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TIMELIKE MINIMAL SURFACES IN THE THREE-DIMENSIONAL
HEISENBERG GROUP

HIROTAKA KIYOHARA AND SHIMPEI KOBAYASHI

Abstract. Timelike surfaces in the three-dimensional Heisenberg group with left invariant
semi-Riemannian metric are studied. In particular, non-vertical timelike minimal surfaces
are characterized by the non-conformal Lorentz harmonic maps into the de Sitter two sphere.
On the basis of the characterization, the generalized Weierstrass type representation will be
established through the loop group decompositions.

1. Introduction

Constant mean curvature surfaces in three-dimensional homogeneous spaces, specifically
Thurston’s eight model spaces [27], have been intensively studied in recent years. One of
the reasons is a seminal paper by Abresch-Rosenberg [1], where they introduced a quadratic
differential, the so-called the Abresch-Rosenberg differential, analogous to the Hopf differen-
tial for surfaces in the space forms and showed that it was holomorphic for a constant mean
curvature surface in various classes of three-dimensional homogeneous spaces, such as the
Heisenberg group Nil3, the product spaces S2 ×R and H2 ×R etc, see [2] in detail. It is ev-
ident that holomorphic quadratic differentials are fundamental for study of global geometry
of surfaces, [15]. On the one hand, Berdinsky-Taimanov developed integral representations
of surfaces in three-dimensional homogeneous spaces by using the generating spinors and
the nonlinear Dirac type equations, [3, 4]. They were natural generalizations of the classical
Kenmotsu-Weierstrass representation for surfaces in the Euclidean three-space.

Combining the Abresch-Rosenberg differential and the nonlinear Dirac equation with gener-
ating spinors, in [12, 13], Dorfmeister, Inoguchi and the second named author of this paper
have established the loop group method for minimal surfaces in Nil3, where the following
left-invariant Riemannian metric has been considered on Nil3:

ds2 = dx21 + dx22 +

(
dx3 +

1

2
(x2dx1 − x1dx2)

)2

,

In particular, all non-vertical minimal surfaces in Nil3 have been constructed from holo-
morphic data, which have been called the holomorphic potentials, through the loop group
decomposition, the so-called Iwasawa decomposition, and the construction has been com-
monly called the generalized Weierstrass type representation. In this loop group method,
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the Lie group structure of Nil3 and harmonicity of the left-translated normal Gauss map
of a non-vertical surface, which obviously took values in a hemisphere in the Lie algebra of
Nil3, were essential tools. To be more precise, a surface in Nil3 is minimal if and only if
the left-translated normal Gauss map is a non-conformal harmonic map with respect to the
hyperbolic metric on the hemisphere, that is, one considers the hemisphere as the hyperbolic
two space not the two sphere with standard metric. Since the hyperbolic two space is one
of the standard symmetric spaces and the loop group method of harmonic maps from a
Riemann surface into a symmetric space have been developed very well [14], thus we have
obtained the generalized Weierstrass type representation.

On the one had, it is easy to see that the three-dimensional Heisenberg group Nil3 can have
the following left-invariant semi-Riemannian metrics:

ds2± = ±dx21 + dx22 ∓
(
dx3 +

1

2
(x2dx1 − x1dx2)

)2

.

Moreover in [25], it has been shown that the left-invariant semi-Riemannian metrics on Nil3
with 4-dimensional isometry group only are the metrics ds2∓. Therefore a natural prob-
lem is study of spacelike/timelike, minimal/maximal surfaces in Nil3 with the above semi-
Riemannian metrics in terms of the generalized Weierstrass type representations.

In this paper we will consider timelike surfaces in Nil3 with the semi-Riemannian metric
ds2−. For defining the Abresch-Rosenberg differential and the nonlinear Dirac equations with
generating spinors, the para-complex structure on a timelike surface is essential, and we
will systematically develop theory of timelike surfaces using the para-complex structure, the
Abresch-Rosenberg differential and the nonlinear Dirac equations with generating spinors
in Section 2. Then the first of the main results in this paper is Theorem 3.2, where non-
vertical timelike minimal surfaces in Nil3 will be characterized in terms of harmonicity of
the left-translated normal Gauss map. To be more precise, the left-translated normal Gauss
map of a timelike surface takes values in the lower half part of the de Sitter two sphere
S̃2
1− = {(x1, x2, x3) ∈ nil3 = L3 | −x21 + x22 + x23 = 1, x3 < 0}, but it is not a Lorentz

harmonic map into S̃2
1− with respect to the standard metric on the de Sitter sphere. It will

be shown that by combining two stereographic projections, the left-translated normal Gauss
map can take values in the upper half part of the de Sitter two sphere with interchanging
x1 and x2, that is, S2

