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PAPER Special Section on Mathematical Systems Science and its Applications

Computationally Efficient Model Predictive Control for
Multi-Agent Surveillance Systems

Koichi KOBAYASHI†a), Member, Mifuyu KIDO†, Nonmember, and Yuh YAMASHITA†, Member

SUMMARY In this paper, a surveillance system by multiple agents,
which is called a multi-agent surveillance system, is studied. A surveillance
area is given by an undirected connected graph. Then, the optimal con-
trol problem for multi-agent surveillance systems (the optimal surveillance
problem) is to find trajectories of multiple agents that travel each node as
evenly as possible. In our previous work, this problem is reduced to a mixed
integer linear programming problem. However, the computation time for
solving it exponentially grows with the number of agents. To overcome
this technical issue, a new model predictive control method for multi-agent
surveillance systems is proposed. First, a procedure of individual optimiza-
tion, which is a kind of approximate solution methods, is proposed. Next,
a method to improve the control performance is proposed. In addition,
an event-triggering condition is also proposed. The effectiveness of the
proposed method is presented by a numerical example.
key words: mixed integer programming, model predictive control, multiple
agents, persistent surveillance

1. Introduction

The persistent surveillance problem that computes trajecto-
ries of agents to patrol a given area has many applications
such as city safety management and disaster rescue. In par-
ticular, persistent surveillance by multiple agents is impor-
tant. In this paper, a surveillance system bymultiple agents is
called a multi-agent surveillance system. The control prob-
lem of multi-agent surveillance systems has been studied in
e.g., [1], [5], [6], [8], [15].

In this paper, a multi-agent surveillance system over an
undirected connected graph is studied. In control of com-
plex systems, it is appropriate to approximately solve the
problem by using discrete abstraction techniques (see, e.g.,
[2], [16], [17]). In the surveillance problem, modeling a
surveillance area as a graph is one of the abstraction meth-
ods. The surveillance problem over a graph has been studied
in e.g., [1], [8]. Our previously proposed method in [8] is
based on the MLD (mixed logical dynamical) framework
[3] and model predictive control (MPC) [4], [14]. For each
node in the surveillance area, a time-varying penalty is given.
Penalties and agents are modeled by an MLD system model
consisting of a linear state equation and a linear inequality
constraint with respect to continuous and binary variables.
Using the MLD system model, we can easily impose several
constraints such as fuel constraints. The finite-time surveil-
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lance problem is reduced to a mixed integer linear program-
ming (MILP) problem. In the conventional MPC method,
the control input is generated by solving the finite-time op-
timal control problem at each discrete time. When MPC is
applied to the surveillance problem, the next location of each
agent can be obtained by solving the MILP problem at each
discrete time. However, this method has the following two
weaknesses: i) the computation time for solving the MILP
problem exponentially grows with respect to the number of
agents, ii) the MILP problem must be solved at each discrete
time.

In this paper, a new MPC method for multi-agent
surveillance systems is proposed as an improved version of
the method in [8]. First, we propose a procedure of indi-
vidual optimization. In this method, the MILP problem for
m agents is decomposed to m MILP problems for a single
agent. Since the MILP problem for a single agent can be
solved fast, reducing the overall computation time can be
achieved. However, in this method, m MILP problems must
be solved sequentially, and it is necessary to determine the
order of agents.

Next, we propose a method for determining the priority
of agents. In this method, we focus on the neighborhood of
each agent. Based on penalties of nodes in the neighborhood,
the priority of agents is determined. Using this method, the
approximate solution by individual optimization is improved.

Finally, we introduce an event-triggering condition on
penalties of nodes. Event-triggered control is a method that
the control input is updated only when an event-triggering
condition is satisfied (see, e.g., [7]). In event-triggeredMPC,
the finite-time optimal control is solved (see, e.g., [13]). In
this paper, the finite-time surveillance problem is solved only
when the sum of penalties at the next time is equal to or
greater than a certain threshold. By choosing the threshold
appropriately, we can consider the trade-off between the con-
trol performance and the number of times that the problem
is solved. The effectiveness of the proposed method is pre-
sented by a numerical example based on several situations.

