phylogenetically diverse members (<i>i.e.</i> , at least six phylogenetic sublineages) (Lebedeva et
67	al., 2011), and Nitrospira population has been found from wide range of man-made and
68	natural ecosystems (Daims et al., 2016). Additionally, the members of the Nitrospira
69	sublineage II has a unique metabolic capability, complete ammonia oxidation (commamox),
70	and commamox Nitrospira oxidize ammonia to nitrate via nitrite in a single cell (Daims et al.,
71	2015; van Kessel et al., 2015). Population of commamox Nitrospira has been found in
72	freshwater and groundwater ecosystems, but rarely found in marine environments (Xia et al.,
73	2018).
74	Thermodynamically, aerobic ammonia oxidation yields larger Gibbs free energy than
75	aerobic nitrite oxidation; therefore, numerical dominance of AOB and/or AOA over NOB is

76	expected where nitrification proceeds. Indeed, stoichiometric and thermodynamic calculation
77	of nitrification processes has enabled to approximate population size and growth yields of
78	AOA and NOB in ocean (Zakem et al., 2018; Zhang et al., 2020). On the other hand,
79	numerical dominance of Nitrospira over AOA/AOB has been described in the recirculating
80	trickling filter reactors operated for marine aquacultures (Foesel et al., 2008; Keuter et al.,
81	2011; 2017; Brown et al., 2013). Another example is our previous study (Oshiki et al., 2020),
82	where Nitrospira outnumbered AOB and AOA in NH4 ⁺ -feeding marine recirculating trickling
83	filter reactors (down-hanging sponge, DHS, reactors); 55%, 10% and <0.1% of total biomass,
84	respectively. Numerical dominance of Nitrospira over AOB/AOA in the DHS reactors was
85	somewhat surprising because the ΔG_r of aerobic ammonia oxidation was 4.8-folds higher in
86	the NH4 ⁺ -feeding DHS reactor than that of aerobic nitrite oxidation (Supplementary text 1).
87	However, the mechanism(s) responsible for the dominance of Nitrospira over AOB and AOA
88	in marine trickling filter reactors has not been explored in detail.
89	Consequently, the present study aimed to examine how Nitrospira outnumbered the
90	population of AOB (<i>i.e.</i> , <i>Nitrosomonas</i>) in the DHS reactors. The two DHS reactors were
91	operated with feeding of the inorganic seawater media containing $\rm NH_4^+$ or $\rm NO_2^-$ (designated
92	as NH4 ⁺ - and NO2 ⁻ -feeding DHS reactors, respectively) at 20°C, and metagenomic analyses
93	using the biomass retained in the reactors were performed to examine metabolic potentials of
94	Nitrospira and Nitrosomonas. Because genomic data only suggested metabolic potential, a

95	series of batch incubations were performed to examine CO2 assimilation efficiencies, free-
96	energy efficiencies, and H2 oxidation activity. CO2 assimilation efficiencies were determined
97	by examining ¹⁴ CO ₂ incorporation into the biomass, and this approach has been used for
98	determining the yields of carbon fixation by nitrifiers (Glover et al., 1985; Tsai and Tuovinen
99	1986; Bayer et al., 2022) and for the biomass yields of anaerobic ammonia oxidizing bacteria
100	(Ali et al., 2015; Awata et al., 2015). Apart from the above metagenomic and physiological
101	experiments, washout of Nitrosomonas and Nitrospira in the NH4 ⁺ -feeding DHS reactor was
102	examined by determining the copy number of AOB amoA, Nitrospira nxrB, and Nitrospira
103	16S rRNA gene in the reactor effluents by quantitative PCR (qPCR) assay.
104	

Results

106 <u>Metagenomic analysis of NH₄⁺- and NO₂⁻-enriched biomass</u>

107	NH4 ⁺ - and NO ₂ ⁻ -feeding DHS reactors were operated continuously for more than 1 y without
108	disturbances, and Nitrospira proliferated as a dominant population in both the operated
109	reactors as examined by fluorescence <i>in-situ</i> hybridization (Fig. 1). Metagenomic analyses
110	using the biomass collected from the NH4 ⁺ - or NO2 ⁻ -feeding DHS reactors (designated as the
111	NH_4^+ - or NO_2^- -enriched biomass, respectively) were performed, and the 35.4 and 52.8 M
112	reads of 200-bp paired-end reads corresponding to 14.2 and 21.1 Gb were obtained from the
113	NH4 ⁺ - and NO2 ⁻ -enriched biomass, respectively. Those sequence reads were assembled into
114	30 bacterial bins, which contained the 6 Nitrospira (NPIRA01 to NPIRA06 bins) and 2
115	Nitrosomonas (NMNS01 and NMNS02 bins) bins (Table 1).
116	Relative abundances and phylogeny of the obtained 30 bins were shown in Table 1
117	and Fig. S1, respectively. The relative abundances of the Nitrospira (especially, the
118	NPIRA01, NPIRA02, NPIRA04 bins) and Nitrosomonas bins (the NMNS02 bin) were much
119	higher than the other bins, indicating that Nitrospira and Nitrosomonas were the predominant
120	bacteria in the NH4 ⁺ - and/or NO2 ⁻ -enriched biomass. Especially, the sum of the relative
121	abundances of the NPIRA bins were 53.8% and 72.2% in the NH_4^+ - and NO_2^- -enriched
122	biomass, indicating Nitrospira was highly abundant in both the biomass. As for Nitrosomonas
123	bins, the sum of the relative abundances of the NMSN bins were 7.59% and 0.62% in the

- 124 NH4⁺- and NO₂⁻-enriched biomass (**Table 1**), indicating *Nitrospira* outnumbered
- 125 *Nitrosomonas* in both the DHS reactors.

126 <u>Phylogeny and metabolic potential of NPIRA bins</u>

127 The NPIRA bins were affiliated into the *Nitrospira* sublineage IV (Lebedeva *et al.*, 2011)

- 128 (Fig. 2). The average nucleotide identity (ANI) values among the NPIRA bins were 71–89%
- 129 (Table S1), indicating each NPIRA bins represented different Nitrospira species (Richter and
- 130 Rosselló-Móra, 2006). The NPIRA03 and NPIRA06 bins were affiliated into the *Nitrospira*
- 131 *marina* clade including *Nitrospira marina*, a mesophilic and halophilic nitrite oxidizing
- 132 bacterium. Other NPIRA bins were affiliated into a phylogenetically-different clade in which
- 133 closely-relating *Nitrospira* genome was not available in public database (accessed on Jan.
- 134 2021). Phylogenetic affiliation of this clade was examined using the 16S rRNA gene sequence
- located in the NPIRA02 bin (the NPIRA02_r00020 gene). The NPIRA02_r00020 gene
- 136 showed the 97.5% identity with the partial 16S rRNA gene sequences of *Candidatus*
- 137 *Nitrospira salsa* clone Cb18 (accession number KC706459.1) (Fig. S2), and this clade was
- tentatively designated as the *Nitrospira salsa* clade in the present study. The NPIRA01,
- 139 NPIRA02, and NPIRA04 bins affiliated into the *Nitrospira salsa* clade were dominant
- 140 *Nitrospira* (*i.e.*, >10% of relative abundance in a biomass) both in the NH₄⁺- or NO₂⁻-feeding
- 141 DHS reactors (Table 1).

142	Metabolic potential of the NPIRA bins was investigated by examining presence and
143	absence of functional genes (Table S2). The genes required for nitrite oxidation
144	(nitrite:nitrate oxidoreductase, nxr), energy conservation (cytochrome bd-like heme-copper
145	terminal oxidase), NAD(P)H generation (complex I), and CO ₂ fixation through the rTCA
146	cycle (2-oxoglutarate:ferredoxin oxidoreductase, OGOR, five- or four-subunit
147	pyruvate:ferredoxin oxidoreductase, POR, and ATP-citrate lyase, ACL) were conserved in the
148	NPIRA bins (a full description is available as supplemental text 2). On the other hand,
149	orthologues of commamox <i>Nitrospira amoCAB</i> (threshold <i>e</i> -value of blastp search 10^{-15}) were
150	not found in the NPIRA bins and also in the other known Nitrospira sublineage IV genomes.
151	The orthologue of commamox Nitrospira hao was also missing in the NPIRA bins and the
152	Nitrospira sublineage IV genomes, whereas the orthologue encoding octaheme cytochrome c
153	(a phylogenetically-relevant protein with Hao) (Bergmann et al., 2005) found in the canonical
154	NO2 ⁻ -oxidizing Nitrospira genomes (Nitrospira moscoviensis and Nitrospira japonica
155	genomes) was located in the NPIRA2 and NPIRA3 bins (supplemental text 2 and Table S3).
156	Nitrospira bacteria are metabolically versatile bacteria, and hydrogenotrophic growth
157	of Nitrospira moscoviensis (Koch et al.; 2014) has been demonstrated. The genes required for
158	H ₂ oxidation and also degradations of carbohydrate and protein were conserved in the NPIRA
159	bins. A hyd gene cluster encoding a Group 3b NiFe hydrogenase and accessory proteins
160	required for the maturation of the NiFe hydrogenase was conserved in the NPIRA03 and

161	NPIRA04 bins (Table S2). On the other hand, the genes encoding putative Group 2a NiFe
162	hydrogenase (HupSL) were located in the NPIRA01 and NPIRA04 bins; therefore, the
163	NPIRA04 bin had both the Group 3b and Group 2a NiFe hydrogenase as previously found in
164	Ca. Nitrospira alkalitolerans (Daebeler et al., 2020). The NPIRA03 and NPIRA06 bins had
165	the gene encoding formate dehydrogenase (Fdh) involved in formate oxidation. Nitrospira
166	marina cells can grow chemoorganotrophically on formate even without nitrite (Bayer et al.,
167	2021), and the NPIRA03_20570 and NPIRA06_25420 proteins showed 91.44 and 91.59%
168	identities with Nitrospira marina Fdh (the NMARINA_v1_1399 protein). On the other hand,
169	the <i>fdh</i> was not found in the NPIRA bins affiliated to <i>Nitrospira salsa</i> clade. The genes
170	encoding the enzymes involved in the degradation of carbohydrate (glycoside hydrolase, β -
171	glucosidase A, and alpha-amylase) and protein (secreted peptidases) were conserved in the
172	NPIRA03, NPIRA04, and NPIRA06 bins. As for the uptake of carbohydrate, amino acid and
173	peptides, ABC transporters for amino acid, oligo- and dipeptides were found in the NPIRA
174	bins whereas the sugar transporters were only found in specific NPIRA bins. The genes
175	encoding sugar ABC transporter were located in the NPIRA04 bin, whereas putative
176	carbohydrate-selective porin was found from NPIRA01, NPIRA02 and NPIRA03 bins.
177	Phylogeny and metabolic potential of NMNS bins
178	The NMNS01 and NMNS02 bins were affiliated into the Nitrosomonas sp. Nm143 and