1+ = {(x1, x2, x3) ∈ L3 | x21 − x22 + x23 = 1, x3 > 0}, see Figure 1,
and it is a non-conformal Lorentz harmonic into S2

1+ if and only if the timelike surface is
minimal, see Section 3.1 in details. Note that timelike minimal surfaces in (Nil3, ds

2
−) have

been studied through the Weierstrass-Enneper type representation and the Björing problem
in [17, 21, 7, 8, 26, 9, 10, 22, 19].

It has been known that timelike constant mean curvature surfaces in the three-dimensional
Minkowski space L3 could be characterized by a Lorentz harmonic map into the de Sitter
two space, [16, 18, 11, 5, 6]. In fact the Lorentz harmonicity of the unit normal of a timelike
surface in L3 is equivalent to constancy of the mean curvature. Furthermore, the generalized
Weierstrass type representation for timelike non-zero constant mean curvature surfaces has
been established in [11]. In Theorem 4.1, we will show that two maps, which are given by the
logarithmic derivative of one parameter family of moving frames of a non-conformal Lorentz
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harmonic map (the so-called extended frame) into S2
1+ with respect to an additional param-

eter (the so-called spectral parameter), define a timelike non-zero constant mean curvature
surface in L3 and a non-vertical timelike minimal surface in Nil3, respectively.

From the view point of the loop group construction of Lorentz harmonic maps, the construc-
tion in [11] is sufficient, however, it is not enough for our study of timelike minimal surfaces
in (Nil3, ds

2
−). As we have mentioned above, for defining the Abresch-Rosenberg differential

and the nonlinear Dirac equation with generating spinors the para-complex structure is es-
sential. Note that the para-complex structure has been used for study of timelike surface
[28, 20]. We can then show that the Abresch-Rosenberg differential is para-holomorphic if
a timelike surface has constant mean curvature, Theorem 2.6, which is analogous to the
fundamental result of Abresch-Rosenberg.

As a by-product of utilizing the para-complex structure, it is easy to compare our construc-
tion with minimal surface in (Nil3, ds

2), where the complex structure has been used, and
moreover, the generalized Weierstrass type representation can be understood in a unified
way, that is, the Weierstrass data is just a 2 by 2 matrix-valued para-holomorphic function
and a loop group decomposition of the solution of a para-holomorphic differential equation
gives the extended frame of a non-conformal Lorentz harmonic map in S2

1+, Theorem 5.4.
One of difficulties is that one needs to have appropriate loop group decompositions in the
para-complex setting, that is, Birkhoff and Iwasawa decompositions. In Theorem 5.1, by
identifying the double loop groups of SL2R, that is ΛSL2Rσ×ΛSL2Rσ and the loop group of
SL2C′, that is, Λ′SL2C′

σ (where C′ denotes the para-complex number) by a natural isomor-
phism, we will obtain such decompositions. Finally in Section 6, several examples will be
shown by our loop group construction. In particular B-scroll type minimal surfaces in Nil3
will be established in Section 6.4. In Appendix A, we will discuss timelike constant mean
curvature surfaces in L3, and in Appendix B, we will see the correspondence between our
construction and the construction without the para-complex structure in [11].

2. Timelike surfaces in Nil3

In this section we will consider timelike surfaces in Nil3. In particular we will use the para-
complex structure and the nonlinear Dirac equation for timelike surfaces. Finally the Lax
pair type system for timelike surface will be shown.

2.1. Nil3 with indefinite metrics. The Heisenberg group is a 3-dimensional Lie group

Nil3(τ) = (R3(x1, x2, x3), ·)

for τ 6= 0 with the multiplication

(x1, x2, x3) · (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 + τ(x1y2 − y1x2)).