Notation: Let R denote the set of real numbers. Let
{0, 1}n denote the set of n-dimensional vectors, which con-
sists of elements 0 and 1. Let 1n denote the n-dimensional
vector whose elements are all one. Let In and 0m×n de-
note the n × n identity matrix and the m × n zero matrix,
respectively. For simplicity of notation, we sometimes use
the symbol 0 instead of 0m×n, and the symbol I instead of
In. For the matrix M , let M> denote the transpose of M .

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Example of undirected connected graphs, where self-loops in all
nodes are omitted.

2. Optimal Surveillance Problem andModel Predictive
Control

In this section, we formulate the optimal surveillance prob-
lem (see, e.g., [8]) and the model predictive control (MPC)
method (see, e.g., [4], [14]).

A surveillance area is given by an undirected connected
graph G = (V, E), where V = {v1, v2, . . . , vn} is the set of
nodes, and E ⊆ V × V is the set of arcs. We assume that
an agent can move according to a given graph, and behav-
ior of an agent is expressed by a discrete-time system. The
number of agents is given by m. As an example, consider
the undirected connected graph in Fig. 1, where self-loops in
all nodes are omitted. Suppose that the initial location of an
agent is given by v4. Then, the candidates of the locations at
the next time are constrained to the set {v2, v3, v4, v5, v6, v7}.
Thus, a complicated surveillance area can be modeled by an
undirected connected graph. In this paper, the system that
multiple agentsmove on a surveillance area given by an undi-
rected connected graph is called a multi-agent surveillance
system.

For each node, the penalty xi (k) ∈ R is defined as
follows:

xi (k + 1) =
{

0 if the agent is located on vi at k,
xi (k) + 1 otherwise,

(1)

where k ∈ {0, 1, 2, . . . } is discrete time.
Then, the optimal surveillance problem is formulated

as follows.

Problem 1: For the undirected connected graph G =

(V, E) and the time evolution (1) of the penalty, suppose
that the current locations of agents, the current penalty xi (t)
(t is the current time), and the prediction horizon N are given.
Then, find trajectories of m agents minimizing the following
cost function:

J =
t+N∑
k=t

n∑
i=1

qi xi (k), (2)

where qi ≥ 0 is a given weight.

If there exists an unimportant node, then the corre-
sponding qi is given by qi = 0. We may impose a constraint
such as xi (k) ≤ σ, where σ > 0 is a given scalar. Temporal
logic constraints can also be imposed for Problem 1 (see e.g.,
[9], [10], [12]). In this paper, for simplicity of discussion,
we consider the case where no constraints are imposed.

Next, we present the MPC method for multi-agent
surveillance systems.

MPC for Multi-Agent Surveillance Systems:
Step 1: Set t = 0, and give xi (0) (the initial penalty for each
node) and the initial location for each agent.
Step 2: Solve Problem 1.
Step 3: Move agents based on the computation result.
Step 4: Update t := t + 1, and return to Step 2.

Consider the single agent case as a simple example.
Suppose that a surveillance area is given by Fig. 1. Suppose
also that qi in the cost function (2), the initial location of an
agent, and the initial penalty xi (0) are given by qi = 1, v4, and
xi (0) = 0, respectively. At time 0, xi (1) can be obtained as
x4(1) = 0 and xi (1) = 1, i = 1, 2, 3, 5, 6, . . . , 14. We assume
that the next location is obtained as v7 by solving Problem
1 at time 0. At time 1, xi (2) can be obtained as x7(2) = 0,
x4(2) = 1, and xi (2) = 2, i = 1, 2, 3, 5, 6, 8, 9, . . . , 14. By
solving Problem 1, the location at time 2 can be obtained.
By repeating this procedure, the optimal trajectory can be
obtained.

3. Reduction of Problem 1 to an MILP problem

In this section, we summarize the reduction of Problem 1 to
an MILP problem. See [8] for further details.

