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PAPER Special Section on Mathematical Systems Science and its Applications

Fixed Point Preserving Model Reduction of Boolean Networks
Focusing on Complement and Absorption Laws∗

Fuma MOTOYAMA†, Nonmember, Koichi KOBAYASHI†a), and Yuh YAMASHITA†, Members

SUMMARY ABoolean network (BN) is well known as a discrete model
for analysis and control of complex networks such as gene regulatory net-
works. Since complex networks are large-scale in general, it is important
to consider model reduction. In this paper, we consider model reduction
that the information on fixed points (singleton attractors) is preserved. In
model reduction studied here, the interaction graph obtained from a given
BN is utilized. In the existing method, the minimum feedback vertex set
(FVS) of the interaction graph is focused on. The dimension of the state is
reduced to the number of elements of the minimum FVS. In the proposed
method, we focus on complement and absorption laws of Boolean functions
in substitution operations of a Boolean function into other one. By simpli-
fying Boolean functions, the dimension of the state may be further reduced.
Through a numerical example, we present that by the proposed method, the
dimension of the state can be reduced for BNs that the dimension of the
state cannot be reduced by the existing method.
key words: Boolean network, complement and absorption laws, interaction
graph, model reduction

1. Introduction

In the last decade, there has been much attention on anal-
ysis and control of Boolean networks (BNs). A BN plays
an important role in various applications of gene regula-
tory networks [1], fault diagnosis [2], and many other areas
[3], [4]. In a BN, the state takes a binary value, and its time
evolution is modeled by a Boolean function. Fundamental
results, such as stability [5], stabilization [6]–[8], controlla-
bility/observability [9], and optimal control [10]–[12], have
been obtained. To model more complex behavior, a prob-
abilistic Boolean network (PBN) [13] and context-sensitive
PBN [14] have been proposed as an extended model of BNs.

In analysis and control of large-scale complex networks,
it is important to appropriately simplify a mathematical
model. For BNs, some results on model reduction have been
obtained [15]–[17]. In [15], the model reduction method
using l1-gain analysis has been proposed. In [16], [17],
the model reduction methods that the information on fixed
points (singleton attractors) is preserved have been proposed.
In [16]–[18], a feedback vertex set (FVS), which is a subset
of the vertex set of the graph expressing interactions between
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elements of the state, plays an important role (see Sect. 2.2
for details of an FVS). By applying the methods in [16], [17]
to a given BN, the dimension of the state can be reduced to
the number of vertices of an FVS. However, the number of
vertices of an FVS is in general not a minimal dimension
of the state of the reduced model (see, e.g., [19]). The re-
duced BN obtained by using the methods in [16], [17] may
be possible to be further reduced.

In this paper, a new method for model reduction of BNs
is proposed. In the proposed method, the interaction graph
obtained from a given BN is used. The interaction graph
represents interactions between elements of the state in a
given BN (logical operations are ignored). The reduced BN
obtained by using the methods in [16], [17] may be reduced
by substitution operations through paths in the interaction
graph. In the proposed method, using the interaction graph,
we find substitution operations such that complement and
absorption laws of Boolean functions can be applied to a
Boolean function. As a result, reduction of states is achieved.

This paper is organized as follows. In Sect. 2, BNs
and the model reduction method in [16] are summarized. In
Sect. 3, amodel reductionmethod using the interaction graph
is proposed. In Sect. 4, a numerical example is presented to
demonstrate the proposed method. In Sect. 5, we conclude
this paper.

Notation: Let {0,1}n denote the set of n-dimensional
vectors, which consists of elements 0 and 1. For the num-
bers x1, x2, . . . , xn and the index set I = {i1, i2, . . . , im} ⊆
{1,2, . . . ,n}, define [xi]i∈I := [xi1, xi2, . . . , xim ].

2. Preliminaries

2.1 Boolean Networks

Consider the following BN:
x1(k + 1) = f1([xj(k)]j∈N1 ),
x2(k + 1) = f2([xj(k)]j∈N2 ),
...
xn(k + 1) = fn([xj(k)]j∈Nn ),

(1)

where x = [x1, x2, . . . , xn]> ∈ {0,1}n is the state (e.g., ex-
pression level of the genes), and k = 0,1,2, . . . is the dis-
crete time. The function fi : {0,1} |Ni | → {0,1} is a given
Boolean function using logical operators such as logical
AND (∧), logical OR (∨), and logical NOT (¬). The in-
dex set Ni is the set of elements of the state used in the
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function fi . If the index set Ni is an empty set, xi(k + 1) is
uniquely determined to be 0 or 1. For simplicity, instead of
(1), we sometimes use the following notation:

f1([xj]j∈N1 ),
f2([xj]j∈N2 ),
...
fn([xj]j∈Nn ).

