

HOKKAIDO UNIVERSITY

Title	Infants' anticipatory eye movements: feature-based attention guides infants' visual attention
Author(s)	Tsurumi, Shuma; Kanazawa, So; Yamaguchi, Masami K.; Kawahara, Jun-ichiro
Citation	Experimental brain research, 240, 2277-2284 https://doi.org/10.1007/s00221-022-06428-1
Issue Date	2022-07-29
Doc URL	http://hdl.handle.net/2115/90201
Rights	This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature 's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00221-022-06428-1
Туре	article (author version)
File Information	Manuscript_FBA_revise2.pdf

Instructions for use

1	Infants' anticipatory eye movements: Feature-based attention guides infants' visual
2	attention.
3	
4	Shuma Tsurumi ^{1,2*1} , So Kanazawa ³ , Masami K. Yamaguchi ¹ , Jun-ichiro Kawahara ⁴
5	1. Department of Psychology, Chuo University, 742-1 Higashi-Nakano, Hachioji, Tokyo
6	192-0393, Japan
7	2. Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-
8	0083, Japan
9	3. Department of Psychology, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku,
10	Tokyo 112-8681, Japan
11	4. Department of Psychology, Hokkaido University, N10 W7, Kita, Sapporo, Hokkaido
12	060-0810, Japan
13	*Correspondence: <u>perry.super178@gmail.com</u> S. Tsurumi
14	Data availability
15	The data that support the findings of this study are available from the corresponding
16	author, S. T., upon request.

Ethical approval 17

¹ The present affiliation is Department of Psychology, Hokkaido University, N10 W7, Kita, Sapporo, Hokkaido 060-0810, Japan.

18 This study was approved by the ethical committee of Chuo University.

19 Competing interests

20 The authors declare no competing interests.

21 Funding

- 22 This research was financially supported by Grant-in-Aid for JSPS Fellows (No.19J21422),
- 23 Grant-in-Aid for Scientific Research on Innovative Areas "Construction of the Face-Body
- 24 Studies in Transcultural Conditions" (No.17H06343) from MEXT, and Grant-in-Aid for
- 25 Scientific Research (B) from the JSPS (No.19H01774).

26 Acknowledgments

- 27 We thank Yusuke Nakashima, Jiale Yang, Yuki Tsuji, Nanako Yamanaka, and Machi Sugai
- 28 for their assistance with data collection. Special thanks to the infants and their parents for
- 29 their kindness and cooperation.
- 30

31	Infants' anticipatory eye movements: Feature-based attention guides infants'
32	visual attention.
33	
34	Abstract
35	When looking for an object, we identify it by selectively focusing our attention to a
36	specific feature, known as feature-based attention. This basic attentional system has been
37	reported in young children; however, little is known of whether infants could use feature-
38	based attention. We have introduced a newly developed anticipation-looking task, where
39	infants learned to direct their attention endogenously to a specific feature based on the
40	learned feature (color or orientation), in 60 preverbal infants aged 7 to 8 months. We

42 the specific target feature among irrelevant features, thus showing the feature-based 43 attentional selection. Experiment 2 bolstered this finding by demonstrating that infants

found that preverbal infants aged 7 to 8 months can direct their attention endogenously to

- 44 directed their attention depending on the familiarized feature that belongs to a never45 experienced object. These results that infants can form anticipation by color and
- 46 orientation reflect they could drive their attention through feature-based selection.

47 Keywords

48 Feature-based attention, Infant, Anticipation, Top-down, Endogenous attention

49

41

Introduction

51	Feature-based attention refers to the function of enhancing the representation of
52	image components related to a particular feature regardless of spatial locations (Liu,
53	2019; Liu & Mance, 2011; Maunsell & Treue, 2006). This cognitive ability formed by
54	the learning and experience is useful during visual searches to look for a target in a
55	cluttered environment to achieve a particular behavioral goal (Zhang & Luck, 2009). In
56	this literature, a feature that guides attention endogenously must be a preattentive
57	feature such as color, orientation, or motion (Wolfe & Utochkin, 2019). Researchers
58	have studied this type of attentional function as well as others, such as spatial and
59	object-based attention in adults. However, it remains unclear when this important
60	attentional system, feature-based attention, is acquired during the cognitive
61	development of infants.
62	Development of spatial and object-based attention has been widely investigated
63	in infants and children (Bulf & Valenza, 2013; Frick, Colombo & Saxon, 1999; Ross-
64	Sheehy, Schneegans & Spencer, 2015; Sun et al., 2018). However, understanding the
65	development of feature-based attention is limited because researchers could not instruct
66	younger infants to direct attention to a specific feature among distractors whose features
67	are equally salient for infants. The study of feature-based attention using visual search

