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PAPER Special Section on Mathematical Systems Science and its Applications

Detection of False Data Injection Attacks in Distributed State
Estimation of Power Networks∗

Sho OBATA†, Nonmember, Koichi KOBAYASHI†a), and Yuh YAMASHITA†, Members

SUMMARY In a power network, it is important to detect a cyber attack.
In this paper, we propose a method for detecting false data injection (FDI)
attacks in distributed state estimation. An FDI attack is well known as one
of the typical cyber attacks in a power network. As a method of FDI attack
detection, we consider calculating the residual (i.e., the difference between
the observed and estimated values). In the proposed detection method,
the tentative residual (estimated error) in ADMM (Alternating Direction
Method of Multipliers), which is one of the powerful methods in distributed
optimization, is applied. First, the effect of an FDI attack is analyzed. Next,
based on the analysis result, a detection parameter is introduced based on
the residual. A detection method using this parameter is then proposed.
Finally, the proposed method is demonstrated through a numerical example
on the IEEE 14-bus system.
key words: power networks, distributed state estimation, false data injection
attacks, ADMM (Alternating Direction Method of Multipliers)

1. Introduction

Cyber attacks against various control systems have attracted
much attention (see, e.g., [9]–[13]). In a power network,
the state estimation problem in the steady-state aims to esti-
mate the state (the vector consisting of the bus phase angles)
from the measured value (the vector consisting of active
power flow measurements). In state estimation of steady-
state power networks, a false data injection (FDI) attack that
cannot be detected from the residual (i.e., the difference
between the observed and estimated values) is well known
[4], [6], [11], [14]. FDI attacks can be realized by attacking
multiple sensors simultaneously under the assumption that
an attacker knows the structure (i.e., the sensor placement)
of a given power network. The effects of FDI attacks are
then eliminated from the estimation error. An attacker can
change the state, while the control system cannot detect this
change from the value of the residual.

On the other hand, distributed optimization is effective
in state estimation and control of large-scale systems. In
the conventional distributed optimization method, a given
system is decomposed into multiple subsystems. Each sub-
system (slave node) solves the local optimization problem.
An aggregator (master node) collects the computation results
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of subsystems, and updates the optimal value. Several meth-
ods for distributed optimization have been proposed (see,
e.g., [3], [5], [15]). In particular, ADMM (Alternating Di-
rection Method of Multipliers) [1] is well known as one of
the powerful methods in distributed optimization. In [2],
the ADMM-based distributed state estimation method has
been proposed for a power network. In this method, it is
assumed that there exist data deception attacks and denial of
service (DoS) attacks. However, FDI attacks have been not
considered.

In this paper, we propose a method for detecting FDI
attacks in distributed state estimation using ADMM. FDI at-
tacks cannot be detected from the converged estimated state
obtained by ADMM. This is because elimination of FDI at-
tacks from the residual occurs in the converged estimated
state. On other hand, the effects of FDI attacks may be
detected from the tentative estimated state before conver-
gence. This is because elimination of the attack effect does
not occur when starting ADMM. In the proposed method,
the tentative residual in ADMM is used. First, the effect of
FDI attacks is analyzed. Next, based on the analysis result,
a detection parameter is introduced based on the residual. A
detection method using this parameter is proposed. Finally,
the proposed method is demonstrated through a numerical
example on the IEEE 14-bus system. We show that a sim-
ple distributed solution method based on the least squares
method is ineffective in the detection of FDI attacks in the
IEEE 14-bus system (see Sect. 4.2 for further details of this
method). Using the proposed method, FDI attacks can be
detected.

This paper is organized as follows. In Sect. 2, state
estimation of power networks, FDI attacks, and distributed
state estimation are summarized as preliminaries. In Sect. 3,
the effects of FDI attacks in ADMM are analyzed. Based
on the results, a detection method is proposed. In Sect. 4, a
numerical example is presented. In Sect. 5, we conclude this
paper.

Notation: Let R denote the set of real numbers. Let
0m×n (1m×n) denote the m×n matrix whose element is 0 (1).
Let In denote the n × n identity matrix. For the vector x, let
‖x‖ denote the Euclidean norm of x.

