

HOKKAIDO UNIVERSITY

Title	Growth of nitrite-oxidizing Nitrospira and ammonia-oxidizing Nitrosomonas in marine recirculating trickling biofilter reactors
Author(s)	Oshiki, Mamoru; Netsu, Hirotoshi; Kuroda, Kyohei; Narihiro, Takashi; Fujii, Naoki; Kindaichi, Tomonori; Suzuki, Yoshiyuki; Watari, Takahiro; Hatamoto, Masashi; Yamaguchi, Takashi; Araki, Nobuo; Okabe, Satoshi
Citation	Environmental microbiology, 24(8), 3735-3750 https://doi.org/10.1111/1462-2920.16085
Issue Date	2022-08
Doc URL	http://hdl.handle.net/2115/90133
Rights	This is the peer reviewed version of the following article: Oshiki, M., Netsu, H., Kuroda, K., Narihiro, T., Fujii, N., Kindaichi, T., Suzuki, Y., Watari, T., Hatamoto, M., Yamaguchi, T., Araki, N. and Okabe, S. (2022), Growth of nitrite-oxidizing Nitrospira and ammonia-oxidizing Nitrosomonas in marine recirculating trickling biofilter reactors. Environ Microbiol, 24: 3735-3750, which has been published in final form at https://doi.org/10.1111/1462-2920.16085. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley 's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Cleaned_Supplemnetary_MO.pdf

1 <u>Supporting information</u>

Growth of nitrite-oxidizing *Nitrospira* and ammonia-oxidizing *Nitrosomonas* in marine recirculating trickling biofilter reactors Mamoru Oshiki^{1, 2*}, Hirotoshi Netsu^{2, 3}, Kyohei Kuroda⁴, Takashi Narihiro⁴, Naoki Fujii⁵, Tomonori Kindaichi⁵, Yoshiyuki Suzuki², Takahiro Watari³,

6 Masashi Hatamoto³, Takashi Yamaguchi⁶, Nobuo Araki² & Satoshi Okabe¹

7 This manuscript contains 2, 8, and 2 supplementary figures, table and text.

9 Figure S1. Phylogeny of the 30 metagenomic bins obtained in the present study. The

- 10 phylogenetic position of the obtained metagenomic bins were shown with red color. The scale
- 11 bar represents 20% sequence divergence.

14 position of the NPIRA02 bin. Branching points that support probability >80% in the

16 joining (NJ) method are shown as filled symbol. The 16S rRNA gene sequence located on the

- 17 NPIRA02 bin was affiliated into the clade containing *Nitrospira salsa* 16S rRNA gene
- 18 sequence (KC706459.1). The scale bar represents 5% sequence divergence.

19 Table S1 Average nucleotide identity (ANI) values of the obtained *Nitrospira* bins. 1; NPIRA01, 2; *Nitrospirae* bacterium SPGG5 (GCA_001643555.1),

20 3; *Nitrospirae* bacterium (GCA_003228495.1), 4; MAG-cas150m-170 (PRJNA548657), 5; NPIRA02, 6; *Nitrospiraceae* bacterium (GCA_003523945.1), 7;

21 NPIRA03, 8; *Nitrospirae* bacterium (GCA_003233615.1), 9; NPIRA06, 10; NPIRA04, 11; NPIRA05, 12; *Nitrospirae* bacterium (GCA_003696975.1),

22 13; Nitrospira sp. bin75 (GCA_002238765.1), 14; Nitrospirales_bacterium_isolate_MH-Pat-all_autometa_1-10 (WLXC01000001.1), 15; Nitrospirae

23 bacterium (GCA_003235785.1), 16; *Nitrospira marina* Nb-295 (PRJNA262287), and 17; MAG-cas50m-175 (PRJNA548657).