The unit element of Nil3(τ) is (0, 0, 0). The inverse element of (x1, x2, x3) is (−x1,−x2,−x3).
The groups Nil3(τ) and Nil3(τ

′) are isomorphic if ττ ′ 6= 0. The Lie algebra nil3 of Nil3(τ) is
R3 with the relations:

[e1, e2] = 2τe3, [e2, e3] = [e3, e1] = 0
3



with respect to the normal basis e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). In this paper we
consider the left invariant indefinite metric ds2− for Nil3 as follows:

(2.1) ds2− = −(dx1)2 + (dx2)
2 + ωτ ⊗ ωτ ,

where ωτ = dx3 + τ(x2dx1 − x1dx2). Moreover, we fix the real parameter τ as τ = 1/2 for
simplicity. The vector fields Ek (k = 1, 2, 3) defined by

E1 = ∂x1 −
x2
2
∂x3 , E2 = ∂x2 +

x1
2
∂x3 and E3 = ∂x3

are left invariant corresponding to e1, e2, e3 and orthonormal to each other with the timelike
vector E1 with respect to the metric ds2−. The Levi-Civita connection ∇ of ds2− is given by

∇E1E1 = 0, ∇E1E2 =
1
2
E3, ∇E1E3 = −1

2
E2,

∇E2E1 = −1
2
E3, ∇E2E2 = 0, ∇E2E3 = −1

2
E1,

∇E3E1 = −1
2
E2, ∇E3E2 = −1

2
E1, ∇E3E3 = 0.

2.2. Para-complex structure. Let C′ be a real algebra spanned by 1 and i′ with following
multiplication:

(i′)2 = 1, 1 · i′ = i′ · 1 = i′.

An element of the algebra C′ = R1 ⊕ Ri′ is called a para-complex number. For a para-
complex number z we can uniquely express z = x + yi′ with some x, y ∈ R. Similar to
complex numbers, the real part Re z, the imaginary part Im z and the conjugate z̄ of z are
defined by

Re z = x, Im z = y and z̄ = x− yi′.

For a para-complex number z = x + yi′ ∈ C′ there exists a para-complex number w ∈ C′

with z1/2 = w if and only if

(2.2) x+ y ≥ 0 and x− y ≥ 0.

In particular i′1/2 does not exist. Moreover, for a para-complex number z = x + yi′ ∈ C′,
there exists a para-complex number w ∈ C′ such that z = ew if and only if

(2.3) x+ y > 0 and x− y > 0.

Let M be an orientable connected 2-manifold, G a Lorentzian manifold and f : M → G a
timelike immersion, that is, the induced metric on M is Lorentzian. The induced Lorentzian
metric defines a Lorentz conformal structure on M : for a timelike surface there exists a
local para-complex coordinate system z = x + yi′ such that the induced metric I is given
by I = eudzdz̄ = eu ((dx)2 − (dy)2). Then we can regard M and f as a Lorentz surface
and a conformal immersion, respectively. The coordinate system z is called the conformal
coordinate system and the function eu the conformal factor of the metric with respect to z.
For a para-complex coordinate system z = x+ yi′, the partial differentiations are defined by

∂z =
1

2
(∂x + i′∂y) and ∂z̄ =

1

2
(∂x − i′∂y).
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2.3. Structure equations. Let f : M → Nil3 be a conformal immersion from a Lorentz
surface M into Nil3. Let us denote the inverse element of f by f−1. Then the 1-form
α = f−1df satisfies the Maurer-Cartan equation:

(2.4) dα +
1

2
[α ∧ α] = 0.

For a conformal coordinate z = x+ yi′ defined on a simply connected domain D ⊂M , set Φ
as

Φ = f−1fz.

The function Φ takes values in the para-complexification nilC
′

3 of nil3. Then α is expressed
as

α = Φdz + Φdz̄

and the Maurer-Cartan equation (2.4) as

(2.5) Φz̄ − Φz + [Φ,Φ] = 0.

Denote the para-complex extension of ds2− = g =
∑

i,j gijdxidxj to nilC
′

3 by the same letter.
Then the conformality of f is equivalent to

g(Φ,Φ) = 0, g(Φ,Φ) > 0.