•

179 Nitrosomonas aestuarii/marina clades, respectively (Fig. 3), and the members of

180	Nitrosomonas sp. Nm143 and Nitrosomonas aestuarii were previously found in recirculating
181	marine aquaculture systems (Itoi et al., 2006; Foesel et al., 2008). The genes required for
182	aerobic ammonia oxidation and energy conservation (amo, hao, complex III and terminal
183	oxidase) and for NAD(P)H generation (<i>i.e.</i> , reverse electron transport) were generally
184	conserved in the NMNS01 and NMNS02 bins (See Supplemental text 2 for details.).
185	Orthologue of amo was not found from the obtained bins other than NMNS01 and NMNS02
186	bins. The NMNS bins had the genes encoding ribulose-1,5-bisphosphate carboxylase
187	(RuBisCO) and ribuose-5-phosphate kinase (Table S4), suggesting that those Nitrosomonas
188	fixed CO2 using the Calvin-Benson cycle. It was previously shown that Nitrosomonas was
189	capable of H ₂ oxidation coupled with nitrite reduction (Bock et al., 1995), and the NMNS
190	bins had the genes encoding putative NiFe hydrogenase and accessory proteins (<i>i.e.</i> , Group 3b
191	and Group 3d NiFe hydrogenase for the NMNS01 and NMNS02 bins, respectively) (Table
192	S4). Those genes were not located as a single gene cluster but found as multiple gene clusters
193	as previously found in the Nitrosomonas oligotropha genome (Sedlacek et al., 2019).
194	<u>Cultivation-dependent characterization of NH_4^+- and NO_2^--enriched biomass</u>
195	CO2 assimilation and free-energy efficiencies during aerobic ammonia or nitrite oxidation
196	¹⁴ CO ₂ assimilation into the NH4 ⁺ - and NO ₂ ⁻ -enriched biomass during aerobic ammonia and
197	nitrite oxidation was examined by incubating the biomass with the addition of 0.5 mM
198	NH4 ⁺ or NO2 ⁻ and ¹⁴ C-labeled sodium bicarbonate. The NH4 ⁺ -enriched biomass consumed

199	both NH4 ⁺ and NO ₂ ⁻ , and produced NO ₃ ⁻ stoichiometrically (Fig. 4 , left). During the ammonia
200	and nitrite oxidation, ¹⁴ CO ₂ was assimilated into the NH ₄ ⁺ -enriched biomass, and the CO ₂
201	assimilation efficiencies were determined to be 0.13 ± 0.019 (mean ± standard deviation
202	derived from triplicate incubation) $\mu mol\text{-}CO_2/\mu mol\text{-}NH_3$ and $0.053\pm0.013~\mu mol\text{-}CO_2/\mu mol\text{-}NH_3$
203	NO ₂ ⁻ , respectively (Table 2). It is notable that autotrophic bacteria release a part of fixed CO ₂
204	as dissolved organic carbon (DOC) (Oshiki et al., 2011), and the determined ¹⁴ CO ₂
205	assimilation does not include the fraction of DOC; e.g., approx. 6-8% and 12% of fixed CO ₂
206	were released as DOC in the culture of marine Nitrosomonas and Nitrospira marina Nb-295,
207	respectively (Bayer et al., 2022). No ¹⁴ CO ₂ assimilation was detected from the pasteurized
208	biomass and the biomass incubated without the addition of NH_4^+ or NO_2^- . The CO ₂
209	assimilation efficiency of the ammonia oxidation reaction could not be determined directly
210	because the formed NO2 ⁻ was subsequently oxidized to NO3 ⁻ without the accumulation of
211	NO2 ⁻ (Fig. 4, left). Therefore, the CO ₂ assimilation efficiency of the ammonia oxidation was
212	approximated by subtracting the CO2 assimilation efficiency of ammonia oxidation reaction
213	with that of nitrite oxidation reaction (<i>i.e.</i> , 0.13 μ mol-CO ₂ / μ mol-NH ₃ and 0.053 μ mol-
214	CO ₂ / μ mol-NO ₂ ⁻ , respectively), which was 0.077 μ mol-CO ₂ / μ mol-NH ₃ .
215	As for the NO2 ⁻ -enriched biomass, the biomass consumed NO2 ⁻ and
216	stoichiometrically produced NO ₃ ⁻ (Fig. 4, right). On the other hand, the NO ₂ ⁻ -enriched
217	biomass did not consume NH4 ⁺ , and no ¹⁴ CO ₂ assimilation was found. The CO ₂ assimilation

218 efficiency of the nitrite oxidation reaction was determined to be $0.054 \pm 0.019 \mu$ mol-

219 $CO_2/\mu mol-NO_2^-$, which was the same with that determined using the NH₄⁺-enriched biomass

220 (*i.e.*, $0.053 \pm 0.013 \mu mol-CO_2/\mu mol-NO_2^{-}$).

221	Free-energy efficiencies during the ammonia and nitrite oxidation were calculated
222	from the obtained CO ₂ assimilation efficiencies (see the section Experimental procedures for
223	the calculation of the efficiencies), and compared with those previously determined using
224	AOB and NOB cultures (Table 2). The CO ₂ assimilation and free-energy efficiencies of the
225	ammonia oxidation reaction obtained in the present study (<i>i.e.</i> , 0.077 μ mol-CO ₂ / μ mol-NH ₃
226	and 13%, respectively) were comparable with those previously determined from AOB
227	cultures. As for the CO ₂ assimilation and free-energy efficiencies of the nitrite oxidation
228	reaction, those obtained in the present study (<i>i.e.</i> , 0.053 to 0.054 μ mol-CO ₂ / μ mol-NO ₂ ⁻ and
229	31 to 32%, respectively) were greater than those previously determined from NOB including
230	Nitrospira marina Nb-295 (Bayer et al., 2022). The 31 - 32% of the free-energy efficiencies
231	of the nitrite oxidation was >2.3-fold higher than that of ammonia oxidation reaction (<i>i.e.</i> ,
232	13%).

233 Activities of H_2 oxidation

The above metagenomic analysis suggested that *Nitrospira* sp. NPIRA03, NPIRA01 and NPIRA04 and *Nitrosomonas* sp. NSMS01 and NSMS02 were capable of H₂ oxidation, and the activities of the H₂ oxidation of NH_4^+ - and NO_2^- -enriched biomass were examined by

237	performing batch incubations. It should be noted that the genes encoding putative NiFe
238	hydrogenase were also found from the bins other than NPIRA and NSMS bins (i.e.,
239	DHS20C07, DHS20C08, DHS20C16, DHS20C18, and DHS20C20 bins). Involvement of
240	those bacteria to H ₂ oxidation could not be ruled out here, while the abundance of those bins
241	was much less than <i>Nitrospira</i> bins (Table 1). Although both the NH4 ⁺ - and NO2 ⁻ -enriched
242	biomass showed the activities of H ₂ oxidation, the activities appeared after 4 d of incubation
243	(Fig. 5). Occurrence of the lag phase indicated that H ₂ oxidation was not an active metabolic
244	pathway in the NH4 ⁺ - and NO2 ⁻ -enriched biomass at least in the operated DHS reactors. This
245	conclusion agreed with the observation obtained from the batch incubation in which the
246	$\rm NH_4^+$ - and $\rm NO_2^-$ -enriched biomass were incubated with the addition of $\rm ^{14}CO_2$ and $\rm H_2$. The
247	NH_4^+ - and NO_2^- -enriched biomass were incubated for 18 h (<i>i.e.</i> , within the above lag phase),
248	and no ¹⁴ CO ₂ assimilation was found in both the biomass during the 18 h of incubation.
249	<i>Washout of Nitrospira and Nitrosomonas from the</i> NH_4^+ -feeding DHS reactor
250	Washout of Nitrospira and Nitrosomonas cells from the NH4 ⁺ -feeding DHS reactor
251	were examined by determining the copy number of AOB amoA, Nitrospira nxrB and
252	Nitrospira 16S rRNA gene in reactor effluents. For the purpose, the qPCR assays of AOB
253	amoA, Nitrospira nxrB and Nitrospira 16S rRNA gene were carried out. There was a linear
254	relationship between the log copy number of standard DNAs and threshold cycle values (Ct
255	value) ($R^2 > 0.995$), and efficiencies of PCR amplification were 1.83 to 2.02. As shown in Fig.

256 6, all the AOB *amoA*, *Nitrospira nxrB* and *Nitrospira* 16S rRNA gene were detected from the

257 effluents, indicating both Nitrosomonas and Nitrospira were detached and washed out from

the NH4⁺-feeding DHS reactor. The ratio of the copy numbers of AOB *amoA* to *Nitrospira*

- 259 *nxrB* and *Nitrospira* 16S rRNA gene increased in the effluents. Especially, *Nitrospira* 16S
- rRNA gene was less abundant than AOB *amoA* in the effluents, indicating larger amounts of
- 261 *Nitrosomonas* population was washed out from the NH₄⁺-feeding DHS reactor.

262 Discussion

263 Nitrospira bacteria affiliated into the Nitrospira salsa or Nitrospira marina clade were 264 enriched in the NH4⁺- and NO2⁻-feeding DHS reactors, and those Nitrospira outnumbered the 265 population of Nitrosomonas both in the DHS reactors. Those Nitrospira enriched in the DHS 266 reactors were most likely canonical nitrite-oxidizing Nitrospira because 1) the NPIRA bins 267 and the known Nitrospira sublineage IV genomes did not have the orthologue of amoCAB 268 and hao and 2) the Nitrospira of the NO2⁻-enriched biomass did not show the activity of 269 aerobic ammonia oxidation (Fig. 4) although they (i.e., the NPIRA01 to NPIRA06) were 270 commonly found in the NH4⁺- and NO₂⁻-enriched biomass. Additionally, commamox 271 Nitrospira (affiliated into the Nitrospira sublineage II) has been found from freshwater and 272 groundwater ecosystems (Xia et al., 2018), whereas no commamox Nitrospira has been 273 recognized from the Nitrospira sublineage IV often found in saline environments (Daims et 274 al., 2016; Park et al., 2020). It is obvious to raise the question of how Nitrospira sp. 275 NPIRA02 and NPIRA04 outnumbered Nitrosomonas sp. NMNS01 and NMNS02 in the 276 NH4⁺-feeding DHS reactor. Not only the present study, the previous studies have also 277 indicated Nitrospira sublineage IV population outnumbered the population of aerobic

ammonia oxidizers in marine aquaculture systems (**Table S5**) (Foesel *et al.*, 2008; Keuter *et al.*, 2011; 2017; Brown *et al.*, 2013).

