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Estimation of damping characteristics and optimization of curvilinear 

fiber shapes for composites fabricated by electrodeposition resin 

molding 

The effect of both curvilinear fiber orientation and thickness distribution on 

modal damping of carbon fiber reinforced plastics (CFRP) fabricated by 

electrodeposition resin molding (ERM) was investigated. Tailored fiber 

placement (TFP) was used to manufacture carbon fiber (CF) performs with 

continuous curvilinear fiber paths or variable-axial properties. The damping of 

composites were calculated using the concept of specific damping capacity 

(SDC). Fiber shapes was optimized to maximize the first modal SDC using 

particle swarm optimization (PSO). As a result, the optimum fiber shape 

improves both the first natural frequency and modal SDC in comparison with 

several unidirectional fiber shapes.  

Keywords:  composite materials; tailored fiber placement; electrodeposition resin 

molding; vibration; damping; optimization; variable-axial stiffness; 

 

1. Introduction 

Carbon fiber reinforced plastic (CFRP) is an anisotropic material whose mechanical 

properties depend on the orientation of carbon fibers. Recently, the development of 

fiber placement techniques such as automated fiber placement (AFP), tailored fiber 

placement (TFP), and 3D printers enabled manufacturing of continuous curved fiber 

shapes, which significantly extends the design freedom of the anisotropic properties of 

CFRP. Among these, the TFP is a technique based on embroidery machines and is 

suitable for mass production of relatively small structures, and in the present study it is 

employed to fabricate carbon fiber (CF) preforms with variable-axial properties. For 

resin impregnation into the preforms, an electrodeposition resin molding (ERM) 

method, which the authors recently proposed [1–3], is employed. The ERM is an 



application of the electrodeposition technique used for automobile body coating. This is 

also suitable for mass production and works well with TFP handling dry CFs. 

Many researchers including authors [4] studied composites with curved fiber 

paths and revealed the appropriate design of fiber shapes archives better mechanical 

characteristics to structures with straight fibers. Related to this, many of the findings are 

summarized in reference [5]. For example, Bittrich et al. [6] optimized fiber shapes and 

thickness distribution to improve the tensile properties of an open-hole plate and 

narrow-middle plate. Almeida et al.[7] studied the effects of curved fiber on tensile 

properties of an open-hole plate, and revealed curvilinear fiber shapes reduce stress 

concentration. Regarding dynamic properties of variable-axial composites, natural 

frequencies and modal shapes were studied by using the Ritz method [8] and p-version 

finite element analysis [9]. The authors [10] optimized the variable-axial composites to 

enhance the fundamental frequency, and Ikeda et al. [11] designed the fiber shapes to 

expand the gap between the first and second natural frequencies. In recent years, many 

other studies on the dynamic properties of variable-axial composites have been reported 

[12–16]. These studies confirmed the superiority of curved fiber shapes over straight 

fiber orientations. 

FRP composites including CFRP have high damping characteristics mainly 

caused by its resin, and damping is also anisotropic. Hu et al. [17] and Pathan et al. [18] 

calculated the damping of CFRP using the finite element method for the plate with 

conventional straight fibers. Pereira et al [19], [20] investigated the effect of curved 

fibers on damping and the use of multi-objective optimization to maximize the 

fundamental modal frequency and damping. Our previous study [21] worked on 

vibration characteristics of CFRP with curved fibers fabricated by the ERM. In the 

study, we revealed the damping of CFRP by the ERM more strongly depends on fiber 



shapes than those by vacuum-assisted resin transfer molding (VaRTM) due to the 

difference of matrix materials. However, fiber shapes were limited to simple forms such 

as duplication of sine curves in parallel. To take advantage of the design freedom of 

curved fibers, it is necessary to adopt a more flexible method of expressing the fiber 

shape. Moreover, the work of Pereira et al. [19,20] and the authors [10] did not consider 

the thickness distribution of CFRP caused by curved fiber shapes in numerical 

calculation. The thickness of variable-axial composite locally changes due to the 

overlap and gaps between fiber tows caused by curvature variation in curved fiber 

paths. For more accurate numerical calculation, it is important to consider the thickness 

distribution of CFRP. 