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	100%	69.9%	71.0%	70.6%	78.8%	71.0%	71.6%	70.7%	70.8%	89.3%	85.4%	69.7%	69.9%	70.9%	70.7%	70.7%	70.6%
2		100%	71.7%	77.4%	70.2%	70.1%	70.3%	71.4%	70.2%	70.1%	70.2%	70.1%	72.0%	70.5%	70.4%	70.2%	77.4%
3			100%	70.9%	71.4%	73.4%	73.1%	79.9%	73.1%	71.7%	70.6%	69.9%	70.7%	71.2%	78.2%	73.1%	71.1%
4				100%	70.6%	70.3%	70.3%	70.9%	70.1%	70.6%	70.3%	69.9%	71.5%	71.1%	70.4%	70.7%	99.9%
5					100%	71.4%	71.5%	70.8%	70.9%	78.3%	77.6%	69.8%	70.3%	71.6%	70.9%	71.0%	70.7%
6						100%	83.3%	72.7%	84.2%	72.5%	75.3%	70.0%	70.5%	70.6%	74.0%	84.1%	70.7%
7							100%	72.5%	85.1%	71.8%	74.7%	69.5%	70.1%	70.6%	73.5%	88.2%	70.7%
8								100%	72.6%	71.4%	70.7%	69.9%	70.1%	71.1%	76.8%	72.7%	71.0%
9									100%	71.4%	77.3%	69.7%	70.3%	70.6%	73.7%	86.1%	70.6%
10										100%	84.6%	69.9%	70.4%	72.1%	71.1%	71.6%	71.1%
11											100%	69.5%	70.0%	70.6%	71.1%	74.9%	70.5%
12												100%	70.7%	70.2%	69.9%	69.9%	70.1%
13													100%	70.4%	69.9%	70.4%	71.6%
14														100%	70.6%	70.9%	71.2%
15															100%	73.8%	70.8%
16																100%	71.0%
17																	100%

- 25 Table S2 Gene sets involved in central metabolism found in *Nitrospira* (i.e., NPIRA)
- 26 bins.
- 27 (Table S2 is available as the separated excel file.)

Table S3 The blastP analysis of Hao protein found in the obtained *Nitrospira* bin. The blastP analysis was performed using the NPIRA02_01710 protein as the query sequence and *nr* database. *: canonical nitrite-oxidizing *Nitrospira*, [†]: complete ammonia oxidation

31 (commamox) *Nitrospira*.

Organisms	Product	Accession No.	Identity	<i>e</i> -value
Nitrospirales bacterium	cytochrome C552	NKB80548.1	82.6	0
Nitrospiraceae bacterium	TPA: cytochrome C552 partial	HBP89707.1	85.7	0
Nitrospira moscoviensis*	putative octaheme cytochrome c	ALA57709.1	45.7	2.1E-139
Nitrospira japonica*	conserved protein of unknown function	SLM48584.1	42.0	9.0E-137
Nitrospira nitrosa [†]	Hydroxylamine dehydrogenase Candidatus	CUS31385.1	25.6	1.4E-17
Nitrospira nitrificans [†]	Hydroxylamine dehydrogenase Candidatus	CUS32689.1	24.9	1.6E-17
Nitrospira inopinata†	Hydroxylamine dehydrogenase Candidatus	CUQ65042.1	23.8	2.0E-17

- 33 Table S4 Gene sets involved in central metabolism found in *Nitrosomonas* (i.e., NMNS)
- 34 bins
- 35 (Table S4 is available as the separated excel file.)

36 Table S5 Operational conditions of the marine recirculating bioreactors where

Reactor	Salinity	Temp.	pН	DO mg/L	${\rm NH_4^+}^*$ μM	NO2 ⁻ μM	NO3 ⁻ μM	Reference
down-hanging	33‰	20°C	7.3	8	7.9	9.3	4,900	This
sponge (DHS)								study
reactor								
Moving-bed	24-30‰	15–20°C	7	9–10	5-60	10–40	6,000	[1]
biofilter								
Bio ball filter	26.3 psu	n.a.	8.8	6.5	18	n.d.	1,800	[2]
Trickling filter	20‰	19–30°C	7.7	>6	35	15.7	2,000	[3], [4]

37 *Nitrospira* sublineage IV population outnumbered AOB/AOA population.

38 *n.a.*; not available, *n.d.*; not detected

39 * total ammonia concentration, TAN

40 References

41 1. Keuter S, Kruse M, Lipski A, Spieck E. Relevance of *Nitrospira* for nitrite oxidation in a

42 marine recirculation aquaculture system and physiological features of a *Nitrospira*

43 *marina*-like isolate. *Environ Microbiol* 2011; **13**: 2536–2547.