280	Aerobic ammonia oxidation reaction yields 4.8-times higher free energy than NO2 ⁻
281	oxidation reaction in the NH4 ⁺ -feeding DHS reactor. However, the free energy recovered
282	from the ammonia oxidation reaction must be much lower than the ΔG_r due to the following
283	reasons. First, there is no evidence that the first reaction of aerobic ammonia oxidation to
284	NH ₂ OH involves translocation of H ⁺ and formation of proton motive force (Costa <i>et al.</i> , 2006;
285	Simon and Klotz, 2013). The reaction of aerobic ammonia oxidation to NH ₂ OH is a
286	monooxygenation reaction catalyzed by Amo (Lancaster et al., 2018), and the free energy
287	released during monooxygenation reactions (more specifically, O2 reduction reaction) are not
288	conserved and dissipated (VanBriesen, 2001). Dissipation of the free energy during the
289	monooxygenation reaction of CH4 (Yuan and VanBriesen, 2002) and NH3 (Hollocher et al.,
290	1982) has been described, and both the reactions are catalyzed phylogenetically relevant
291	monooxygenase (i.e., Pmo and Amo, respectively). Indeed, Nitrosomonas europaea cells
292	showed nearly same effective H^+/O ratios during aerobic ammonia and NH_2OH oxidation
293	(<i>i.e.</i> , 4.1 and 3.9 of effective H ⁺ /O ratios, respectively) (Hollocher <i>et al.</i> , 1982), indicating the
294	contribution of the reaction of ammonia oxidation to $\mathrm{NH_2OH}$ to the translocation of $\mathrm{H^+}$ is
295	minor. The ΔG_r 'o for the reaction of aerobic ammonia oxidation to NH ₂ OH was -170.5 kJ
296	mol-NH ₃ ⁻¹ (Supplementary text 1), and this free energy (accounting for more than half of

297	ΔG_r 'o of aerobic ammonia oxidation) will be dissipated. Secondly, the oxidation of 1 mol
298	NH ₂ OH to NO ₂ ⁻ releases 4 e^{-} , whereas the amounts of the e^{-} available for the respiration are
299	less than 2 e^{-} due to the following reasons; 1) the 2 e^{-} out of the produced 4 e^{-} is consumed to
300	oxidize 1 mol NH ₃ to NH ₂ OH by Amo (Whittaker et al., 2000), and 2) a part of the produced
301	4 e^{-is} consumed to generate NAD(P)H by reverse electron transport. In <i>Nitrosomonas</i>
302	europaea cells, the 0.35 e ⁻ enters reverse electron flow (Whittaker et al., 2000). Additionally,
303	the biochemistry of NH ₂ OH oxidation to NO ₂ ⁻ by AOB is still controversial because the
304	Nitrosomonas europaea Hao oxidized NH2OH to NO but not further to NO2 ⁻ , and specific
305	mechanisms of NO oxidation to NO2 ⁻ has not been elucidated (Carantoa and Lancaster, 2017;
306	Lancaster <i>et al.</i> , 2018). NO oxidation to NO_2^- releases 1 e^- , and the involvement of the
307	released e^{-} in the respiration of AOB needs to be investigated in other studies. The above
308	discussion pointed out that the amounts of the free energy recovered from aerobic ammonia
309	oxidation were much lower than that calculated as ΔG_r of the reaction. The reduction of the
310	free energy recovered from aerobic ammonia oxidation would result in the low free-energy
311	efficiencies of the ammonia oxidation reaction shown in Table 2 (<i>i.e.</i> , 7 to 13%).
312	The ΔG_r of aerobic nitrite oxidation was much smaller than that of aerobic ammonia
313	oxidation (-83.5 kJ mol-NO ₂ ⁻¹ and -283.3 kJ mol-NH ₃ ⁻¹ at the batch incubation,
314	respectively,) (Supplementary text 1), while the CO ₂ assimilation efficiency during aerobic
315	nitrite oxidation were close to that of the ammonia oxidation reaction; <i>i.e.</i> , 0.053 µmol-

316	$CO_2/\mu mol-NO_2^-$ (Table 2). Such high CO_2 assimilation and free-energy efficiencies (31-32%)
317	were rarely observed from axenic cultures of NOB (e.g., Nitrospira marina Nb-295; 0.032
318	μ mol-CO ₂ / μ mol-NO ₂ ⁻ and 22%, respectively), but high biomass yield of marine NOB
319	(Nitrospinae) was previously found in environmental samples (Kitzinger et al., 2020) where
320	the NOB coexisted with other microbes. Low free-energy efficiencies of aerobic nitrite
321	oxidation found in the axenic cultures were reasonable because NO2 ⁻ oxidation reaction can
322	not couple with the reduction of quinone molecules (ubiquinone _{ox/red} , $\Delta E^{\circ} = +0.11$ V) directly
323	due to the high redox potential of NO ₂ ⁻ /NO ₃ ⁻ oxidation rection ($\Delta E^{\circ} = +0.42$ V) (Madigan <i>et</i>
324	al., 2019). Additionally, the electrons released from the NO_2^- oxidation reaction enter to
325	terminal oxidase bypassing a cytochrome <i>bc1</i> complex (Lücker <i>et al.</i> , 2010; Simon and Klotz
326	<i>et al.</i> , 2013), resulting in the decrease of the number of translocated H^+ during the respiration:
327	therefore, the free-energy efficiencies of nitrite oxidation reaction were expected to be low.
328	On the other hand, <i>Nitrospira</i> in the NH4 ⁺ - and NO2 ⁻ -feeding DHS reactors showed high CO2
329	assimilation and free energy efficiencies. As compared with Nitrobacter and Nitrococcus, the
330	following bioenergetic advantages of the nitrite oxidation by Nitrospira were often introduced
331	in literatures; 1) nitrite oxidation occurs in the periplasmic spaces (Spieck et al., 1998; Lücker
332	et al., 2010), which directly contributes to the generation of proton motive force across a
333	membrane (<i>i.e.</i> , $1 \text{ NO}_2^- + 1 \text{ H}_2\text{O} \rightarrow 1 \text{ NO}_3^- + 2 \text{ H}^+_{\text{periplasm}} + 2 e^-$), and 2) <i>Nitrospira</i> used an
334	energetically more efficient rTCA cycle for CO ₂ fixation as compared with Nitrobacter and

335	<i>Nitrosococcus</i> who used the Calvin-Benson cycle. However, the difference of CO ₂ fixation
336	pathway might not result in a drastic change of CO2 assimilation efficiency although the
337	Calvin-Benson cycle requires more ATPs investment for CO ₂ fixation and involves a wasteful
338	oxygenase side reaction of ribulose-1,5-bisphosphate carboxylase/oxygenase (Berg 2011;
339	Bayer et al., 2022). For the fixation of 3 mol CO ₂ (<i>i.e.</i> , HCO ₃ ⁻) to 1 mol of
340	phosphoglyceraldehyde which is the simplest sugar and a precursor for the biomass synthesis
341	(White et al., 2012), the rTCA cycle requires 5 and 6 mol of ATP and NADPH equivalents
342	(such as NAD(P)H, ferredoxin and FADH ₂), whereas the Calvin-Benson cycle requires 9 and
343	6 mol of ATP and NADPH equivalents (Bar-Even et al., 2010). Therefore, the amounts of
344	NADPH equivalents are the same between the two pathways. To generate 6 mol of NAD(P)H
345	from NAD(P) ⁺ by the reverse electron transport, <i>Nitrosomonas europaea</i> and <i>Nitrobacter</i>
346	winogradskyi consumed 30 mol of ATP (Aleem, 1966; Sewell and Aleem, 1969); therefore,
347	the energy cost for reverse electron flow is >3 folds higher than that for CO ₂ fixation. The
348	ATP cost of the rTCA cycle was 4 mol-ATP/mol-phosphoglyceraldehyde fewer than that of
349	the Calvin-Benson cycle, while this energy conservation is much smaller than the energy
350	consumption for reverse electron transport. Indeed, the CO2 assimilation efficiencies
351	previously determined from marine Nitrococcus with Calvin-Benson cycle (Nitrococcus
352	mobilis) were comparable with that of marine Nitrospira with rTCA cycle (Nitrospira marina

353 Nb-295); *i.e.*, 0.014-0.031 and 0.032 μmol-CO₂/μmol-NO₂⁻, respectively (Glover 1985; Bayer
354 *et al.*, 2022) (Table 2).