For the orthonormal basis {e1, e2, e3} of nil3 we can expand Φ as Φ = φ1e1 + φ2e2 + φ3e3.
Then the conformality of f can be represented as

(2.6) −(φ1)
2 + (φ2)

2 + (φ3)
2 = 0, −φ1φ1 + φ2φ2 + φ3φ3 =

1

2
eu,

for some function u. The conformal factor is given by eu. Conversely, for a nilC
′

3 -valued
function Φ =

∑3
k=1 φkek on a simply connected domain D ⊂ M satisfying (2.5) and (2.6),

there exists an unique conformal immersion f : D → Nil3 with the conformal factor eu
satisfying f−1df = Φdz+Φdz̄ for any initial condition in Nil3 given at some base point in D.

Next we consider the equation for a timelike surface f with constant mean curvature 0. For
f denote the unit normal vector field by N and the mean curvature by H. The tension field
τ(f) for f is given by τ(f) = tr(∇df) where ∇df is the second fundamental form for (f,N).
As well known the tension field of f is related to the mean curvature and the unit normal
by
(2.7) τ(f) = 2HN.

By left translating to (0, 0, 0), we can see this equation rephrased as

(2.8) Φz̄ + Φz +
{
Φ,Φ

}
= euHf−1N

where {·, ·} is the bilinear symmetric map defined by
{X,Y } = ∇XY +∇YX

for X,Y ∈ nil3. In particular for a surface with the mean curvature 0, we have
(2.9) Φz̄ + Φz +

{
Φ,Φ

}
= 0.

Conversely, for a nil3-valued function Φ =
∑3

k=1 φkek satisfying (2.5), (2.6) and (2.9) on a
simply connected domain D, there exists a conformal timelike surface f : D→ Nil3 with the
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mean curvature 0 and the conformal factor eu satisfying f−1df = Φdz + Φdz̄ for any initial
condition in Nil3 given at some base point in D.

2.4. Nonlinear Dirac equation for timelike surfaces. Let us consider the conformality
condition of an immersion f . We first prove the following lemma:

Lemma 2.1. If a product xy of two para-complex numbers x, y ∈ C′ has the square root,
then there exists ε ∈ {±1,±i′} such that εx and εy have the square roots.

Proof. By the assumption,
Re(xy)± Im(xy) ≥ 0

holds, and a simple computation shows that it is equivalent to
(Re(x)± Im(x))(Re(y)± Im(y)) ≥ 0.

Then the claim follows. �

Since the first condition in (2.6) can be rephrased as
(2.10) φ2

3 = (φ1 + iφ2)(φ1 − iφ2),

and by Lemma 2.1, there exists ε ∈ {±1,±i′} such that ε(φ1 + iφ2) and ε(φ1− iφ2) have the
square roots. Therefore there exist para-complex functions ψ2 and ψ1 such that

φ1 + iφ2 = 2εψ2
2
, φ1 − iφ2 = 2εψ1

2

hold. Then φ3 can be rephrased as φ3 = 2ψ1ψ2. Let us compute the second condition in
(2.6) by using {ψ1, ψ2} as

−φ1φ1 + φ2φ2 + φ3φ3 = −2εε̄(ψ1ψ1 − εε̄ψ2ψ2)
2.

Since we have assumed that the left hand side is positive, ε takes values in
ε ∈ {±i′}.

Therefore without loss of generality, we have
(2.11) φ1 = ε

(
(ψ2)

2 + (ψ1)
2
)
, φ2 = εi′

(
(ψ2)

2 − (ψ1)
2
)
, φ3 = 2ψ1ψ2.

Then the normal Gauss map f−1N can be represented in terms of the functions ψ1 and ψ2:
(2.12) f−1N = 2e−u/2

(
−ε
(
ψ1ψ2 − ψ1ψ2

)
e1 + εi′

(
ψ1ψ2 + ψ1ψ2

)
e2 −

(
ψ2ψ2 − ψ1ψ1

)
e3
)
,

where eu/2 = 2(ψ2ψ2 + ψ1ψ1). We can see that, using the functions (ψ1, ψ2), the structure
equations (2.5) and (2.8) are equivalent to the following nonlinear Dirac equation:

(2.13)
(
∂zψ2 + Uψ1

−∂zψ1 + Vψ2

)
=

(
0
0

)
.