Example 1: Consider the following BN model for a sim-
plified apoptotic network [20]:

x1(k + 1) = x1(k),
x2(k + 1) = x1(k) ∧ ¬x3(k),
x3(k + 1) = ¬x2(k) ∧ x4(k),
x4(k + 1) = x1(k) ∨ x3(k),

(2)

where x1 is the concentration level (high or low) of the tumor
necrosis factor (TNF, a stimulus), x2 is the concentration
level of the inhibitor of apoptosis proteins (IAP), x3 is the
concentration level of the active caspase 3 (C3a), and x4 is the
concentration level of the active caspase 8 (C8a). See, e.g.,
[21] for more complicated models of an apoptosis network.
In this BN model, N1 = {1}, N2 = {1,3}, N3 = {2,4}, and
N4 = {1,3} hold. �

The interaction between elements of the state in the BN
can be represented by an interaction graph defined as follows.

Definition 1: The interaction graph is given by the directed
graph G = (V,E), where V = {1,2, . . . ,n} is the set of
vertices and E = {( j, i) ∈ V ×V | j ∈ Ni} is the set of arcs.

The adjacency relation of the vertex i of the interaction
graph expresses elements of the state used in the Boolean
function fi . When xj ( j-th element of the state) affects the
value of the function fi , the directed edge is connected from
the vertex j to the vertex i. The interaction graph of the BN
in Example 1 is shown in Fig. 1. The sets V and E in this
interaction graph are given by

V = {1,2,3,4},
E = {(1,1), (1,2), (1,4), (2,3), (3,2), (3,4), (4,3)},

respectively.
Next, we define a fixed point as follows.

Definition 2: The state x(k) is called a fixed point if x(k +
1) = x(k) holds.

A fixed point is also called a singleton attractor. In this
paper, we focus on a fixed point as one of the properties in

Fig. 1 Interaction graph in Example 1.

the steady state.

2.2 FVS-Based Model Reduction of Boolean Networks

In this section, we explain the FVS-based model reduction
method of BNs in which a fixed point is focused on (see
Definition 3 for details of an FVS). See [16] for further
details. In this method, we regard some of the Boolean
functions of a given BN as an algebraic equation. The i-th
element of the state xi(k) is eliminated by substituting fi(·)
into xi(k). As a result, the dimension of the state can be
reduced.

First, we introduce the concept of an FVS. An FVS and
a minimum FVS are defined as follows (see, e.g., [22], [23]).

Definition 3: A set of vertices of an interaction graph is
called an FVS if removal of vertices results an acyclic graph.
In particular, an FVS is called a minimum FVS if the number
of its elements is minimum.

The computational complexity of finding a minimum
FVS is NP-complete [23]. An approximate algorithm of
finding it has been studied (see, e.g., [22]). In [18], a simple
greedy algorithm for finding an (not necessarily minimum)
FVS has been proposed. When we utilize the model re-
duction method in [16], the dimension of the state in the
reduced BN is characterized by the number of vertices in the
minimum FVS of the interaction graph. In addition, each
fixed point in the reducedBN is a one-to-one correspondence
with that in the original BN. LetVF ⊆ V denote a minimum
FVS. To reduce a given BN, we need to eliminate the j-th
element of the state, where j ∈ V \ VF .

Hereafter, the function fi and the i-th element xi of the
state corresponding to the minimum FVS of the interaction
graph are denoted as f̂i and x̂i , respectively. Under the above
preparation, the procedure of the reduction method is given
as follows.

Procedure of model reduction of a given BN:
Step 1: Find a minimum FVS VF ⊆ V of the interaction
graph G = (V,E).
Step 2: For xj(k + 1) = fj(·), j ∈ V \VF , replace xj(k + 1)
with xj(k).
Step 3: Substitute fj(·) into the variable xj(k) of the function
f̂i(·), i ∈ VF . This operation is repeated until xj(k) is no
longer in f̂i(·).
Step 4: Simplify f̂i(·).