355	It is notable that NOB can receive some micronutrients produced in microbial
356	community (Mee et al., 2014; Kim et al., 2021), which would raise CO ₂ assimilation
357	efficiencies of <i>Nitrospira</i> . One example is the vitamin-B ₁₂ auxotrophy of <i>Nitrospira marina</i> .
358	The Nitrospira marina genome lacked a couple of genes required for the biosynthesis of
359	vitamin B ₁₂ , and their growth ceased in vitamin-B ₁₂ deficient media (Bayer et al., 2021).
360	However, the growth of Nitrospira marina was found in a mixed culture even when vitamin
361	B12 was not supplied into the media (Park et al., 2020). Additionally, Nitrospira cells can
362	incorporate organic matters available in the culture. The addition of undefined organic matters
363	such as tryptone increased apparent growth yields of Nitrospira marina (Watson et al., 1986;
364	Bayer et al., 2021), and formate utilization by Nitrospira bacteria has been also demonstrated
365	(Gruber-Dorninger et al., 2015; Koch et al., 2015; Lawson et al., 2021). Availability of
366	organic matters in the operated DHS reactors fed with inorganic media was suggested from
367	the growth of heterotrophic bacteria in the reactors. In the NH_4^+ - and NO_2^- -feeding DHS
368	reactors, heterotrophs (<i>i.e.</i> , the DHS20C01 to DHS20C21 bins) accounted for <i>ca</i> . 10% of total
369	biomass (Table 1), and the presence of those heterotrophs indirectly indicated that organic
370	matters were available in the operated DHS reactors (likely in the form of extracellular
371	polymeric substances, soluble microbial products and cell debris). The obtained Nitrospira

372	bins (and also NMNS bins, Table S6) had a couple of (di)peptide transporters and ABC
373	transporters, and scavenging micronutrients might contribute to the increase of apparent CO ₂
374	assimilation efficiencies. In addition to the possible interactions of micronutrients, oxidative
375	stress in mixed communities would be less because coexisting microbes can scavenge O2 and
376	reactive oxygen species. Less oxidative stress would reduce energy demands of the rTCA
377	cycle of Nitrospira where oxygen-sensitive enzymes (e.g., four-subunit pyruvate:ferredoxin
378	oxidoreductase) are involved (Berg et al., 2011; Bayer et al., 2022).
379	Although the above discussion provided a bioenergetic insight in the CO ₂
380	assimilation of AOB and NOB, the growth yields of AOB were still higher than those of NOB
381	including Nitrospira (Table 2). How did Nitrospira with lower CO2 assimilation efficiencies
382	outnumbered Nitrosomonas in the NH4 ⁺ -feeding DHS reactor? Notably, the DHS reactor and
383	the recirculating marine aquaculture systems in the previous studies were operated as trickling
384	filter reactors, and Nitrospira and AOB proliferated in the form of biofilm on the biomass
385	carriers (Table S5). The biomass carriers in those trickling filter reactors were exposed to
386	permanent shear forces, and shear forces changed microbial diversity and composition of the
387	developed biofilm (Rickard et al., 2004) and promoted the proliferation of auto-aggregating
388	bacteria (Rochex et al., 2008). In the nitrifying biofilm, AOB were preferentially localized on
389	the surface of the biofilm (<i>i.e.</i> , aerobic zone) whereas <i>Nitrospira</i> cells were easy to form cell
390	aggregates (Spieck et al., 2006; Ushiki et al., 2013) and heterologously distributed in the

391	biofilm and abundant in microaerobic zone (<i>i.e.</i> , inner part of biofilm) (Okabe <i>et al.</i> , 1999;
392	Schramm et al., 2000). Such spatial distribution of AOB and NOB might occur in the sponge
393	carrier. Additionally, Nitrospira spp. in activated sludge tended to form physically stronger
394	cell aggregates than Nitrosomonas oligotropha (Larsen et al., 2008), suggesting
395	<i>Nitrosomonas</i> in the NH4 ⁺ -feeding DHS reactor was likely to be more susceptible for the
396	detachment from biofilm. Occurrence of the washout of AOB and NOB from trickling filter
397	reactors has not been well investigated so far (Keuter et al., 2011), which was examined in the
398	present study by determining the gene copy numbers of AOB amoA, Nitrospira nxrB, and
399	<i>Nitrospira</i> 16S rRNA genes (Fig. 2) in the NH4 ⁺ -enriched biomass and the reactor effluents.
400	The NMNS01 bin had one copy of <i>amoCAB</i> gene cluster as well as the closed relative
401	Nitrosomonas genomes (Nitrosomonas sp. Nm143, Nitrosomonas sp. UBA8640, and
402	Nitrosomonas aestuarii). As for Nitrospira, three nxrAB gene clusters and one 16S rRNA
403	gene were found in the Nitrospira marina genome. This ratio of the copy number of nxrAB to
404	16S rRNA gene (<i>i.e.</i> , 3) agreed with the ratio of the copy numbers of <i>Nitrospira nxrB</i> to
405	Nitrospira 16S rRNA gene found in the NH4 ⁺ -enriched biomass and the reactor effluents (<i>i.e.</i> ,
406	3.0 to 3.4) (Fig. 6). Assuming one <i>amoA</i> gene copy per <i>Nitrosomonas</i> genome and three <i>nxrB</i>
407	and one 16S rRNA gene copy per Nitrospira genome, the abundance of Nitrosomonas was
408	1.5- and 1.7-folds greater (based on the normalized copy number of <i>nxrB</i> and 16S rRNA
409	gene, respectively) than <i>Nitrospira</i> in the effluents of NH_4^+ -feeding DHS reactor although

410	<i>Nitrospira</i> was 1.89- and 1.86-folds greater than <i>Nitrosomonas</i> in NH4 ⁺ -enriched biomass.
411	The greater abundance of Nitrosomonas in the effluents indicated that Nitrosomonas tended to
412	be washed out more frequently from the NH4 ⁺ -feeding DHS reactor. This washout of AOB
413	was another determinant for the dominance of Nitrospira over Nitrosomonas in the NH4 ⁺ -
414	feeding DHS reactors.
415	In summary, CO2 assimilation efficiencies of Nitrosomonas and NO2 ⁻ -oxidizing
416	Nitrospira were determined, and the difference of the CO2 assimilation efficiencies between
417	Nitrosomonas and Nitrospira was much smaller (0.077 $\mu mol\text{-}CO_2/\ \mu mol\text{-}NH_3$ and 0.053–
418	0.054 μ mol-CO ₂ / μ mol-NO ₂ , respectively) as compared with the difference of ΔG_r . Such
419	small difference in the CO ₂ assimilation efficiencies was likely due to that large parts of free
420	energies during aerobic ammonia oxidation are dissipated and not conserved. The dissipation
421	of free energy (<i>i.e.</i> , efficiency of energy conservation) can not be expected from the value of
422	ΔG_r , and more bioenergetic studies, especially for <i>Nitrospira</i> , are required. <i>Nitrospira</i> use a
423	novel cytochrome bd-like heme-copper oxidase as a terminal oxidase and the nitrite oxidation
424	occurs in periplasmic spaces, which were not common with that of canonical NO2 ⁻ -oxidizing
425	Nitrobacter. It will be interesting to investigate the bioenergetic traits of Nitrospira. Apart
426	from the bioenergetics, washout of nitrifying population was another factor driving the
427	dominance of Nitrospira over Nitrosomonas in the DHS reactor; i.e., Nitrosomonas was more
428	susceptible for washout than Nitrospira. Detachment and washout of particular nitrifiers has

- 429 been little explored, and the correlation between physicochemical parameters (*e.g.*, cell
- 430 surface hydrophobicity) remains to be explored in other studies.

431 Experimental procedures

432 *Operation of the DHS reactors fed with NH*⁴⁺ or NO₂-

433 The 10-L DHS reactors (0.7 m in height and 0.17 m in width) were operated at 20°C in dark. 434 Details of the operated DHS reactors were previously described by the authors (Oshiki et al., 435 2020). Briefly, the DHS reactors contained polyurethane-sponge media (183 pieces of cubic sponge, $33 \text{ mm} \times 33 \text{ mm} \times 33 \text{ mm}$, set in a polypropylene tube, 32 mm diameter and 32 mm436 437 long) as a biomass carrier. The sponge media had a 97% void ratio (i.e., a percentage of the volume of sponge pores), 256 m² m⁻³ of specific surface, and 0.63 mm of average pore size. 438 Artificial seawater media (pH 8.0, salinity 33‰) containing 0.297 g L⁻¹ NH4Cl or 0.4 g L⁻¹ 439 NaNO₂⁻, 1 g L⁻¹ NaHCO₃, 34 g L⁻¹ artificial seawater powder (Marin Art, Tomita 440 441 Pharmaceutical, Naruto, Japan) was supplied to the top of the DHS reactor at the flow rate of 9.62 L d⁻¹ corresponding to 0.39 d of hydraulic retention time (HRT) and 200 mg-N L-sponge 442 media⁻¹ d⁻¹ of total ammonia nitrogen loading rate. The sponge media was exposed to the 443 444 atmosphere, and oxygen naturally dissolved into the media and aerobic condition was 445 maintained without external aeration. The filtrates were collected in a settling tank (volume; 0.9 L) located at the bottom of the DHS reactor, which were recirculated using a magnetic 446 pump at the flow rate of 4 L min⁻¹. The NH₄⁺- or NO₂⁻-feeding DHS reactors has been 447 448 operated for more than 1 y stably, and typical concentrations of NH₄⁺, NO₂⁻, NO₃⁻ and pH

449 values in the NH₄⁺-feeding DHS reactors were 7.9 μ M, 9.3 μ M, 4.9 mM, and pH 7.3,

450 respectively.

451	Biomass retained	l in the sponge	e media was	collected by	squeezing the	sponge media

- 452 in the above artificial seawater media without NH₄Cl and NaNO₂⁻, and subjected to the
- 453 following DNA extraction and batch incubations. As for the reactor effluents, two liters of the
- 454 effluents was daily collected from the NH4⁺-feeding reactor for 4 d, and the collected
- 455 effluents were filtered on a 0.2 μm-pore-size PVDF membrane (Advantec, Tokyo, Japan)
- 456 separately. The filtered membranes were subjected to the DNA extraction.

457 DNA extraction and determination of DNA concentration

458 Genomic DNA was extracted from the biomass and the filtered membranes using a DNeasy

- 459 PowerSoil kit (Qiagen K.K., Tokyo, Japan) as following the instruction manual supplied by
- 460 manufactures. The concentrations of the extracted DNAs were determined using the Qubit
- dsDNA BR assay kit and a Qubit 3.0 fluorospectrometer (Thermo Fisher Scientific, Waltham,
- 462 MD, USA).

463 *Metagenomic analysis*

- 464 A shotgun sequence library was prepared using a MGIEasy FS DNA Library Prep Set,
- 465 MGIEasy Circularization kit, and DNBSEQ-G400RS High-throughput sequencing set (MGI
- 466 Tech Japan, Tokyo, Japan). The 200-bp paired-end sequencing was performed using a
- 467 DNBSEQ-G400 sequencer. The paired-end sequence reads were trimmed using Trimmomatic

468	0.39 (SLIDINGWINDOW:6:30 MINLEN:100) (Bolger et al., 2014). Digital normalization of
469	trimmed sequences was performed using bbnorm.sh of BBtools version 38.18 (target=100,
470	min=5) (https://jgi.doe.gov/data-and-tools/bbtools/). Assembled contigs were obtained from
471	NH4 ⁺ - and NO2 ⁻ -enriched biomass samples (co-assembly) by Megahit v1.2.9 (k-min 27k-
472	max 141k-step 12) (Li et al., 2015). Reads of each sample were mapped to assembled
473	contigs using bbmap.sh of BBtools. Obtained contigs of short length (< 2,500 bp) were
474	removed before binning. The multiple software of MaxBin2 version 2.15 (-markerset 40) (Wu
475	et al., 2016), Metabat2 version 2.2.7 (Kang et al., 2019), MyCC (MyCC_2017.ova) (Lin and
476	Liao, 2016) were used for binning from the contigs. To refine the obtained bins, we used
477	Binning_refiner version 1.4.0 with default parameters (Song and Thomas, 2017). The quality
478	of refined bins was checked using CheckM version 1.0.7 (Parks et al., 2014). The relative
479	abundance of obtained bins was calculated using CoverM version 0.6.1
480	(https://github.com/wwood/CoverM#installation). Phylogenetic position of each bin is
481	estimated using GTDBtk v1.3.0 (release95) (Chaumeil et al., 2019). Average nucleotide
482	identity (ANI) values of the obtained Nitrospira bins and the genomes in Nitrospira
483	sublineage IV were calculated using pyani version 0.2.11 (-m ANIb) (Pritchard et al., 2016).
484	Gene prediction and annotation was performed via the D-FAST pipeline (Tanizawa et al.,
485	2018), and the MetaGeneAnnotator and Glimmer version 2.10, tRNAScan-SE version 1.23,

486 and blastn software applications were used for prediction of gene-coding sequences (CDSs),
487 tRNA, and rRNA, respectively.