68	task in toddlers revealed that the performance of the task in 18 month-olds showed the
69	same trend as adults in terms of efficacy (Gerhardstein & Rovee-Collier, 2002). The
70	time to detect a target did not vary in the presence of multiple distractors in feature
71	searches (searching for a unique feature among the homogeneous array of distractors).
72	Instead, it increased as the number of distractors increased in conjunction searches
73	(searching for a unique feature among the distractors defined by conjunctions of two
74	different features). Younger infants aged 3 months can search for a unique feature
75	among the homogeneous array of distractors, suggesting that infants' attention
76	automatically shift to salient stimuli in a feature dimension (Adler & Gallego, 2014;
77	Adler & Orprecio, 2006; Bertin & Bhatt, 2001; Coldren & Haaf, 2000; Goldknopf et al.,
78	2019). However, little is known about whether infants can direct endogenous attention
79	to a specific feature among multiple features. Therefore, we investigated feature-based
80	selection in preverbal infants using a newly developed anticipation-looking task. This
81	task enabled us to study the feature-based attention in early infants without any verbal
82	instructions.
83	A key characteristic of this task is that top-down modulation induces infants to
84	direct their visual attention toward a specific feature value rather than a highly salient
85	aspect of stimuli that captures bottom-up attention. This task can highlight that infants'

86	orienting responses depended on top-down experiences because two alternative stimuli
87	were equivalent in terms of low-level visual saliency. This contrasts sharply against
88	previous infant studies that resort to a bottom-up shift of attention by introducing
89	enhanced differences of visual saliencies between target stimuli and non-target
90	distractor items. For example, infants aged 3 months can correctly detect a moving
91	object among static objects (Nagata & Dannemiller, 1996). Also, they can quickly locate
92	a unique item in a specific visual domain among other uniform background items (e.g.,
93	a target "+" among non-target "L's") (Adler & Orprecio, 2006; Goldknopf et al., 2019).
94	Endogenous attentional selection relying on feature-based attention requires
95	intentional and goal-driven mechanisms so that infants voluntarily choose a specific
96	feature (that differs from other features) through familiarization. This contrasts sharply
97	against exogenous attentional orienting that relies on stimulus saliencies can be
98	achieved by relatively primitive neural circuits (Richards, Reynolds & Courage, 2010).
99	Recent studies reveal that top-down modulation from the frontal area to occipital area
100	exists even in 6-month-olds (Emberson, Richards, & Aslin, 2015), and specific neural
101	responses reflecting early attentional amplification for expected events are observed in
102	12-month-old infants (Kouider et al., 2015), by the extensive familiarization of
103	expectation. Based on these studies demonstrating that the top-down signals induced by

104	the familiarization modulate the sensory processing, it is reasonable to assume that
105	infants' visual attention shifts to a specific feature by familiarization that enables them
106	to allocate their attention to the critical feature.
107	To achieve this type of feature-based selection, we used an anticipation-looking
108	method (e.g. Kaldy, Guillory & Blaser, 2016) and induced infants to direct their
109	endogenous attention to one of the features (color or orientation). Specifically, we
110	showed 7- to 8- month-old infants a short animation in which a yellow object ("Pac-
111	man") ate one of two rectangles based on a specific feature (e.g., red color for one group
112	of infants or vertical orientation for a different group of participants), so that the infants
113	could learn the idea: either that Pac-man eats red things or that he eats things of a
114	certain orientation. This familiarization phase plays a vital role in inducing infants to
115	direct their attention to a specific feature among the two rectangles whose low-level
116	features are equivalent. Once this familiarization being established, we presented infants
117	with two rectangles without the movement of Pac-man and tested whether infants
118	anticipated which rectangle was expected to be eaten by Pac-man.
119	We decided to include the infants aged 7 to 8 months because infants of this
120	age have already shown the basic perceptual and attentional systems relevant to object
121	recognition (Bulf & Valenza, 2013; Yang et al., 2015). Further, infants aged within one

122	year old can categorize objects and draw inferences about objects or events using
123	feature information (Adler & Haith, 2003; Mandell & Raijmakers, 2012; Needham,
124	2001; Tamis-LeMonda & McClure, 1995; Wilcox, 1999; Wilcox & Chapa, 2004),
125	implying that their perceptual systems are sensitive to object feature. Based on these
126	findings, we examined the feature-based attention in 7- to 8-month-olds.
127	We predict that if infants can direct their endogenous attention to a specific
128	feature through the familiarization session during which one of the features was
129	designated as target by Pac-man, the infants should show eye movements to the
130	rectangle of the target feature that is expected to be eaten by Pac-man in anticipation.
131	However, if infants cannot direct their attention to the feature, infants' eye movements
132	in the anticipation looking phase should be random. We also conducted Experiment 2 by
133	introducing novel sets of orientations (45° and 315°) in the anticipation-looking phase
134	to examine whether the anticipatory looking was the result of directing visual attention
135	to a specific feature endogenously and not due to memorizing the presented identical
136	stimuli.
137	Experiment 1
138	Methods