In the casewhere finding aminimumFVS is difficult, we
may replace it with an FVS with as few vertices as possible.

We present a simple biological example to explain this
procedure.

Example 2: Consider the following BN with the seven-
dimensional state:
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Fig. 2 Interaction graph in Example 2, where the highlighted vertices
belong to the minimum FVS.



x1(k + 1) = ¬x6(k),
x2(k + 1) = (¬x2(k) ∧ x4(k) ∧ x6(k))

∨ (x2(k) ∧ x4(k)) ∨ (x2(k) ∧ x6(k)),
x3(k + 1) = ¬x7(k),
x4(k + 1) = x4(k),
x5(k + 1) = x2(k) ∨ ¬x7(k),
x6(k + 1) = x3(k) ∨ x4(k),
x7(k + 1) = ¬x2(k) ∨ x7(k).

This BN represents the gene regulatory network with the
gene WNT5A, where the concentration level (high or low)
of the gene WNT5A is denoted by x1, the concentration
level of the gene pirin by x2, the concentration level of the
gene S100P by x3, the concentration level of the gene RET1
by x4, the concentration level of the gene MART1 by x5,
the concentration level of the gene HADHB by x6, and the
concentration level of the gene STC2 by x7. See [24] for
further details. The interaction graph of this BN is shown in
Fig. 2.

In Step 1, the minimum FVS of this BN is given by

VF = {2,4,7}.

In Step 2, xj(k + 1), j ∈ V \ VF = {1,3,5,6} is replaced
with xj(k). In the beginning of Step 3, xi and fi(·), i ∈ VF

are replaced with x̂i and f̂i(·), respectively. Then, we can
obtain

x1(k) = ¬x6(k),
x̂2(k + 1) = (¬x̂2(k) ∧ x̂4(k) ∧ x6(k))

∨ (x̂2(k) ∧ x̂4(k)) ∨ (x̂2(k) ∧ x6(k)),
x3(k) = ¬x̂7(k),
x̂4(k + 1) = x̂4(k),
x5(k) = x̂2(k) ∨ ¬x̂7(k),
x6(k) = x3(k) ∨ x̂4(k),
x̂7(k + 1) = ¬x̂2(k) ∨ x̂7(k).

In Step 3, the obtained algebraic equations are substituted
into the Boolean function of x̂2(k + 1). Then, we can obtain

x̂2(k + 1) = (¬x̂2(k) ∧ x̂4(k) ∧ x6(k))
∨ (x̂2(k) ∧ x̂4(k)) ∨ (x̂2(k) ∧ x6(k))

= (¬x̂2(k) ∧ x̂4(k) ∧ (x3(k) ∨ x̂4(k)))
∨ (x̂2(k) ∧ x̂4(k))
∨ (x̂2(k) ∧ (x3(k) ∨ x̂4(k)))

= (¬x̂2(k) ∧ x̂4(k) ∧ (¬x̂7(k) ∨ x̂4(k)))
∨ (x̂2(k) ∧ x̂4(k))
∨ (x̂2(k) ∧ (¬x̂7(k) ∨ x̂4(k)))

In Step 4, by simplifying the above state equation, we obtain
the following reduced BN:

x̂2(k + 1) = (x̂2(k) ∧ ¬x̂7(k)) ∨ x̂4(k),
x̂4(k + 1) = x̂4(k),
x̂7(k + 1) = ¬x̂2(k) ∨ x̂7(k).

Finally, we discuss fixed points. The original BN
has four fixed points ([0,1,0,1,1,1,1], [0,1,1,0,1,1,0],
[0,1,1,1,1,1,0], [1,0,0,0,0,0,1]). The reduced BN has also
four fixed points ([1,1,1], [1,0,0], [1,1,0], [0,0,1]). From
these fixed points, we see that each fixed point in the original
BN is a one-to-one correspondence with that in the reduced
BN. In this example, fixed points can be distinguishable by
using three states. �

3. Main Result

Using the FVS-based model reduction method, the dimen-
sion of the state is reduced to the number of vertices in the
FVS of a given interaction graph. In general, the number of
vertices in the minimum FVS is not a minimal number of
the reduced states that fixed points are distinguishable. In
this section, we propose a method for further reducing states
based on a given interaction graph.

Hereafter, for simplicity of notations, ·̂ is omitted in f̂i
and x̂i .

3.1 Motivating Example

We present a motivating example.