488	Genomic tree was constructed using 120 concatenated phylogenetic marker genes of
489	obtained bins and representatives of genus Nitrospira or Nitrosomonas in the release95 of
490	GTDBtk version 1.3.0. For the multiple sequence alignment of Nitrospira spp., we included
491	the genomes of Nitrospira marina Nb-295T, Nitrospirales bacterium isolate MH-Pat-
492	all_autometa_1-10 (WLXC01000001), MAG-Baikal-G1, MAG-Baikal-deep-G158, MAG-
493	Baikal-deep-G159, MAG-ZH-13may13-77, MAG-cas150m-170, MAG-cas50m-175 with
494	Nitrospira genomes in the release95 of GTDBtk. Conserved marker genes were identified
495	using "gtdbtk identify" with default parameters and aligned to reference genomes using
496	"gtdbtk align" with taxonomic filters for phylogenies of Nitrospira (taxa_fileter
497	cNitrospira), Nitrosomonas (taxa_fileter f_Nitrosomonadaceae) or all metagenomic bins
498	(taxa_fileter
499	f_UBA8639,g_Nitrosomonas,f_UBA11606,o_ARS69,f_Saprospiraceae,g_SZUA-
500	3,g_GCA-2699125,g_CR02bin9,f_Nitrospinaceae,f_SM1A02,g_UBA1845,f_B15-
501	G4,g_Hyphobacterium,g_Marinicaulis,g_UBA5701,g_Minwuia,f_Methyloligellaceae,f
502	Rhodomicrobiaceae,gUBA9145,oUBA10353,gUBA7359,oXanthomonadales).
503	Phylogenetic tree was constructed using IQ-TREE version 2.0.3 (-B 1000) with automatically
504	optimized substitution models (<i>Nitrospira</i> : LG+F+R7 and <i>Nitrosomonas</i> : JTT+F+R5) (Minh

505	et al., 2020) and with the Nitrosospira lacus (GCF_000355765.4) and Thermodesulfovibrio
506	yellowstonii (GCF_000020985.1) genomes for the Nitrospira and Nitrosomonas trees (Fig. 2
507	and 3 , respectively) as an outgroup.
508	<u>qPCR assay</u>
509	The qPCR assay was conducted using a ABI7500 fast Real-Time PCR System (Thermo
510	Fisher Scientific). The reaction mixture (10 μ L) contained KAPA SYBR FAST qPCR master
511	mix (Nippon Genetics, Tokyo, Japan) (5 μL), 0.2 μM each forward and reverse primer, 1 \times
512	ROX low dye, and 1 ng of the extracted DNA. Oligonucleotide primers used for PCR
513	amplification were 1) 515f and 806r for prokaryotic 16S rRNA gene, 2) amoA1F and
514	amoA2Rv1 for AOB amoA (Rotthauwe et al., 1997, this study), 3) nxrB169f and nxrB638r
515	(Pester et al., 2014) for Nitrospira nxrB, and 4) Nspra675F and Nspra746R (Graham et al.,
516	2007) for <i>Nitrospira</i> 16S rRNA gene, and the nucleotide sequences were shown in Table S6.
517	The original amoA2R primer (Rotthauwe et al., 1997) had some mismatch bases against the
518	amoA sequence found in the NMNS01 bin, and the amoA2Rv1 was designed in the present
519	study by adding degenerate bases into the amoA2R primer. As for the amoA1F, nxrB169f,
520	nxrB638r, Nspra675F, and Nspra746R primers, there was no mismatch base between the
521	oligonucleotide primer and target gene found in the above metagenomic analysis. The cycling
522	conditions were the following: 95°C for 3 min; 40 cycles at 95°C for 3 s and 60°C for 20 s;
523	and, finally, 65°C to 95°C in 0.5°C increments for the melting curve analysis. Standard curves

524	(10 ¹ to 10 ⁶ copies/ μ L) were prepared using a dilution series of plasmid DNAs containing PCR
525	products of the above target. Partial sequences of Escherichia coli JM109 (SMOBIO
526	technology, Hsinchu, Taiwan) 16S rRNA gene, Nitrosomonas europaea (NBRC14298)
527	amoA, Nitrospira inopinata (JCM31988) 16S rRNA gene were amplified using the above
528	oligonucleotide primer set. Nitrospira nxrB was amplified using the genomic DNA extracted
529	from NO2 ⁻ -enriched biomass. The obtained PCR products were cloned into pUC118 vector
530	using mighty cloning reagent (TakaraBio, Shiga, Japan), and transformed into <i>E. coli</i> DH5 α
531	cells (SMBIO technology) by heat shock. Plasmids were extracted from the transformants
532	using FastGene Plasmid mini kit (Nippon Genetics), nucleotide sequences of the cloned PCR
533	products were ascertained by performing the Sanger sequencing, and the concentrations of the
534	extracted plasmids were determined fluorometrically as previously described above.
535	<u>Activity tests</u>
536	Assimilation of ¹⁴ CO ₂ into the biomass during aerobic ammonia and nitrite oxidation
537	was examined as previously described (Oshiki et al., 2011). Briefly, the 2.5 mL of biomass
538	suspension (24 and 0.66 μ g-protein mL ⁻¹ of biomass concentrations for NH ₄ ⁺ - and NO ₂ ⁻ -
539	enriched biomass, respectively) containing 0.5 mM NH_4^+ or NO_2^- was incubated at 20°C in
540	10-mL glass vials with shaking at 60 rpm. The ¹⁴ C-labeled sodium bicarbonate (Moravek Inc.,
541	Brea, CA, USA) was added at a concentration of 10 μ Ci vial ⁻¹ , and the vials were sealed with
542	butyl rubber plug and aluminum seal. After 18 h of incubation, the biomass was fixed with

543	4% paraformaldehyde, washed three times with PBS, and mixed with scintillation cocktail
544	Clear-sol I (Nacalai, Tokyo, Japan). Radioactivity was determined with an ALOKA LSC-
545	6100 liquid scintillation counter. Additional cold incubation with ¹² C-labeled sodium
546	bicarbonate instead of ¹⁴ C-labeled one was performed in parallel to determine ammonia and
547	nitrite oxidation rates. Abiotic incorporation of ¹⁴ C-labeled sodium bicarbonate was examined
548	by performing the above incubation with the biomass pasteurized at 70°C for 15 min. For the
549	incubation using H ₂ as a substrate instead of NH4 ⁺ and NO2 ⁻ , biomass suspension without
550	NH4 ⁺ and NO2 ⁻ were dispensed into the closed vials, and pure H2 gas (GL Science, Tokyo,
551	Japan) was injected into headspace at the final concentration of 2% (v/v) using a gas tight
552	syringe.
553	<u>Chemical analysis</u>
554	NH4 ⁺ concentration was determined fluorometrically using the <i>o</i> -phthalaldehyde (OPA)
555	method (Taylor et al., 1974). Liquid samples were mixed with 3.8 mM o-phthalaldehyde, and
556	fluorescence intensity was determined at 355 nm of excitation and 460 nm of emission.
557	NO ₂ ⁻ concentration was determined colorimetrically using the
558	naphthylethylenediamine method (Rice et al., 2012). Liquid samples were mixed with a
559	naphthylethylenediamine-sulfanilamide solution, and absorbance was measured at 540 nm.
560	NO3 ⁻ concentration was determined colorimetrically using the brucine sulfate
561	method (Jenkins and Medsker, 1964). Liquid samples were mixed with 80% (vol/vol) sulfuric

acid and brucine sulfanilic acid solution, and heated at 100°C for 20 min. The absorbance was
measured at 410 nm.

564	Protein concentration was determined by the Lowry method using a DC protein
565	assay kit (Bio-Rad, Hercules, CA, USA). Bovine serum albumin was used as a protein
566	standard.

567 H₂ concentration was determined by gas chromatography as described elsewhere.

568 The 100 μ L of gas sample was injected into a gas chromatograph GC-2014 equipped with a

thermal conductivity detector and a 2-m stainless column packed with a Molecular Sieve-5A.

570 *Fluorescence in-situ hybridization and microscopy*

571 Fixation of biomass (4% paraformaldehyde) and *in situ* hybridization of oligonucleotide

572 probes were performed as previously described (Kindaichi et al., 2004). The fixed biomass

573 was sonicated at 3 watt for 4 minutes, and hybridized with the oligonucleotide probe

574 Ntspa712 (Daims et al., 2001) for Nitrospira or Nsm156 (Mobarry et al., 1996) for

575 *Nitrosomonas*, respectively.

576 *Calculation of CO₂ assimilation and free-energy efficiencies.*

577 CO₂ assimilation efficiencies of NH₄⁺- and NO₂⁻-enriched biomass during aerobic ammonia

- and nitrite oxidation (unit; μ mol-CO₂/ μ mol-NH₃ or μ mol-NO₂⁻) were calculated by dividing
- 579 the molar amounts of ${}^{14}CO_2$ fixed during the incubation with those of the consumed NH₄⁺ and
- 580 NO_2^{-} . The fixed CO₂ includes the carbon fixed into cellular materials and also that fixed as

extracellular polymeric substances (EPS) (Okabe *et al.*, 2005). On the other hand, the fixed
CO₂ does not include the carbon released as dissolved organic carbon (DOC); *i.e.*, *ca*. 6-8%
and 12% of fixed CO₂ were released as DOC in the culture of marine AOB (*Nitrosomonas marina* C-25 and *Nitrosomonas* sp. C-15) and marine NOB (*Nitrospira marina* Nb-295),
respectively (Bayer *et al.*, 2022).