Here the Dirac potential U and V are given by

(2.14) U = V = −H
2
eu/2 +

i′

4
h

where
eu/2 = 2

(
ψ2ψ2 + ψ1ψ1

)
and h = 2

(
ψ2ψ2 − ψ1ψ1

)
.

Remark 2.2.
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(1) Without loss of generality, we can take ψ2ψ2 + ψ1ψ1 as positive value, if necessary,
by replacing (ψ1, ψ2) into (−i′ψ1, i

′ψ2).
(2) To prove the equations (2.5) and (2.8) from the nonlinear Dirac equation (2.13) with

(2.14), the functions eu/2 and h in (2.14) and solutions ψk (k = 1, 2) have to satisfy
the relations

eu/2 = 2(ψ2ψ2 + ψ1ψ1), h = 2(ψ2ψ2 − ψ1ψ1).

For a timelike surface with the constant mean curvature H = 0, the Dirac potential takes
purely imaginary values. Then, by using (2.12), we have the following lemma.

Lemma 2.3. Let f : D → (Nil3, ds
2
−) be a timelike surface with constant mean curvature

H = 0. Then the following statements are equivalent:

(1) The Dirac potential U is not invertible at p ∈ D.
(2) The function h is equal to zero at p ∈ D.
(3) E3 is tangent to f at p ∈ D.

Remark 2.4. The equivalence between (2) and (3) holds regardless of the value of H. In
general, U is invertible if and only if (ReU)2 − (ImU)2 6= 0.

Hereafter we will exclude the points where U is not invertible, that is, we will restrict ourselves
to the case of

(2.15) (ReU)2 − (ImU)2 6= 0.

Then, by using (2.3), the Dirac potentials can be written as

(2.16) U = V = ε̃ew/2

for some C′-valued function w and ε̃ ∈ {±1,±i′}. In particular, if the mean curvature is zero
and the function h has positive values, then ε̃ = i′.

2.5. Hopf differential and an associated quadratic differential. The Hopf differential
Adz2 is the (2, 0)-part of the second fundamental form for f , that is,

A = g(∇∂zfz, N).

A straightforward computation shows that the coefficient function A is rephrased in terms
of ψk as follows:

A = 2{ψ1(ψ2)z − ψ2(ψ1)z} − 4i′ψ2
1(ψ2)

2.

Next we define a para-complex valued function B by

(2.17) B =
1

4
(2H − i′)Ã, where Ã = A− φ2

3

2H − i′
.

Here A and φ3 are the Hopf differential and the e3-component of f−1fz for f . It is easy to
check the quadratic differential Bdz2 is defined entirely and it will be called the Abresch-
Rosenberg differential.
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2.6. Lax pair for timelike surfaces. The nonlinear Dirac equation can be represented in
terms of the Lax pair type system.
Theorem 2.5. Let D be a simply connected domain in C′ and f : D → Nil3 a conformal
timelike immersion for which the Dirac potential U satisfies (2.15). Then the vector ψ̃ =
(ψ1, ψ2) satisfies the system of equations

(2.18) ψ̃z = ψ̃Ũ , ψ̃z̄ = ψ̃Ṽ ,

where

Ũ =

(
1
2
wz +

1
2
Hz ε̃e

−w/2eu/2 −ε̃ew/2

Bε̃e−w/2 0

)
,(2.19)

Ṽ =

(
0 −Bε̃e−w/2

ε̃ew/2 1
2
wz̄ +

1
2
Hz̄ ε̃e

−w/2eu/2

)
.(2.20)

Here, ε̃ ∈ {±1,±i′} is the number decided by (2.16). Conversely, every solution ψ̃ to (2.18)
with (2.16) and (2.14) is a solution of the nonlinear Dirac equation (2.13) with (2.14).

Proof. By computing the derivative of the Dirac potential ε̃ew/2 with respect to z, we have
1

2
wz ε̃e

w/2 = −1

2
Hze

u/2 + 2i′Hψ1ψ2(ψ2)
2 − 2H − i′

2
ψ2(ψ2)z −

2H + i′

2
ψ1(ψ1)z.

Multiplying the equation above by ψ1 and using the function B defined in (2.17), we derive

(ψ1)z =

(
1

2
wz +

1

2
Hz ε̃e

−w/2eu/2
)
ψ1 +Bε̃e−w/2ψ2.