139 *Participants*

140	Forty 7-to 8-month-old infants participated in this experiment and were
141	randomly assigned to one of the two experimental groups (color condition: 9 boys and
142	11 girls, mean age = 230.0 days, $SD = 15.28$; orientation condition: 5 boys and 15 girls,
143	mean age = 232.4 days, $SD = 16.73$). An additional twenty-seven infants were excluded
144	from the final analysis because the experiment was interrupted during the calibration
145	phase $(n = 10)$ or in the middle of the experiment $(n = 12)$ due to no eye-tracking
146	recorded, or a side bias looking at only one side of the monitor during the test phase (n
147	= 5). The sample size was estimated in accordance with the guide provided by Oakes
148	(2017) to reach a power of 0.8 with an effect size of 0.65 in the experiment. All infants
149	were full-term at birth and healthy at the time of the experiment. The infants for the
150	study were recruited through local newspaper flyers. The present study was approved by
151	the ethical committee of Chuo University. Written informed consent was obtained from
152	the parents of the infants participating in the experiment prior to testing.
153	Apparatus
154	All stimuli were presented on an LCD monitor with a refresh rate of 60 Hz and
155	a resolution of 1920 \times 1080 pixels. Two loudspeakers were placed on both sides of the
156	monitor. The infant and the parent were placed inside an enclosure made of a black cloth.
157	The infant sat on his or her parent's lap approximately 60 cm away from the monitor. A

158 CCD camera below the monitor was used to record the infants' behavior digitally, 159 allowing the experimenter to observe the infants' behavior during the experiment. Infants' 160 eye movements were recorded with a Tobii Pro Spectrum (Tobii Technology, Stockholm, 161 Sweden) below the screen. The eye tracker binocularly recorded x-y coordinates of 162 current fixation with a sampling rate of 120Hz. We analyzed the recorded data which 163 contained x-y coordinates obtained from both eyes.

164

Materials and Procedure

A yellow circle-like "Pac-man" $(4.78^{\circ} \times 4.78^{\circ})$ was presented in the center of 165the screen, and two of different rectangles $(1.91^{\circ} \times 4.78^{\circ})$ were presented on the right 166 and left of the center (6.68°). A V-shaped notch in the upper part of the Pac-man waxed 167168and waned repeatedly, accompanied by a brief sound, to represent the opening and 169closing of the mouth. Pac-man's movement was used as a fixation marker. Two rectangles were presented in every trial, one on the left and the other on the right of the 170171Pac-man. The pair differed depending on the two experimental conditions (color and 172orientation). Under the color condition, two rectangles, one red and one blue, were presented on the right and left, one each. The orientation (horizontal and vertical) of 173174each rectangle was assigned randomly. The features' pairs were as follows: blue and red horizontals, blue and red verticals, blue vertical and red horizontal, and blue horizontal 175

176	and red vertical. Under the orientation condition, the vertical and horizontal rectangles
177	were presented on the right and left. The colors (red and blue) of the two rectangles
178	were assigned randomly. The features' pairs were as follows: blue vertical and red
179	horizontal, blue horizontal and red vertical, blue vertical and blue horizontal, and red
180	vertical and horizontal. There was a total of eight trials (2 colors \times 2 orientations \times 2
181	positions) in each condition. The experimental condition (color or orientation) was the
182	between-participant factor, and the feature assigned to each infant was the within-
183	participant factor.
184	We adapted an anticipation-looking task (Figure.1). The task consisted of two
185	phases, the familiarization phase and the anticipation looking phase. In the
186	familiarization phase, the Pac-man and the two rectangles appeared simultaneously.
187	After infants' fixation on the Pac-man whose mouth opened and closed repeatedly, the
188	V-shaped part of Pac-man rotated 90 degrees to the left or right so that it faced a
189	rectangle. Then, the Pac-man crawled to eat one of the two rectangles, while the mouth
190	opened and shut continuously. A trial ended when the rectangle was eaten by Pac-man.
191	Pac-man consistently ate rectangles of the same color under the color condition and
192	those of the same orientation under the orientation condition. The color or orientation of
193	the target to be learned was counterbalanced across infants. The other rectangle (the