Consider m agents that move on the undirected con-
nected graph G = (V, E). The binary variable δi, j (k) is
defined by

δi, j (k) =



1 if the agent j is located on the node vi ,
0 otherwise,

where the following constraint:
n∑
i=1

δi, j (k) = 1 (3)

must be imposed. In addition, we define

δ̄ j (k) = [δ1, j (k) δ2, j (k) · · · δn, j (k)]>.

Let Φ denote the adjacency matrix of G. Then, the time
evolution of agent j can be modeled by

δ̄ j (k) − Φδ̄ j (k + 1) ≤ 0. (4)

See [11] for further details.
Next, consider the dynamics of the penalty defined by

(1). Here, we define

δi (k) =



1 if at least one agent is located on vi
at k,

0 otherwise.
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We also define δ(k) := [δ1(k) δ2(k) · · · δn(k)]>. The
relation between δi, j (k) and δi (k) is given by the following
linear inequalities:

δi,1(k) ≤ δi (k) ≤
m∑
j=1

δi, j (k), (5)

δi,2(k) ≤ δi (k) ≤
m∑
j=1

δi, j (k), (6)

...

δi,m(k) ≤ δi (k) ≤
m∑
j=1

δi, j (k). (7)

Using δi (k), the penalty xi (k) is modeled by

xi (k + 1) = (1 − δi (k))(xi (k) + 1). (8)

The lower bound of xi (k) is 0, and the upper bound of xi (k)
is given by xmax < ∞ (xmax can be determined from a given
graph). Then, zi (k) := δi (k)xi (k) − 1 is equivalent to the
following linear inequalities:{

−1 ≤ zi (k) ≤ xmaxδi (k) − 1,
xi (k) − xmax(1 − δi (k)) − 1 ≤ zi (k) ≤ xi (k) − 1. (9)

See [3] for further details.
From the above results, the time evolutions of agents

and penalties can be modeled by (3)–(9), i.e., the following
mixed logical dynamical (MLD) system model [3]:




x(k + 1) = Ax(k) + Bv (k),
Cx(k) + Dv (k) ≤ E,

(10)

where

x(k) = [x1(k) x2(k) · · · xn(k)

δ̄>1 (k) δ̄>2 (k) · · · δ̄>m(k)
]>
∈ Rn × {0, 1}nm,

v (k) = [z1(k) z2(k) · · · zn(k)

δ>(k) δ
>

1 (k + 1) δ
>

2 (k + 1) · · · δ
>

m(k + 1)
]>

∈ Rn × {0, 1}n+nm,

A =
[

In 0n×nm
0nm×n 0nm×nm

]
,

B =
[
−In −In 0n×nm

0nm×n 0nm×n Inm

]
,

C =



0nm×n Inm

0n×n 0n×nm
0n×n 0n×nm

In 0n×nm
−In 0n×nm

0m×n block-diag(1>n , . . . , 1>n )
0m×n −block-diag(1>n , . . . , 1>n )

0nm×n Inm
0n×n −In · · · − In



,

D =



0nm×n 0nm×n −block-diag(Φ, . . . ,Φ)

−In 0n×n 0n×nm
In −xmaxIn 0n×nm
−In xmaxIn 0n×nm
In 0n×n n×nm

0m×n 0m×n 0m×nm
0m×n 0m×n 0m×nm

−In

0nm×n
... 0nm×nm
−In

0n×n In 0n×nm



,

E =



0nm×1

1n
−1n

(xmax + 1)1n
−1n
1m
−1m

0nm×1
0n×1



.

Using (10), Problem 1 can be equivalently transformed
into the following MILP problem.

Problem 2: Suppose that the initial state x(0) is given by
x(0) = x0. Then, find v := [v>(0) v>(1) · · · v>(N − 1)]> ∈
({0, 1}nm+n × Rn)N minimizing the following linear cost
function:

J = Q̄B̄v̄ + Q̄ Āx0

subject to the following linear constraint:

(C̄ B̄ + D̄)v̄ ≤ Ē − C̄ Āx0,

where

Q̄ = [Q Q · · · Q] ,
Q =

[
q1 q2 · · · qn

]
[In 0n×nm] ,

Ā =



I
A
A2

...
AN



, B̄ =



0 0 · · · 0
B 0 · · · 0

AB
. . .