2. Preliminaries

2.1 State Estimation of Power Networks

Consider state estimation of power networks with n+1 buses

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 An example of a power network.

in the steady-state. The bus phase angles are denoted by δi ,
i = 1,2, . . . ,n + 1. One (arbitrary) bus phase angle is fixed
as a reference angle. In this paper, we fix δ1 as δ1 := 0,
and consider estimating only n angles. Let zi , i = 1,2, . . . ,m
denote the m active power flow measurements. Assume
that the phase differences δi − δj in the power network are
sufficiently small. The following linear approximation is
therefore accurate:

z = Hx,

where z = [z1, z2, . . . , zm]> ∈ Rm and x =

[δ2, δ3, . . . , δn+1]
> ∈ Rn. For simplicity of discussion, we

consider the noise-free case.
The matrix H can be derived from a given power net-

work (see, e.g., [10]). For example, the matrix H of the
power network shown in Fig. 1 can be obtained as

H =


−1 −1 0
−1 0 0
1 0 0
1 0 −1
0 −1 0


.

We also assume that rank(H) = n. A solution x̂ (i.e., the
estimated value) minimizing 1

2 ‖Hx − z‖2 can be derived as

x̂ = (H>H)−1H>z. (1)

In this paper, the estimation method using (1) is called a
centralized state estimation.

2.2 Distributed State Estimation

We summarize distributed state estimation using ADMM.
Consider decomposing a power network into K subsystems.
The matrix H and the vector z are decomposed into

H =


H1
H2
...

HK


, z =


z1
z2
...

zK


,

respectively. For simplicity of discussion, we assume that
the size of Hi is the same (i.e., the size of zi is also the same).

In the conventional ADMM, we consider the system
consisting of K slave nodes and one master node (see Fig. 2).
The slave node i has both Hi and zi of the subsystem i. Using
Hi and zi , the slave node i calculates the estimated state x̂i ,

Fig. 2 A master node and slave nodes in ADMM.

Algorithm 1: Distributed state estimation using ADMM
Given ε > 0, γ > 0, r (0)i , x̂(0)i , and y(0)i . Set k = 0.
while the stopping criterion (

∑K
i r
(k)
i < ε) is not satisfied do

w(k+1) = 1
K

∑K
i=1(x̂

(k)
i − y

(k)
i ).

Broadcast w(k+1) to all the local nodes.
for i = 1, 2, . . . , K in parallel do

x̂
(k+1)
i = arg min

z

1
2 ‖Hi x − zi ‖

2 + 1
2γ ‖w

(k+1) + y(k)i − x ‖2.

y
(k+1)
i = y

(k)
i + w(k+1) − x̂

(k+1)
i .

Send x̂
(k+1)
i , y(k+1)

i , and r (k+1)
i := ‖Hi x̂

(k+1)
i − zi ‖ to the master

node.
end for
k ← k + 1.

end while

the dual variables yi , and the residual ri as follows:

x̂(k+1)
i = arg min

x

1
2
‖Hi x − zi ‖2

+
1

2γ
‖w(k+1) + y

(k)
i − x‖2

= (γIN − γ2H>i (I m
K
+ γHiH>i )

−1Hi)

× (H>i zi +
1
γ
(w(k+1) + y

(k)
i )), (2)

y
(k+1)
i = y

(k)
i + w

(k+1) − x̂(k+1)
i , (3)

r (k+1)
i := ‖Hi x̂

(k+1)
i − zi ‖.

The master node aggregates the computation result, and cal-
culates the average as follows:

w(k+1) =
1
K

K∑
i=1
(x̂(k)i − y

(k)
i ),

which is sent to all the local nodes. A solution (i.e., the
estimated state) minimizing the objective function 1

2 ‖Hx −
z‖2(= 1

2
∑K

i=1 ‖Hi xi − z‖2) can be derived by Algorithm 1.
Since the stopping criterion is checked in themaster node, the
estimated state can be obtained in this node. It is guaranteed
that limk→∞ x̂(k)i = x̂ holds (see, e.g., [1] for further details).

Remark 1: One of the weak points in the conventional
ADMM is to use a master node. A fully distributed ADMM
method in which a master node is not required has been pro-
posed (see, e.g., [2], [7]). For simplicity of discussion, we
use the conventional ADMM. Depending on the computa-
tional environment, we may choose an appropriate ADMM
method.
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Fig. 3 Cyber attack in centralized state estimation.

2.3 False Data Injection Attack in Centralized State Esti-
mation

In the centralized state estimation, as a method for detect-
ing false data, we consider calculating the residual (i.e., the
difference between the measured value z and the estimated
value Hx̂). It is said that false data is injected if the following
condition holds:

r := ‖Hx̂ − z‖ > τ, (4)

where τ is a given threshold, and is determined from the
tolerated error.