Relating to damping calculations of CFRP with curvilinear fibers, there is no 

study of simultaneous application of a highly flexible fiber shape and estimation of its 

thickness distribution, especially for the composites fabricated by the ERM method. In 

the present study, we optimize fiber shape considering thickness distribution to 

maximize the first modal damping of CFRP fabricated by the ERM. Additionally, we 

conduct experimental modal analysis to evaluate both the accuracy of damping 

calculation and the optimization results. Damping is modeled by specific damping 

capacity (SDC) and calculated using finite element analysis (FEA). Damping 

parameters for composites fabricated by the ERM are identified using the FEA in 

combination with experimental modal analysis. Radial basis functions (RBFs), which 

are defined by linear combinations of Gaussian functions, are used to generate 

curvilinear fiber shapes that are defined by projecting the RBF contours onto a 

horizontal plane. We determine the specific fiber placement by a sequential calculation 

considering the overlap of CF tows, and then estimate thickness by the proposed 

method. As a result, it turned out that the present method accurately predicts thickness 



distribution of variable-axial composites, obtained optimum fiber shapes by particle 

swarm optimization (PSO) improved the first modal SDC compared to some straight 

fibers, and validity of the numerical results were proven by the experimental results.  

 

2. Damping model 

2.1 Specific damping capacity (SDC) 

The specific damping capacity (SDC) is employed to model the damping properties of 

plates in the present study. The SDC 𝜓 is defined as the ratio of the dissipated energy 

Δ𝑈 to the maximum strain energy 𝑈 in one vibration cycle 𝜓 Δ𝑈/𝑈. For orthotropic 

materials including CFRP, the SDC is calculated as 

𝜓
∑ Δ𝑈, , ,

∑ 𝑈, , ,

∑ 𝜓 𝑈, , ,

∑ 𝑈, , ,
 (1) 

where Δ𝑈 ,𝑈 , and 𝜓  are the dissipated energy, the maximum energy, and SDC in 

each direction of the anisotropic principal axes. This SDC is referred to as material SDC 

in the present paper. Strictly speaking, the material SDC is frequency-dependent, but in 

this study, the change is considered negligible and treated as a non-frequency-dependent 

parameter. Since the value of 𝜓 calculated by the Eq. (1) is specific to each vibration 

mode, it is called the modal SDC to distinguish it from the material SDC. Mode SDC 

represents the damping of the entire structure. The material SDC in each direction was 

identified by comparing experimental modal analysis and FEA results of plain weave 

and orthogonal plate fabricated by the TFP in a preliminary experiment. 

 



2.2 Numerical calculation method for mode SDC 

The modal SDC is calculated by the following procedure [22] using ANSYS 

Mechanical APDL 2019 R3 and Python 3.7.5.  

(1) Run modal analysis: Assuming that the change in eigenmodes due to damping is 

quite small, a modal analysis (real eigenvalue analysis) was performed without 

considering damping to reduce computational cost. 

(2) Obtain stress and strain in the global coordinate: Stresses and strains in each 

element of each layer were obtained from the modal analysis results. 

(3) Transform coordinate to anisotropic principal axes: Stress and strain in the 

global coordinate obtained in step (2) are transformed to anisotropic principal 

axes using fiber orientation angle at each element in each layer. 

(4) Calculate strain energy: Strain energy in each direction of anisotropic principal 

axes is calculated using element volume in each layer with stress and strain 

obtained in step (3). 

(5) Calculate modal SDC: Modal SDC for each mode is calculated by substituting 

strain energy and material SDCs to Eq. (1).  

 

3. Manufacture of CFRP 

3.1 Fabrication of carbon preforms by TFP 

Preforms with curved fiber orientation was achieved using TFP which is an application 

of an embroidery machine. CF tows are fixed to the base material in an arbitrary shape 

by a needle and sewing thread. Figure 1 shows the lamination of carbon fiber preforms. 

Two layers of carbon fiber plain weave TR3110MS (Mitsubishi Chemical Corporation) 



laminated in 0° and 45° directions were used as the base material, and two layers of CF 

tow TR50S12L (Mitsubishi Chemical Corporation) were sewn onto it using the TFP to 

fabricate two sets of 4-layer preforms as shown in Fig. 1 (a). By assembling these 

laminates on the base layer side, the 8-layer symmetrical laminate shown in Fig. 1 (b) 

was fabricated. 

 

 

(a) Four layers of one side (b) Total lamination 

Figure 1. Lamination of CFRP with TFP layers. 

 

3.2 Electrodeposition resin molding (ERM) 

Figure 2 illustrates the experimental equipment for the electrodeposition resin 

impregnation method (ERM). The carbon fiber laminate is hanged by a metal electrode 

and sunk in an epoxy-containing electrolytic solution. By current application, epoxy 

resin is precipitated around the carbon fiber surface. That is, the CF itself acts as a 

cathode, and resin is deposited more homogeneously on each fiber than other methods 

of injecting resin by physical pressure [2]. Figure 3 is a schematic diagram of resin 

precipitation, showing the gradual deposition and growth of resin from the surface of 

the carbon fiber. Elecoat AR (Shimizu Co., Ltd.) was used as the electrodeposition 

solution. As the resin impregnation progresses by current flow, the resistance of the 

cathode (preform) increases, and thus the voltage decreases for a given current 

according to Ohm's law. 