. . .
...

...
. . .

. . . 0
AN−1B · · · AB B



,

C̄ =
[
block-diag(C, . . . ,C) 0

]
,

D̄ = block-diag(D, . . . , D),

Ē =
[
E> · · · E>

]>
.

4. Proposed Method

In Sect. 2, we formulated the optimal surveillance problem,
and explained the MPC method. In Sect. 3, we reduced it to
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Problem 2, i.e., the MILP problem. The optimal trajectories
of multiple agent can be obtained by solving the MILP prob-
lem at each discrete time. However, there are two technical
issues as follows.

i) The computation time for solving Problem 2 exponen-
tially grows with the number of agents.

ii) According to the policy of MPC, Problem 2 must be
solved at each discrete time.

For the above technical issue i), we propose the following
two methods.

i) Individual optimization for each agent.

ii) Automatic selection of the priority for each agent.

For the above technical issue ii), we propose the following
method.

iii) Introduction of an event-triggering condition.

In this section, we explain these three methods. Finally, we
present the overall procedure.

4.1 Individual Optimization for Each Agent

In this method, we consider solving Problem 2 for a single
agent under the assumption that trajectories of other agents
are given. Let δ̄ j (k |t) denote δ̄ j (k) obtained by solving
Problem 2 at time t. In addition, we define

δ̄ j (0 : N − 1|t) :=
[
δ̄ j (0|t) δ̄ j (1|t) · · · δ̄ j (N − 1|t)

]
.

The procedure is given as follows, where we assume
that the priority of agents is given by 1→ 2→ · · · → m.

Procedure of Individual Optimization at time t:
Step 0: Assume that there exists the computation result
δ̄ j (0 : N − 1|t − 1) at time t − 1.
Step 1: Set j = 1.
Step 2: Set δ̄ ĵ (0 : N −1|t), ĵ ∈ {1, 2, . . . ,m} \ { j} as follows:

δ̄ ĵ (0 : N − 1|t) =
[
δ̄ ĵ (0|t) δ̄ ĵ (1|t) · · · δ̄ ĵ (N − 1|t)

]

if ĵ < j,
δ̄ ĵ (0 : N − 1|t) =

[
δ̄ ĵ (1|t − 1) δ̄ ĵ (2|t − 1) · · ·

δ̄ ĵ (N − 1|t − 1) δ̄ ĵ (N − 1|t − 1)
]

if ĵ > j.

Step 3: Solve Problem 2 under the assumption that δ̄ ĵ (0 :
N − 1|t), ĵ ∈ {1, 2, . . . ,m} \ { j} is given.
Step 4: If j = m, then the procedure stops. Otherwise,
update j := j + 1, and return to Step 2.

At time 0, Problem 2 for m agents must be solved.
However, it may be solved before control starts (i.e., t = 0).
Hence, a long computation time is allowed. At time t ≥ 1, the
computation time of Step 3 is that for solving Problem 2 for a

single agent. In the above procedure, Problem 2 for a single
agent is solved m times. In general, the computation time
for solving an MILP problem exponentially grows with the
number of binary variables. From this fact, the computation
time to solve the m MILP problems for a single agent is
shorter than the computation time to solve theMILP problem
for m agents. Thus, the online computation time can be
decreased by using the above procedure.

4.2 Automatic Selection of the Priority for Each Agent

In the procedure of the previous subsection, the priority of
agents is given by 1 → 2 → · · · → m. However, it is
desirable to change the priority of agents depending on the
situation. In this subsection, a method to decide the priority
of agents is proposed. Here, we focus on penalties of nodes
in the neighborhood of each agent.