We suppose that a cyber attack through a communica-
tion network is detected by the state estimator (see Fig. 3).
Here, we assume that an attacker knows the matrix H (i.e.,
the structure of the power network). Although an attacker
can then change the state x̂, the state estimator cannot detect
this change from the value of the residual r . Such a cyber at-
tack is called an FDI attack. In FDI attacks, we suppose that
an attacker can change the measured value z to za = z + a,
where a = [a1,a2, . . . ,am]> is called an attack vector. We
assume that the attack vector a is generated by a = Hc,
where c is an arbitrary vector. The estimated state x̂a after a
cyber attack can be calculated by

x̂a = (H>WH)−1H>Wza

= x̂ + (H>WH)−1H>WHc
= x̂ + c.

That is, x̂ can be changed to x̂ + c if an attacker utilizes
a = Hc. However, in this case, the residual r is not changed
as follows:

‖Hx̂a − za‖ = ‖H(x̂ + c) − (z + Hc)‖
= ‖Hx̂ − z‖.

Thus, by attacking multiple sensors, an attacker can achieve
a tampering that cannot be detected by the state estimator.

3. Proposed Detection Method

3.1 Effect Analysis of FDI Attacks in ADMM

Now, we consider analyzing the effect of FDI attacks in
ADMM. In this paper, we suppose the system configuration

Fig. 4 Cyber attack in distributed state estimation.

shown in Fig. 4, where za,i is the measured value of the
subsystem i after a cyber attack. We assume that cyber
attacks occur simultaneously in all subsystems. The master
node judges whether an FDI attack has occurred. We remark
that cyber attacks through a communication network between
the master node and slave nodes are not considered. This is
because this technical issue can be overcome by using, e.g.,
fully distributed ADMM methods [2], [7] and Blockchain
technologies [8]. Since x̂(k)i , k = 0,1,2, . . . converges to x̂ in
(1), elimination of FDI attacks occurs, where k is the number
of turns. Hence, FDI attacks cannot be detected from the
estimated state obtained by Algorithm 1.

We consider why ADMM eliminates FDI attacks.
When an FDI attack does not occur, x̂(k+1)

i and y
(k+1)
i in

Algorithm 1 can be expressed as (2) and (3), respectively.
Using (2) and (3), the residual r (k+1)

i can be expressed as

r (k+1)
i = ‖Hi x̂

(k+1)
i − zi ‖

= ‖Hi(γIN − γ2H>i (I m
K
+ γHiH>i )

−1Hi)

× (H>i zi +
1
γ
(w(k+1) + y

(k)
i )) − zi ‖

= ‖(I m
K
+ γHiH>i )

−1
γHiH>i zi

+ (I m
K
+ γHiH>i )

−1Hi(w
(k+1) + y

(k)
i )) − zi ‖

= ‖(I m
K
+ γHiH>i )

−1Hi(w
(k+1) + y

(k)
i ))

− (I m
K
+ γHiH>i )

−1zi ‖

= ‖(I m
K
+ γHiH>i )

−1
(Hi(w

(k+1) + y
(k)
i ) − zi)‖.

Consider FDI attack detection using the residual after
convergence. When an FDI attack does not occur, we have
w(k+1) → x̂, y(k)i → 0 (k → ∞). Then, the converged
residual ri is expressed as

ri := lim
k→∞

r (k+1)
i

= lim
k→∞
‖(I m

K
+ γHiH>i )

−1

× (Hi(w
(k+1) + y

(k)
i ) − zi)‖
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= ‖(I m
K
+ γHiH>i )

−1
(Hi x̂ − zi)‖.

Next, consider the case of the FDI attack. For each
subsystem i, themeasured value zi is changed to za,i = zi+ai .
The attack vector ai is defined by ai = Hic. The values of
w and y converge w(k+1) → x̂ + c, y(k)i → 0 (k → ∞). Let
r (k+1)
a,i denote the residual in subsystem i when an FDI attack
occurs. The converged residual is expressed as

lim
k→∞

r (k+1)
a,i = lim

k→∞
‖(I m

K
+ γHiH>i )

−1

× (Hi(w
(k+1) + y

(k)
i )) − (zi + Hic))‖

= ‖(I m
K
+ γHiH>i )

−1
(Hi(x̂ + c)

− (zi + Hic))‖

= ‖(I m
K
+ γHiH>i )

−1

× (Hi x̂ + Hic − zi − Hic)‖
= ri,

which implies that also in the distributed state estimation, the
residual in no attack case is the same as that in an attack case.
In other words, the elimination of an FDI attack occurs.