194	non-target rectangle) was never eaten by Pac-man throughout the familiarization phase.
195	The familiarization phase was directly followed by the anticipation looking
196	phase in which the Pac-man and a pair of two different rectangles were presented. But
197	Pac-man disappeared as soon as the infants fixated on Pac-man. The two rectangles
198	were left visible on the screen for two seconds after this. Infants received eight trials in
199	the anticipation looking phase enabling us to monitor whether they showed anticipatory
200	eye movements towards the colored or oriented rectangles. The eight trials in the
201	anticipation looking phase were similar to those in the familiarization phase except that
202	the Pac-man disappeared as soon as infants maintain fixation in the screen's center.
203	Infants' eye movements were recorded throughout the experiment. The eye
204	tracker was calibrated using the Tobii built-in calibration function for infants before the
205	commencement of the experimental trials. During the calibration, the fixation marker
206	moved around the screen between five points (top left, top right, bottom left, bottom
207	right, and center) in a random order. The calibration finished when infants successfully
208	fixated on these five positions. The calibration was suspended when infants become
209	fussy and cried due to the repetition of the calibration exercise. After the calibration, the
210	familiarization phase started followed by the anticipation looking phase. In each trial,
211	Pac-man automatically started moving as soon as the infants fixated on it for two

seconds. When Pac-man reached the target rectangle, the rectangle disappeared with a

213 popping sound. During the anticipation looking phase, Pac-man disappeared after

infants fixated on it and the two rectangles remained on screen for two seconds.

215

216 *Figure 1.* Illustration of the experimental procedure.

217*Note.* In the familiarization phase, Pac-man was presented in the center flanked by two 218rectangles during the fixation period. Once infants fixated on the Pac-man in the center, 219the Pac-man crawled either to the right or to the left. Under the color condition, the Pacman crawled toward the color-defined rectangle while ignoring its orientation. Under the 220221orientation condition, the Pac-man crawled toward the orientation-defined rectangle 222while ignoring its color. Feature binding between orientation and color is not required in 223the current task (Treisman & Gelade, 1980). The familiarization phase consisted of eight trials followed by the anticipation looking phase of eight trials. 224

225

Results

226 Before the primary analysis, we counted the number of trials (valid trials) in 227 which infants continued to observe the stimuli until the end of the trial in the

familiarization and test phases. The trials in which infants looked away from the 228229monitor once were defined as invalid trials. Thus, we removed the trials in which infants looked at the stimuli only in the first, middle and/or last few tenths of a second as 230231invalid trials. This yielded the following remaining valid trials on average per condition: 5.7 trials in familiarization phase and 5.4 trials in anticipation looking phase under the 232233color condition; 5.1 trials in familiarization phase and 4.5 trials in anticipation looking phase under the orientation condition. We conducted the two-tailed *t*-test between 234conditions and found that there was no significant difference in the number of valid 235trials between conditions, familiarization phase: t(38) = 1.26, p = .21, Cohen's d = .39; 236anticipation looking phase: t(38) = 1.85, p = .07, Cohen's d = .57. 237

238 Anticipatory looking during test phase

We calculated the raw eye-tracking data and defined a fixation as when gaze points remained within the area of interest (AOI) for at least 100 ms (Liu et al., 2011; Xiao et al., 2014). The area of each rectangle was regarded as the AOI. We defined the anticipated trial as when infants' first gaze points landed on the AOI containing the critical feature. The remaining trials in which the infants' first gaze points landed on the AOI of the non-target rectangle were regarded as non-anticipated trials. To investigate whether infants anticipatorily looked at the target rectangle containing a critical visual

246	feature, we calculated the individual proportion of anticipated trials by dividing the
247	number of anticipated trials by the total number of valid trials from the test phase. If
248	infants can direct their attention to a specific feature through the familiarization where
249	one of the features was designated as a target by Pac-man, they would show eye
250	movements to the rectangle of the target feature expected to be eaten by Pac-man in
251	anticipation. Thus, the proportion of the anticipated trials should be higher than the
252	chance level of 0.5.
253	Figure.2 represents the proportion of trials in which anticipatory looking
254	occurred in each condition. Prior to the analysis, an arcsine transformation was
255	performed on the proportion of anticipated trials; however, the scores in the figure were
256	untransformed proportions for clarity. To examine whether infants could anticipate the
257	target, we conducted two-tailed t -tests against chance level (0.5) in each condition. The
258	test revealed that the proportion of trials in which anticipation looking occurred was
259	significantly higher than chance level in both conditions, color condition: $t(19) = 4.53$, p
260	< .01, <i>Cohen's d</i> = 1.41; orientation condition: $t(19) = 2.95$, $p < .01$, <i>Cohen's d</i> = .91. We
261	conducted the two-tailed <i>t</i> -tests between the color and orientation conditions to
262	investigate whether there was a difference in the proportion of anticipated trials and
263	found no difference between the two conditions, $t(38) = 1.34$, $p = .19$, Cohen's $d = .41$.