586 The values of free-energy efficiency were calculated using the following equation587 (Glover, 1985).

588
$$free - energy \, efficiency \, (\%) = growth \, yield \, \times \frac{495}{\Delta G_r} \times 100$$

Where, 495; the free energy (kJ/mol) required for converting CO₂ into CH₂O, and ΔG_r ; the free energy (kJ/mol) obtained from aerobic ammonia or nitrite oxidation during the batch incubations (*i.e.*, 283.3 kJ/mol-NH₃ and 83.5 kJ/mol-NO₂⁻, respectively) (**Supplementary text 1**). For AOB and NOB examined in the previous studies, the 286.7 kJ/mol-NH₃ for AOB, and 73.8 kJ/mol-NO₂⁻ for NOB were used. Those values corresponded to ΔG_r ^{'m} that were the Gibbs free energy change at when the concentrations of all reactants were 1 mM at pH 7 and 25°C (**Supplementary text 1**).

596 Accession numbers

597	Raw metagenomic sequence data and the assembled and annotated 30 bins obtained in the
598	present study are available in the DDBJ nucleotide sequence database under the accession
599	number DRA013035 and those in Table S7, respectively.
600	Acknowledgements
601	This work was supported by JSPS KAKENHI [grant numbers; 19K05805 for M.O.,
602	20H02290 for N.A, 20H00641 for T.Y., 19H00776 for S.O.], JST FOREST Program
603	[JPMJFR216Z for M.O.], and Nagase Science and Technology Foundation granted to M.O
604	Computations were partially performed on the NIG supercomputer at ROIS National Institute
605	of Genetics. The authors would like to express our sincere appreciation for Dr. Barbara Bayer
606	(University of Vienna) for sharing a reference dataset of the DIC fixation yields of nitrifiers
607	that are shown in Table 2. Strain JCM31988 and NBRC14298 were provided by Japan
608	Collection of Microorganisms, RIKEN BRC and National Institute of Technology and
609	Evaluation, respectively.
610	Conflict of interest

611 The authors declare no conflicts of interest associated with this manuscript.

612 References

613	Aleem, M.I.H. (1966) Generation of reducing power in chemosynthesis. II. Energy-linked
614	reduction of pyridine nucleotides in the chemoautotroph, Nitrosomonas europaea.
615	Biochim Biophys Acta 113: 216–224.
616	Ali, M., Oshiki, M., Awata, T., Isobe, K., Kimura, Z., Yoshikawa, H., Hira, D., Kindaichi, T.,
617	Satoh, H., Fujii, T., Okabe, S., (2015) Physiological characterization of anaerobic
618	ammonium oxidizing bacterium "Candidatus Jettenia caeni." Environ. Microbiol. 17:
619	2172–2189.
620	Awata, T., Kindaichi, T., Ozaki, N., Ohashi, A., 2015. Biomass yield efficiency of the marine
621	anammox bacterium, "Candidatus Scalindua sp.," is affected by salinity. Microb.
622	<i>Environ</i> . 30 : 86–91.
623	Bar-Even, A., Noor, E., Lewis N.E., and Milo, R. (2010) Design and analysis of synthetic
624	carbon fixation pathways. Proc Natl Acad Sci USA 107: 8889-8894.
625	Bayer, B., Saito, M.A., McIlvin, M.R., Lücker, S., Moran, D.M., Lankiewicz, T.S., et al.
626	(2021) Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and
627	its proteomic response to oxygen-limited conditions. ISME J 15: 1025-1039.
628	Bayer, B., McBeain, K., Carlson, C.A., Santoro, A.E. (2022) Carbon content, carbon fixation
629	yield and dissolved organic carbon release from diverse marine nitrifiers. <i>bioRxiv</i>
630	2022.01.04.474793. https://doi.org/10.1101/2022.01.04.474793

- Berg, I.A. (2011) Ecological aspects of the distribution of different autotrophic CO₂ fixation
 pathways. *Appl Environ Microbiol* 77: 1925–1936.
- 633 Bergmann, D.J., Hooper, A.B., Klotz, M.G. (2005) Structure and sequence conservation of
- hao cluster genes of autotrophic ammonia-oxidizing bacteria: evidence for their
 evolutionary history. *Appl. Environ. Microbiol.* **71**: 5371–5382.
- 636 Bock, E., Schmidt, I., Stüven, R., Zart, D., (1995) Nitrogen loss caused by denitrifying
- 637 *Nitrosomonas* cells using ammonium or hydrogen as electron donors and nitrite as
- electron acceptor. *Arch. Microbiol.* **163**: 16–20.
- Bolger, A.M., Lohse, M., and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina
 sequence data. *Bioinformatics* 30: 2114–2120.
- 641 Brown, M.N., Briones, A., Diana, J., and Raskin, L. (2013) Ammonia-oxidizing archaea and
- 642 nitrite-oxidizing *nitrospiras* in the biofilter of a shrimp recirculating aquaculture
 643 system. *FEMS Microbiol Ecol* 83: 17–25.
- 644 Carantoa, J.D., and Lancaster, K.M. (2017) Nitric oxide is an obligate bacterial nitrification
- 645 intermediate produced by hydroxylamine oxidoreductase. *Proc Natl Acad Sci U S A*
- **646 114**: 8217–8222.
- 647 Chaumeil, P.A., Mussig, A.J., Hugenholtz, P., and Parks, D.H. (2019) GTDB-Tk: a toolkit to
- 648 classify genomes with the Genome Taxonomy Database. *Bioinformatics* 36: 1925–
- **649** 1927.

650	Costa, E., Pérez, J., and Kreft, J-U. (2006) Why is metabolic labour divided in nitrification	divided in nitrification?	
651	Trends Microbiol 14: 213–219.		

- 652 Daebeler, A., Kitzinger, K., Koch, H., Herbold, C.W., Steinfeder, M., Schwarz, J., et al.
- 653 (2020) Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology,
- and adaptive traits of haloalkalitolerant *Nitrospira*. *ISME J* **14**: 2967–2979.
- 655 Daims, H., Nielsen, J.L., Nielsen, P.H., Schleifer, K.-H., Wagner, M. (2001) In situ
- 656 characterization of *Nitrospira*-like nitrite-oxidizing bacteria active in wastewater
- 657 treatment plants. *Appl. Environ. Microbiol.* 67: 5273–5284.
- 658 Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., et al. (2015)

659 Complete nitrification by *Nitrospira* bacteria. *Nature* **528**: 504–509.

- 660 Daims, H., Lücker, S., and Wagner, M. (2016) A new perspective on microbes formerly
- 661 known as nitrite-oxidizing bacteria. *Trends Microbiol* **24**: 699–712.
- 662 Foesel, B.U., Gieseke, A., Schwermer, C., Stief, P., Koch, L., Cytryn, E., et al. (2008)
- 663 *Nitrosomonas* Nm143-like ammonia oxidizers and *Nitrospira marina*-like nitrite
- oxidizers dominate the nitrifier community in a marine aquaculture biofilm. *FEMS*
- 665 *Microbiol Ecol* **63**: 192–204.
- 666 Graham, D.W., Knapp C.W., Van Vleck, E.S., Bloor, K., Lane, T.B., and Graham, C.E.
- 667 (2007) Experimental demonstration of chaotic instability in biological nitrification.
- 668 *ISME J* 1: 385–393.

669	Glover, H.E. (1985) The relationship between inorganic nitrogen oxidation and organic
670	carbon production in batch and chemostat cultures of marine nitrifying bacteria. Arch
671	<i>Microbiol</i> 142 : 45–50.
672	Gruber-Dorninger, C., Pester, M., Kitzinger, K., Savio, D.F., Loy, A., Rattei, T., et al. (2015)
673	Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME
674	J 9: 643–655.
675	Hollocher, T.C., Kumar, S., and Nicholas, D.J. (1982) Respiration-dependent proton
676	translocation in Nitrosomonas europaea and its apparent absence in Nitrobacter agilis
677	during inorganic oxidations. J Bacteriol 149: 1013–1020.
678	Itoi, S., Niki, A., and Sugita, H. (2006) Changes in microbial communities associated with the
679	conditioning of filter material in recirculating aquaculture systems of the pufferfish
680	Takifugu rubripes. Aquaculture 256 : 287–295.
681	Jenkins, D., and Medsker, L.L. (1964) Brucine method for determination of nitrate in ocean,
682	estuarine, and fresh waters. Anal Chem 36: 610-612.
683	Kang, D.D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., and Wang, Z. (2019) MetaBAT
684	2: an adaptive binning algorithm for robust and efficient genome reconstruction from
685	metagenome assemblies. PeerJ. 7: e7359.

686	Keuter, S., Kruse, M., Lipski, A., and Spieck, E. (2011) Relevance of Nitrospira for nitrite
687	oxidation in a marine recirculation aquaculture system and physiological features of a
688	Nitrospira marina-like isolate. Environ Microbiol 13: 2536–2547.
689	Keuter, S., Beth, S., Quantz, G., Schulz, C., and Spieck, E. (2017) Longterm monitoring of
690	nitrification and nitrifying communities during biofilter activation of two marine
691	recirculation aquaculture systems (RAS). Int J Aquacult Fish Sci 3: 051–061.
692	Kim, S., Kang, I., Lee, J-W., Jeon, C.O., Giovannoni, S.J., and Cho, J-C. (2021) Heme
693	auxotrophy in abundant aquatic microbial lineages. Proc. Natl. Acad. Sci. U. S. A. 118:
694	e2102750118.
695	Kindaichi, T., Ito, T., and Okabe, S. (2004) Ecophysiological interaction between nitrifying
696	bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by
697	microautoradiography-fluorescence in situ hybridization. Appl Environ Microbiol 70:
698	1641–1650.
699	Kitzinger, K., Marchant, H.K., Bristow, L.A., Herbold, C.W., Padilla, C.C., Kidane, A.T., et
700	al. (2020) Single cell analyses reveal contrasting life strategies of the two main
701	nitrifiers in the ocean. Nat Commun 11: 767.
702	Koch, H., Galushko, A., Albertsen, M., Schintlmeister, A., Gruber-Dorninger, C., Lücker, S.,
703	et al. (2014) Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation.
704	<i>Science</i> 345 : 1052–1054.