The derivative of ψ2 with respect to z is given by the nonlinear Dirac equation. Thus we
obtain the first equation of (2.18). We can derive the second equation of (2.18) in a similar
way by differentiating the potential with respect to z̄.

Conversely, if the vector ψ̃ = (ψ1, ψ2) is a solution of (2.18), the terms of (ψ1)z̄ and (ψ2)z of
(2.18) are the equations just we want. �

The compatibility condition of the above system is
1

2
wzz̄ + ew −BBe−w +

1

2
(Hzz̄ + p)ε̃e−w/2eu/2 = 0,(2.21)

Bz ε̃e
−w/2 = −1

2
BHze

−weu/2 − 1

2
Hz̄e

u/2,(2.22)

Bz̄ ε̃e
−w/2 = −1

2
BHz̄e

−weu/2 − 1

2
Hze

u/2,(2.23)

where p = Hz(−w/2+u/2)z̄ for the (1,1)-entry and p = Hz̄(−w/2+u/2)z for the (2,2)-entry.
From the above compatibility conditions we have the following:
Theorem 2.6. For a constant mean curvature timelike surface in Nil3 which has the Dirac
potential invertible anywhere, the Abresch-Rosenberg differential is para-holomorphic.
Remark 2.7. To obtain a timelike immersion for solutions w,B and H of the compatibility
condition (2.21), (2.22) and (2.23), a solution ψ̃ = (ψ1, ψ2) of (2.18) has to satisfy

ε̃ew/2 = −H(ψ2ψ2 + ψ1ψ1) +
i′

2
(ψ2ψ2 − ψ1ψ1).

8



This gives an overdetermined system and it seems not easy to find a general solution for
arbitrary H, but for minimal surfaces we will show that it will be automatically satisfied.

3. Timelike minimal surfaces in Nil3

A timelike surface in Nil3 with the constant mean curvature H = 0 is called a timelike
minimal surface. By Theorem 2.6, the Abresch-Rosenberg differential for a timelike minimal
surface is para-holomorphic. For example the triple B = 0, H = 0 and ew = 16/(1+16zz̄)2 is
a solution of the compatibility condition (2.21), (2.22) and (2.23). In fact these are derived
from a horizontal plane

(3.1) f(z) =

(
2i′(z − z̄)
1 + zz̄

,
2(z + z̄)

1 + zz̄
, 0

)
.

Thus the horizontal plane (3.1) is a timelike minimal surface in Nil3. We will give examples
of timelike minimal surfaces in Section 6. In this section we characterize timelike minimal
surfaces in terms of the normal Gauss map.

3.1. The normal Gauss map. For a timelike surface in Nil3, the normal Gauss map is
given by (2.12). Clearly it takes values in de Sitter two sphere S̃2

1 ⊂ nil3:

S̃2
1 =

{
x1e1 + x2e2 + x3e3 ∈ nil3 | −x21 + x22 + x23 = 1

}
.

From now on we will assume that the function h takes positive values, that is, the image of
the normal Gauss map is in lower half part of the de Sitter two sphere. Moreover, we assume
that the timelike surface has the pair of functions (ψ1, ψ2) of the formula (2.11) with ε = i′.
If the function h takes negative values, or if the functions (ψ1, ψ2) are given with ε = −i′,
by a similar to the case of h > 0 and ε = i′, we can get same results.

The normal Gauss map f−1N can be considered as a map into another de Sitter two sphere
in the Minkowski space

S2
1 =

{
(x1, x2, x3) ∈ L3 | x21 − x22 + x23 = 1

}
⊂ L3

(+,−,+)

through the stereographic projections from (0, 0, 1) ∈ S̃2
1 ⊂ nil3:

π+
nil : nil3 ⊃ S̃2

1 3 x1e1 + x2e2 + x3e3 7→
(

x1
1− x3

,
x2

1− x3
, 0

)
=

x1
1− x3

+ i′
x2

1− x3
∈ C′

and from (0, 0,−1) ∈ S2
1 ⊂ L3

(+,−,+):

π−
L3 : L3

(+,−,+) ⊃ S2
1 3 (x1, x2, x3) 7→

(
x1

1 + x3
,

x2
1 + x3

, 0

)
=

x1
1 + x3

+ i′
x2

1 + x3
∈ C′.