Example 3: Consider the following BN with the three-
dimensional state:

f1 = x1,

f2 = ¬x1 ∧ x2,

f3 = x1 ∧ x2 ∧ x3.

All vertices of the interaction graph of this BN have a self-
loop. Then, aminimumFVS is given by {1,2,3}. That is, the
dimension of the state cannot be reduced by the FVS-based
model reduction method. Here, we focus on the Boolean
function f3. Consider substituting x2 = f2 into f3. We can
obtain

f ′3 = f3 |x2= f2
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= x1 ∧ x2 ∧ x3 |x2= f2

= x1 ∧ (¬x1 ∧ x2) ∧ x3

= (x1 ∧ ¬x1) ∧ x2 ∧ x3

= 0 ∧ x2 ∧ x3

= 0.

Hence, we can obtain x3(k+1) = 0, which implies that x3 can
be reduced. Finally, we discuss fixed points. The original
BN has three fixed points ([0,0,0], [0,1,0], [1,0,0]). The
reduced BN has also three fixed points ([0,0], [0,1], [1,0]).
Even if the above substitution operation is performed, each
fixed point in the original BN is a one-to-one correspondence
with that in the reduced BN. �

From this example, we see that there is a possibility that
further reduction can be achieved by substitution operations.
Since substitution operations are only continued ignoring
the information about FVSs, in a similar to the FVS-based
method, each fixed point in the original BN is a one-to-
one correspondence with that in the reduced BN. In the
proposed method, we focus on the following complement
and absorption laws for Boolean functions:

A ∧ Ā = 0, A ∨ Ā = 1, (3)
A ∨ (A ∧ B) = A, A ∧ (A ∨ B) = A, (4)

where A,B ∈ {0,1}. We also focus on the property that the
i-th element xi of the state satisfying either xi(k + 1) = 0
or xi(k + 1) = 1 can be reduced. Moreover, the FVS-based
model reduction method may be applied to the BN obtained
by performing further substitution operations and deleting
constant Boolean functions. This is because the interaction
graph is changed by these operations.

3.2 Proposed Model Reduction Method

First, we define a walk and a path for a directed graph. A
walk is defined as a sequence of vertices [v0, . . . , vT ] that the
directed edges (vi, vi+1), 0 ≤ i ≤ T − 1 exist in the directed
graph. A path is defined as a walk where all vertices are
different. If there exists a path [v0, v1, . . . , vT−1, vT ] on the
interaction graph, we can perform the following substitution
calculation:

f ′v1 = fv1,

f ′v2 = fv2

��
xv1= f

′
v1
,

f ′v2 = fv2

��
xv1= f

′
v1 , xv2= f

′
v2
,

...

f ′vT = fvT
��
xv1= f

′
v1 , xv2= f

′
v2 ,..., xvT−1= f

′
vT−1
.

(5)

We remark that f ′vT has the variable xv0 .
In the proposed method, we consider performing (3) or

(4) by substituting xl = fl(·), l ∈ Ni into the function fi(·).
A necessary condition for performing (3) or (4) is that fi(·)
and fl(·) have at least one common variable (i.e., there exists

j ∈ Ni ∩Nl). This variable corresponds to A in (3) and (4).
In the case where there exists no j ∈ Ni∩Nl , if there exists a
path [ j, v0, v1, . . . , vK−1, vK , i], and j ∈ Ni holds, then it may
be possible to perform (3) or (4) by the following substitution
operations:

f ′v0 = fv0,

f ′v1 = fv1

��
xv0= f

′
v0
,

...

f ′vK = fvK
��
xv0= f

′
v0 ,..., xvK−1= f

′
vK−1
,

f ′i = fi |xv0= f
′
v0 ,..., xvK−1= f

′
vK−1 , xvK = f

′
vK
.

In summary, if there exists a path p = [v0, . . . , vT ] that con-
tains the start point in the parent vertices of the end point
(v0 ∈ NvT ), it may be possible to reduce fT by the substitu-
tion calculation along the path.

Next, we propose a procedure of model reduction using
the absorption and complement laws. In the proposed pro-
cedure, for each nodes i on the interaction graph, the paths
satisfying [ j, . . . , i], j ∈ Ni are listed in order from the short-
est, and the path that reduce the function fi can be found
from these paths. Let F denote the set of indexed Boolean
functions. Let IF denote the index set of F .