Based on the above discussion, we consider using the
residuals before convergence to detect the FDI attack. For
some T � ∞, we can obtain

r (T+1)
a,i = ‖(I m

K
+ γHiH>i )

−1
(Hi(w

(T+1) + y
(T )
i )

− (zi + Hic))‖

, r (T+1)
i .

In this case, the elimination of the FDI attack does not occur.
Hence, the FDI attack appears in the residual, and can be
detected.

3.2 Attack Detection in ADMM

Based on the results described in Sect. 3.1, we propose a de-
tectionmethod using tentative state estimation. Consider cal-
culating the residual from tentative state estimation for each
subsystem. Here, we use the residual r (k)i , i = 1,2, . . . ,K ,
k = 0,1, . . . ,T , where T is given in advance. We define the
detection parameter for the subsystem i as

si :=
T∑
k=0

r (k)i . (5)

The value of the detection parameter si may increase or
decrease due to FDI attacks. It is therefore necessary to set
the upper and lower thresholds for the detection parameter.
For some steady-state candidates, the value of the detection
parameter si is estimated from numerical experiments of
normal cases. The upper and lower thresholds are set using
the estimation result and the tolerated error. From such
preliminary experiments, the interval for the subsystem i in
the normal condition, i.e.,

si ≤ si ≤ si (6)

is estimated. State estimation using Algorithm 1 is applied
at a certain time interval, and si can be then calculated. Let
si(t) denote the detection parameter si at time t. We then
determine that an FDI attack occurs in the subsystem i at
time t, if si(t) does not satisfy (6). This condition can be
judged in each slave node. Since si can also be calculated
by the master node, this condition can also be judged in this
node.

4. Numerical Example

4.1 Problem Setting

We explain the problem setting. Consider the IEEE 14-bus
system [16], where n and m are given by n = 13 and m = 20,
respectively. The matrix H is given by

H =

−1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 −1 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0 0 0 0 −1 0
0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 1 −1



.

The matrix H is decomposed into four matrices (i.e., K = 4
and Hi ∈ R

5×13). We suppose that z and x̂(0) are given by

z = [25.0,34.9,5.0,10.0,9.9,5.0,0.0,15.0,20.0,24.9,
11.7,4.3,8.7,10.0,5.0,8.2,16.8,8.2,4.3,3.1]>

and x̂(0) = −50 × 113×1, respectively. The vector c in the
attack vector a = Hc is given by c = [01×12,10]>. In this
example, we suppose that an attack to only the subsystem 4
represented by H4 occurs.

4.2 Simple Solution Method

Based on the least squares method, we consider a simple
method for distributed state estimation in which ADMM is
not used. In the least squares method, a solution minimizing
the sum of the squares of the residual is used as the estimated
value. (1) is one of the typical examples. First, consider the
attack-free case. In each subsystem, a quadratic program-
ming (QP) problem is solved. First, the subsystem 1 solves
the following QP problem:
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Table 1 The results of distributed state estimation calculated by each
subsystem.

State estimation
Bus x̂1 x̂2 x̂3 x̂4

No.1 -25.01 -25.01 -25.01 -25.01
No.2 -30.02 -30.02 -30.02 -30.02
No.3 -35.03 -35.03 -35.03 -35.03
No.4 -34.99 -34.99 -34.99 -34.99
No.5 0 -59.91 -59.91 -59.91
No.6 0 -50.06 -50.06 -50.06
No.7 0 0 -60.06 -60.06
No.8 0 -55.09 -55.09 -55.09
No.9 0 0 0 -63.36
No.10 0 0 -71.63 -71.63
No.11 0 0 -64.31 -64.31
No.12 0 0 -68.70 -68.70
No.13 0 0 0 -71.90

x̂1 = arg min
x

1
2
‖H1x − z1‖.

Non-zero elements in x̂1 are taken from x̂1, and are given by
L1 x̂1, where L1 is a binary matrix with appropriate size. The
subsystem 2 solves the following QP problem:

min
x

1
2
‖H2x − z2‖ subject to L1x = L1 x̂1.

