

HOKKAIDO UNIVERSITY

Title	LC/MS analysis of storage-induced plasmalogen loss in ready-to-eat fish
Author(s)	Chen, Zhen; Jia, Jiaping; Wu, Yue; Chiba, Hitoshi; Hui, Shu-Ping
Citation	Food Chemistry, 383, 132320 https://doi.org/10.1016/j.foodchem.2022.132320
Issue Date	2022-07-30
Doc URL	http://hdl.handle.net/2115/90206
Rights	© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	https://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	Chen202207.pdf

1	LC/MS Analysis of Storage-Induced Plasmalogen Loss in Ready-to-Eat
2	Fish
3	
4	Zhen Chen ^{a,†} , Jiaping Jia ^{a,†} , Yue Wu ^a , Hitoshi Chiba ^b , Shu-Ping Hui ^{a,*}
5	
6	^a Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo
7	060-0812, Japan. Zhen Chen: chenzhen@hs.hokudai.ac.jp, Jiaping Jia:
8	jiaping.jia.s1@elms.hokudai.ac.jp, Yue Wu: wuyue123@hs.hokudai.ac.jp, Shu-Ping Hui:
9	keino@hs.hokudai.ac.jp.
10	^b Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-
11	1-15, Sapporo 007-0894, Japan. Hitoshi Chiba: chiba-h@sapporo-hokeniryou-u.ac.jp.
12	
13	* Corresponding author, E-mail: keino@hs.hokudai.ac.jp, Tel.: +81-11-706-3693.
14	† Both authors contributed equally to this work.
15	

16 Abstract

Plasmalogens are functional and oxidation-sensitive phospholipids abundant in fish. Chilling 17 and freezing are common storage methods for maintaining the quality of fish, but their effect 18 19 on plasmalogen preservation has not been studied. Therefore, plasmalogen loss in ready-to-20 eat tuna meat during storage under different conditions was investigated. LC/MS was used to 21 analyze the time- and temperature-dependent changes of plasmalogens, which was the most 22 evident for the species with an ethanolamine headgroup and polyunsaturated fatty acyl 23 chains. Moreover, a series of oxidized plasmalogen molecules were identified, and their 24 storage-induced accumulation was observed. Plasmalogen loss was strongly correlated with 25 total lipid oxidation and phospholipid degradation. Repeated freeze-thaw cycles were found 26 to accelerate the loss of plasmalogens, whereas the different thawing methods did not. The 27 present study provides a deeper understanding of changes in lipid nutrients from fish meat 28 during storage and demonstrates the importance of using advanced strategies to maintain food 29 quality.

30

31 Keywords

32 Dietary phospholipids; tuna meat; plasmalogen oxidation; lysophospholipids; freeze-thaw33 cycles.

34 **1. Introduction**

Plasmalogens are a kind of dietary phospholipids with various beneficial effects, such as anti-35 oxidation (Wu et al., 2019), anti-inflammation (Sejimo et al., 2018), anti-atherosclerosis 36 37 (Ding et al., 2020), and neuronal protection (Yamashita et al., 2016). Their molecular 38 structures consist of a vinyl-ether-linked chain, an ester-linked fatty acyl chain, and a 39 phosphate headgroup at the sn-1, sn-2, and sn-3 positions of the glycerol backbone, 40 respectively. Depending on the headgroup, plasmalogens are classified into two main types: 41 choline plasmalogen (PlsCho) and ethanolamine plasmalogen (PlsEtn) (Figure 1A). 42 It is widely believed that intake of bioactive lipids is beneficial for maintaining health, preventing some diseases, and treating certain illnesses. Therefore, the evaluation of quality 43 and quantity of these lipids in foods has gained the attention of scientists. Fish is a well-44 45 known source of essential lipids, particularly the major dietary polyunsaturated fatty acyls 46 (PUFA). Plasmalogens are recognized as a "storage pool" of PUFA because their sn-2 group 47 is usually a PUFA (J. Wang et al., 2021). PUFA-rich plasmalogens are abundant in aquatic 48 animal food-products, including food-products from fish and shellfish (Wu et al., 2021). 49 Hence, these seafoods have been proposed to help prevent cardiovascular disease and 50 metabolic disorders, e.g., atherosclerosis, nonalcoholic steatohepatitis, and Alzheimer's 51 disease (Ding et al., 2020; Jang et al., 2017; Su et al., 2019). 52 It is vital to ensure the quality and freshness of fish due to its highly perishable nature. 53 This is particularly the case for ready-to-eat raw fish dishes, such as sushi and sashimi in

3 / 29

54	Japan and gravlax in Nordic countries. Therefore, after catching, fish are usually kept
55	refrigerated or frozen to extend their shelf-life and increase market accessibility. However,
56	these storage methods induce some changes in the quality of fish, such as color, texture,
57	flavor, and microbial profile (Coombs et al., 2017; Soyer et al., 2010). In terms of chemical
58	components, researchers have demonstrated that the denaturation, rancidity, degradation, and
59	oxidation of proteins and lipids are mainly responsible for the decline in quality and
60	nutritional value of foods (Aguilera Barraza et al., 2015). These changes are exacerbated by
61	inappropriate thawing methods and excessive freeze-thaw cycles (Ali et al., 2015; B. Wang et
62	al., 2020).
63	Compared with that of conventional evaluation methods, better food quality control can be
64	achieved using the recently proposed "food fingerprinting" strategy that employs an omics
65	approach (Medina et al., 2019). The quality change in fish during storage has been analyzed
66	on the basis of proteins, enzymes, organic acids, biogenic amines, and volatile bases
67	(Prabhakar et al., 2020). In contrast, studies on the lipidome changes remain quite limited.
68	Especially, plasmalogens should be investigated at the molecular level, in order to precisely
69	monitor their easily neglected quality changes and assess the variation in related nutrients. In
70	our previous study, we discovered that plasmalogens were significantly reduced during high-
71	temperature cooking processes (Wu et al., 2020). Although such an issue does not exist for
72	ready-to-eat raw fish, the loss of plasmalogens during preservation remains unknown.
73	Based on the above considerations, the present study aimed to clarify changes in

74	plasmalogens in ready-to-eat raw fish meat during storage using liquid chromatography-mass
75	spectrometry (LC/MS). Detailed variations of plasmalogen species with different headgroups
76	(PlsCho and PlsEtn) and various fatty acyls were semi-quantitatively characterized during
77	freezing and chilling under different conditions. The influences of common thawing methods
78	and the number of freeze-thaw cycles were also evaluated and discussed.
79	
80	2. Materials and methods
81	2.1. Chemicals
82	Chloroform, methanol, isopropanol, and water of spectral grade were purchased from Sigma-
83	Aldrich (St. Louis, USA). The plasmalogen standards PlsCho p16:0/17:0 and
84	PlsEtn p16:0/17:0 were chemically synthesized (Wu et al., 2020), while other lipid standards
85	were obtained from Avanti Polar Lipids (Alabaster, USA) and Sigma-Aldrich. A mixed
86	solution containing all internal standards was prepared with methanol and stored at -80 °C
87	until use, and the concentration of each standard in the mixture is listed in Table S1. Unless
88	otherwise specified, other chemical reagents were of analytical grade and acquired from
89	Kanto Chemical Co., Inc. (Tokyo, Japan).
90	2.2. Sample preparation
91	Fresh lean tuna meat was purchased from a local provider in Sapporo, Japan, of which the
92	fish were harvested in Hokkaido, Japan. The samples were kept on ice and transported
93	immediately to the laboratory within 20 min. Upon arrival, the samples were cut into uniform

95	fresh tuna meat was designated as the "control sample," which was used to measure the
96	baseline lipid levels. In all subsequent experiments, the samples were analyzed in
97	quadruplicates (unless specified otherwise).
98	2.2.1. Freezing and chilling conditions
99	Frozen tuna samples were stored at -25 °C, -40 °C, or -80 °C for up to 90 days, and lipid
100	extraction was performed at 1, 2, 3, 4, 5, 6, 7, 10, 15, 30, 45, 60, and 90 days. The chilled
101	samples were stored at 4 °C for up to 15 days, and lipid extraction was performed at 1, 2, 3,
102	4, 5, 6, 7, 10, and 15 days. The frozen samples were subsequently used for lipid extraction.
103	2.2.2. Thawing methods
104	Four commonly used thawing methods were compared: refrigerator thawing (RT, 4 °C), air
105	thawing (AT, 20 °C), water immersion thawing (WT, 18 °C), and microwave thawing (MT,
106	200 W). Fresh samples were frozen at -25 °C for 3 days and then thawed using one of the
107	four methods, till the core temperature reached 4 °C (B. Wang et al., 2020). The required
108	thawing times were: 3 h for RT, 1.5 h for AT, 25 min for WT, and 1 min for MT. The control
109	samples were analyzed directly without thawing.
110	2.2.3. Freeze-thaw cycles
111	In each freeze-thaw cycle, the sample was frozen at -25 °C for 21 h and then thawed at 4 °C
112	for 3 h. This treatment was repeated for up to 7 cycles. In these experiments, the control
113	samples were the fresh ones (without freezing or thawing) and those kept frozen for 1 to 7
	6 / 29

pieces of 4 cm \times 4 cm \times 2 cm and packaged in polyethylene bags. Unless specified otherwise,

94

114 days (without thawing).