Procedure of model reduction using the absorption and
complement laws:
Step 1: Apply the FVS-based model reduction method to
each Boolean function. Substitute constant functions into
other Boolean functions. Set F = ∅ (i.e., IF = ∅).
Step 2: Enumerate paths of length 1 in the interaction graph
(self-loops are excluded). The set of enumerated paths is
defined by P := {pi | i ∈ A ⊂ {1,2, . . . }}.
Step 3: For each pi = [vi0, . . . , viT ], find the path set
{[vj, vi0, . . . , viT ] | ∀ j ∈ Nvi0 }. Update the path set P :=
∪i∈A{[vj, vi0, . . . , viT ] | ∀ j ∈ Nvi0 }, which is denoted by
P = {pi | i ∈ A}.
Step 4: For each pi = [vi0, . . . , viT ] ∈ P, if vi0 ∈ NviT

and IF ∩ {vi0, . . . , viT } = ∅ are satisfied, obtain f ′viT by
performing the substitution operations according to pi such
as (5). If the number of states in f ′viT is smaller than that in
the original fviT , then update F as F := F ∪ { f ′viT }.
Step 5: For each i of P = {pi | i ∈ A}, delete all pi that
satisfy IF ∩ {vi0, . . . , viT } , ∅ from the set P.
Step 6: Follow the following conditional branch.
• Case 1: If P , ∅, then go to Step 3.
• Case 2: If P = ∅ and F , ∅, then update fi , i ∈ IF in a
given BN as fi := f ′i ∈ F . Go to Step 1.
•Case 3: IfP = ∅ and F = ∅, then terminate the procedure.

We explain each step.
In Step 1, the FVS-based model reduction method is

applied to a given BN. Substitution operations with constant
functions are also performed.

In Step 2, paths of length 1 are enumerated for each
vertex.
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In Step 3, the length of each path is extended by one.
In Step 4, substitution operations using each path are

performed. A Boolean function may be simplified by the
complement law (3) and the absorption law (4), because sub-
stitution operations such that these laws occur are included.
When a Boolean function is simplified by substitution oper-
ations, this Boolean function is added to the set F .

In Step 5, paths related to paths used in simplification
of Boolean functions are deleted.

In Case 1 of Step 6, the length of each path is extended
by one. Because substitution operations using paths of a
longer length are required. In Case 2 of Step 6, a given
BN is reduced. Since the graph structure is changed, we
perform Step 1 again. In Case 3 of Step 6, the procedure is
terminated.

We present a simple example to demonstrate the pro-
posed procedure.

Example 4: Consider the following 5-node BN:

f1 = x1 ∨ ¬x4,

f2 = (x1 ∧ ¬x5) ∨ x2 ∨ (¬x3 ∧ ¬x4),

f3 = x3 ∨ x4,

f4 = x1 ∨ x2 ∨ x4 ∨ x5,

f5 = x4 ∨ x5.

(6)

The interaction graph of this BN is shown in the Fig. 3. Since
all vertices have a self-loop, that is, a minimum FVS is given
by all vertices, this BN cannot be reduced by the FVS-based
model reduction method.

In Step 1 of the proposed procedure, only the action
F := ∅ is required.

In Step 2, we enumerate all the paths of length 1 in the
interaction graph as follows:

P = { [4,1], [1,2], [3,2], [4,2], [5,2], [4,3],
[1,4], [2,4], [5,4], [4,5] }

(i.e., A = {1,2, . . . ,10}).
In Step 3, we extend the paths by one on the start point

side. Then, we can obtain the following set P:

P = { [2,4,1], [5,4,1], [4,1,2], [4,3,2], [1,4,2],
[5,4,2], [4,5,2], [1,4,3], [2,4,3], [5,4,3],
[1,2,4], [3,2,4], [5,2,4], [1,4,5], [2,4,5] }.

In Step 4, the paths whose parent vertices of the end

Fig. 3 Interaction graph of the BN (6).

point contain the start point are given as follows:

[4,1,2], [4,3,2], [1,4,2], [5,4,2], [4,5,2],
[1,2,4], [5,2,4].

Substitution calculations according to these paths are per-
formed, but there are no Boolean functions that can be re-
duced.

In Step 5, since F = ∅ holds, any path is not deleted.
In Step 6, since the condition of Case 1 holds, go to

Step 3.
In Step 3, we extend the paths by one on the start point

side again.