After resin impregnation, excess electrodeposition liquid and voids remaining 

inside the preform were removed using a press machine and vacuum desiccator. The 

two preforms were assembled on the base layer side, sandwiched between PTFE sheets 

and silicon mats, and heat-cured under pressure using  metal plates and vises. 

 

 

Figure 2. Experimental equipment for ERM. 

 

Figure 3. Schematic diagram of resin impregnation in ERM. 

 



4. Curved fiber shapes and thickness distribution 

4.1 Expression of curvilinear fiber paths by contour lines 

In this study, the contour lines of the surface are treated as paths of fibers to represent 

curvilinear fiber orientation. To create the fiber shape with a high degree of freedom, a 

linear combination of radial basis functions (RBFs) was used to define the surface. The 

RBF is a function whose value depends only on the distance from a point. The surface 

function 𝑓 𝑥,𝑦  defined by the RBF is given by the following equation. Three Gaussian 

functions are employed to represent the surfaces. 

𝑓 𝑥, 𝑦 𝑤 exp
𝑥 𝑥 , 𝑦 𝑦 ,

𝑟
 (2) 

Here, 𝑥 , ,𝑦 ,  and 𝑟  𝑖 1, 2, 3  are the parameters for Gaussian functions, and 

𝑤  𝑖 1, 2, 3  are the weight factors. A single Gaussian function gives a concentric 

fiber shape, but a linear combination of multiple Gaussians can represent a fiber shape 

with a high degree of freedom. 

It is difficult to apply the continuous fiber orientation defined by contour lines 

directly to finite elements. Therefore, the fiber shape was discretized for each element 

of the finite element model and treated as a straight fiber within each element. The fiber 

orientation angle 𝜃  in the 𝑒th element is equal to the inclination of the tangent to the 

contour line at the center of the 𝑒th element 𝑥 ,𝑦 , and it is calculated as follows. 

𝜃 Tan
𝜕𝑓/𝜕𝑥
𝜕𝑓/𝜕𝑦 , ,

 
(3) 

Regardless of the scale, it is easier to deal with a one-to-one correspondence between 

the parameters that define the surface and the fiber shape. Therefore, the fiber shape 

was calculated within a region normalized by the length of the lower edge of the plate. 



Figure 4 indicates (a) the example of a curved surface, (b) projected contour lines on the 

horizontal surface, and (c) fiber orientation discretized for the FEA model. 

 

   

(a) Surface (b) Contour (c) Discrete orientation 

Figure 4. Example of a surface defined by Eq. (2) with the corresponding contour and 

discretized fiber shape. 

 

4.2 Fiber placement for TFP fabrication 

To fabricate preforms using TFP, it is necessary to determine the specific arrangement 

of the fiber tows that provide the path for stitching. On the other hand, there are 

countless ways to draw contour lines on a curved surface, depending on the spacing 

between them. Therefore, the width of the fiber tows was used as a constraint to control 

the spacing of the contour lines and to determine the arrangement of the fiber tows. The 

overlap ratio 𝛼 as a measure of the degree of overlap, which is defined as the ratio of 

the width of the overlap to the width of the fiber bundle, is introduced as follows. 

𝛼
𝑤 𝑑
𝑤

 
(4) 

Here, 𝑤  is the width of the fiber tow and 𝑑 is the distance between the center lines of 

adjacent fiber tows. From Eq. (4), the distance 𝑑 between adjacent fiber bundles is 

determined if the overlap ratio 𝛼 at a certain point is given. In this paper, the maximum 



overlap ratio was specified as 𝛼 , and the minimum distance between adjacent fiber 

bundles was determined as 𝑑 1 𝛼 𝑤 . The arrangement of the contour lines 

that satisfied this minimum distance was determined by sequential calculations, and it 

was used as the arrangement of the carbon fiber tows for preform fabrication. The 

following are the procedure of the fiber placement calculation, and Fig. 5 shows a 

schematic diagram of the procedure. Note that this procedure can be applied to any 

function 𝑓 𝑥,𝑦  which defines a curved surface with Eq. (2).  

(1) Generate the calculation grid: Set up a computational grid to calculate the 

passing points of the contour lines. In consideration of the layer thickness 

estimation, the grid was made twice as fine as the meshing of the FEA. 