115 **2.3. Lipid extraction**

116 Lipid extraction was carried out according to Folch et al. (Folch et al., 1957) with some

117 modifications (Wu et al., 2020). Briefly, the tuna meat sample was directly homogenized

118 using a kitchen homogenizer (Joyoung Co., Ltd., Hangzhou, China). Then, approximately

119 50 mg of the homogenized sample was placed in a 1.5 mL Eppendorf® tube and weighed

120 precisely. The homogenate was extracted twice with 900 µL of ice-cold solvent that consisted

121 of chloroform/methanol in 2:1 (v/v) with 0.002% butylated hydroxytoluene and internal

122 standards (for the amount of each internal standard see Table S1). This was followed by

123 vacuum concentration, dissolution of extracts in methanol, and filtration to remove any

124 residue. The whole lipid extraction procedure was completed within 1 h to minimize lipid

125 oxidation or degradation, and the prepared lipid extracts were kept at -80 °C until LC/MS

126 injection.

127 **2.4. LC/MS analysis**

128 The determination of plasmalogens and other lipids was performed using a Shimadzu

129 Prominence HPLC (Shimadzu Corp., Kyoto, Japan) coupled to an LTQ Orbitrap MS

130 (Thermo-Fisher Scientific Inc., San Jose, CA, USA). The chromatographic conditions were

131 as follows: Atlantis T3 C18 column (2.1 mm × 150 mm, 3 μm, Waters, Milford, MA, USA),

132 oven temperature of 40 °C, and flow rate of 200 μ L/min. The mobile phases were as follows:

133 10 mM aqueous ammonium acetate (A), isopropanol (B), and methanol (C). The elution

134	gradient was as follows: 0-1 min, 40%A+20%B+40%C; 1-5 min, 20%A+50%B+30%C; 5-
135	12 min, 5%A+70%B+25%C; 12–28 min, 3%A+82%B+15%C; 28–36.5 min,
136	3%A+85%B+12%C; 36.5–37.5 min, returned to the initial condition, followed by 40 min for
137	re-equilibration. For MS detection, the following parameters were applied for both
138	electrospray ionization (ESI)-positive and ESI-negative modes: spray voltage of 3 kV,
139	capillary temperature of 330 °C, and Fourier transform mode resolution power of 30 000. The
140	scanning parameters were based on our previous study (Wu et al., 2020): the high-resolution
141	(HR) MS ¹ data were obtained in the range of m/z 250–1100 for ESI-positive mode and in
142	m/z 220–1650 for ESI-negative mode, while the tandem MS data were acquired using
143	collision-induced dissociation (CID). The collision energy values for MS ² , MS ³ , and MS ⁴
144	were set at 35.0, 40.0, and 40.0, respectively.
145	The raw data were processed using the workstation Xcalibur 2.3 (Thermo-Fisher Scientific
146	Inc.). The annotation of plasmalogens and other lipids was based on the retention behavior
147	and HR-MS signals with a tolerance of 5.0 ppm. The annotated lipids were labeled as "lipid
148	class + the number of acyl carbon atoms + the number of acyl double bonds." The fatty acyl
149	composition of the intact lipid molecular species was determined with the help of MS/MS
150	fragmentation, which was based on comparison with LIPIDMAPS (www.lipidmaps.org) and
151	our in-house library (Z. Chen et al., 2020; Wu et al., 2019, 2020). The semi-quantitation of
152	plasmalogens and other unoxidized lipids was based on the extracted ion chromatogram
153	(EIC) peak areas of the analyte and the IS, according to the following equation:

154	$Amount_{analyte} = \frac{Peak \ area \ _{analyte}}{Peak \ area \ _{internal \ standard}} \times Amount \ _{internal \ standard}$
155	Because we lacked internal standards for oxidized lipids, their semi-quantitative
156	measurement was based on calculating the peak area as the analyte intensity.
157	
158	2.5. Measurement of thiobarbituric acid-reactive substances (TBARS) content
159	TBARS level was measured according to previous studies (Jiang et al., 2019; Li et al., 2019)
160	with some modifications. In brief, 100 mg homogenized sample was mixed with 1 mL acetic
161	acid solution (pH = 4.0, adjusted by NaOH) containing 0.1% EDTA, followed by
162	centrifugation (5000 rpm, 20 min, 4 °C) to obtain the supernatant. Next, 200 μ L of the
163	supernatant was reacted with 1 mL of 20 mM thiobarbituric acid (TBA) at 100 °C for 1 h.
164	The reaction was terminated by cooling in an ice bath for 10 min, and then the mixture was
165	separated by centrifugation at 12 000 rpm for 10 min at 4 °C. Fluorescence of the final
166	supernatant was measured at 532 nm using a spectrofluorometer (FP-6500, JASCO, Tokyo,
167	Japan). Malonaldehyde (MDA) prepared from 1,1,3,3-tetraethoxypropane (TEP) was used to
168	obtain the TBARS calibration curve, and the TBARS values were expressed in units of
169	mg MDA/kg sample.
170	2.6. Statistical analysis
171	All results were expressed as mean \pm standard deviation (SD). Two-tailed Student's t-test and
172	one-way ANOVA (using Tukey's post hoc test) were carried out using GraphPad Prism 8 (La
173	Jolla, CA, USA). $P < 0.05$ was considered significantly different. Correlation analysis and the
	9 / 29

174	following heatmap illustration were performed using R 4.1 (R Core Team, 2021). Principal
175	component analysis (PCA) and artificial neural network (ANN) modeling were conducted
176	using JMP 16 pro (SAS Institute Inc., Cary, NC, USA).

177

178 **3. Results and discussion**

- 179 **3.1.** Time- and temperature-dependent loss of plasmalogens during storage
- 180 **3.1.1.** Decrease in the content of total plasmalogens
- 181 Representative photographs of tuna meat samples during storage by freezing/chilling are
- 182 shown in Figure 1B. The content of total plasmalogens, defined as the sum of all the detected
- 183 intact plasmalogen species (for the identification details see Table S2), was compared at
- 184 different storage times and temperatures. As shown in Figure 1C, approximately 90% of the
- 185 total plasmalogens was retained after 90 days of frozen storage under -40 °C and -80 °C.
- 186 Samples frozen under -25 °C showed a slight decrease (94.5% \pm 2.0% of control) in
- 187 plasmalogen content within the first 5 days, followed by an obvious decline toward the end to
- 188 reach $68.7\% \pm 1.9\%$ of the control (i.e., fresh samples without freezing or chilling). Chilling
- 189 at 4 °C did not preserve the plasmalogens well, since their total amount was only
- 190 $53.8\% \pm 2.2\%$ after 15 days. Similar results have been reported for the loss of other fat-
- 191 soluble nutrients (e.g., fatty acids and certain vitamins) during long-term storage (Karlsdottir
- 192 et al., 2014; Santos et al., 2012; Zhou et al., 2019). A major issue is temperature variation,
- 193 which is associated with physiological and biochemical changes in lean meat as well as

10 / 29

194 microbial activity (Ali et al., 2015).

195 **3.1.2.** Variation in characteristics of plasmalogen fingerprints

196 Because plasmalogens include many molecular species, storage-induced variations in their 197 profile need comprehensive investigation. To obtain a general overview, we conducted PCA 198 using the plasmalogen molecular composition as variables for all the samples. There were a total of 198 samples: 52 for each group frozen under -25 °C, -40 °C, or -80 °C; 36 for the 199 group chilled at 4 °C; and 6 for the control group (not frozen or chilled). Most of the variance 200 201 was adequately explained by the first two principal components (50.6% and 12.3% of the 202 total explained variance). Separate score plots for each storage temperature (Figure 2A) show time- and temperature-dependent clustering. All samples frozen under -40 °C and -80 °C 203 204 were grouped tightly; those frozen under -25 °C were loosely grouped and showed 205 noticeable divergence after 10 days. Samples chilled under 4 °C displayed migration toward 206 the positive x-axis, which corresponded with storage time from day 4 onward, moving 207 gradually away from the control. These data suggest that a higher storage temperature 208 (particularly chilling at 4 °C) causes more changes in the plasmalogen fingerprint. 209 Figure 2B compares the two plasmalogen types, namely PlsCho and PlsEtn with different 210 headgroups. Both exhibited a decreasing trend during storage. PlsEtn was more unstable than 211 PlsCho under all investigated temperatures, and their difference was especially obvious at 212 higher temperatures. Consistently, in case of the corresponding diacyl glycerophospholipids, 213 the amount of phosphatidylethanolamine (PE) remained significantly lower than that of

phosphatidylcholine (PC). Similar studies claimed that PE was more susceptible to hydrolysis
or oxidation than PC during the dry curing of meat (Pérez-Palacios et al., 2010; Xu et al.,
2008). The present results also suggest the parallel explanation that plasmalogens containing
ethanolamine (PlsEtn) suffer more loss during storage than those containing choline
(PlsCho).