P ={ [3,2,4,1], [5,2,4,1], [5,4,1,2], [1,4,3,2],
[5,4,3,2], [1,4,5,2], [1,2,4,3], [5,2,4,3],
[1,2,4,5], [3,2,4,5] }

In Step 4, the paths whose parent vertices of the end
point contains the start point are given as follows:

[5,4,1,2], [1,4,3,2], [5,4,3,2], [1,4,5,2].

We perform substitution calculations according to these
paths. Then, by substitution operations using the [5,4,1,2],
the Boolean function f2 with five states can be reduced to f ′2
with four states as follows.

f ′4 = x1 ∨ x2 ∨ x4 ∨ x5,

f ′1 = x1 ∨ ¬x4 |x4= f
′

4

= x1 ∨ ¬(x1 ∨ x2 ∨ x4 ∨ x5)

= x1 ∨ (¬x2 ∧ ¬x4 ∧ ¬x5),

f ′2 = (x1 ∧ ¬x5) ∨ x2 ∨ (¬x3 ∧ ¬x4)|x1= f
′

1 , x4= f
′

4

= ((x1 ∨ (¬x2 ∧ ¬x4 ∧ ¬x5)) ∧ ¬x5) ∨ x2

∨ (¬x3 ∧ ¬(x1 ∨ x2 ∨ x4 ∨ x5))

= x2 ∨ (x1 ∧ ¬x5) ∨ ((¬x2 ∧ ¬x4 ∧ ¬x5)

∨ ((¬x2 ∧ ¬x4 ∧ ¬x5) ∧ (¬x1 ∧ ¬x3)))

= x2 ∨ (x1 ∧ ¬x5) ∨ (¬x2 ∧ ¬x4 ∧ ¬x5)

= x2 ∨ (x1 ∧ ¬x5) ∨ (¬x4 ∧ ¬x5),

where the absorption law (4) is used in calculation of f ′2 .
The obtained Boolean function f ′2 is added to the F .

In Step 5, we delete the paths through the vertex of the
function of F = { f ′2 } from the set P, and we obtain P = ∅.

In Step 6, since the condition of Case 2 holds, f2 in a
given BN (6) is replaced with f ′2 ∈ F as follows:

f1 = x1 ∨ ¬x4,

f2 = x2 ∨ (x1 ∧ ¬x5) ∨ (¬x4 ∧ ¬x5),

f3 = x3 ∨ x4,

f4 = x1 ∨ x2 ∨ x4 ∨ x5,

f5 = x4 ∨ x5.

(7)

In Step 1, since all the nodes of the interaction graph of
the modified BN (7) have a self-loop, only the action F := ∅
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is required.
In Step 2, we enumerate all the paths of length 1 in the

interaction graph as follows:

P = { [4,1], [1,2], [4,2], [5,2], [4,3], [1,4],
[2,4], [5,4], [4,5] }.

In Step 3, we extend the path of P by one on the start
point side as follows:

P = { [2,4,1], [5,4,1], [4,1,2], [1,4,2], [5,4,2],
[4,5,2], [1,4,3], [2,4,3], [5,4,3], [1,2,4],
[5,2,4], [1,4,5], [2,4,5] }.

In Step 4, the paths whose parent vertices of the end
point contains the start point are given by

[4,1,2], [1,4,2], [5,4,2], [4,5,2], [1,2,4],
[5,2,4].

We perform substitution calculations according to these
paths. Then, by substitution operations using two paths
[4,5,2] and [5,2,4], the Boolean functions f2 and f4 can be
reduced as follows:

f ′5 = x4 ∨ x5,

f ′2 = x2 ∨ (x1 ∧ ¬x5) ∨ (¬x4 ∧ ¬x5)|x5= f
′

5

= x2 ∨ (x1 ∧ ¬(x4 ∨ x5)) ∨ (¬x4 ∧ ¬(x4 ∨ x5))

= x2 ∨ (¬x4 ∧ ¬x5) ∨ ((¬x4 ∧ ¬x5) ∧ x1)

= x2 ∨ (¬x4 ∧ ¬x5)

(the absorption law (4) is used) and

f ′2 = x2 ∨ (x1 ∧ ¬x5) ∨ (¬x4 ∧ ¬x5),

f ′4 = x1 ∨ x2 ∨ x4 ∨ x5 |x2= f
′

2

= x1 ∨ (x2 ∨ (x1 ∧ ¬x5) ∨ (¬x4 ∧ ¬x5)) ∨ x4 ∨ x5

= x1 ∨ x2 ∨ (x1 ∧ ¬x5) ∨ ¬(x4 ∨ x5) ∨ (x4 ∨ x5)

= 1

(the complement law (3) is used). Two Boolean functions f ′2
and f ′4 are added to the set F .