264	There were no differences between the two target colors (red or blue), $t(18) = 1.59$, p
265	= .15, Cohen's $d = .78$, and the two target orientations (horizontal or vertical), $t(18) =$
266	1.35, $p = .20$, Cohen's $d = .43$, suggesting that the infants' attention to target features
267	cannot be attributed to a biased preference to a specific color or orientation. Instead, the
268	results can be taken as evidence indicating that infants' visual attention is shifted to the
269	target feature. We additionally conducted binomial tests on the cumulative number of
270	anticipated trials in both color and orientation conditions and found that infants in both
271	conditions showed the significant anticipated trials (color condition: 76 trials from total
272	108 valid trials, $p < .01$; orientation condition: 55 trials from total 90 valid trials, p
273	< .05). We found no significant correlation between ages and proportions of anticipated
274	trials in either condition, color condition: $r = .21$, $p = .36$; orientation condition: $r = .41$,
275	p = .07.

277 *Figure 2*. The results of Experiment 1.

278Note. Mean proportion of anticipation looking in each condition. Error bars represent SE.279**p < .01 against the chance level 0.5.

280

Experiment 2

One might argue that the higher proportion of anticipatory looking in Experiment 1 reflects the infants' memory of the specific stimuli that were eaten by the Pac-man during the familiarization phase. This contradicts with our hypothesis that infants showed the anticipatory looking to the specific feature by shifting their attention to the target feature. We conducted the additional experiment by introducing pairs of novel orientations in the anticipatory looking phase to exclude this possibility. If we can replicate the same results as in Experiment 1, even when the novel orientations are

304	Participants				
303	Methods				
302	when the orientations of rectangles are novel for them.				
301	color feature, they should show the anticipatory looking to the particular color even				
300	or/and 315° in the anticipatory looking phase. If infants' attention shifts to the specific				
299	presented horizontally or/and vertically, while the two rectangles were tilted at 45°				
298	the anticipatory looking phase. In the familiarization phase, two rectangles were				
297	carry out the color condition. Second, the orientations of the rectangles were changed in				
296	colors that infants equally prefer in the orientation condition; therefore, we decided to				
295	preference depended on the colors (Brown & Lindsey, 2013). It is hard to prepare the				
294	Experiment 1. Also, there was no preferential bias to orientations, although infants'				
293	no difference in the performance between color and orientation conditions in				
292	following. First, we conducted only color condition in Experiment 2 because there was				
291	The experimental method was the same as that in Experiment 1 except for the				
290	to the target feature, not by the role of memory.				
289	infants showed the anticipatory looking to the specific feature by shifting their attention				
288	presented in the anticipatory looking phase, we can strengthen our hypothesis that				

305 Twenty 7- to 8-month-old infants participated in this experiment (11 boys and 9

306	girls, mean age = 226.2 days, $SD = 18.24$). An additional thirteen infants were tested but
307	excluded from the final analysis because the experiment was interrupted during the
308	calibration phase $(n = 6)$ or in the middle of the experiment $(n = 7)$ due to no eye-
309	tracking recorded. The sample size was estimated based on the previous infant study
310	similar as that in Experiment 1. All infants were full-term at birth and healthy at the
311	time of the experiment. Written informed consent was obtained from the parents of the
312	infants participating in the experiment before testing.
313	Results
314	Like the procedure in Experiment 1, we checked for the trials during which the
315	infants looked away from the monitor in the familiarization and anticipation looking
316	phases. This yielded the following remaining valid trials on average: 7.0 trials in the
317	familiarization phase and 5.5 trials in the anticipation looking phase.
318	Anticipatory looking during test phase
319	We calculated the individual proportion of anticipated trials by dividing the
320	number of anticipated trials by that of the total valid trials of the test phase and
321	performed an arcsine transformation on these scores as done in Experiment 1. The score
322	in Figure 3 was untransformed for clarity likewise Experiment 1. The two-tailed <i>t</i> -test
323	against chance level (0.5) showed a higher proportion of anticipated trials than that

324	against chance level, $t(19) = 3.64$, $p < .01$, Cohen's $d = .82$. There was no difference
325	between the two target colors, red or blue, $t(18) = .28$, $p = .776$, Cohen's $d =12$.
326	Moreover, we found no significant correlation between ages and proportions of
327	anticipated trials, $r =21$, $p = .37$. An additional binomial test on the cumulative
328	number of anticipated trials revealed that infants showed the significant anticipated
329	trials (69 trials from total 109 valid trials, $p < .01$). This result suggests that infants
330	generalize the target feature, i.e. infants' attention is directed to the target feature
331	endogenously even when the other feature of stimuli was different from the
332	familiarization phase. If infants' orienting responses were due to memorizing the
333	presented identical stimuli, their eye movements in the anticipation-looking phase
334	should have been random. These findings could be interpreted as another possibility that
335	infants showed the familiar preference to the color or orientation rather than
336	anticipation. In this case, infants endogenously direct their attention to the familiarized
337	feature because of the repetitive presentation of the target feature. We cannot rule out
338	this possibility completely even though infants could direct their attention to the learned
339	feature belonging to the never experienced objects in the current experiment. However,
340	in either case, the results in Experiment 2 support the feature-based attention in 7- to 8-
341	month-olds.