- 44 2. Brown MN, Briones A, Diana J, Raskin L. Ammonia-oxidizing archaea and nitrite-
- 45 oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system. *FEMS*
- 46 *Microbiol Ecol* 2013; **83**: 17–25.

47	3.	Foesel BU, Gieseke A, Schwermer C, Stief P, Koch L, Cytryn E, et al. Nitrosomonas
48		Nm143-like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the
49		nitrifier community in a marine aquaculture biofilm. FEMS Microbiol Ecol 2008; 63:
50		192–204.
51	4.	Gelfand IY, Barak Y, Even-Chen Z, Cytryn E, Rijn J van, Krom MD, et al. A novel zero
52		discharge intensive seawater recirculating system for the culture of marine fish. J World
53		<i>Aquaculture Soc</i> 2003; 34 : 344–358.

54 Table S6. Oligonucleotide primers used for quantitative PCR (qPCR) assays. Annealing

Target	Primers	Sequence (5'-3')	Reference
Prokaryotic	515F	GTGCCAGCMGCCGCGGTAA	Caporaso et al. (2011)
16S rRNA	806r	GGACTACHVGGGTWTCTAAT	
gene			
AOB amoA	amoA1F	GGGGTTTCTACTGGTGGT	Rotthauwe et al., 1997
	amoA2Rv1	CCCCTSKGSRAAKCCTTCTTC	This study
Nitrospira	nxrB169f	TACATGTGGTGGAACA	Pester et al., 2014
nxrB	nxrB638r	CGGTTCTGGTCRATCA	
Nitrospira 16S	Nspra675F	GCGGTGAAATGCGTAGAKATCG	Graham et al., 2007
rRNA gene	Nspra746R	TCAGCGTCAGRWAYGTTCCAGAG	

55 temperature and extension time are 60°C and 20 s, respectively.

56 References

57	Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh,
58	P.J., et al. (2011) Global patterns of 16S rRNA diversity at a depth of millions of
59	sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108: 4516-4522.
60	Graham, D.W., Knapp C.W., Van Vleck, E.S., Bloor, K., Lane, T.B., and Graham, C.E.
61	(2007) Experimental demonstration of chaotic instability in biological nitrification.
62	<i>ISME J</i> 1: 385–393.

63	Pester, M., Maixner, F., Berry, D., Rattei, T., Koch, H., Lücker, S., et al. (2014) NxrB
64	encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic
65	marker for nitrite-oxidizing Nitrospira. Environ Microbiol 16: 3055–3071.
66	Rotthauwe, J-H., Witzel, K-P., and Liesack, A.W. (1997) The ammonia monooxygenase
67	structural gene <i>amoA</i> as a functional marker: molecular fine-scale analysis of natural
68	ammonia-oxidizing populations. Appl Environ Microbiol 63: 4704–4712.

Bin	Accession No.
NPIRA01	BQIU01000001-BQIU01000203
NPIRA02	BQIV01000001-BQIV01000092
NPIRA03	BQIW01000001-BQIW01000218
NPIRA04	BQIX01000001-BQIX01000633
NPIRA05	BQIY01000001-BQIY01000595
NPIRA06	BQIZ01000001-BQIZ01000303
NMNS01	BQJA01000001-BQJA01000199
NMNS02	BQJB01000001-BQJB01000117
NPINA01	BQJC01000001-BQJC01000014
DHS20C01	BQJD01000001-BQJD01000119
DHS20C02	BQJE01000001-BQJE01000012
DHS20C03	BQJF01000001-BQJF01000234
DHS20C04	BQJG01000001-BQJG01000133
DHS20C05	BQJH01000001-BQJH01000386
DHS20C06	ВQЛ01000001-ВQЛ01000271
DHS20C07	BQJJ01000001-BQJJ01000027
DHS20C08	BQJK01000001-BQJK01000006
DHS20C09	BQJL01000001-BQJL01000420
DHS20C10	BQJM01000001-BQJM01000065
DHS20C11	BQJN01000001-BQJN01000210
DHS20C12	BQJO01000001-BQJO01000282
DHS20C13	BQJP01000001-BQJP01000173
DHS20C14	BQJQ01000001-BQJQ01000273
DHS20C15	BQJR01000001-BQJR01000011
DHS20C16	BQJS01000001-BQJS01000478
DHS20C17	BQJT01000001-BQJT01000462
DHS20C18	BQJU01000001-BQJU01000161
DHS20C19	BQJV01000001-BQJV01000589
DHS20C20	BQJW01000001-BQJW01001044