In particular, the inverse map (π−
L3)

−1 is given by

(π−
L3)

−1(g) =

(
2Re g

1 + gg
,
2 Im g

1 + gg
,
1− gg
1 + gg

)
for g = (Re g, Im g, 0) ∈ C′. Since the normal Gauss map takes values in the lower half of the
de Sitter two sphere in nil3, the image under the projection π+

nil is in the region enclosed by
four hyperbolas, see Figure 1. Two of the four hyperbolas correspond to the vertical points,
that is, the points where h vanishes, and the others correspond to the infinite-points, that

9



Figure 1. The upper half part of the de Sitter two sphere S2
1 (left) and

its stereographic projection (middle), and the stereographic projection of the
lower half part of S̃2

1 (right).

is, the points where the first fundamental form degenerates. Since first and second sign of
metrics of Nil3 and L3

(+,−,+) are interchanged, the image of each hyperbola under the inverse
map (π−

L3)
−1 plays the other role.

Define a map g by the composition of the stereographic projection π+
nil with f−1N , and then

we obtain

g = i′
ψ1

ψ2

∈ C′.

Thus the normal Gauss map can be represented as

f−1N =
1

1− gg
(2Re(g)e1 + 2 Im(g)e2 − (1 + gg)e3)

and

(3.2) (π−
L3)

−1 ◦ π+
nil ◦ f

−1N =
1

ψ2ψ2 − ψ1ψ1

(
−2 Im(ψ1ψ2), 2Re(ψ1ψ2), ψ2ψ2 + ψ1ψ1

)
.

Let su′1,1 be the special para-unitary Lie algebra defined by

su′1,1 =

{(
ai′ b̄
b −ai′

)
| a ∈ R, b ∈ C′

}
with the usual commutator of the matrices. We assign the following indefinite product on
su′1,1:

〈X,Y 〉 := 2tr(XY ).

Then we can identify the Lie algebra su′1,1 with L3
(+,−,+) isometrically by

(3.3) su′1,1 3
1

2

(
ri′ −p− qi′

−p+ qi′ −ri′
)
←→ (p, q, r) ∈ L3

(+,−,+).

Let SU′
1,1 be the special para-unitary group of degree two corresponding to su′1,1:

SU′
1,1 =

{(
α β
β̄ ᾱ

)
| α, β ∈ C′, αᾱ− ββ̄ = 1

}
.

By the identification (3.3), the represented normal Gauss map (3.2) is equal to

(π−
L3)

−1 ◦ π+
nil ◦ f

−1N =
i′

2
Ad(F )

(
1 0
0 −1

)
,

10



where F is a SU′
1,1-valued map defined by

(3.4) F =
1√

ψ2ψ2 − ψ1ψ1

(
ψ2 ψ1

ψ1 ψ2

)
.

The SU′
1,1-valued function F defined as above is called a frame of the normal Gauss map

f−1N .

Remark 3.1. In general a frame of the normal Gauss map f−1N is not unique, that is, for
some frame F , there is a freedom of SU′

1,1-valued initial condition F0 and U′
1-valued map k

such that F0Fk is an another frame. In this paper we use the particular frame in (3.4), since
arbitrary choice of initial condition does not correspond to a given timelike surface f .

3.2. Characterization of timelike minimal surfaces. Let F be the frame defined in
(3.4) of the normal Gauss map f−1N . By taking the gauge transformation

F 7→ F

(
e−w/4 0
0 e−w/4

)
,

we can see the system (2.18) is equivalent to the matrix differential equations
(3.5) Fz = FU, Fz̄ = FV,

where

U =

(
1
4
wz +

1
2
Hz ε̃e

−w/2eu/2 −ε̃ew/2

Bε̃e−w/2 −1
4
wz

)
,

V =

(
−1

4
wz̄ −B̄ε̃e−w/2

ε̃ew/2 1
4
wz̄ +

1
2
Hz̄ ε̃e

−w/2eu/2

)
.