Figure 3. The result of Experiment 2.

344Note. Mean proportion of anticipation looking in color condition. Error bar represents SE.345**p < .01 against the chance level 0.5.

Discussion

347	In this study, we investigate the endogenous attention based on feature-based
348	selection in infants using a newly developed anticipation-looking task, in which 7- to 8-
349	month-old infants were presented with an animation depicting Pac-man eating one of
350	two rectangles based on the color or orientation features of the rectangles. The infants'
351	anticipatory looking behavior was recorded as an index of their looks based on whether
352	their eyes moved to a rectangle with a specific feature (color or orientation) that would
353	be eaten by Pac-man even after the Pac-man had disappeared. We found that these

354	infants, indeed, showed anticipatory looking at objects containing the specific feature.
355	Furthermore, infants could generalize the target feature, that is, infants' attention is
356	directed to the target feature endogenously even when the other feature of stimuli was
357	different from the familiarization phase. This result suggests that preverbal infants aged
358	7 to 8 months can direct their attention endogenously to a specific feature of a target.
359	It is noteworthy that infants' endogenous visual attention is directed to the
360	target feature through familiarization in the present study. This contrasts previous
361	studies examining infants' attention to objects' features because those studies have
362	mainly used tasks that depend on infants' exogenous attention and showed that infants'
363	attention is captured by salient stimuli exogenously (Adler & Gallego, 2014; Adler &
364	Orprecio, 2006; Bertin & Bhatt, 2001; Coldren & Haaf, 2000; Goldknopf et al., 2019).
365	Although infants' visual attention is prone to exogenous capture and shifts to stimuli,
366	little is known about whether their attention is endogenously directed to a target.
367	Recently, it has been reported that top-down knowledge, successfully acquired through
368	the abstract rule learning, biases the visual attention to the objects' feature in 9-month-
369	olds (Werchan & Amso, 2020). During visual searches infants can use contextual
370	knowledge of spatial locations to search for a target efficiently (Tummeltshammer &
371	Amso, 2017). Furthermore, even without familiarization and learning, infants can use

372	briefly presented visual or audio information to control visual search behavior (Mitsven,
373	Gantrell, Luck, & Oakes, 2018; Xiao & Emberson, 2019). In line with these findings,
374	our present task revealed that the visual attention of preverbal infants, aged 7 to 8
375	months, shifts to a target feature based on familiarization. This finding suggests that the
376	familiarization in the present task provides an opportunity for infants to direct their
377	attention to a specific feature between two different, but equally salient, features. Then
378	infants' visual attention is endogenously directed to the target feature.
379	Prior works show that the neural process of top-down modulation gained
380	through the familiarization, such as the repeated presentation of stimuli, has been
381	observed in preverbal infants (Emberson et al., 2015; Kouider et al., 2015; Werchan &
382	Amso, 2020). These imply the existence of feedforward and feedback connection, and
383	this connection enables infants to anticipate the upcoming event. In line with these
384	findings, 7- to 8-month-olds learn to direct their attention to the specific feature based
385	on the familiarization phase where feedforward and feedback connections make infants
386	direct their attention to features. The present results that infants can form anticipation by
387	color and orientation reflect that they drive their attention through feature-based
388	selection. The next step is to examine the developmental process of endogenous
389	attentional orienting using feature-based selection.

References

391	Adler, S. A., & C	Gallego, P. (2014).	Search asymmetry a	and eye movements	in infants and
-----	-------------------	---------------------	--------------------	-------------------	----------------