705	Koch, H., Lücker, S., Albertsen, M., Kitzinger, K., Herbold, C., Spieck, E., et al. (2015)
706	Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus
707	Nitrospira. Proc Natl Acad Sci US A 112: 11371–11376.
708	Lancaster, K.M., Caranto, J.D., Majer, S.H., and Smith, M.A. (2018) Alternative bioenergy:
709	updates to and challenges in nitrification metalloenzymology. Joule 2: 421-441.
710	Larsen, P., Nielsen, J.L., Svendsen, T.C., Nielsen, P.H. (2008) Adhesion characteristics of
711	nitrifying bacteria in activated sludge. Water Res. 42: 2814–2826.
712	Lawson, C.E., Mundinger, A.B., Koch, H., Jacobson, T.B., Weathersby, C.A., Jetten, M.S.M.,
713	et al. (2021) Investigating the chemolithoautotrophic and formate metabolism of
714	Nitrospira moscoviensis by constraint-based metabolic modeling and ¹³ C-tracer
715	analysis. mSystems ; 6: e00173-21.
716	Lebedeva, E.V., Off, S., Zumbrägel, S., Kruse, M., Shagzhina, A., Lücker, S., et al. (2011)
717	Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium
718	from a geothermal spring: Moderately thermophilic Nitrospira-cultures from hot
719	springs. FEMS Microbiol. Ecol. 75: 195–204.
720	Li, D., Liu, CM., Luo, R., Sadakane, K., and Lam, TW. (2015) MEGAHIT: an ultra-fast
721	single-node solution for large and complex metagenomics assembly via succinct de
722	Bruijn graph. Bioinformatics 31: 1674–1676.

723	Lin, H.H., and Liao, Y.C. (2016) Accurate binning of metagenomic contigs via automated
724	clustering sequences using information of genomic signatures and marker genes. Sci
725	<i>Rep</i> 6: 24175.
726	Lücker, S., Wagner, M., Maixner, F., Pelletier, E., Koch, H., Vacherie, B., et al. (2010) A
727	Nitrospira metagenome illuminates the physiology and evolution of globally
728	important nitrite-oxidizing bacteria. Proc Natl Acad Sci USA 107: 13479–13484.
729	Madigan, M.T., Bender, K.S., Buckley, D.H., Sattley, W.M., and Stahl, D.A. (eds). (2019)
730	Brock biology of microorganisms, 15th. edn. New York, USA: Pearson Education.
731	Mee, M.T., Collins, J.J., Church, G.M., and Wang, H.H. (2014) Syntrophic exchange in
732	synthetic microbial communities. Proc. Natl. Acad. Sci. U. S. A. 111: E2149-E2156.
733	Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler,
734	A., et al. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic
735	inference in the genomic era. Mol. Biol. Evol. 37: 1530–1534.
736	Mobarry, B.K., Wagner, M., Urbain, V., Rittmann, B.E., and Stahl, D.A. (1996) Phylogenetic
737	probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl.
738	Environ. Microbiol. 62: 2156-2162.
739	Okabe, S., Satoh, H., and Watanabe, Y. (1999) In situ analysis of nitrifying biofilms as
740	determined by in situ hybridization and the use of microelectrodes. Appl Environ
741	<i>Microbiol</i> 65 : 3182–3191.

742	Okabe, S., Kindaichi, T., Ito, T. (2005). Fate of ¹⁴ C-labeled microbial products derived from
743	nitrifying bacteria in autotrophic nitrifying biofilms. Appl Environ Microbiol 71:
744	3987–3994.
745	Oshiki, M., Shimokawa, M., Fujii, N., Satoh, H., and Okabe, S. (2011) Physiological
746	characteristics of the anaerobic ammonium-oxidizing bacterium 'Candidatus Brocadia
747	sinica'. <i>Microbiology</i> 157 : 1706–1713.
748	Oshiki, M., Aizuka, T., Netsu, H., Oomori, S., Nagano, A., Yamaguchi, T., et al. (2020) Total
749	ammonia nitrogen (TAN) removal performance of a recirculating down-hanging
750	sponge (DHS) reactor operated at 10 to 20°C with activated carbon. Aquaculture 520:
751	734963.
752	Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W. (2014)
753	Assessing the quality of microbial genomes recovered from isolates, single cells, and
754	metagenomes. Genome Res 25: 1043-1055.
755	Park, S-J., Andrei, A-Ş., Bulzu, P-A., Kavagutti, V.S., Ghai, R., and Mosier, A.C. (2020)
756	Expanded diversity and metabolic versatility of marine nitrite-oxidizing bacteria
757	revealed by cultivation- and genomics-based approaches. Appl Environ Microbiol 86:
758	e01667-20.

759	Pester, M., Maixner, F., Berry, D., Rattei, T., Koch, H., Lücker, S., et al. (2014) NxrB
760	encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic
761	marker for nitrite-oxidizing Nitrospira. Environ Microbiol 16: 3055-3071.
762	Pritchard, L., Glover, R.H., Humphris, S., Elphinstone, J.G., Toth, I.K. (2016) Genomics and
763	taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens.
764	<i>Anal. Methods</i> 8: 12–24.
765	Rice, E.W., Baird, R.B., Eaton, A.D., and Clesceri, (eds). (2012) Standard methods for the
766	examination of water and wastewater, 22th edn. Washington, USA: American public
767	health association.
768	Richter, M., and Rosselló-Móra, R. (2006) Shifting the genomic gold standard for the
769	prokaryotic species definition. Proc Natl Acad Sci USA 106: 19126–19131.
770	Rickard, A.H., McBain, A.J., Stead, A.T., and Gilbert, P. (2004) Shear rate moderates
771	community diversity in freshwater biofilms. Appl Environ Microbiol 70: 7426–7435.
772	Rochex, A., Godon, J-J., Bernet, N., and Escudié, R. (2008) Role of shear stress on
773	composition, diversity and dynamics of biofilm bacterial communities. <i>Water Res</i> 42:
774	4915–4922.
775	Rotthauwe, J-H., Witzel, K-P., and Liesack, A.W. (1997) The ammonia monooxygenase
776	structural gene <i>amoA</i> as a functional marker: molecular fine-scale analysis of natural
777	ammonia-oxidizing populations. Appl Environ Microbiol 63: 4704–4712.

778	Schramm, A., Beer, D.D., Gieseke, A., and Amann, R. (2000) Microenvironments and
779	distribution of nitrifying bacteria in a membrane-bound biofilm. Environ Microbiol 2:
780	680–686.
781	Sedlacek, C.J., McGowan, B., Suwa, Y., Sayavedra-Soto, L., Laanbroek, H.J., Stein, L.Y., et
782	al. (2019) A physiological and genomic comparison of Nitrosomonas cluster 6a and 7
783	ammonia-oxidizing bacteria. Microbial Ecol 78: 985–994.
784	Sewell, D.L., and Aleem, M.I.H. (1969) Generation of reducing power in chemosynthesis. V.
785	The mechanism of pyridine nucleotide reduction by nitrite in the chemoautotroph
786	Nitrobacter agilis. Biochim Biophys Acta 172: 467–475.
787	Simon, J., and Klotz, M.G. (2013) Diversity and evolution of bioenergetic systems involved
788	in microbial nitrogen compound transformations. Biochim Biophys Acta 1827: 114-
789	135.
790	Song, W.Z., and Thomas, T. (2017) Binning_refiner: Improving genome bins through the
791	combination of different binning programs. <i>Bioinformatics</i> 33 : 1873-1875.
792	Spieck, E., Ehrich, S., Aamand, J., and Bock, E. (1998) Isolation and immunocytochemical
793	location of the nitrite-oxidizing system in Nitrospira moscoviensis. Arch Microbiol
794	169 : 225–230.

795	Spieck, E., Hartwig, C., McCormack, I., Maixner, F., Wagner, M., Lipski, A., et al. (2006)
796	Selective enrichment and molecular characterization of a previously uncultured
797	Nitrospira-like bacterium from activated sludge. Environ Microbiol 8: 405–415.
798	Tanizawa, Y., Fujisawa, T., and Nakamura, Y. (2018) DFAST: a flexible prokaryotic genome
799	annotation pipeline for faster genome publication. <i>Bioinformatics</i> 34 : 1037–1039.
800	Taylor, S., Ninjoor, V., Dowd, D.M., and Tappel, A.L. (1986) Cathepsin B2 measurement by
801	sensitive fluorometric ammonia analysis. Anal Chem 1974; 60: 153–162.
802	Tsai Y.L., and Tuovinen O.H. Molar growth yield of Nitrobacter agilis in batch culture. Can
803	<i>J Microbiol</i> 32 : 605–606.
804	Ushiki, N., Fujitani, H., Aoi, Y., and Tsuneda, S. (2013) Isolation of Nitrospira belonging to
805	sublineage II from a wastewater treatment plant. <i>Microbes Environ</i> 28: 346–353.00.
806	VanBriesen, J.M. (2001) Thermodynamic yield predictions for biodegradation through
807	oxygenase activation reactions. <i>Biodegradation</i> 12 : 265–281.
808	van Kessel, M.A.H.J. van Speth, D.R., Albertsen, M., Nielsen, P.H., Camp, H.J.M.O. den,
809	Kartal, B., et al. (2015) Complete nitrification by a single microorganism. <i>Nature</i> 528 :
810	555–559.
811	Watson, S.W., Book, E., Valois, F.W., Waterbury, J.B., Schlosser, U. (1986) Nitrospira
812	marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch
813	<i>Microbiol</i> 144 : 1–7.

814	White, D., Drummond, J., and Fuqua, C. (eds). (2012) <i>The physiology and biochemistry of</i>
815	prokaryotes, 4th edn. New York, USA: Oxford University Press.
816	Whittaker, M., Bergmann, D., Arciero, D., and Hooper, A.B. (2000) Electron transfer during
817	the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas
818	europaea. Biochim Biophys Acta 1459: 346–355.
819	Wu, Y.W., Simmons, B.A., and Singer, S.W. (2016) MaxBin 2.0: an automated binning
820	algorithm to recover genomes from multiple metagenomic datasets. <i>Bioinformatics</i> 32:
821	605–607.
822	Xia, F., Wang, J-G., Zhu, T., Zou, B., Rhee, S-K., and Quan, Z-X. (2018) Ubiquity and
823	diversity of complete ammonia oxidizers (commamox). Appl Environ Microbiol 84:
824	e01390-18.
825	Yuan, Z., and VanBriesen, J.M. (2002) Yield prediction and stoichiometry of multi-step
826	biodegradation reactions involving oxygenation. Biotechnol Bioeng 80: 100-113.
827	Zakem, E.J., Al-Haj, A., Church, M.J., van Dijken, G.L., Dutkiewicz, S., Foster, S.Q., et al.
828	(2018) Ecological control of nitrite in the upper ocean. Nat Commun 9: 1206.
829	Zhang, Y., Qin, W., Hou, L., Zakem, E.J., Wan, X., Zhao, Z., et al. (2020) Nitrifier adaptation
830	to low energy flux controls inventory of reduced nitrogen in the dark ocean. Proc Natl
831	<i>Acad Sci U S A</i> 117 : 4823–4830.