In Step 5, we delete the paths through the vertex of the
function of F = { f ′2 , f ′4 } from P, and we obtain P = ∅.

In Step 6, since the condition of Case 2 holds, f2 and
f4 in the modified BN (7) are replaced with f ′2 and f ′4 as
follows:

f1 = x1 ∨ ¬x4,

f2 = x2 ∨ (¬x4 ∧ ¬x5),

f3 = x3 ∨ x4,

f4 = 1,
f5 = x4 ∨ x5,

and return to Step 1.
In Step 1, we substitute the constant function x4 = f4 =

1. As a result, we can obtain

Fig. 4 Interaction graph of the BN (8).

{
f1 = x1,

f2 = x2.
(8)

The interaction graph is shown in Fig. 4. In Step 2, any
path cannot be generated (i.e., P = ∅). Then, in Step 6, the
condition of Case 3 holds, and the procedure is terminated.
Therefore, we can obtain (8) as a reduced BN.

Finally, the original BN has four fixed points
([0,0,1,1,1], [0,1,1,1,1], [1,0,1,1,1], [1,1,1,1,1]). The re-
duced BN has also four fixed points ([0,0], [0,1], [1,0],
[1,1]). Thus, fixed points are distinguishable by x1 and x2.

�

From this example, we see that a given BN can be
reduced while the interaction graph is changed.

4. Numerical Example

In this section, we present a numerical example to validate
the proposed method.

Consider 100BNs with 20 states. Interaction graphs
are randomly generated such that the scale-free property is
satisfied for the in-degrees of the vertices. If there is a vertex
that has no self-loop, then a self-loop is added. Logical op-
erations are randomly assigned. In implementation, we use
BDDs (binary decision diagrams). When the FVS-based
model reduction method is applied to these BNs, the dimen-
sion of the state cannot be reduced. This is because the vertex
sets of the interaction graphs for these BNs are an FVS.

We present the computation result using the proposed
procedure. In 100 reduced BNs, the dimension of the states
is derived as follows:

• The mean dimension: 18.35,
• The maximum dimension: 20,
• The minimum dimension: 7.

From these values, we see that the dimension of the state
can be reduced using the proposed procedure. In addition,
we present the information about |Ni | (the in-degree, that
is, the number of elements of the state used in the Boolean
function fi). In 100BNs, the max andmean of the maximum
in-degree are as follows:

• Max: 18 (original), 11 (reduced),
• Mean: 3.13 (original), 1.99 (reduced).

From these values, we see that Boolean functions are sim-
plified using the proposed procedure. In some methods of
analysis and control of BNs, the computational complexity
exponentially grows with the dimension of the state in each
Boolean function (see, e.g. [25]). Hence, simplification of
Boolean functions is important.
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Finally, we comment on the computation time of the
proposed procedure. For 100BNs, the computation time of
the proposed procedure is derived as follows:

• The mean computation time: 205 sec,
• The worst computation time: 11445 sec,

where we use Python 3.8.5 on the computer (CPU: Intel Core
i7-4770K 3.50GHz, Memory: 8GB, OS: Windows 10). In
75BNs of 100BNs, the proposed method can be solved
within 10 sec. In only a part of BNs, the long computation
time is required. To derive the reduced model faster, it is
future work to improve the proposed procedure.

5. Conclusion

In this paper, we proposed a newmethod for model reduction
of BNs. Focusing on the complement and absorption laws
of Boolean functions, the dimension of the state is reduced
based on the structure of the interaction graph of a given
BN. The proposed method was demonstrated by a numerical
example.

In future work, it is important to discuss the minimality
of the reduced BN. In general, the dimension of the state
in the reduced BN obtained by the proposed method is not
minimal. Hence, it is important to find the structure of the
interaction graph such that the reduced BN obtained by the
proposed method is minimal. In the proposed method, the
FVS-based model reduction method is utilized. It is also
future work to develop a simpler procedure that the FVS-
based model reduction method is not utilized.
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