First, we consider deriving the set of nodes that the agent
j ∈ {1, 2, . . . ,m} can move within L discrete time, where L
is given in advance. Such nodes can be characterized by the
following row vector:

γj (k) := δ̄>j (k)ΦL

(Φ is the adjacency matrix of a given graph). If the i-th
element of γj (k) is greater than 1, then the agent can move
to the node vi within L discrete time. Let γ̂j (k) denote the
row vector obtained by replacing an element which is greater
than 1 with 1. Then, consider

κ j (k) :=
γ̂j (k)

[
q1x1(k) q2x2(k) · · · qnxn(k)

]>
γ̂j (k)1n

,

which implies the average of penalties of nodes that the agent
j can move within L discrete time. For each j, we can easily
calculate κ j (k). We can obtain the priority of agents by
arranging κ j (k), j ∈ {1, 2, . . . ,m} in descending order.

4.3 Introduction of an Event-Triggering Condition

In the conventional MPC method, the optimal control prob-
lem such as Problem 1 must be solved at each discrete time.
To overcome this technical issue, we introduce a simple
event-triggering condition.

The proposed condition consists of two conditions.
First, we evaluate the sum of penalties of all nodes. That
is, we consider the following condition:

Ĵ (t) :=
n∑
i=1

qi xi (t + 1) ≥ α,

where t is the current time, and α is a certain threshold given
in advance.

Next, we focus on the fact that the trajectories with
the length N can be obtained by solving Problem 1. For
example, consider the case of N = 5. If Problem 1 is solved
at t = 0, then there exists the next location at t = 1, 2, 3, 4. At
t = 5(= N ), Problem 1 must be re-computed. Let tl denote
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the last time that Problem 1 was solved. Then, we consider
the following condition:

t ≥ tl + N .

From the above discussion, Problem 1 is solved at time
t, only when either Ĵ (t) ≥ α or t ≥ tl + N is satisfied.

4.4 Proposed Procedure

Finally, we propose a procedure of MPC based on the above
three methods.

Computationally EfficientMPC forMulti-Agent Surveil-
lance Systems:
Step 1: Set t = 0, and give xi (0) (the initial penalty for each
node) and the initial location for each agent.
Step 2: Solve Problem 2 for m agents. Go to Step 7.
Step 3: Check if either Ĵ (t) ≥ α or t ≥ tl + N is satisfied.
If this condition holds, then go to Step 4. Otherwise, go to
Step 6.
Step 4: Determine the priority of agents based on themethod
in Section 4.2.
Step 5: Solve Problem 2 based on the procedure of individ-
ual optimization in Section 4.1.
Step 6: Set δ̄ j (t + 1|t) := δ̄ j (t + 1|t − 1).
Step 7: Move agents based on the obtained δ̄ j (t + 1|t).
Step 8: Update t := t + 1, and return to Step 3.

Using this procedure, the number of times that Problem
2 is solved can be decreased. Even if Problem 2 is solved
at time t ≥ 1, it can be solved fast using the procedure in
Section 4.1. Thus, the proposed MPC method is efficient
from the computational viewpoint.

Remark 1: In [8], we have proposed a method for reducing
the computation time using a graph decomposition. In this
method, each agent is assigned to each subgraph. Since
Problem 2 is decomposed to small MILP problems, the
computation time is reduced. For the large-scale complex
surveillance problem such that there are many nodes and
many agents, we must consider the case that agents stop due
to failures. In such a case, the method in [8] has a weakness.
That is, for each case on failures of agents, a graph decompo-
sition must be re-calculated. In the proposed method, we do
not need to consider these cases individually. Behaviors of
agents are automatically changed by imposing the constraint
that faulty agents stop.

5. Numerical Example

In this section, we present a numerical example to show
the effectiveness of the proposed method. In this numerical
example, we used the computer with CPU: Intel Core i7-
4770K processor, Memory: 32GB, and used IBM ILOG
CPLEX Optimizer 12.7.1 as an MILP solver.

Consider the undirected connected graph shown in

Table 1 Computation results (automatic selection of the priority for each
agent is not applied).

Case 1 2 3 4 Optimal
α 0 20 30 40 0
Js 5187 5161 5329 5524 5012

Ta [sec] 0.3 0.4 0.4 0.4 37.6
Tw [sec] 0.4 0.4 0.4 0.4 107

s 150 149 141 47 150

Table 2 Computation results (automatic selection of the priority for each
agent is applied).