832 Table 1. Summary of metagenomic bins. *Nitrospira*, *Nitrosomonas*, and *Nitrospina* bins

833 were designated with the label of "NPIRA", "NMNS", and "NPINA", respectively.

	Relative ab	undance (%)						
Dim(a)	NH4 ⁺ -	NO ₂ -	Size	Cartin	CDC	Completeness	Contamination	Strain
Bin(s)	enriched	enriched	(Mb)	Contigs	CD58			heterogeneity
NPIRA01	1.44	39.7	4.7	203	4,095	90%	3%	50
NPIRA02	35.0	21.2	4.7	92	4,275	97%	3%	33
NPIRA03	1.08	1.50	4.9	218	4,203	94%	4%	20
NPIRA04	14.1	8.88	4.8	633	3,683	81%	4%	30
NPIRA05	0.59	0.73	3.1	595	2,336	59%	0%	0
NPIRA06	1.52	0.21	4.0	303	3,436	85%	5%	57
NMNS01	1.72	0.58	3.7	199	3,093	98%	1%	0
NMNS02	5.86	0.04	3.6	117	3,117	99%	2%	0
NPINA01	0.13	2.10	3.6	14	3,355	97%	3%	0
DHS20C01	1.01	0.73	4.4	119	3,859	99%	3%	8
DHS20C02	0.00	3.43	2.1	12	2,066	96%	1%	0
DHS20C03	1.47	0.51	4.6	234	4,050	100%	2%	82
DHS20C04	1.63	0.00	3.4	133	3,254	95%	0%	0

834 Phylogeny of the other DHS20C bins were shown in **Fig. S1**.

	Relative abundance (%)							
D . ()	$\mathrm{NH_4^+}$ -	NO ₂ -	Size					Strain
Bin(s)	enriched	enriched	(Mb)	Contigs	CDSs	Completeness	Contamination	heterogeneity
DHS20C05	0.43	0.00	3.0	386	2,588	84%	1%	17
DHS20C06	0.46	0.10	2.4	271	2,137	88%	0%	0
DHS20C07	2.79	0.07	3.6	27	3,178	100%	1%	0
DHS20C08	2.41	0.75	2.9	6	2,510	98%	1%	0
DHS20C09	0.46	0.07	2.8	420	2,257	84%	8%	3
DHS20C10	1.04	0.03	1.7	65	1,458	89%	1%	67
DHS20C11	0.00	0.81	4.7	210	3,873	96%	1%	0
DHS20C12	0.55	0.03	3.6	282	3,076	91%	11%	39
DHS20C13	1.01	0.14	3.4	173	3,114	97%	7%	9
DHS20C14	0.61	0.27	2.9	273	2,298	91%	3%	33
DHS20C15	1.41	0.03	4.5	11	3,500	96%	1%	0
DHS20C16	0.50	0.02	5.3	478	3,780	96%	9%	0
DHS20C17	0.46	0.19	5.2	462	3,634	97%	3%	0
DHS20C18	0.83	0.05	8.0	161	5,634	100%	1%	0
DHS20C19	0.44	0.17	3.7	589	3,085	80%	3%	0
DHS20C20	0.01	0.68	4.9	1044	3,440	73%	15%	70

	Relative abu	undance (%)						
Bin(s)	NH4 ⁺ -	NO ₂ -	Size	Contigs	CDSs	Completeness	Contamination	Strain
Biii(s)	enriched	enriched	(Mb)	Contigs	CD35	Completeness	Contamination	heterogeneity
DHS20C21	0.01	0.69	3.6	653	2,475	77%	4%	0

biomass, AOB, and NOB. CO₂ assimilation efficiencies examining ¹⁴CO₂ fixation into
biomass during NH₃ or NO₂⁻ oxidation are summarized here, and the values are available as
(mean ± standard deviations). NA; not available because the NO₂⁻-enriched biomass did not
show the activity of aerobic ammonia oxidation. *; the value was calculated by subtracting the
CO₂ assimilation efficiency of aerobic ammonia oxidation with that of nitrite oxidation. The
CO₂ assimilation efficiencies in this table does not include a fraction of the carbon released as
dissolved organic carbon (DOC). The reference data of Bayer *et al.* (2022) are a personal gift

Table 2 CO₂ assimilation and free-energy efficiencies of NH₄⁺- and NO₂⁻-enriched

844 from Dr. Barbara Bayer.

Biomass/microorganisms	Reaction	μ mol-CO ₂ / μ mol-NH ₃ or NO ₂ ⁻ (Free-energy efficiency)	Reference
NH4 ⁺ -enriched biomass	$\rm NH_3 \rightarrow \rm NO_3^-$	0.13 ± 0.019	this study
	$\rm NH_3 \rightarrow \rm NO_2^-$	0.077* (13%)	this study
	$NO_2^- \rightarrow NO_3^-$	0.053 ± 0.013 (31%)	this study
NO2 ⁻ -enriched biomass	$\rm NH_3 \rightarrow \rm NO_2^-$	NA	this study
	$NO_2^- \rightarrow NO_3^-$	0.054 ± 0.019 (32%)	this study
AOB			
Nitrosomonas marina	$\rm NH_3 \rightarrow \rm NO_2^-$	0.04 - 0.07 (7 - 12%)	Glover (1985)
Nitrosococcus oceanus	$\rm NH_3 \rightarrow \rm NO_2^-$	0.024 - 0.062 (4 - 11%)	Glover et al. (1985)
Nitrosomonas marina C-25	$\rm NH_3 ightarrow \rm NO_2^-$	0.043 ± 0.012 (7%)	Bayer et al. (2022)

Biomass/microorganisms	Reaction	µmol-CO ₂ /µmol-NH ₃ or NO ₂ - (Free-energy efficiency)	Reference
Nitrosomonas sp. C-15	$\rm NH_3 \rightarrow \rm NO_2^-$	0.044 ± 0.007 (8%)	Bayer et al. (2022)
NOB			
Nitrococcus mobilis	$NO_2^- \rightarrow NO_3^-$	0.014 - 0.031 (9 - 21%)	Glover (1985)
Nitrococcus mobilis Nb- 231	$NO_2^- \rightarrow NO_3^-$	0.016 ± 0.002 (11%)	Bayer et al., 2022
Nitrobacter agilis	$NO_2^- \rightarrow NO_3^-$	0.009 (6%)	Tsai and Tuovinen (1986)
Nitrospira marina Nb-295	$NO_2^- \rightarrow NO_3^-$	0.032 ± 0.005 (22%)	Bayer et al., 2022
Nitrospina sp. Nb-3	$NO_2^- \rightarrow NO_3^-$	0.035 ± 0.005 (23%)	Bayer et al., 2022
Nitrospina gracilis Nb-211	$NO_2^- \rightarrow NO_3^-$	0.029 ± 0.002 (19%)	Bayer et al., 2022

846 Figure legends

Fig. 1. Fluorescence *in-situ* hybridization analysis of NH₄⁺-enriched biomass. The

- 848 biomass was fixed with 4% paraformaldehyde, hybridized with the oligonucleotide probe
- 849 Ntspa712 (labeled with Cy3) for *Nitrospira* (panel **a**) or Nsm156 (TRITC) for *Nitrosomonas*
- (panel b), and stained with DAPI. The cells showing red and cyan color represent *Nitrospira*
- 851 or *Nitrosomonas* population (red) and total cells (cyan), respectively. Bar = $20 \mu m$.
- 852 Fig. 2. Genome tree showing the phylogeny of *Nitrospira* bins. A phylogenetic clade of
- 853 Nitrospira sublineage IV was shown with a bracket, and the phylogenetic position of the
- 854 obtained Nitrospira bins affiliated into Nitrospira marina and Nitrospira salsa clades were
- shown with red color. The scale bar represents 10% sequence divergence.
- 856 Fig. 3. Genome tree showing the phylogeny of *Nitrosomonas* bins. The phylogenetic
- 857 position of the obtained Nitrosomonas bins were shown with red color. The scale bar
- 858 represents 5% sequence divergence.

Fig. 4. Nitrification activities of NH₄⁺- and NO₂⁻-enriched biomass (left and right panels,

860 respectively). The biomass was aerobically incubated with the addition of NH_4^+ or NO_2^- , and

- the concentrations of NH_4^+ , NO_2^- , and NO_3^- were determined. The incubation was performed
- in triplicates, and the symbol and error bars represent the mean value and the range of
- standard deviation, respectively.

864	Fig. 5. Aerobic H ₂ oxidation by NH ₄ ⁺ - and NO ₂ ⁻ -enriched biomass. The biomass
865	suspension (2.5 mL) was incubated in closed 10-mL vials with the addition of pure H_2 gas
866	into the head space, and the concentrations of H ₂ and O ₂ in the head space were monitored.
867	Both the biomass consumed H ₂ , while the consumption required more than 4 d of lag phase.
868	Error bars represent the range of standard deviation derived from triplicate incubations.
869	Fig. 6. Abundance of AOB and <i>Nitrospira</i> in the NH4 ⁺ -enriched biomass and the reactor
870	effluents discharged from the NH4 ⁺ -feeding DHS reactor. Copy numbers of bacterial 16S
871	rRNA gene, AOB amoA, Nitrospira nxrB, and Nitrospira 16S rRNA gene were determined
872	by quantitative PCR assay. Genomic DNA extraction was performed with >3 biomass
873	samples, and error bar represent the standard deviation of the copy numbers determined from
874	each DNA extracts.

Fig. 1 (Oshiki et al.)

Fig. 2 (Oshiki et al.)

Fig. 3 (Oshiki et al.)

Fig. 4 (Oshiki et al.)

a) NH4⁺-enriched biomass

b) NO₂⁻-enriched biomass

Fig. 5 (Oshiki et al.)

Nitrospira (nxrB) Nitrospira (16S rRNA gene)

Fig. 6 (Oshiki et al.)