219 Interestingly, PlsEtn (with a vinyl-ether linkage at sn-1) experienced less loss than PE 220 (with an ester linkage at sn-1) when stored under -25 °C and 4 °C, even though they share 221 the same headgroup. In contrast, such phenomenon was not found under -40 °C or -80 °C 222 (Figure 2B). One possible explanation is that at higher storage temperatures, phospholipids 223 were partially hydrolyzed by active enzymes, such as lipases and phospholipases (Qinsheng 224 Chen et al., 2017), and more ester linkages mean easier enzymatic reactions. However, such 225 difference according to the linkage was not observed between PlsCho and PC. These results 226 seem to contradict the conventional view that the vinyl-ether linkage serves as a sacrificial 227 antioxidant functional group (Broniec et al., 2011; Morel et al., 2021). Whether there are 228 specific mechanisms that stabilize plasmalogens and how they work are worthy questions for 229 future investigations.

Figure 2C compares the fatty acyl compositions across the samples. The levels of PUFAs such as C22:6 and C20:5 were sharply depleted when stored for longer times and under

higher temperatures. It is noted that there were higher PUFA levels in PlsEtn than in PlsCho

233 (e.g., $68.5\% \pm 0.8\%$ vs. $23.6\% \pm 1.0\%$ for C22:6, P < 0.001), which might explain the

different stabilities of PlsEtn and PlsCho (Pérez-Palacios et al., 2010; Xu et al., 2008).

235 According to these results, the stability of plasmalogen species depends on both the

headgroup and the fatty acyl at the *sn*-2 position.

237 **3.2.** Potential mechanisms of plasmalogen loss during storage

238 **3.2.1. Identification of oxidized plasmalogens**

239 Since plasmalogens are easily oxidizable food nutrients, we were interested to know whether and how they become oxidized during long-term storage, as well as the possible connection 240 241 between oxidation and plasmalogen loss. To the best of our knowledge, there have been no 242 available libraries for oxidized plasmalogens so far. Therefore, first, we identified a series of 243 oxidized plasmalogen molecules as the oxidation products based on HR-MS signals and tandem MS fragmentation characteristics (Table S3). For instance, the HR-MS¹ data in 244 245 Figure 3A indicate a signal at m/z 810.4937 that corresponds to C₄₃H₇₄O₁₁NP⁻ (calculated 246 m/z: 810.4927, $\Delta ppm = 1.23$). Considering both the formula (63.9797 Da greater than 247 PlsEtn 38:6) and the retention time (approximately 4 minutes shorter than PlsEtn 38:6) in the 248 corresponding EIC, we assumed the existence of oxidation product PlsEtn 38:6+4[O]. In the 249 following MS², compared with that in the intact PlsEtn 38:6 (major fragments: m/z 436 as 250 loss of sn-2 acyl chain, m/z 327 as sn-2 RCOO⁻ ion), there were three major extra ions, namely m/z 452, m/z 391, and m/z 375, suggesting the addition of 1[O] (m/z 436 + 16), 4[O] 251 (m/z 327 + 64), and 3[O] (m/z 327 + 48), respectively. The following MS³ of m/z 452 gave 252 253 subsequent fragments of m/z 391 and m/z 255, which were respectively assigned as

254	$[M - H - sn-2 \text{ acyl chain} - \text{ethanolamine}]^-$ and $[sn-1 \text{ epoxy alcohol}]^-$ (or detached as α -
255	hydroxyaldehyde) based on the literature (Stadelmann-Ingrand et al., 2001; Weisser et al.,
256	1997). The product ions of the m/z 375 precursor ion exhibited continuous loss of H ₂ O,
257	suggesting one hydroxyl and one hydroperoxyl group. Therefore, one of the products in the
258	mixture was speculated as PlsEtn p16:0(epo)/22:6(OH)(OOH). Similarly, the MS ³ of m/z 391
259	and the MS ⁴ further prompted the combination of two hydroxyl and one hydroperoxyl group.
260	Thus, the other product of the isomer was disclosed as PlsEtn p16:0/22:6(OH) ₂ (OOH).
261	Now, we further discuss the complexity of these oxidized plasmalogens. Taking the
262	molecular species with fatty chain combination 38:6 (identified as p16:0/22:6) as an example,
263	both PlsEtn and PlsCho were found with various oxidation degrees from +1[O] to +4[O],
264	which were respectively classified as epoxides, hydroxides, and hydroperoxides according to
265	the characterized MS fragmentation (Figure S1 - S8). Moreover, the fragment intensity
266	differences indicated that the primary oxidation position for PlsEtn was the double bonds in
267	the <i>sn</i> -2 fatty acyls (MS ² ion intensity: m/z 436 > m/z 452, m/z 343 > m/z 327; Figure S1),
268	whereas for PlsCho it was easier to generate epoxy group on the vinyl-ether bond (MS ² ion
269	intensity: $m/z 480 > m/z 464$, $m/z 327 > m/z 343$; Figure S5). When two or more oxygen
270	atoms were added into the molecule, the $sn-1/sn-2 + n[O]$ and the $sn-1 + [O]/sn-2 + (n-1)[O]$
271	species were produced without selectivity. Possible reasons might include the proportion of
272	PUFA in the <i>sn</i> -2 fatty acyls and the electrical charge on the headgroups.

273	3.2.2. Oxidation and degradation as the potential mechanisms of plasmalogen loss
274	Changes in oxidized plasmalogens were assessed for all samples (Figure 3B). The
275	concentrations of both oxidized PlsEtn and oxidized PlsCho increased during storage. Among
276	the four temperatures, -25 °C produced the most drastic accumulation of all plasmalogen
277	oxides, while -40 °C resulted in much lower levels (only 0.3%–27.4% of that under -25 °C).
278	Moreover, there was an even stronger relative reduction in the highly oxidized species at -
279	40 °C (approximately 27% for both PlsEtn+1[O] and PlsCho+1[O], but less than 2% for
280	PlsEtn+4[O] and PlsCho+4[O]). In addition, the plasmalogen oxides emerged at similar times
281	under -25 °C and -40 °C: after 15 days for $+1$ [O] and after 30 days for $+2$ to $+4$ [O].
282	Importantly, no oxidized plasmalogens were detected at any time in the samples kept under
283	-80 °C. On the 15 th day, the samples chilled under 4 °C showed higher levels of oxides than
284	those kept under other temperatures. Also, the peak of oxidized plasmalogens first appeared
285	in the chilled samples on the 7 th day, suggesting that these unstable oxides produced under a
286	relatively high temperature would undergo further reactions. The chain reactions of
287	oxidation/peroxidation might affect other lipid components as well as the overall quality of
288	the fish.
289	We also measured the levels of the oxidation products of other major lipid classes in the
290	tuna meat samples, including triglycerides (TG), diglycerides (DG), free fatty acids (FFA),
291	PC, and PE, according to our previously established LC/MS method (Z. Chen et al., 2020;
292	Wu et al., 2019). The oxidation trends of these lipids were very similar to those of the

293	plasmalogen oxides (shown in Figure 4A). TG, DG, and FFA are known as the main lipid
294	components of lean fish meat, while PC and PE are the major phospholipids. Therefore,
295	oxidation of these lipids induces denaturation and rancidity, critically impacting the quality
296	and nutritional value of the meat (Zhou et al., 2019). Meanwhile, we measured the TBARS
297	levels in these samples (Figure 4A). As secondary products of lipid oxidation, TBARS were
298	found to increase continuously during long-term storage, growing to 3.7-, 7.6-, 2.8-, and 1.2-
299	fold of that of control under 4 °C, -25 °C, -40 °C, and -80 °C, respectively. These findings
300	agree with the measured data for oxidized lipids.
301	Besides oxidation, degradation is another major pathway of plasmalogen loss in biological
302	samples (Engelmann, 2004; Guang et al., 2010). Phospholipids are known to be hydrolyzed
303	into lysophospholipids. For plasmalogens, the degradation products of PlsCho and PlsEtn are
304	lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), respectively,
305	together with FFA (Qinsheng Chen et al., 2017; Wu et al., 2019). Consequently, their levels
306	were compared to the total amount of every molecular species within the same class
307	(Figure 4B). Similar to the trend observed for oxidation products, the plasmalogen
308	degradation products also accumulated in a temperature- and time-dependent manner.
309	Notably, chilling (4 °C) for 15 days resulted in a larger amount of degradation products than
310	that in all samples stored by freezing (up to 90 days). Lipid degeneration, which consists of
311	oxidation and degradation, is considered the main limiting factor for the shelf-life of cold-
312	stored fish (Tappi et al., 2020). According to our results, extended storage under 4 °C and

313 -25 °C caused significant degeneration of plasmalogens and other related lipids and storage
314 under -40 °C could partially attenuate the degeneration, while storage under -80 °C could
315 effectively inhibit such changes.