Case 5 6 7
α 20 30 40
Js 5157 5141 5467

Ta [sec] 0.3 0.4 0.4
Tw [sec] 0.4 0.4 0.4

s 149 146 42

Fig. 1 as a surveillance area. Suppose that the number of
agents is given by three (m = 3). Suppose also that the
initial penalty, the initial location, the prediction horizon N ,
and the weight qi are given by xi (0) = 0, v1 for the agent 1,
v7 for the agent 2, v14 for the agent 3, N = 10, and qi = 1,
respectively.

We present the computation results. Here, we evaluate
the following four points:

i) Js: the sum of penalties in [0, 150], i.e., Js :=∑150
k=0

∑n
i=1 qi xi (k),

ii) Ta: the average computation time for solving Problem
1 in [1, 149],

iii) Tw: the worst computation time for solving Problem 1
in [1, 149],

iv) s: the number of times that Problem 1 is solved in
[0, 149].

First, we present the computation result using the existing
method in [8], where Problem 2 for three agents is solved at
each time. Then, we can obtain

Js = 5012, Ta = 37.6 [sec], Tw = 107 [sec], s = 150.

We remark that Js = 5012 is optimal.
Next, we present the computation results using the pro-

posed method. Table 1 shows the computation result, where
automatic selection of the priority for each agent in Sect. 4.2
is not applied. From this table, we see that the computa-
tion time is improved by using individual optimization in
Sect. 4.1. In Case 4, the control performance Js is degraded
about 10 [%]. Comparing Case 1 with Case 2, Js in Case
2 is better than that in Case 1. This seems to be strange.
However, recomputation of Problem 2 may not necessarily
produce a better computation result. This is because the ini-
tial solution is obtained by solving Problem 2 for m agents.
When Problem 2 is solved at time 1, the procedure of indi-
vidual optimization in Sect. 4.1 is applied, and the solution
may be degraded. This is one of the interesting points of the



KOBAYASHI et al.: COMPUTATIONALLY EFFICIENT MODEL PREDICTIVE CONTROL FOR MULTI-AGENT SURVEILLANCE SYSTEMS
377

Fig. 2 Time response of the sum of penalties in Case 4.

Fig. 3 Time response of agents in Case 4.

proposed MPC method.
Third, automatic selection of the priority for each agent

in Sect. 4.2 is also applied, where L is set as L = 3. Then,
we can obtain Table 2. From a comparison between Case 2
and Case 5, a comparison between Case 3 and Case 6, and
a comparison between Case 4 and Case 7, we see that the
control performance Js is improved.

Finally, we present time responses of agents and the sum
of penalties. Figures 2 and 3 show time responses of agents
and the sum of penalties in Case 4, respectively. Figures 4
and 5 show time responses of agents and the sum of penalties
in Case 6, respectively. From Fig. 2 and Fig. 4, we see that
as an overall trend, the sum of penalties in Fig. 4 is less than
that in Fig. 2. In addition, from Fig. 5, we see that in Case 6,
the periodic trajectories of agents are obtained.

6. Conclusion

In this paper, we proposed a new MPC method for multi-
agent surveillance systems. The proposed method is an im-
proved version of our previous proposed method in [8], but
several new ideas are included. First, the procedure of in-
dividual optimization was proposed. This method is a kind
of approximation algorithms to solve Problem 2. Next, to
improve the control performance, a method for selecting the
priority of agents was proposed. Finally, an event-triggered

Fig. 4 Time response of the sum of penalties in Case 6.

Fig. 5 Time response of agents in Case 6.

condition was proposed. The effectiveness of the proposed
method was presented by numerical simulations.

In futurework, wewill consider a large-scale graphwith
practical constraints such as fuel constraints. In addition, it
is important to analyze an accuracy of the solution obtained
by the proposed method. To further reduce the computation
cost, it is also important to develop a parallel and distributed
algorithm.

This work was partly supported by the Telecommunica-
tions Advancement Foundation and JSPS KAKENHI Grant
Numbers JP17K06486, JP16H04380.
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