69 Table S7 Accession numbers of the obtained bins.

- 71 Table S8 Calculation of ΔG_r . The calculations were performed under 1) the standard
- 72 condition at pH7, 2) the condition found in NH_4^+ -feeding DHS reactor, 3) the initial condition
- 73 of batch incubation, and 4) the condition where the concentrations of reactant and products
- 74 are one millimolar at pH 7. Additional explanations are available as **Supplementary text 1.**
- 75 (Table S8 is available as the separated Excel file.)
- 76

77 Supplementary text 1

78 Gibbs free-energy change (ΔG_r) of aerobic ammonia and nitrite oxidation in the 79 operated DHS reactors 80 The DHS reactors fed with NH_4^+ or NO_2^- have been operated at 20°C for > 1 y continuously 81 without the change of operational conditions and disturbance (See the section Experimental 82 procedures for details of operational conditions). Typical concentrations of NH₄⁺, NO₂⁻, NO₃⁻ and dissolved oxygen (DO) and pH values were as following [2]; 7.9 µM of NH₄⁺, 9.3 µM of 83 NO₂⁻, 4.9 mM of NO₃⁻, 250 µM of DO, and pH 7.3. 84 85 The ΔG_r of aerobic ammonia (Eq. 1) and nitrite oxidation reaction (Eq. 2) were calculated by using the standard equation ($\Delta G_r = \Delta G_r^{\circ} + RT \ln k$), where, ΔG_r° ; Standard free-86 energy changes, R; gas constant (0.008314 kJ mol⁻¹ K⁻¹), T; temperature (K), k; equilibrium 87 constant calculated from Eq.1 and Eq.2. The ΔG_f^o were as following; -26.57 kJ mol⁻¹ for 88 NH₃, 16.4 kJ mol⁻¹ for dissolved oxygen (*i.e.*, $O_{2 ag}$), 0 kJ mol⁻¹ for H⁺, -37.2 kJ mol⁻¹ for 89 NO_{2}^{-} , -111.34 kJ mol⁻¹ for NO_{3}^{-} , -23.4 kJ mol⁻¹ for $NH_{2}OH$ [3], and -237.17 kJ mol⁻¹ for 90 91 H₂O. NH₃ concentration was calculated from the NH₄⁺ concentration by considering pH equilibrium (pKa = 9.25). 92 $1 \text{ NH}_3 + 1.5 \text{ O}_2 = 1 \text{ NO}_2^- + 1 \text{ H}_2\text{O} + 1 \text{ H}^+$ 93 (1)

94 $2 \operatorname{NO}_2^- + \operatorname{O}_2 = 2 \operatorname{NO}_3^-$ (2)