(2) Calculate 𝑧 𝑓 𝑥 , 𝑦 : The value of 𝑓 is calculated at the reference point of 

the 𝑖th fiber 𝑥 , 𝑦  𝑖 1, 2, 3,⋯ . The reference point here is a point for 

determining the contour line. The reference point for the first fiber is selected 

arbitrarily.  

(3) Calculate the passing points of the 𝑖th fiber bundle: To find the set of points 

passing through the 𝑖th contour line, 𝑥,𝑦  satisfying 𝑓 𝑥,𝑦 𝑧  is calculated 

on the computational grid. For this calculation, 𝑥 (or 𝑦) is fixed and 

corresponding 𝑦 (or 𝑥) needs to be searched. The solution cannot be obtained 

analytically when the linear combination of Gaussian functions defined in Eq. 

(2) is used as 𝑓 𝑥,𝑦 . Here, the solution is calculated using the false position 

method, which always finds a solution and converges faster than the bisection 

method. 

(4) Search the maximum gradient point 𝑋 ,𝑌 : On the 𝑖th contour line, compare 

the gradient |𝛁𝑓| at each passing point, and find the point 𝑋 ,𝑌  𝑖

1, 2, 3,⋯  with the maximum gradient since the distance between adjacent 



contour lines in front and behind becomes the narrowest at the point with the 

maximum gradient. If the overlap ratio at this point is set to the maximum value 

𝛼 , the minimum distance between adjacent contour lines is calculated as 

𝑑 1 𝛼 𝑤  according to Eq. (4). 

(5) Update the reference point: The point 𝑑  away from the point 𝑋 ,𝑌  in the 

normal direction of the contour line is selected as the next reference point 

𝑥 , 𝑦  on the 𝑖 1 contour line. The new point is calculated as follows. 

𝑥 ,𝑦 𝑋 ,𝑌 𝑑 ⋅
𝛁𝑓

|𝛁𝑓| , ,

𝑋 ,𝑌 1 𝛼 𝑤 ⋅
𝛁𝑓

|𝛁𝑓| , ,

 
(5) 

(6) Repetition and termination condition: Steps (3)-(5) are repeated and the 

calculation is terminated when it is no longer possible to draw new contours 

within the calculation area. 

 

 

Figure 5. Schematic diagram of fiber path calculation. 



 

4.3 Estimation of thickness distribution 

This section describes how to estimate the thickness distribution for an arbitrary fiber 

shape function 𝑓 𝑥, 𝑦 . As mentioned above, the thickness distribution occurs due to 

overlaps and gaps between curved fiber tows. The objective here is to express the 

thickness 𝑡 at point 𝑥,𝑦  for arbitral fiber shape function of 𝑓 𝑥,𝑦 . First, the 

relationship between the overlap ratio and the thickness is derived. Figure 6 (a) shows 

fiber tows lined up in a region of width 𝑙 with an overlap ratio of 0, and the number of 

fiber tows is 𝑛 𝑙/𝑤 . Next, consider the situation shown in Fig. 6 (b), where the fiber 

tows are lined up in a region of width 𝑙 with an overlap ratio of α. In this case, the 

number of fibers 𝑛  is obtained as follows. 

𝑤 1 𝛼 𝑤 ⋅ 𝑛 1 𝑙 

∴ 𝑛
𝑙/𝑤  𝛼

1 𝛼
 

(6) 

When the thickness of the fiber bundle is 𝑡 , the thickness of the plate at zero overlap 

ratio becomes 𝑡 . Defining the plate thickness 𝑡 with an overlap ratio 𝛼 as the average 

thickness in infinite width, 𝑡 is obtained from the ratio of 𝑛  and 𝑛  by the following 

equation.  

𝑡 lim
→

𝑛
𝑛

𝑡 lim
→

1 𝛼 ⋅ 𝑤 /𝑙
1 𝛼

𝑡
𝑡

1 𝛼
 (7) 

Now the relationship between the overlap ratio 𝛼 and the thickness 𝑡 is obtained. Using 

Eq. (7), the local thickness at any point is calculated using the overlap ratio 𝛼. Since the 

distance between adjacent fiber tows and the magnitude of the gradient are inversely 

proportional, the space between fiber tows 𝑑 𝑥,𝑦  is calculated as follows. 