A solution for this QP problem is denoted by x̂2. Non-zero
elements in x̂2 are taken from x̂2, and are given by L2 x̂2,
where L2 is a binary matrix with an appropriate size. The
subsystem 3 solves the following QP problem:

min
x

1
2
‖H3x − z3‖ subject to L2x = L2 x̂2.

In a similar way, the subsystem 4 also solves the QP problem.
A solution to theQPproblem in the subsystem4 is denoted by
x̂4. The computation result is shown in Table 1. A solution
for the QP problem solved by the subsystem 4 corresponds
to (1). Thus, in this case, we can obtain a correct solution by
such a simple method based on the least squares method.

Next, consider the attack case. A solution to the QP
problem in the subsystem 4 is denoted by x̂a,4. In a similar
way to the above method, we can obtain x̂a,4, as shown in
Table 2, by sequentially solving the QP problems. From
Table 2, we see that the 13th element of x̂4 is changed. That
is, x̂a,4 = x̂4 + c holds. By validating this solution method
based on some patterns of c, in this example, x̂a,i = x̂i + c
holds. From this fact, the value of the residual is expressed
as

ri,a = ‖Hi x̂i,a − zi,a‖
= ‖Hi(x̂i + c) − (zi + Hic)‖
= ‖Hi x̂i − zi ‖
= ri .

Elimination of FDI attacks occurs, and the value of the resid-
ual does not change. Therefore, we cannot detect the FDI
attack using such a simple method.

Table 2 Comparison of the results of distributed state estimation in the
attack case.

State estimation
Bus x̂a ,4 x̂4 c

No.1 -25.01 -25.01 0
No.2 -30.02 -30.02 0
No.3 -35.03 -35.03 0
No.4 -34.99 -34.99 0
No.5 -59.91 -59.91 0
No.6 -50.06 -50.06 0
No.7 -60.06 -60.06 0
No.8 -55.09 -55.09 0
No.9 -63.36 -63.36 0
No.10 -71.63 -71.63 0
No.11 -64.31 -64.31 0
No.12 -68.70 -68.70 0
No.13 -61.90 -71.90 10

Table 3 Detection results for each subsystem.
Subsystem 1 2 3 4

Lower Threshold 36 25 11 14
Upper Threshold 38 27 13 16
Parameter (Normal) 36.74 26.38 11.68 14.88
Parameter (Attack) 48.43 41.61 19.34 24.18

4.3 Proposed Method

Finally, we consider applying the proposed method based on
ADMM. The parameters γ and ε in Algorithm 1 are given
by γ = 10 and ε = 1.0 × 10−6, respectively. In the detection
parameter si of (5), the parameter T is given by T = 10. The
interval in (6) is given by

36 ≤ s1 ≤ 38, 25 ≤ s2 ≤ 27,
11 ≤ s3 ≤ 13, 14 ≤ s4 ≤ 16.

The computation result is shown in Table 3. From this table,
we see that the attacked values exceed the upper thresholds
in all subsystems. As a result, we can detect the FDI attack
in each subsystem. Although the FDI attack occurs in only
the subsystem 4, the attack appears in all subsystems. This
is because the master node shares the results of the state
estimation of all subsystems. Figure 5 and Fig. 6 show a
sequence of the residual in ADMM. From these figures, we
see that the trends differ between the normal and attack cases.
In the proposed method, such a difference is utilized.

5. Conclusion

In this paper, we proposed a method for detecting an FDI
attack in distributed state estimation of a power network
based on ADMM. The key idea is to use the residual of the
tentative estimated state in the process of distributed state
estimation. Furthermore, we presented the effectiveness of
the proposed method on the IEEE 14-bus model.

There are several future challenges. First, in the pro-
posed method, we focus only on a single steady state. How-
ever, depending on the operations of power networks, the
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Fig. 5 Residual in the calculation process of ADMM (Normal case).

Fig. 6 Residual in the calculation process of ADMM (Attack case).

steady state is changed. In (6), the lower and upper thresh-
olds must be also changed. In addition, these bounds also
depend on the initial estimated value x̂(0)i . It is important
to develop a design method for the lower and upper thresh-
olds based on the steady state and the initial estimated value.
Next, it is also important to consider the dynamics of a
power network. Finally, it is also one of the future efforts
to validate the effectiveness of the proposed method under
more real FDI attacks for a larger standard model of a power
network.
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