95	The ΔG_r were calculated under 1) the standard condition at pH7, 2) the condition
96	found in NH4 ⁺ -feeding DHS reactor (described above), 3) the initial condition of the batch
97	incubations with the addition of 0.5 mM NH_4^+ or 0.5 mM NO_2^- and $^{14}CO_2$, and 4) the
98	condition where the concentrations of reactant and products are one millimolar. As for the
99	condition 3), initial concentration of oxidized products (NO2 ⁻ or NO3 ⁻) was assumed to be
100	100-folds lower than the initial NH_4^+ or NO_2^- concentration.
101	The ΔG_r of aerobic ammonia oxidation in the operated DHS reactor and at the batch
102	incubation were -271.7 and -283.3 kJ mol-NH ₃ ⁻¹ , respectively (Table S8). The ΔG_r of
103	aerobic nitrite oxidation in the operated DHS reactor and at the batch incubation were -57.0
104	and -83.5 kJ mol-NO2 ⁻¹ , respectively. Therefore, aerobic ammonia oxidation yields 4.8- and
105	3.4-folds higher free energies than aerobic nitrite oxidation in the DHS reactor and at the
106	batch incubation, respectively.
107	The oxidation reaction of ammonia to NH2OH is described as following [1], and the
108	ΔG_r 'o of the reaction is -170.5 kJ mol-NH ₃ ⁻¹ ;
109	$1 \text{ NH}_3 + 1 \text{ O}_2 + 2 \text{ H}^+ + 2 e^- = 1 \text{ NH}_2\text{OH} + 1 \text{ H}_2\text{O} $ (3)
110	Calculations are available as Table S8.
111	Reference
112	1. Lancaster KM, Caranto JD, Majer SH, Smith MA. Alternative bioenergy: updates to and
113	challenges in nitrification metalloenzymology. Joule 2018; 2: 421–441.

114	2.	Oshiki M, Aizuka T, Netsu H, Oomori S, Nagano A, Yamaguchi T, et al. Total ammonia
115		nitrogen (TAN) removal performance of a recirculating down-hanging sponge (DHS)
116		reactor operated at 10 to 20°C with activated carbon. Aquaculture 2020; 520: 734963.
117	3.	van der Star WRL, van de Graaf MJ, Kartal B, Picioreanu C, Jetten MSM, van
118		Loosdrecht MCM. Response of anaerobic ammonium-oxidizing bacteria to
119		hydroxylamine. Appl Environ Microbiol 2008; 74: 4417–4426.

120 Supplementary text 2

121 2-1) Metabolic potentials of the NPIRA bins

122	Metabolic potentials of the obtained NPIRA bins were examined based on
123	presence/absence of functional genes required. In the following description, the NPIRA05 bin
124	was not included because the completeness of the NPIRA05 bin (59%) was lower than others
125	(81 to 97%) (Table 1). Commamox Nitrospira oxidizes ammonia to NH2OH by ammonia
126	monooxygenase (Amo), and the formed NH2OH is subsequently oxidized to NO by
127	hydroxylamine dehydrogenase (Hao) (Daims et al., 2015; van Kessel et al., 2015). The
128	formed NO is finally oxidized to NO_2^{-} by the as-yet unidentified enzymes and/or abiotic
129	reaction (Carantoa and Lancaster, 2017). Orthologues of commamox Nitrospira amoCAB
130	(threshold <i>e</i> -value of blastp search 10^{-15}) were not found in the NPIRA bins and also in the
131	other known Nitrospira sublineage IV genomes (Fig. 3). As for the hao, the NPIRA2 and
132	NPIRA3 bins had the orthologues of <i>Nitrospira</i> octaheme cytochrome c (OCC) instead of
133	commamox Nitrospira hao, which showed high similarities with the OCC found in the
134	canonical NO2-oxidizing Nitrospira genomes (Nitrospira moscoviensis and Nitrospira
135	japonica genomes) (Table S3). In the Nitrospira moscoviensis genome, the OCC consisted of
136	a gene cluster containing a Rieske/cytochrome b complex and other genes involved in
137	nitrogen acquisition, whereas such a gene cluster was not located in the NPIRA bins. The