- adults. Attention, Perception, and Psychophysics, 76, 1590–1608.
 https://doi.org/10.3758/s13414-014-0667-6
- Adler, S. A., & Haith, M. M. (2003). The nature of infants' visual expectations for event
- 395 content. *Infancy*, 4, 389–421. https://doi.org/10.1207/S15327078IN0403_05
- Adler, S. A., & Orprecio, J. (2006). The eyes have it: Visual pop-out in infants and adults.
- 397 Developmental Science, 9, 189–206. https://doi.org/10.1111/j.1467398 7687.2006.00479.x
- 399 Bertin, E., & Bhatt, R. S. (2001). Dissociations between Featural versus Conjunction-
- 400 Based Texture Processing in Infancy: Analyses of Three Potential Contributing
- 401 Factors. Journal of Experimental Child Psychology, 78, 291–311.
- 402 https://doi.org/10.1006/jecp.2000.2568
- 403 Brown, A.M., Lindsey, D.T. (2013). Infant color vision and color preferences: a tribute to
- 404 Davida Teller. Vis Neurosci. 30, 243-50. doi: 10.1017/S0952523813000114.
- 405 Bulf, H., & Valenza, E. (2013). Object-based visual attention in 8-month-old infants:
- 406 Evidence from an eye-tracking study. Developmental Psychology, 49, 1909–1918.
- 407 https://doi.org/10.1037/a0031310

- 408 Chien, S. H. L., Bronson-Castain, K., Palmer, J., & Teller, D. Y. (2006). Lightness
- 409 constancy in 4-month-old infants. Vision Research, 46, 2139–2148.
- 410 https://doi.org/10.1016/j.visres.2005.11.027
- 411 Coldren, J. T., & Haaf, R. A. (2000). Asymmetries in infants' attention to the presence or
- 412 absence of features. Journal of Genetic Psychology, 161, 420–434.
 413 https://doi.org/10.1080/00221320009596722
- 414 Dannemiller, J. L., & Hanko, S. A. (1987). A test of color constancy in 4-month-old
- human infants. Journal of Experimental Child Psychology, 44, 255–267.
 https://doi.org/10.1016/0022-0965(87)90033-6
- 417 Emberson, L. L., Richards, J. E., & Aslin, R. N. (2015). Top-down modulation in the
- 418 infant brain: Learning-induced expectations rapidly affect the sensory cortex at 6
- 419 months. Proceedings of the National Academy of Sciences, 112, 9585–9590.
- 420 https://doi.org/10.1073/pnas.1510343112
- 421 Frick, J. E., Colombo, J., & Saxon, T. F. (1999). Individual and developmental differences
- in disengagement of fixation in early infancy. Child Development, 70, 537–548.
- 423 https://doi.org/10.1111/1467-8624.00039
- 424 Gerhardstein, P. & Rovee-Collier, C. (2002). The development of visual search in infants
- and very young children. Journal of Experimental Child Psychology. 81, 194-215.

426 https://doi.org/10.1006/jecp.2001.2649

- 427 Goldknopf, E. J., Gillespie-Lynch, K., Marroquín, A. D., Nguyen, B. D., & Johnson, S. P.
- 428 (2019). Spontaneous visual search during the first two years: Improvement with age
- 429 but no evidence of efficient search. Infant Behavior and Development, 57, 101331.
- 430 https://doi.org/10.1016/j.infbeh.2019.101331
- 431 Kaldy, Z., Guillory, S. B., & Blaser, E. (2016). Delayed Match Retrieval: a novel
- 432 anticipation-based visual working memory paradigm. Developmental Science, 19,
- 433 892–900. https://doi.org/10.1111/desc.12335
- 434 Kouider, S., Long, B., Le Stanc, L., Charron, S., Fievet, A. C., Barbosa, L. S., & Gelskov,
- 435 S. V. (2015). Neural dynamics of prediction and surprise in infants. Nature
- 436 Communications, 6, 1–8. https://doi.org/10.1038/ncomms9537
- 437 Liu, T. (2019). Feature-based attention: Effects and control. Current opinion in
- 438 psychology, 29, 187-192. https://doi.org/10.1016/j.copsyc.2019.03.013
- 439 Liu, T., & Mance, I. (2011). Constant spread of feature-based attention across the visual
- 440 field. Vision Research, 51, 26–33. https://doi.org/10.1016/j.visres.2010.09.023
- Liu, S., Quinn, P. C., Wheeler, A., Xiao, N., Ge, L., & Lee, K. (2011). Similarity and
- difference in the processing of same- and other-race faces as revealed by eye tracking
- in 4- to 9-month-olds. Journal of Experimental Child Psychology, 108, 180–189.

444 https://doi.org/10.1016/j.jecp.2010.06.008

445 Mandell, D. J., & Raijmakers, M. E. J. (2012). Using a single feature to discriminate and

- form categories: The interaction between color, form and exemplar number. Infant
- 447
 Behavior
 and
 Development,
 35,
 348–359.