316 **3.2.3.** Plasmalogen loss as an indicator of lipid degeneration and meat quality

317 deterioration

318 To examine the possible use of plasmalogens as an indicator of fish quality, we analyzed the 319 association between plasmalogen loss and other lipid degeneration indexes assessed in the 320 current study. The Spearman's correlation coefficients were calculated for the samples stored 321 under 4 °C and -25 °C, as summarized in the heatmap of Figure 5A. Significant positive correlations were observed for both temperatures (4 °C, r > 0.70; -25 °C, r > 0.56), 322 323 suggesting an agreement between the reduction of intact plasmalogens and the accumulation 324 of oxidized/degraded lipids. It was found that the total plasmalogens and PlsEtn levels 325 correlated better to the lipid degeneration indexes than to PlsCho levels. Considering that 326 TBARS are among the most common indicators of meat oxidation and quality deterioration, 327 we made scatter plots of the TBARS levels and the loss rate of total plasmalogens for 328 samples stored under all four temperatures (Figure 5B). The correlation coefficients were in the following order: $-80 \text{ °C} < -40 \text{ °C} < -25 \text{ °C} \approx 4 \text{ °C}$, indicating that the plasmalogen loss 329 330 was closely related to meat quality deterioration under commercial freezing and conventional 331 chilling conditions. In addition, a higher storage temperature resulted in a steeper slope of the 332 regression curve, suggesting that plasmalogens may be a more sensitive indicator of meat

quality than TBARS. Thus, the present work indicates the feasibility of a plasmalogen-basedquality control strategy.

335	To provide a global view of plasmalogen loss during long-term storage, we established a
336	non-linear prediction model based on ANN according to our previous method (Wu et al.,
337	2020). ANN is a sophisticated simulation tool that can solve poorly understood problems in
338	food science and technology (Ameer et al., 2017; Aung et al., 2022; Wu et al., 2020). The
339	model was validated by comparing the fitted and measured values in both the training and the
340	validation datasets (Figure S9). Figure 5C shows the predicted amounts of plasmalogens
341	versus the storage temperature and storage time. A temperature between -40 °C and -80 °C
342	is sufficient for preserving the total content of plasmalogens and PlsEtn (with a retention of
343	approximately 90% even after 90 days), while temperatures higher than -40 °C are
344	increasingly risky. In comparison, PlsCho was better preserved during storage: even after 30
345	days under 0 °C, nearly 75% of PlsCho was present. Overall, -40 °C appears to be a
346	watershed temperature, which is in agreement with the results from a previous study that the
347	state of water fraction and the properties of ice crystals under this optimum temperature were
348	ideal for meat quality attributes (Leygonie et al., 2012). However, for conventional daily
349	storage (chilling or freezing at approximately -20 °C), the content of intact plasmalogens was
350	quite sensitive to the storage time and temperature. For instance, to preserve at least 60% of
351	the total plasmalogens, the fish could be stored at above 0 °C for 11 days or frozen under
352	-10 °C for up to 27 days. To keep more than 80% of the total plasmalogens, the storage times

353	are sharply shortened to 3 days and less than 6 days for 0 $^{\circ}$ C and $-10 ^{\circ}$ C, respectively.
354	However, if the freezing temperature is reduced to -20 °C, the storage limit could be
355	extended to 14 days. The established model predicts a generally expected pattern, that a
356	shorter storage time and a lower freezing temperature help preserve plasmalogens in stored
357	tuna meat. Furthermore, the model could be a potential strategy for seafood suppliers and
358	consumers to better predict and even control the food quality in terms of functional
359	phospholipid nutrients.
360	3.3. Effects of thawing on plasmalogen loss
361	3.3.1. Different thawing methods had no effect on plasmalogens
362	After freezing, the subsequent thawing process plays a critical role in the shelf-life of fish
363	products (Ali et al., 2015). To explore the effects of thawing on plasmalogens, we measured
364	the contents of total plasmalogens, PlsEtn, and PlsCho in samples thawed using the four
365	common methods (Figure 6A). Compared to the sample without thawing, none of the thawed
366	samples showed changes in the plasmalogen contents. It should be noted that the current
367	results appear inconsistent with those of some previous studies, which demonstrated that
368	various thawing methods affect the nutritional components (e.g., vitamins and polyphenols)
369	and the degeneration indexes (e.g., TBARS and carbonyl content) (Holzwarth et al., 2012;
370	Xia et al., 2012). This might be explained by the differences in the food samples, their
371	chemical constituents, and the thawing conditions. Nevertheless, our results here suggest that
372	none of the thawing methods caused noticeable plasmalogen loss during single thawing

373 process.

374 **3.3.2.** Freeze-thaw cycles accelerate plasmalogen loss

375 Repeated freeze-thaw cycles are known to accelerate the deterioration of food quality

376 (Qingmin Chen et al., 2018). However, such results have not been reported for plasmalogens.

377 The data in our present study indicated that plasmalogen loss became worse after multiple

378 freeze-thaw cycles (Figure 6B). After two cycles, the total plasmalogen content was

379 significantly reduced compared to that of the corresponding control (P < 0.01), and the

380 decline continued until the 7th cycle. At the end of 7 cycles, the freezing-only samples lost

381 10.8% of the total plasmalogens, while those subjected to freeze-thaw cycles lost an extra

12.4% (P < 0.001 vs. freezing-only samples). PlsEtn exhibited a similar behavior with a

383 higher loss than the freezing-only sample starting at the 2nd cycle, and the final extra loss was

384 12.8%. For PlsCho, the additional loss compared to the control appeared slowly at the 7th

385 cycle (11.9%, P < 0.05 vs. freezing-only samples).

These findings are partially consistent with those of previous reports that lipid oxidation in meat products became worse after three or more cycles (Ali et al., 2015; Qingmin Chen et al., 2018). However, our results also indicated that for plasmalogens in fish meat, especially PlsEtn, this restriction should be reduced to only one cycle. Besides, because plasmalogens are fairly susceptible to quality deterioration, they might serve as a more sensitive tool for monitoring changes in the freshness of meat due to thawing.

392 Overall, our study revealed important behaviors in the loss of plasmalogens in ready-to-eat

393 raw fish during storage (including chilling, freezing, and thawing). One study limitation is 394 that the determination of plasmalogen levels was based on a semi-quantitative profiling 395 method by LC/MS, whereas it is desirable to perform absolute quantitation of total intact 396 plasmalogens in future studies. Besides, only tuna meat was analyzed here, and the same 397 investigation strategy could be extended to other food products containing plasmalogens at different concentrations and compositions. Since many disorders associated with metabolic 398 399 syndrome (e.g., Alzheimer's disease) often have a long preclinical phase, diet could be more important in this phase than drugs for improving metabolic health. One associated strategy to 400 401 this end is better preservation and control of functional components in foods, such as 402 functional lipids represented by plasmalogens.

403

404 **4.** Conclusions

405 This study explored the decrease of plasmalogens and the simultaneous global changes of 406 related lipids in ready-to-eat raw tuna meat during storage, including chilling, freezing, and 407 thawing. Long-term cold storage caused a considerable loss of plasmalogens, and the storage 408 duration and temperature were important factors. In particular, chilling under 4 °C for 15 409 days resulted in the loss of almost half of total plasmalogens. The plasmalogen fingerprints 410 also showed characteristic changes during long-term storage. For the different headgroups, 411 the ethanolamine type (i.e., PlsEtn) was less stable than the choline type (i.e., PlsCho). For 412 the sn-2 fatty acyl chains, plasmalogen species containing PUFA were more likely to decrease

413	in concentration. In addition, although a single thawing step did not affect the plasmalogen
414	level regardless of the employed thawing method, more than one freeze-thaw cycles led to
415	extra loss of plasmalogens, especially PlsEtn. Regarding the possible mechanisms, the
416	storage-induced plasmalogen loss might be attributed to oxidation and degradation. The
417	accumulation of oxidized plasmalogens was strongly correlated with that of other lipid
418	oxidation products and the degraded phospholipids, suggesting that plasmalogen loss could
419	serve as a good indicator of meat quality deterioration. These findings not only provide
420	additional information about the loss of functional phospholipids during food storage, but
421	also indicate a more sensitive way to monitor the freshness and quality of ready-to-eat fish
422	products.

423

424 Abbreviations

425	Artificial neura	l network	(ANN),	collision	-induced	dissociation	(CID).	, digly	cerides ((DG)).
			· //				· · · · · · · · · · · · · · · · · · ·			•	

426 electrospray ionization (ESI), extracted ion chromatogram (EIC), free fatty acids (FFA),

427 liquid chromatography (LC), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine

428 (LPE), malonaldehyde (MDA), mass spectrometry (MS), phosphatidylcholine (PC),

429 phosphatidylethanolamine (PE), polyunsaturated fatty acyls (PUFA), principal component

430 analysis (PCA), standard deviation (SD), 1,1,3,3-tetraethoxypropane (TEP), thiobarbituric

431 acid (TBA), thiobarbituric acid-reactive substances (TBARS), triglycerides (TG).