138	Nitrospira OCC is currently believed to contribute to assimilatory nitrite reduction and/or the
139	detoxification of hydroxylamine (Koch et al., 2015; Ushiki et al., 2018).
140	As for aerobic nitrite oxidation, orthologue of <i>nxrABC</i> was found in the NPIRA4 bin,
141	whereas one or two genes among the <i>nxrABC</i> were often missing in other NPIRA bins (the
142	NPIRA01, NPIRA02, NPIRA03, and NPIRA06 bins). This is likely due to the incomplete
143	nature of the NPIRA bins (Table 1). As shown in Table 1, the obtained NPIRA bins showed
144	high strain heterogeneity, which became a bottleneck at the assembly and binning of contig
145	sequences, and the genes highly conserved among Nitrospira genomes (i.e., nxr) were often
146	not assigned into specific NPIRA bins. Indeed, the nxrA of the NPIRA03 bin, the nxrB of the
147	NPIRA01 and NPIRA04 bins, and the <i>nxrC</i> of the NPIRA03 and NPIRA04 bins were
148	annotated as the fragmented genes located at the end of the contigs.
149	As a component of respiratory chain, nuo-operons (nuoNMLKJIHGFECDBA and
150	nuoNMMLKJIGDCBA) encoding NADH:ubiquinone oxidoreductase (complex I) were found
151	from the NPIRA bins except for NPIRA06 bin in which the nuoNMLKJIHGFECDBA operon
152	was missing. The NuoNMMLKJIGDCBA is a 2M-type complex I (Chadwick et al., 2018)
153	and likely involved in the reverse electron flow from quinol to ferredoxin which is required
154	for CO ₂ fixation via rTCA cycle (Lawson et al., 2021). Two copies of qcr-operon encoding
155	quinol-cytochrome c reductase (complex III) were found from the NPIRA01, NPIRA02,
156	NPIRA03, and NPIRA04 bins, and alternative complex III module (ACIII) previously found

157	in the Nitrospira marina genome was located in the NPIRA01, NPIRA03, and NPIRA06
158	bins. Nitrospira use a novel cytochrome bd-like heme-copper oxidase as a terminal oxidase
159	(Lücker et al., 2010; Simon and Klotz, 2013). Multiple copies of the genes encoding putative
160	cytochrome bd -like oxidase were found in the NPIRA bins, and the heme b and copper-
161	binding sites conserved in canonical cytochrome bd oxidase were found in the
162	NPIRA01_31930, NPIRA02_18030, NPIRA03_03640, and NPIRA04_28020 proteins. The
163	recently determined Nitrospira marina genome showed that this Nitrospira has an additional
164	putative terminal oxidase with high O ₂ affinities, <i>cbb3</i> -type terminal oxidase (Bayer <i>et al.</i> ,
165	2021). The gene encoding <i>cbb₃</i> -type terminal oxidase was found from the NPIRA01,
166	NPIRA03, and NPIRA04 bins. In Nitrobacter, soluble and membrane bound monoheme
167	cytochrome c550 transfer the electrons released from Nxr to terminal oxidase (Nomoto et al.,
168	1993). The orthologue of the genes encoding Nitrobacter winogradskyi soluble and
169	membrane-bound c550 (the Nwi_2582 and Nwi_0712 genes) (Starkenburg et al., 2006) was
170	not found in the NPIRA bins. The NPIRA bins had the 57 to 72 genes encoding monoheme
171	cytochrome proteins as well as the Nitrospira defluvii genome (Lücker et al., 2010), and those
172	cytochrome proteins supposedly participate the electron transferring from Nitrospira Nxr to
173	the above terminal oxidase(s). The H^+ -translocating F_1F_0 -ATPase was found in the NPIRA
174	bins, and putative Na ⁺ -translocating ATPase previously found in the Nitrospira marina
175	genome was located in the NPIRA03, and NPIRA06 bins.

176	The NPIRA bins had the genes encoding 2-oxoglutarate:ferredoxin oxidoreductase
177	(OGOR), five- and/or four-subunit pyruvate:ferredoxin oxidoreductase (POR), and ATP-
178	citrate lyase (ACL) that are key enzymes in the rTCA cycle (Lücker et al., 2010; Bayer et al.,
179	2021) (Table S2). Four-subunit POR is thought to be more oxygen sensitive but with higher
180	specific activity (Bayer et al., 2021). The gene encoding four-subunit POR was only found
181	from the NPIRA03, NPIRA04 and NPIRA06 bins, whereas the genes encoding the five-
182	subunit POR were well conserved in the NPIRA bins.
183	Nitrospira marina (Bayer et al., 2021) and Nitrospira moscoviensis (Koch et al.,
184	2015) are capable of the growth utilizing formate, and the gene encoding formate
185	dehydrogenase (Fdh) was located in the NPIRA03 and NPIRA06 bins affiliated into the
186	Nitrospira marina clade (Fig. 2). On the other hand, the NPIRA bins affiliated into the
187	Nitrospira salsa clade were commonly lacking the gene encoding formate dehydrogenase
188	(Table S2), suggesting those Nitrospira are incapable of utilizing formate or just reflecting
189	incomplete nature of the NPIRA bins. It would be of interest to examine formate utilization of
190	Nitrospira salsa because the formate utilization would be a niche determinant for Nitrospira
191	salsa and Nitrospira marina who are capable of formate utilization.
192	As an oxidative stress defense system, the NPIRA bins carried the genes encoding
193	superoxide dismutase (SOD), catalase, glutathione peroxidase, and cytochrome c peroxidase.
194	Sulfite oxidation coupled with the reduction of cytochrome c by Nitrospira remains