 448
 https://doi.org/10.1016/j.infbeh.2012.04.003
 35,
 348–359.
- 449 Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends
- 450 in Neurosciences, 29, 317–322. https://doi.org/10.1016/j.tins.2006.04.001
- 451 Mitsven, S. G., Cantrell, L. M., Luck, S. J., & Oakes, L. M. (2018). Visual short-term
- 452 memory guides infants' visual attention. Cognition, 177, 189–197.
 453 https://doi.org/10.1016/j.cognition.2018.04.016
- 454 Nagata, Y., & Dannemiller, J. L. (1996). The Selectivity of Motion-Driven Visual
- 455 Attention in Infants. Child Development, 67, 2608–2620.
 456 https://doi.org/10.1111/j.1467-8624.1996.tb01878.x
- 457 Needham, A. (2001). Object Recognition and Object Segregation in 4.5-Month-Old
- 458 Infants. Journal of Experimental Child Psychology, 78, 3–24.
- 459 https://doi.org/10.1006/jecp.2000.2598
- 460 Oakes L. M. (2017). Sample size, statistical power, and false conclusions in infant
- 461 looking-time research. *Infancy*, 22, 436–469. https://doi.org/10.1111/infa.12186

- 462 Richards, J. E., Reynolds, G. D., & Courage, M. L. (2010). The neural bases of infant
- 463 attention. Current Directions in Psychological Science, 19, 41–46.
 464 https://doi.org/10.1177/0963721409360003
- 465 Ross-Sheehy, S., Schneegans, S., & Spencer, J. P. (2015). The infant orienting with
- 466 attention task: Assessing the neural basis of spatial attention in infancy. Infancy, 20,
 467 467-506. https://doi.org/10.1111/infa.12087
- 468 Sun, M., Wang, E., Huang, J., Zhao, C., Guo, J., Li, D., Li, S., Du, B., Ding, Y., & Song,
- 469 Y. (2018). Attentional selection and suppression in children and adults.
- 470 Developmental Science, 21, 1–13. https://doi.org/10.1111/desc.12684
- 471 Tamis-LeMonda, C. S., & McClure, J. (1995). Infant visual expectation in relation to
- 472 feature learning. Infant Behavior and Development, 18, 427–434.
- 473 https://doi.org/10.1016/0163-6383(95)90032-2
- 474 Treisman, A. M., & Gelade, G. (1980). A Feture-Integration Theory of Attention.
- 475 Cognitive Psychology, 12, 97–136. https://doi.org/10.1016/0010-0285(80)90005-5.
- 476 Tsurumi, S., Kanazawa, S., & Yamaguchi, M. K. (2018). The development of object-
- 477 based attention in infants. Infant Behavior and Development, 52, 14-21.
- 478 https://doi.org/10.1016/j.infbeh.2018.05.001
- 479 Tummeltshammer, K. & Amso, D. (2017). Top-down contextual knowledge guides visual

481

attention in infancy. Developmental Science, 21, e12599. https://doi.org/10.1111/desc.12599

- 482 Werchan, D. M. & Amso, D. (2020). Top-down knowledge rapidly acquired through
- 483 abstract rule learning biases subsequent visual attention in 9- month-old infants.
- 484 Developmental Cognitive Neuroscience, 42, 100761.
- 485 https://doi.org/10.1016/j.dcn.2020.100761
- 486 Wilcox, T. (1999). Object individuation: Infants' use of shape, size, pattern, and color.
- 487 Cognition, 72, 125–166. https://doi.org/10.1016/S0010-0277(99)00035-9
- 488 Wilcox, T., & Chapa, C. (2004). Priming infants to attend to color and pattern information
- in an individuation task. Cognition, 90, 265–302. https://doi.org/10.1016/S0010-
- 490 0277(03)00147-1
- 491 Wolfe, J. M., & Utochkin, I. S. (2019). What is a preattentive feature?. Current Opinion
- in Psychology, 29, 19-26. 10.1016/j.copsyc.2018.11.005
- 493 Xiao, N. G., & Emberson, L. L. (2019). Infants use knowledge of emotions to augment
- 494 face perception: Evidence of top-down modulation of perception early in life.
- 495 Cognition, 193, 104019. https://doi.org/10.1016/j.cognition.2019.104019
- 496 Xiao, N. G., Quinn, P. C., Wheeler, A., Pascalis, O., & Lee, K. (2014). Natural, but not
- 497 artificial, facial movements elicit the left visual field bias in infant face scanning.

- 498 Neuropsychologia, 62, 175–183.
- 499 https://doi.org/10.1016/j.neuropsychologia.2014.07.017
- 500 Yang, J., Kanazawa, S., Yamaguchi, M. K., & Motoyoshi, I. (2015). Pre-constancy Vision
- in Infants Report Pre-constancy Vision in Infants. Current Biology, 25, 3209–3212.
- 502 https://doi.org/10.1016/j.cub.2015.10.053
- 503 Zhang, W., & Luck, S. J. (2009). Feature-based attention modulates feedforward visual
- 504 processing. Nature Neuroscience, 12, 24–25. doi:10.1038/nn.2223