432

433	Author contributions
434	Zhen Chen: Conceptualization, Funding acquisition, Investigation, Methodology,
435	Visualization, Writing - original draft. Jiaping Jia: Data curation, Formal analysis,
436	Investigation, Methodology, Resources. Yue Wu: Data curation, Formal analysis,
437	Methodology, Software, Validation, Visualization, Writing - original draft. Hitoshi Chiba:
438	Resources, Validation, review & editing. Shu-Ping Hui: Resources, Project administration,
439	Supervision.
440	
441	Conflict of interest
442	The authors declare that they have no known competing financial interests or personal
443	relationships that could have appeared to influence the work reported in this paper.
444	
445	Acknowledgments
446	This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI
447	Grant No. 19K16531 and No. 21K14799.

448

449 **References**

- Aguilera Barraza, F. A., León, R. A. Q., & Álvarez, P. X. L. (2015). Kinetics of protein and
 textural changes in Atlantic salmon under frozen storage. *Food Chemistry*, *182*, 120–
 127. https://doi.org/10.1016/j.foodehem.2015.02.055
- 452 127. https://doi.org/10.1016/j.foodchem.2015.02.055
- Ali, S., Zhang, W., Rajput, N., Khan, M. A., Li, C. B., & Zhou, G. H. (2015). Effect of
 multiple freeze-thaw cycles on the quality of chicken breast meat. *Food Chemistry*, *173*,
 808–814. https://doi.org/10.1016/j.foodchem.2014.09.095
- Ameer, K., Bae, S.-W., Jo, Y., Lee, H.-G., Ameer, A., & Kwon, J.-H. (2017). Optimization of
 microwave-assisted extraction of total extract, stevioside and rebaudioside-A from
 Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and
 artificial neural network (ANN) modelling. *Food Chemistry*, 229, 198–207.
 https://doi.org/10.1016/j.foodchem.2017.01.121
- 461 Aung, T., Kim, S.-J., & Eun, J.-B. (2022). A hybrid RSM-ANN-GA approach on optimisation
 462 of extraction conditions for bioactive component-rich laver (Porphyra dentata) extract.
 463 *Food Chemistry*, 366, 130689. https://doi.org/10.1016/j.foodchem.2021.130689
- Broniec, A., Klosinski, R., Pawlak, A., Wrona-Krol, M., Thompson, D., & Sarna, T. (2011).
 Interactions of plasmalogens and their diacyl analogs with singlet oxygen in selected
 model systems. *Free Radical Biology and Medicine*, *50*(7), 892–898.
 https://doi.org/10.1016/i freeradbiomed.2011.01.002
- 467 https://doi.org/10.1016/j.freeradbiomed.2011.01.002
- Chen, Qingmin, Xie, Y., Xi, J., Guo, Y., Qian, H., Cheng, Y., Chen, Y., & Yao, W. (2018).
 Characterization of lipid oxidation process of beef during repeated freeze-thaw by
- 470 electron spin resonance technology and Raman spectroscopy. *Food Chemistry*,
- 471 *243*(September 2017), 58–64. https://doi.org/10.1016/j.foodchem.2017.09.115
- 472 Chen, Qinsheng, Wang, X., Cong, P., Liu, Y., Wang, Y., Xu, J., & Xue, C. (2017). Mechanism
 473 of Phospholipid Hydrolysis for Oyster Crassostrea plicatula Phospholipids During
- 474 Storage Using Shotgun Lipidomics. *Lipids*, *52*(12), 1045–1058.
 475 https://doi.org/10.1007/s11745-017-4305-7
- 476 Chen, Z., Liang, Q., Wu, Y., Gao, Z., Kobayashi, S., Patel, J., Li, C., Cai, F., Zhang, Y., Liang,
- C., Chiba, H., & Hui, S.-P. (2020). Comprehensive lipidomic profiling in serum and
 multiple tissues from a mouse model of diabetes. *Metabolomics*, *16*(11), 115.
 https://doi.org/10.1007/s11306-020-01732-9
- 480 Coombs, C. E. O., Holman, B. W. B., Friend, M. A., & Hopkins, D. L. (2017). Long-term red
 481 meat preservation using chilled and frozen storage combinations: A review. *Meat*482 *Science*, *125*, 84–94. https://doi.org/10.1016/j.meatsci.2016.11.025
- 483 Ding, L., Zhang, L., Shi, H., Xue, C., Yanagita, T., Zhang, T., & Wang, Y. (2020). EPA484 enriched ethanolamine plasmalogen alleviates atherosclerosis via mediating bile acids
- 485 metabolism. *Journal of Functional Foods*, 66(5), 103824.
- 486 https://doi.org/10.1016/j.jff.2020.103824
- 487 Engelmann, B. (2004). Plasmalogens: targets for oxidants and major lipophilic antioxidants.

489 Folch, J., Lees, M., Stanley, G. H. S., & Sloane Stanley, G. H. (1957). A simple method for 490 the isolation and purification of total lipides from animal tissues. The Journal of 491 Biological Chemistry, 226(1), 497–509. 492 Guang, W., Tong, W., Wang, G., & Wang, T. (2010). The Role of Plasmalogen in the 493 Oxidative Stability of Neutral Lipids and Phospholipids. Journal of Agricultural and 494 Food Chemistry, 58(4), 2554-2561. https://doi.org/10.1021/jf903906e 495 Holzwarth, M., Korhummel, S., Carle, R., & Kammerer, D. R. (2012). Evaluation of the 496 effects of different freezing and thawing methods on color, polyphenol and ascorbic acid 497 retention in strawberries (Fragaria×ananassa Duch.). Food Research International, 48(1), 241-248. https://doi.org/10.1016/j.foodres.2012.04.004 498 499 Jang, J. E., Park, H. S., Yoo, H. J., Baek, I. J., Yoon, J. E., Ko, M. S., Kim, A. R., Kim, H. S., 500 Park, H. S., Lee, S. E., Kim, S. W., Kim, S. J., Leem, J., Kang, Y. M., Jung, M. K., Pack, C. G., Kim, C. J., Sung, C. O., Lee, I. K., ... Lee, K. U. (2017). Protective role of 501 502 endogenous plasmalogens against hepatic steatosis and steatohepatitis in mice. 503 Hepatology, 66(2), 416-431. https://doi.org/10.1002/hep.29039 504 Jiang, Q., Nakazawa, N., Hu, Y., Osako, K., & Okazaki, E. (2019). Changes in quality 505 properties and tissue histology of lightly salted tuna meat subjected to multiple freezethaw cycles. Food Chemistry, 293(January), 178-186. 506 https://doi.org/10.1016/j.foodchem.2019.04.091 507 Karlsdottir, M. G., Sveinsdottir, K., Kristinsson, H. G., Villot, D., Craft, B. D., & Arason, S. 508 509 (2014). Effects of temperature during frozen storage on lipid deterioration of saithe 510 (Pollachius virens) and hoki (Macruronus novaezelandiae) muscles. Food Chemistry, 511 156, 234-242. https://doi.org/10.1016/j.foodchem.2014.01.113 512 Leygonie, C., Britz, T. J., & Hoffman, L. C. (2012). Impact of freezing and thawing on the 513 quality of meat: Review. Meat Science, 91(2), 93-98. 514 https://doi.org/10.1016/j.meatsci.2012.01.013 515 Li, D., Xie, H., Liu, Z., Li, A., Li, J., Liu, B., Liu, X., & Zhou, D. (2019). Shelf life prediction 516 and changes in lipid profiles of dried shrimp (Penaeus vannamei) during accelerated storage. Food Chemistry, 297(February). 517 518 https://doi.org/10.1016/j.foodchem.2019.124951 519 Medina, S., Pereira, J. A., Silva, P., Perestrelo, R., & Câmara, J. S. (2019). Food fingerprints 520 - A valuable tool to monitor food authenticity and safety. Food Chemistry, 278, 144-521 162. https://doi.org/10.1016/j.foodchem.2018.11.046 522 Morel, Y., Hegdekar, N., Sarkar, C., Lipinski, M. M., Kane, M. A., & Jones, J. W. (2021). 523 Structure-specific, accurate quantitation of plasmalogen glycerophosphoethanolamine. 524 Analytica Chimica Acta, 1186, 339088. https://doi.org/10.1016/j.aca.2021.339088 525 Pérez-Palacios, T., Ruiz, J., Dewettinck, K., Le, T. T., & Antequera, T. (2010). Muscle 526 individual phospholipid classes throughout the processing of dry-cured ham: Influence of pre-cure freezing. Meat Science, 84(3), 431-436. 527 25 / 29

Biochemical Society Transactions, 32(1), 147–150. https://doi.org/10.1042/bst0320147