- 195 controversial due to lack of experimental demonstration, whereas the *sorAB* encoding
- 196 sulfite:cytochrome *c* oxidoreductase was conserved among the NPIRA bins.

197 2-2) Metabolic potentials of the NMNS bins

- 198 The *amoCAB* gene cluster was found in the NMNS01 bin (Table S4). The *amoCAB* gene
- 199 cluster (NMNS01_40000 to NMNS01_40020 genes) was located in the short contig (2.6 kb),
- and no neighbor gene was located in the contig. In the NMNS02 bin, *amoCAB* gene cluster
- 201 was not found, and only *amoC* was found (NMNS02_32030 gene). Hydroxylamine oxidation
- to NO and electron transferring to ubiquinone molecules are carried out by a hydroxylamine

203 ubiquinone redox module (Simon and Klotz, 2013) composed of hydroxylamine

- 204 dehydrogenase (Hao), cytochrome c554, and cytochrome c552. The haoAB, c554, and c552 genes
- are composed of a gene cluster in *Nitrosomonas* sp. Nm143 and *Nitrosomonas aestuarii*
- 206 genomes, and the *haoAB*, *c*554, and *c*552 gene cluster was found in the NMNS02 bin but not in
- 207 the NMNS01 bin. Hydroxylamine oxidation reaction of Nitrosomonas europaea Hao
- 208 produces nitric oxide (NO), which is subsequently oxidized to NO₂⁻. Nitrosocyanin (Arciero
- *et al.*, 2002) is a candidate of NO oxidase (Lancaster *et al.*, 2018), and the gene encoding
- 210 nitrosocyanin was found from both the NMNS01 and NMNS02 bins. Apart from the above
- 211 genes, the NMNS01 and NMNS02 bins had the genes encoding copper-containing NO-
- 212 forming nitrite reductase (NirK), cytochrome-containing nitric oxide reductase (cNor),

213	cytochrome c' beta (Cyt b'), and cytochrome P460 (Cyt _{P460}), and those enzymes may
214	contribute to nitrogen oxide transformation other than aerobic ammonia oxidation.
215	The electrons released from hydroxylamine (and NO) oxidation enter into a
216	respiratory chain in the form of ubiquinol for the generation of proton motive force across a
217	membrane and also of reducing power (i.e., NAD(P)H) required for CO ₂ fixation. The pet-
218	operon (<i>petABC</i>) encoding cytochrome <i>bc1</i> complex (complex III) was found in both the
219	NMNS01 and NMNS02 bins. The electrons released from ubiquinol oxidation are transferred
220	from the complex III to terminal oxidase using a soluble cytochrome c (c_{552}) (Simon and
221	Klotz, 2013), and the c552 gene was located in both the NMNS01 and NMNS02 bins. The
222	NMNS01 and NMNS02 bins had the genes encoding an <i>aa3</i> -type terminal oxidase with low
223	O2 affinity but not a <i>cbb3</i> -type terminal oxidase with high O2 affinity and putative high-O2-
224	affinity terminal oxidase sNor (Sedlacek et al., 2020). The NMNS01 and NMNS02 bins had
225	the two copies of <i>nuo</i> -operon (<i>nuoABCDEFGHIJKLMN</i> and <i>nuoABB/C/DEFGHIJKLMN</i>)
226	encoding NADH:quinone oxidoreductase (complex I) as well as the Nitrosomonas aestuarii
227	genome.
228	References
229	Arciero, D.M., Balny, C., and Hooper, A.B. (1991) Spectroscopic and rapid kinetic studies of
230	reduction of cytochrome c554 by hydroxylamine reductase from Nitrosomonas
231	europaea. Biochemistry 30 : 11466–11472.