𝑑 𝑥,𝑦
|𝛁𝑓|
|𝛁𝑓| ,

𝑑
|𝛁𝑓|
|𝛁𝑓| ,

1 𝛼 𝑤  (8) 

Here, |∇𝑓|  is the magnitude of the gradient at the point where the distance between 

fiber tows is the smallest on each contour line, and |∇𝑓| ,  is the magnitude of the 

gradient at point 𝑥, 𝑦 . Substituting 𝑑 𝑥,𝑦  into Eq. (4), we can obtain the overlap ratio 

𝛼 𝑥, 𝑦 . 

𝛼 𝑥, 𝑦 1
|𝛁𝑓|
|𝛁𝑓| ,

1 𝛼  (9) 

Substituting Eq. (9) into Eq. (7), the thickness 𝑡 𝑥,𝑦  can be expressed using the 

magnitude of the gradient of the fiber shape function 𝑓 𝑥,𝑦  as follows. 

𝑡 𝑥,𝑦
|𝛁𝑓| ,

|𝛁𝑓|
 

𝑡
1 𝛼

|𝛁𝑓| ,

|𝛁𝑓|
𝑡  (10) 

Here, 𝑡  is the thickness at the point where the overlap ratio is the maximum on each 

fiber, that is, the maximum thickness. Thickness at each passing point of fiber tows is 

calculated by Eq. (10), and then the average thickness is calculated at each element for 

FEA using the grid point within the element. 

  

(a) Overlap ratio 0 (b) Overlap ratio 𝛼 

Figure 6. Schematic diagrams of fiber placement. 

 



5 Fiber shape optimization 

5.1 Optimization condition 

The optimization of curved fiber orientation is performed to maximize the first modal 

damping 𝜓 . To take advantage of the curved fiber shape, the optimization target is not 

a simple rectangle, but a L-shape as shown in Fig. 7 under the totally free boundary 

condition. As indicated in Fig. 1, the lay-up configuration was [(TFP)2/PW 45/PW 0]s, 

and the fiber shape of the TFP layers is optimized here. The design variables are the 

parameters of the Gaussian functions in the fiber shape function defined by Eq. (2). The 

objective function is the inverse of the first modal SDC 𝜓 , and the parameters that 

minimize it are searched. 

Minimize:  𝑓 𝑥 , ,𝑦 , ,𝜎 ,𝑤 𝜓      𝑖 1, 2, 3  

(11) 
  

Such that:  
2 𝑥 , 2,    2 𝑦 , 2,  

0.001 𝑟 4,   2 𝑤 2 

PSO with the nonlinear dissipative term [23] is used as the optimization algorithm, and 

this algorithm defines the weight of inertia by nonlinear functions, while conventional 

PSO uses the constant value for the weight of inertia. The parameters for PSO with 

nonlinear dissipative term were 𝑐 1.4, 𝑐 1.4,𝑑 3.0,𝑑 0.5,𝑑 0.02. Both 

numbers of particles and iterations were set to 200. For comparison, optimum parabolic 

and sinusoidal fiber shapes, and various unidirectional (UD) fibers were employed. The 

thickness of the laminated materials and the material constants are shown in Table 1. 

The material SDCs 𝜓 𝑖, 𝑗 1, 2, 3  shown in Table 1 were identified by experimental 

modal analysis and FEA in preliminary experiments. 



 

Figure 7. Dimensions of the L-shaped plate model. 

 

Table 1. Material constants for plain weave sheet and TFP layer used in optimization. 

 Thickness 
mm  

𝐸  
GPa  

𝐸  
GPa  

𝐺  
GPa  

𝜈  
 

𝜌 
kg/m  

𝜓  
%  

𝜓  
%  

𝜓  
%  

PW 0.289 37.7 37.7 3.26 0.3 1442 3.08 3.08 23.9 
TFP Variable 102.7 9.04 5.05 0.3 1295 5.19 13.5 16.4 

 

5.2 Optimization results 

Figure 8 shows the optimum fiber shape, thickness distribution in the TFP (sewn fiber) 

layers, and the first modal shape obtained by the optimization. Table 2 shows the 

Gaussian function parameters for the optimum fiber shape. It is known from Fig. 8(c) 

that the first mode shape is torsional deformation. This is because 𝜓  which is related 

to shear deformation is the largest among the directional components of the material 

SDC. Figures 9 and 10 show the optimum parabolic and sinusoidal fiber shapes and 

thickness distributions. The shapes are obtained by the similar optimization method, 

using amplitude and frequency as design variables in the case of a sinusoidal function, 

and vertex point and proportionality constant in the case of a parabola. For both cases, 

only one fiber shape is optimized and the same fibers are placed in parallel within the 



region. The ranges of the color bars in the thickness distribution are in the same range as 

Fig. 8(c). 