488

- 528 https://doi.org/10.1016/j.meatsci.2009.09.012
- Prabhakar, P. K., Vatsa, S., Srivastav, P. P., & Pathak, S. S. (2020). A comprehensive review
 on freshness of fish and assessment: Analytical methods and recent innovations. *Food Research International*, *133*(March), 109157.
- 532 https://doi.org/10.1016/j.foodres.2020.109157
- 533 R Core Team. (2021). R: A Language and Environment for Statistical Computing.
- Santos, J., Mendiola, J. A., Oliveira, M. B. P. P., Ibáñez, E., & Herrero, M. (2012). Sequential
 determination of fat- and water-soluble vitamins in green leafy vegetables during
 storage. *Journal of Chromatography A*, *1261*, 179–188.
- 537 https://doi.org/10.1016/j.chroma.2012.04.067
- Sejimo, S., Hossain, M. S., & Akashi, K. (2018). Scallop-derived plasmalogens attenuate the
 activation of PKCδ associated with the brain inflammation. *Biochemical and Biophysical Research Communications*, 503(2), 837–842.
- 541 https://doi.org/10.1016/j.bbrc.2018.06.084
- Soyer, A., Özalp, B., Dalmiş, Ü., & Bilgin, V. (2010). Effects of freezing temperature and
 duration of frozen storage on lipid and protein oxidation in chicken meat. *Food*
- 544 *Chemistry*, *120*(4), 1025–1030. https://doi.org/10.1016/j.foodchem.2009.11.042
- Stadelmann-Ingrand, S., Favreliere, S., Fauconneau, B., Mauco, G., & Tallineau, C. (2001).
 Plasmalogen degradation by oxidative stress: production and disappearance of specific
 fatty aldehydes and fatty α-hydroxyaldehydes. *Free Radical Biology and Medicine*, *31*(10), 1263–1271. https://doi.org/10.1016/S0891-5849(01)00720-1
- Su, X. Q., Wang, J., & Sinclair, A. J. (2019). Plasmalogens and Alzheimer's disease: A
 review. *Lipids in Health and Disease*, 18(1), 1–10. https://doi.org/10.1186/s12944-0191044-1
- Tappi, S., Pinheiro, A. C. D. A. S., Mercatante, D., Picone, G., Soglia, F., Rodriguez-Estrada,
 M. T., Petracci, M., Capozzi, F., & Rocculi, P. (2020). Quality changes during frozen
 storage of mechanical-separated flesh obtained from an underutilized crustacean. *Foods*,
 9(10). https://doi.org/10.3390/foods9101485
- Wang, B., Kong, B., Li, F., Liu, Q., Zhang, H., & Xia, X. (2020). Changes in the thermal
 stability and structure of protein from porcine longissimus dorsi induced by different
 thawing methods. *Food Chemistry*, *316*(August 2019).
- 559 https://doi.org/10.1016/j.foodchem.2020.126375
- 560 Wang, J., Liao, J., Wang, H., Zhu, X., Li, L., Lu, W., Song, G., & Shen, Q. (2021).
- 561Quantitative and comparative study of plasmalogen molecular species in six edible562shellfishes by hydrophilic interaction chromatography mass spectrometry. Food
- 563 *Chemistry*, *334*(January 2020), 127558. https://doi.org/10.1016/j.foodchem.2020.127558
- 564 Weisser, M., Vieth, M., Stolte, M., Riederer, P., Pfeuffer, R., Leblhuber, F., & Spiteller, G.
- 565 (1997). Dramatic increase of α -hydroxyaldehydes derived from plasmalogens in the 566 aged human brain. *Chemistry and Physics of Lipids*, 90(1–2), 135–142.
- 567 https://doi.org/10.1016/S0009-3084(97)00089-3

- Wu, Y., Chen, Z., Chiba, H., & Hui, S.-P. (2020). Plasmalogen fingerprint alteration and
 content reduction in beef during boiling, roasting, and frying. *Food Chemistry*, *322*(April), 126764. https://doi.org/10.1016/j.foodchem.2020.126764
- Wu, Y., Chen, Z., Darwish, W. S., Terada, K., Chiba, H., & Hui, S.-P. (2019). Choline and
 Ethanolamine Plasmalogens Prevent Lead-Induced Cytotoxicity and Lipid Oxidation in
 HepG2 Cells. *Journal of Agricultural and Food Chemistry*, 67(27), 7716–7725.
 https://doi.org/10.1021/acs.jafc.9b02485
- Wu, Y., Chen, Z., Jia, J., Chiba, H., & Hui, S. (2021). Quantitative and Comparative
 Investigation of Plasmalogen Species in Daily Foodstuffs. *Foods*, 10(1), 124.
 https://doi.org/10.3390/foods10010124
- 578 Xia, X., Kong, B., Liu, J., Diao, X., & Liu, Q. (2012). Influence of different thawing methods
 579 on physicochemical changes and protein oxidation of porcine longissimus muscle. *LWT*580 Food Science and Technology, 46(1), 280–286.
- 581 https://doi.org/10.1016/j.lwt.2011.09.018
- 582 Xu, W., Xu, X., Zhou, G., Wang, D., & Li, C. (2008). Changes of intramuscular
 583 phospholipids and free fatty acids during the processing of Nanjing dry-cured duck.
- 584 *Food Chemistry*, *110*(2), 279–284. https://doi.org/10.1016/j.foodchem.2007.11.044
- Yamashita, S., Kanno, S., Honjo, A., Otoki, Y., Nakagawa, K., Kinoshita, M., & Miyazawa,
 T. (2016). Analysis of Plasmalogen Species in Foodstuffs. *Lipids*, 51(2), 199–210.
 https://doi.org/10.1007/s11745-015-4112-y
- 588 Zhou, X., Zhou, D. Y., Liu, Z. Y., Yin, F. W., Liu, Z. Q., Li, D. Y., & Shahidi, F. (2019).
- 589 Hydrolysis and oxidation of lipids in mussel Mytilus edulis during cold storage. *Food*
- 590 *Chemistry*, 272(August 2018), 109–116. https://doi.org/10.1016/j.foodchem.2018.08.019

591

592 Figure captions

593 Figure 1. (A) Structure of plasmalogens consisting of a headgroup (ethanolamine or choline),

- a fatty chain linked by vinyl-ether bond at the *sn*-1 position, and a fatty acyl chain at the *sn*-2
- 595 position. (B) Representative photographs of tuna lean meat samples on the 5th and 15th day of
- 596 storage under 4 °C, -25 °C, -40 °C, and -80 °C. (C) Changes in the levels of total
- 597 plasmalogens during long-term storage under 4 °C, -25 °C, -40 °C, and -80 °C.
- 598 Figure 2. (A) PCA score plots of plasmalogen profiles under different storage temperatures.
- 599 From left to right: -80 °C, -40 °C, -25 °C, and 4 °C. (B) Comparison of PlsEtn, PlsCho, PE,
- and PC contents during long-term storage (up to 90 days under -25 °C, -40 °C, and -80 °C;
- and up to 15 days under 4 °C). (C) Changes in fatty acyl content in PlsEtn and PlsCho during
- 602 long-term storage (up to 90 days under -25 °C, -40 °C, and -80 °C; and up to 15 days under

603 4 °C).

- 604 Figure 3. (A) Identification of oxidized plasmalogens by HR-MS and tandem MS, taking
- PlsEtn 38:6+4[O] as an example. HR-MS provided the chemical formula of C₄₃H₇₄O₁₁NP⁻,
- 606 indicating the existence of PlsEtn 38:6 + 4[O]. Further MS² and MS³ analyses confirmed the
- 607 mixture of isomers PlsEtn p16:0(epo)/22:6(OH)(OOH) and PlsEtn p16:0(OH)₂(OOH). (B)
- 608 Accumulation of the oxidized PlsEtn and oxidized PlsCho (calculated as the sum of all
- 609 species) during storage under 4 $^{\circ}$ C, -25 $^{\circ}$ C, and -40 $^{\circ}$ C.
- 610 Figure 4. (A) Accumulation of lipid oxidation products (TG, DG, FFA, PC, and PE) during
- 611 storage under 4 °C, -25 °C, and -40 °C. (B) TBARS levels during storage under 4 °C,

28 / 29

612	-25 °C, -40 °C, and -80 °C. (C) Increase in the levels of degraded phospholipids, namely
613	LPC, LPE, and FFA during storage under 4 °C, -25 °C, -40 °C, and -80 °C.
614	Figure 5. (A) Heatmap of the Spearman's correlation coefficients between the loss of
615	plasmalogens and the increase in the levels of related oxidized and degraded lipids. (B)
616	Scatter plots of TBARS level versus the loss rate of total plasmalogens under 4 °C, -25 °C,
617	-40 °C, and -80 °C. (C) Predictive three-dimensional surface plots of the remaining total
618	plasmalogens, PlsEtn, and PlsCho during long-term storage under different temperatures.
619	Figure 6. (A) Comparison of the contents of total plasmalogens, PlsEtn, and PlsCho in frozen
620	samples thawed using different methods. Con = control, WT = water immersion thawing,
621	MT = microwave thawing, RT = refrigerator thawing, AT = air thawing. (B) Comparison of
622	the contents of total plasmalogens, PlsEtn, and PlsCho during multiple freeze-thaw cycles. *,
623	P < 0.05, **, $P < 0.01$, ***, $P < 0.001$, calculated using one-way ANOVA (using Tukey's
624	post hoc test).