232	Bayer, B., Saito, M.A., McIlvin, M.R., Lücker, S., Moran, D.M., Lankiewicz, T.S., et al.
233	(2021) Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and
234	its proteomic response to oxygen-limited conditions. ISME J 15: 1025-1039.
235	Carantoa, J.D., and Lancaster, K.M. (2017) Nitric oxide is an obligate bacterial nitrification
236	intermediate produced by hydroxylamine oxidoreductase. Proc Natl Acad Sci USA
237	114 : 8217–8222.
238	Chadwick, G.L., Hemp, J., Fischer, W.W., and Orphan, V.J. (2018) Convergent evolution of
239	unusual complex I homologs with increased proton pumping capacity: energetic and
240	ecological implications. ISME J 12: 2668–2680.
241	Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen, M. et al. (2015)
242	Complete nitrification by Nitrospira bacteria. Nature 528: 504–509.
243	Koch, H., Lücker, S., Albertsen, M., Kitzinger, K., Herbold, C., Spieck, E. et al. (2015)
244	Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus
245	Nitrospira. Proc. Natl. Acad. Sci. U. S. A. 112: 11371–11376.
246	Lancaster, K.M., Caranto, J.D., Majer, S.H., and Smith, M.A. (2018) Alternative bioenergy:
247	updates to and challenges in nitrification metalloenzymology. Joule 2: 421-441.
248	Lawson, C.E., Mundinger, A.B., Koch, H., Jacobson, T.B., Weathersby, C.A., Jetten, M.S.M.,
249	et al. (2021) Investigating the chemolithoautotrophic and formate metabolism of

250	Nitrospira moscoviensis by constraint-based metabolic modeling and ¹³	
251	analysis. mSystems ; 6: e00173-21.	

- 252 Lücker, S., Wagner, M., Maixner, F., Pelletier, E., Koch, H., Vacherie, B. et al. (2010) A
- 253 *Nitrospira* metagenome illuminates the physiology and evolution of globally
- important nitrite-oxidizing bacteria. *Proc Natl Acad Sci U S A* 107: 13479–13484.
- 255 Nomoto, T., Fukumori, Y., and Yamanaka, T. (1993) Membrane-bound cytochrome c is an
- alternative electron donor for cytochrome *aa₃* in *Nitrobacter winogradskyi*. J Bacteriol
- **257 175**: 4400–4404.
- 258 Sedlacek, C.J., Giguere, A.T., Dobie, M.D., Mellbye, B.L., Ferrell, R.V., Woebken, D. et al.
- 259 (2020) Transcriptomic response of *Nitrosomonas europaea* transitioned from
- ammonia- to oxygen-limited steady-state growth. *mSystems* **5**: e00562-19.
- 261 Simon, J., and Klotz, M.G. (2013) Diversity and evolution of bioenergetic systems involved
- 262 in microbial nitrogen compound transformations. Biochim Biophys Acta 1827: 114–
 263 135.
- 264 Starkenburg, S.R., Chain, P.S.G., Sayavedra-Soto, L.A., Hauser, L., Land, M.L., Larimer,
- 265 F.W. et al. (2006) Genome sequence of the chemolithoautotrophic nitrite-oxidizing
- 266 bacterium *Nitrobacter winogradskyi* Nb-255. *Appl Environ Microbiol* **72**: 2050–2063.

267	Ushiki, N., Fujitani, H., Shimada, Y., Morohoshi, T., Sekiguchi, Y., Tsuneda, S. (2018)
268	Genomic analysis of two phylogenetically distinct Nitrospira species reveals their
269	genomic plasticity and functional diversity. Front. Microbiol. 8: 2637.
270	van Kessel, M.A.H.J. van Speth, D.R., Albertsen, M., Nielsen, P.H., Camp, H.J.M.O. den,
271	Kartal, B. et al. (2015) Complete nitrification by a single microorganism. Nature 528
272	555–559.