Table 3 shows the first modal SDC and natural frequency for the various fiber 

shapes including unidirectional (UD) fibers. The thickness of the TFP layers for the UD 

fibers was set to 0.518 mm, which is the same as the average thickness for the optimum 

fiber shape shown in Fig. 8 (b). UD 4 and UD 76 in Table 3 are the unidirectional 

orientation angles that give the maximum and minimum first modal SDC respectively.  

The optimum fiber shape by the Gaussian functions has the highest first modal 

SDC and natural frequency in all fiber shapes. The first mode SDC of optimum fiber 

shape is +9% larger than that of UD 4, which has the largest first mode SDC in UD 

orientations, and +36% larger than that of UD 76, which has the smallest first mode 

SDC. The fiber shapes obtained by optimization and UD -45 look similar, but the first 

modal SDC of the former is 28% higher. The first mode SDCs for the parabolic and 

sinusoidal fiber shapes are lower than those obtained in the optimization but higher than 

those for the UD orientation. These results confirm that the curved orientation is more 

effective to improve damping than the unidirectional orientation. 

Comparing the three types of curvilinear fiber shapes, the fiber shape defined by 

the Gaussian functions indicates the slightly higher first modal SDC than the parabolic 

and sinusoidal shapes. This is because the optimum fiber shape under the present 

conditions is close to straight lines as shown in Figure 8 (a), and similar shapes is 

reproduced by parabolic and sinusoidal curves. However, when comparing the thickness 

distributions, the parabolic and sinusoidal fiber shapes resulted in more flat distributions 

than the Gaussian shape. This high degree of freedom regarding thickness distribution 

contributed to the higher damping of the Gaussian shape compared to other shapes. The 

average thickness of the TFP layer is 0.518 mm, 0.554 mm, and 0.569 mm for the 



Gaussian, parabolic, and sinusoidal fiber shapes, respectively. These results imply that 

the Gaussian fiber shape achieves higher damping performance even with fewer 

materials. The optimal fiber shape has the highest frequency, although the frequency 

was not included in the objective function. 

 

 
   

(a) Optimum fiber shape  (b) Thickness distribution  (c) First mode shape 

Figure 8. Obtained optimum fiber shape defined by Gaussian functions, its thickness 

distribution and first mode shape with the maximum first modal SDC. 

 

Table 2. Parameters for Gaussian functions corresponding to optimum fiber shape. 

𝑖 𝑥 ,  𝑦 ,  𝑟  𝑤  

1 1.026 0.700 0.918 1.017 

2 0.701 0.165 3.682 1.876 

3 0.592 0.587 3.992 1.102 

 



  

(a) Optimum fiber shape (b) Thickness distribution 

Figure 9. Optimum parabola fiber shape and its thickness distribution with the 

maximum first modal SDC. 

 

 

  

(a) Optimum fiber shape (b) Thickness distribution 

Figure 10. Optimum sinusoidal fiber shape and its thickness distribution with the 

maximum first modal SDC. 

 

 

 

 

 



Table 3. First natural frequencies and modal SDCs calculated with curved and 

unidirectional (UD) fiber shapes. 

Fiber shape 1st frequency Hz  1st SDC %  

Gaussian functions (best) 757 15.6 

Parabola (best) 701 15.3 

Sine curve (best) 716 15.4 

UD 0 676 14.3 

UD 4 (best) 673 14.3 

UD 45 648 12.9 

UD 76 (worst) 592 11.5 

UD 90 586 11.8 

UD −45 683 12.2 

 

6. Experimental verification 

6.1 Fabrication of CFRP 

To confirm the accuracy of the calculation for the thickness and damping, we fabricated 

a CFRP plate with the shape shown in Fig. 8 (a) by the TFP with ERM and conducted 

the experimental modal analysis. The lamination of the CFRP is [(Opt.)2/PW 45/PW 

0]s, which has the optimum fiber shape defined by Eq. (2) and the parameters shown in 

Table 2. The current and voltage conditions for the ERM were 1.5 A constant until the 

voltage reaches 200 V, and constant 200 V is kept until current becomes less than 0.4 A. 

Heat curing conditions were as follows: the temperature was raised to 215°C in 2 hours, 

then kept in an oven for 6 hours, and cooled at room temperature. Table 4 shows the 

material constants used in FEA for comparison. Note that these data differ from those 



shown in Table 1 because, as a result of trial and error, new conditions were applied that 

allowed for a more efficient manufacturing process by the ERM. 

 

Table 4. Material constants for plain weave sheet and TFP layer used in comparison. 