Supplementary

StandardConcentration in MeOH stock solution (mml/mL)Amount in each sample (mml/per tube)Choline plasmalogen p16:0/17:0 (PlsCho p16:0/17:0)Laboratory15.01.5Ethanolamine plasmalogen p16:0/17:0 (PlsEtn p16:0/17:0)Laboratory10.01.0Phosphatidylcholine (PC 13:0/13:0)Avanti Polar Lipids15.01.5Phosphatidylcholine (PE 15:0/15:0)Avanti Polar Lipids10.01.0Lysophosphatidylcholine (LPC 15:0)Avanti Polar Lipids15.01.5Lysophosphatidylcholine (LPE 13:0)Avanti Polar Lipids10.01.0Free fatty acid (FFA 17:0)Sigma-Aldrich10.01.0	Table S1. Inform	ation of each lipid	internal standard	
StandardSourceMeOH stock solutioneach sample (nmol/per tube)Choline plasmalogen p16:0/17:0 (PlsCho p16:0/17:0)Laboratory15.01.5Ethanolamine plasmalogen p16:0/17:0 (PlsEtn p16:0/17:0)Laboratory10.01.0Phosphatidylcholine (PC 13:0/13:0)Avanti Polar Lipids15.01.5Phosphatidylethanolamine (PE 15:0/15:0)Avanti Polar Lipids10.01.0Lysophosphatidylcholine (LPC 15:0)Avanti Polar Lipids15.01.5Lysophosphatidylethanolamine (LPC 15:0)Avanti Polar Lipids10.01.0Free fatty acid (FFA 17:0)Sigma-Aldrich10.01.0			Concentration in	Amount in
(nmol/mL)(nmol/per tube)Choline plasmalogen p16:0/17:0 (PlsCho p16:0/17:0)Laboratory15.01.5Ethanolamine plasmalogen p16:0/17:0 (PlsEtn p16:0/17:0)Laboratory10.01.0Phosphatidylcholine (PC 13:0/13:0)Avanti Polar Lipids15.01.5Phosphatidylethanolamine (PE 15:0/15:0)Avanti Polar Lipids10.01.0Lysophosphatidylcholine (LPC 15:0)Avanti Polar Lipids15.01.5Lysophosphatidylethanolamine (LPC 15:0)Avanti Polar Lipids15.01.5Lysophosphatidylethanolamine (LPE 13:0)Avanti Polar Lipids10.01.0Free fatty acid (FFA 17:0)Sigma-Aldrich10.01.0	Standard	Source	MeOH stock solution	each sample
Choline plasmalogen p16:0/17:0 (PlsCho p16:0/17:0)Laboratory15.01.5Ethanolamine plasmalogen p16:0/17:0 (PlsEtn p16:0/17:0)Laboratory10.01.0Phosphatidylcholine (PC 13:0/13:0)Avanti Polar Lipids15.01.5Phosphatidylethanolamine (PE 15:0/15:0)Avanti Polar Lipids10.01.0Lysophosphatidylcholine (LPC 15:0)Avanti Polar Lipids15.01.5Lysophosphatidylethanolamine (LPC 15:0)Avanti Polar Lipids15.01.5Lysophosphatidylethanolamine (LPE 13:0)Avanti Polar Lipids10.01.0Free fatty acid (FFA 17:0)Sigma-Aldrich10.01.0			(nmol/mL)	(nmol/per tube)
Ethanolamine plasmalogen p16:0/17:0Laboratory10.01.0Phosphatidylcholine (PC 13:0/13:0)Avanti Polar Lipids15.01.5Phosphatidylethanolamine (PE 15:0/15:0)Avanti Polar Lipids10.01.0Lysophosphatidylcholine (LPC 15:0)Avanti Polar Lipids15.01.5Lysophosphatidylethanolamine (LPC 15:0)Avanti Polar Lipids15.01.5Lysophosphatidylethanolamine (LPC 15:0)Avanti Polar Lipids10.01.0Lysophosphatidylethanolamine (LPE 13:0)Sigma-Aldrich10.01.0	Choline plasmalogen p16:0/17:0 (PlsCho p16:0/17:0)	Laboratory	15.0	1.5
Phosphatidylcholine (PC 13:0/13:0)Avanti Polar Lipids15.01.5Phosphatidylethanolamine (PE 15:0/15:0)Avanti Polar Lipids10.01.0Lysophosphatidylcholine (LPC 15:0)Avanti Polar Lipids15.01.5Lysophosphatidylethanolamine 	Ethanolamine plasmalogen p16:0/17:0 (PlsEtn p16:0/17:0)	Laboratory	10.0	1.0
Phosphatidylethanolamine (PE 15:0/15:0)Avanti Polar Lipids10.01.0Lysophosphatidylcholine (LPC 15:0)Avanti Polar Lipids15.01.5Lysophosphatidylethanolamine (LPE 13:0)Avanti Polar Lipids10.01.0Free fatty acid 	Phosphatidylcholine (PC 13:0/13:0)	Avanti Polar Lipids	15.0	1.5
Lysophosphatidylcholine (LPC 15:0)Avanti Polar Lipids15.01.5Lysophosphatidylethanolamine (LPE 13:0)Avanti Polar Lipids10.01.0Free fatty acid (FFA 17:0)Sigma-Aldrich10.01.0	Phosphatidylethanolamine (PE 15:0/15:0)	Avanti Polar Lipids	10.0	1.0
Lysophosphatidylethanolamine (LPE 13:0) Avanti Polar Lipids 10.0 1.0 Free fatty acid (FFA 17:0) Sigma-Aldrich 10.0 1.0	Lysophosphatidylcholine (LPC 15:0)	Avanti Polar Lipids	15.0	1.5
Free fatty acid (FFA 17:0) Sigma-Aldrich 10.0 1.0	Lysophosphatidylethanolamine (LPE 13:0)	Avanti Polar Lipids	10.0	1.0
	Free fatty acid (FFA 17:0)	Sigma-Aldrich	10.0	1.0

Linid encoire	Retention time	Ion	Calc.	Exp.	1	MS/MS signals	Mologulo apogios
	(min)	1011	m/z	m/z	дррш	Wi5/Wi5 Signals	Wolecule species
PlsEtn							
PlsEtn32:1	15.48	[M-H] ⁻	672.4974	672.4987	-1.93	281,408,390	p14:0/18:1
						253,436,418	p16:0/16:1
PlsEtn34:1	16.39	$[M-H]^-$	700.5287	700.5287	0.00	281,436,418	p16:0/18:1
PlsEtn34:2	15.85	[M-H] ⁻	698.5130	698.5127	0.43	279,436,418	p16:0/18:2
						281,434,416	p16:1/18:1
PlsEtn34:4	14.92	$[M-H]^-$	694.4817	694.4829	-1.73	303,408,390	p14:0/20:4
PlsEtn34:5	14.47	$[M-H]^-$	692.4661	692.4673	-1.73	301,408,390	p14:0/20:5
PlsEtn36:1	17.17	$[M-H]^-$	728.5600	728.5584	2.20	281,464,446	p18:0/18:1
PlsEtn36:2	16.51	$[M-H]^-$	726.5443	726.5448	-0.69	281,462,444	p18:1/18:1
PlsEtn36:4	15.73	$[M-H]^-$	722.5130	722.5150	-2.77	303,436,418	p16:0/20:4
PlsEtn36:5	15.29	$[M-H]^-$	720.4974	720.4991	-2.36	301,436,418	p16:0/20:5
PlsEtn36:6	14.80	$[M-H]^-$	718.4817	718.4825	-1.11	327,408,390	p14:0/22:6
PlsEtn38:4	16.58	$[M-H]^-$	750.5443	750.5442	0.13	303,464,446	p18:0/20:4
						303,462,444	p18:1/20:4
PlsEtn38:5	16.07	$[M-H]^-$	748.5287	748.5301	-1.87	329,436,418	p16:0/22:5
						301,464,446	p18:0/20:5
PlsEtn38:6	15.66	$[M-H]^-$	746.5130	746.5146	-2.14	327,436,418	p16:0/22:6
PlsEtn38:7	14.95	[M-H] ⁻	744.4974	744.4989	-2.01	327,434,416	p16:1/22:6
						301,460,442	p18:2/20:5
PlsEtn38:8	14.43	$[M-H]^-$	742.4817	742.4819	-0.27	327,432,414	p16:2/22:6
PlsEtn40:6	16.45	$[M-H]^-$	774.5443	774.5457	-1.81	327,464,446	p18:0/22:6
PlsEtn40:7	15.79	$[M-H]^-$	772.5287	772.5292	-0.65	327,462,444	p18:1/22:6
PlsEtn40:8	15.29	$[M-H]^-$	770.5130	770.5132	-0.26	327,460,442	p18:2/22:6
PlsCho							
PlsCho34:0	18.70	[M+CH ₃ COO] ⁻	804.6124	804.6125	-0.12	730,283,464	p16:0/18:0
PlsCho34:1	17.97	[M+CH ₃ COO] ⁻	802.5967	802.5984	-2.12	728,281,464	p16:0/18:1
PlsCho36:4	16.10	[M+CH ₃ COO] ⁻	824.5811	824.5811	0.00	750,303,464	p16:0/20:4
PlsCho36:5	15.10	[M+CH ₃ COO] ⁻	822.5654	822.5668	-1.70	748,301,464	p16:0/20:5
PlsCho38:4	17.76	$[M+CH_3COO]^-$	852.6124	852.6118	0.70	778,303,492	p18:0/20:4
PlsCho38:5	16.26	$[M+CH_3COO]^-$	850.5967	850.5972	-0.59	776,303,490	p18:1/20:4
PlsCho38:6	15.82	$[M+CH_3COO]^-$	848.5811	848.5824	-1.53	774,327,464	p16:0/22:6
PlsCho40:6	17.62	[M+CH ₃ COO] ⁻	876.6124	876.6124	0.00	802,327,492	p18:0/22:6

Table S2. Identification of intact plasmalogens in fish samples

Lipid species	Retention time	Ion	Calc.	Exp	Anni
Lipid species	(min)	1011	m/z	m/z	дрр
PlsEtn+1[O]					
PlsEtn36:4+1[O]	14.13	$[M-H]^-$	738.5079	738.5084	-0.6
PlsEtn38:4+1[O]	14.91	$[M-H]^-$	766.5392	766.5388	0.52
PlsEtn38:5+1[O]	14.49	$[M-H]^-$	764.5236	764.5250	-1.8
PlsEtn38:6+1[O]	13.95	$[M-H]^-$	762.5079	762.5082	-0.3
PlsEtn40:6+1[O]	14.67	$[M-H]^-$	790.5392	790.5394	-0.2
PlsEtn40:7+1[O]	14.10	$[M-H]^-$	788.5236	788.5234	0.25
PlsEtn40:8+1[O]	14.04	$[M-H]^-$	786.5079	786.5079	0.0
PlsCho+1[O]					
PlsCho38:5+1[O]	14.97	[M+CH ₃ COO] ⁻	866.5917	866.5913	0.40
PlsCho38:6+1[O]	14.22	[M+CH ₃ COO] ⁻	864.5760	864.5763	-0.3
PlsEtn+2[O]					
PlsEtn36:4+2[O]	13.83	$[M-H]^-$	754.5028	754.5023	0.60
PlsEtn38:4+2[O]	14.46	$[M-H]^-$	782.5341	782.5346	-0.6
PlsEtn38:5+2[O]	13.95	$[M-H]^-$	780.5185	780.5181	0.5
PlsEtn38:6+2[O]	13.56	$[M-H]^-$	778.5028	778.5028	0.0
PlsEtn40:6+2[O]	14.58	$[M-H]^-$	806.5341	806.5345	-0.5
PlsEtn40:7+2[O]	13.62	$[M-H]^-$	804.5185	804.5189	-0.5
PlsCho+2[O]					
PlsCho36:4+2[O]	14.25	[M+CH ₃ COO] ⁻	856.5709	856.5715	-0.7
PlsCho36:5+2[O]	13.43	[M+CH ₃ COO] ⁻	854.5553	854.5532	2.4
PlsCho38:5+2[O]	14.25	$[M+CH_3COO]^-$	882.5866	882.5860	0.68
PlsCho38:6+2[O]	13.77	$[M+CH_3COO]^-$	880.5709	880.5718	-1.0
PlsCho40:6+2[O]	15.64	[M+CH ₃ COO] ⁻	908.6022	908.6025	-0.3
PlsEtn+3[O]					
PlsEtn38:4+3[O]	13.26	$[M-H]^-$	798.5291	798.5295	-0.5
PlsEtn38:5+3[O]	12.41	$[M-H]^-$	796.5134	796.5143	-1.1
PlsEtn38:6+3[O]	12.21	$[M-H]^-$	794.4978	794.4985	-0.8
PlsEtn38:7+3[O]	12.08	$[M-H]^-$	792.4821	792.4830	-1.1
PlsEtn40:6+3[O]	12.68	$[M-H]^-$	822.5291	822.5297	-0.7
PlsEtn40:7+3[O]	12.35	$[M-H]^-$	820.5134	820.5151	-2.0
PlsEtn40:8+3[O]	12.24	$[M-H]^-$	818.4978	818.4980	-0.2

Table S3. Identification of oxidized plasmalogens in fish samples

Retention time Calc. Exp Lipid species Ion m/z m/z PlsCho+3[O] 13.59 $[M+CH_3COO]^-$ 872.5658 872.5653 PlsCho36:5+3[O] 13.20 $[M+CH_3COO]^-$ 870.5502 870.5505 PlsCho38:5+3[O] 14.13 $[M+CH_3COO]^-$ 898.5815 898.5814	Δppm 0.57 -0.34 0.11 -0.45
m/z m/z PlsCho+3[O] 13.59 [M+CH ₃ COO] ⁻ 872.5658 872.5653 PlsCho36:5+3[O] 13.20 [M+CH ₃ COO] ⁻ 870.5502 870.5505 PlsCho38:5+3[O] 14.13 [M+CH ₃ COO] ⁻ 898.5815 898.5814	0.57 -0.34 0.11 -0.45
PlsCho+3[O] 13.59 [M+CH ₃ COO] ⁻ 872.5658 872.5653 PlsCho36:5+3[O] 13.20 [M+CH ₃ COO] ⁻ 870.5502 870.5505 PlsCho38:5+3[O] 14.13 [M+CH ₃ COO] ⁻ 898.5815 898.5814	0.57 -0.34 0.11 -0.45
PlsCho36:4+3[O]13.59[M+CH3COO]^-872.5658872.5653PlsCho36:5+3[O]13.20[M+CH3COO]^-870.5502870.5505PlsCho38:5+3[O]14.13[M+CH3COO]^-898.5815898.5814	0.57 -0.34 0.11 -0.45
PlsCho36:5+3[O] 13.20 [M+CH ₃ COO] ⁻ 870.5502 870.5505 PlsCho38:5+3[O] 14.13 [M+CH ₃ COO] ⁻ 898.5815 898.5814	-0.34 0.11 -0.45
PlsCho38:5+3[O] 14.13 [M+CH ₃ COO] ⁻ 898.5815 898.5814	0.11 -0.45
	-0.45
PlsCho38:6+3[O] 13.46 [M+CH ₃ COO] ⁻ 896.5658 896.5662	
PlsCho40:6+3[O] 14.55 [M+CH ₃ COO] ⁻ 924.5971 924.5977	-0.65
PlsEtn+4[O]	
PlsEtn36:4+4[O] 12.02 [M-H] ⁻ 786.4927 786.4907	2.54
PlsEtn38:5+4[O] 12.02 [M–H] ⁻ 812.5083 812.5085	-0.25
PlsEtn38:6+4[O] 11.88 [M–H] ⁻ 810.4927 810.4937	-1.23
PlsEtn38:7+4[O] 11.64 [M–H] ⁻ 808.4770 808.4782	-1.48
PlsEtn40:6+4[O] 12.18 [M-H] ⁻ 838.5240 838.5257	-2.03
PlsCho+4[O]	
PlsCho38:5+4[O] 13.32 [M+CH ₃ COO] ⁻ 914.5764 914.5787	-2.51
PlsCho38:6+4[O] 12.71 [M+CH ₃ COO] ⁻ 912.5608 912.5616	-0.88
PlsCho40:6+4[O] 13.59 [M+CH ₃ COO] ⁻ 940.5921 940.5923	-0.21

Figure S1. Identification of PIsEtn 38:6+1[O] by HR-MS and tandem MS.

Figure S2. Identification of PIsEtn 38:6+2[O] by HR-MS and tandem MS.

Figure S3. Identification of PIsEtn 38:6+3[O] by HR-MS and tandem MS.

Figure S4. Identification of PIsEtn 38:6+4[O] by HR-MS and tandem MS.

Figure S5. Identification of PlsCho 38:6+1[O] by HR-MS and tandem MS.

Figure S6. Identification of PlsCho 38:6+2[O] by HR-MS and tandem MS.

Figure S7. Identification of PlsCho 38:6+3[O] by HR-MS and tandem MS.

Figure S8. Identification of PlsCho 38:6+4[O] by HR-MS and tandem MS.

Figure S9. Measured vs. predicted values in training and validation data set for the remained content of the plasmalogen species during storage.