 Thickness 

mm  

𝐸  

GPa  

𝐸  

GPa  

𝐺  

GPa  

𝜈  

 

𝜌 

kg/m  

𝜓  

%  

𝜓  

%  

𝜓  

%  

PW 0.184 37.7 37.7 3.26 0.3 1442 6.14 6.14 29.4 

TFP Variable 102.7 4.80 3.20 0.3 1295 3.01 20.1 22.5 

 

6.2 Measurement of thickness distribution 

To confirm the accuracy of the thickness calculation, the thickness distribution of the 

fabricated plate with optimum fiber shape is measured. Since the thickness distribution 

described above did not include pressure during thermal curing, a correction factor for 

thickness is needed for accurate estimation and it is calculated based on the 

experimental results. First, the thicknesses of 91 points were measured by using a 

micrometer, and the result is shown in Fig. 11 (a). The blank space in the figure is the 

area where the micrometer could not reach. The average thickness of the plate was 2.51 

mm. With this result, the thickness of the fiber bundle was set to 0.30 mm so that the 

average value of the calculated thickness distribution would agree with the result. 

Figure 11 (b) shows the thickness distribution calculated using the determined 

fiber tow thickness. The ranges of the color bars are the same in Fig. 11 (a) and (b). 

From these two thickness distributions, it is can be said that the trends of both 

distributions are consistent. However, the difference between the thin and thick areas is 

larger in the estimated distribution than those measured. Fig. 11 (c) is the distribution of 



the difference between the measured and estimated value. The difference is calculated 

as exp. calc. /exp. 100 % . In Fig. 11 (c), the measured thickness is thicker than 

the estimated value in red areas and thinner in the blue areas. 

Comparing Fig. 11 (b) and Fig. 11 (c), the thickness is underestimated in the 

lower right and upper area, while it is overestimated near the center where the estimated 

thickness is large. The first and second lines in Table 5 show the mean value, maximum 

value, minimum value, and standard deviation (SD) of the distributions obtained by 

measurement and numerical calculation. The measured thickness distribution gives 

small values of both the SD and the range between minimum and maximum. These 

results show that the calculation overestimates the dispersion of the thickness. The 

reason for this is that the compression during the curing process was not considered. 

The uneven laminated material was sandwiched between flat metal plates during heat 

curing, and the thicker areas were highly pressurized while the thinner areas were only 

lightly pressurised. Thus, resulting in a thickness distribution with little dispersion for 

the fabricated plate. 

(a) Measured thickness  (b) Calculated thickness  (c) Difference 

Figure 11. Thickness distribution measured and calculated with fiber. tow thickness of 

0.30 mm and those differences. 

 

 

 



 

Table 5. Thickness distribution obtained by experiment and calculation. 

 Thickness [mm] 

 Average Max. Min. SD 

Measured 2.51 2.70 2.21 0.120 

Calc.without 

correction 

2.51 2.74 1.91 0.223 

Calc. with correction 2.51 2.63 2.18 0.121 

 

It is necessary to decrease the dispersion of the thickness in the calculation for a more 

accurate estimation. Therefore, the thickness correction is applied using the following 

equation. 

𝑡 𝑡
𝑡 𝑡

𝑐
 (12) 

Here, 𝑡  and 𝑡  is the calculated thickness before and after the correction 

respectively, and 𝑡  is the average of the measured thickness. 𝑐 is the correction 

factor, and as the value approaches 1, the dispersion of the corrected thickness becomes 

small. When 𝑐 1, 𝑡  is equal to 𝑡 , and this correction does not change the 

average thickness regardless of the value of 𝑐. As a result of trial and error, we found 

the SD of the estimated thickness distribution agrees with that of the measured one 

when 𝑐 2.2. 

Figure 12 (a) is the thickness distribution corrected using the correction factor, 

and Fig. 12 (b) shows its difference from the measured value shown in Fig. 11 (a). The 

range of the color bar is unified among Fig. 11 (a), Fig. 11 (b), and Fig. 12 (a) and 

between Fig. 11 (c) and Fig. 12 (b). The last line in Table 5 lists the corrected thickness 



distributions. The difference decreased greatly by the correction, and the difference of 

the minimum value, which was particularly large before the correction, also improved. 

This validates the effectiveness of the correction defined by Eq. (12). In the next 

section, this correction is applied to the numerical analysis. 

  

(a) Thickness (b) Difference 

Figure 12. Corrected thickness distribution calculated with fiber thickness of 0.30 mm 

and thickness collection factor. 

 

6.3 Experimental modal analysis  

64 grid points on the fabricated composite plate were excited five times respectively by 

an impulse hammer. The dimensions and material constants shown in Table 4 were used 

in the numerical analysis for comparison. Figures 13 and 14 show the mode shapes and 

natural frequencies obtained from the experiment and FEA, and the modal SDCs and 

difference between experiment and calculation, which are defined by  diff.

exp. calc. /exp. 100 % . The second mode obtained numerically could not be 

clearly obtained experimentally. This might be caused by the fact that the second 

frequency is very close to the first. 

As for the natural frequencies, the experimental values are lower than the 

calculated values for all modes. The difference for the first mode that is the objective of 



the optimization is 4% between the experimental and calculated results, showing good 

agreement. However, the experiment gives more than 20% lower values for the third 

and fourth modes. This is because the reduction of the elastic modulus due to the gap of 

fiber tows is not included in the calculation. On the other hand, regarding the modal 

SDC, the experimental values agree well with the calculated values from the first to 

third modes. Although there is a relatively large difference in the fourth mode, the trend 

of the modal SDC transition agrees between the experimental and calculated values. 

This result shows that the present calculation method successfully evaluates the modal 

damping for CFRPs fabricated by the ERM. The reason for the large difference in the 

higher mode is that the material SDC was identified by using only the lower modes. 

Finally, the effect of applying thickness distribution to the FEA was 

investigated. Figure 15 indicates  The first mode shapes, frequencies, and modal 

damping obtained by (1) experiment, (2) FEA with estimated thickness distribution, and 

(3) FEA with constant thickness. In the case of (3), the thickness of the TFP layer was 

set to 0.444 mm so that the total thickness of the eight layers coincides with the 

measured average thickness of 2.51 mm. The first natural frequency does not change 

largely by applying the thickness distribution. However, the thickness distribution 

affects the first mode shape and modal SDC significantly, and the difference to the 

experimental results is much larger without thickness distribution. Therefore, it can be 

concluded that the estimation of the thickness distribution is extremely important for 

predicting modal damping by numerical calculation. 

 

 

 

 



  Mode No.  1st  2nd  3rd  4th 

Mode shape 

Exp. 

 

 

   

FEA 

       

Frequency 
Hz  

Exp.  448  697 1054 
FEA  466 476 848 1285 

Diff.  %   4.0  21.7 22.0 

Figure 13. Measured and calculated mode shapes and natural frequencies. 

 

 

Figure 14. Measured and calculated mode SDCs and their differences. 
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Figure 15. The first frequencies and mode shapes obtained by the experiment and FEA 

with two types of thickness configuration. 

 

7. Conclusion 

In this study, the specific damping capacity (SDC) was estimated numerically, and the 

fiber shape was optimized to maximize the first modal SDC for composites assuming 

the fabrication of the electrodeposition resin molding (ERM). For the test specimen 

fabricated by the tailored fiber placement (TFP) machine and the ERM, the 

experimental modal analysis was conducted to evaluate the results of numerical analysis 

and optimization. The fiber shape was expressed by contour lines of a surface defined 

by a linear combination of Gaussian functions or radial base function (RBF), which 

generates flexible fiber shapes. The thickness distribution caused by curved fiber shapes 

was estimated and applied to the finite element analysis.  

To validate the optimization result, unidirectional (UD) fiber shapes and two 

types of optimum curved fiber shapes, parabolic and sinusoidal curves, were employed 

for comparison. The optimum results had the highest first natural frequency and modal 



SDC, in addition the optimum parabolic and sinusoidal curves, and UD 45 plates had 

a similar shape to the optimum curved fiber. These results implies that the present 

flexible expression method for curved fiber shapes is effective for improving damping 

of composites. The present thickness estimation and optimum distributions for curved 

fiber shapes also demonstrated that the flexible fiber shape achieve higher damping with 

less materials. This implies that the present fiber shape expression is more useful when 

the plate shape and conditions are more complex. 

The test specimen with the optimum fiber shapes defined by the Gaussian 

functions was fabricated for the experiments to verify the analysis results. The results of 

the experimental modal analysis indicate that the trend of modal SDCs is estimated 

numerically for CFRPs with curved fiber shapes fabricated by the ERM. It was also 

examined that the effect of thickness distribution on numerical damping calculation by 

comparing three results: the experimental results, FEA with thickness distribution, and 

FEA without thickness distribution. The first mode shapes and SDC differed greatly 

from the experimental results when the thickness distribution was not applied. This 

result concludes that the estimation of thickness distribution is important to calculate 

damping for CFRPs with curved fiber shapes.  
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