We define a family of Maurer-Cartan forms αµ parameterized by µ ∈
{
ei

′t | t ∈ R
}

as follows:
(3.6) αµ := Uµdz + V µdz̄,

where

Uµ =

(
1
4
wz +

1
2
Hz ε̃e

−w/2eu/2 −µ−1ε̃ew/2

µ−1Bε̃e−w/2 −1
4
wz

)
,(3.7)

V µ =

(
−1

4
wz̄ −µB̄ε̃e−w/2

µε̃ew/2 1
4
wz̄ +

1
2
Hz̄ ε̃e

−w/2eu/2

)
.(3.8)

Theorem 3.2. Let f be a conformal timelike immersion from a simply connected domain
D ⊂ C′ into Nil3 satisfying (2.15). Then the following conditions are mutually equivalent:

(1) f is a timelike minimal surface.
(2) The Dirac potential U = ε̃ew/2 = −H

2
eu/2 + i′

4
h takes purely imaginary values.

(3) d+ αµ defines a family of flat connections on D× SU′
1,1.

(4) The normal Gauss map f−1N is a Lorentz harmonic map into de Sitter two sphere
S2
1 ⊂ L3

(+,−,+).

Proof. The statement (3) holds if and only if
(3.9) (Uµ)z̄ − (V µ)z + [V µ, Uµ] = 0

11



for all µ ∈
{
ei

′t | t ∈ R
}

. The coefficients of µ−1, µ0 and µ of (3.9) are as follows:

µ−1-part: 1
2
Hz̄e

u/2 = 0, Bz̄ +
1
2
BHz̄ ε̃e

−w/2eu/2 = 0,(3.10)
µ0-part: 1

2
wzz̄ + ew −BBe−w + 1

2
(Hzz̄ + p)ε̃e−w/2eu/2 = 0,(3.11)

µ-part: Bz +
1
2
BHz ε̃e

−w/2eu/2 = 0, 1
2
Hze

u/2 = 0,(3.12)

where p is Hz(−w/2 + u/2)z̄ for the (1, 1)-entry and Hz̄(−w/2 + u/2)z for the (2, 2)-entry,
respectively. Since the equation in (3.11) is a structure equation for the immersion f , these
are always satisfied, which in fact is equivalent to (2.21).

The equivalence of (1) and (2) is obvious.
We consider (1)⇒ (3). Since f is timelike minimal, by Theorem 2.6, the Abresch-Rosenberg
differential Bdz2 is para-holomorphic. Hence, the equations (3.10), (3.11) and (3.12) hold.
Consequently, the statement (3) holds.

Next we show (3) ⇒ (1). Assume that d + αλ is flat, that is, (3.10), (3.11) and (3.12) are
satisfied. Then it is easy to see that H is constant. Furthermore, since αµ is valued in su′1,1,
we can derive that the mean curvature H is 0 by comparing (2,1)-entry with (1,2)-entry of
αµ.
Finally we consider the equivalence between (3) and (4). The condition (3) is (3.9) and it
can be rephrased as

(3.13) d(∗α1) + [α0 ∧ ∗α1] = 0,

where α0 = α′
kdz+α

′′
k dz̄ and α1 = α′

mdz+α
′′
mdz̄ and su′1,1 has been decomposed as su′1,1 = k+m

with

k =

{(
i′r 0
0 −i′r

)
| r ∈ R

}
, m =

{(
0 −p− qi′

−p+ qi′ 0

)
| p, q ∈ R

}
.

Moreover ∗ denotes the Hodge star operator defined by

∗dz = i′dz, ∗dz̄ = −i′dz̄.

It is known that by [23, Section 2.1], the harmonicity condition (3.13) is equivalent to the
Lorentz harmonicity of the normal Gauss map f−1N = i′

2
Fσ3F

−1 into the symmetric space
S2
1. Thus the equivalence between (3) and (4) follows. �

From Theorem 3.2, we define the followings:

Definition 3.3.

(1) For a timelike minimal surface f in Nil3 with the frame F in (3.4) of the normal
Gauss map, let F µ be a SU′

1,1-valued solution of the matrix differential equation
(F µ)−1dF µ = αµ with F µ|µ=1 = F . Then F µ is called an extended frame of the
timelike minimal surface f .

(2) Let F̃ µ be a SU′
1,1-valued solution of (F̃ µ)−1dF̃ µ = αµ. Then F̃ µ is called a general

extended frame.
12



Note that an extended frame F µ and a general extended frame F̃ µ are differ by an initial
condition F0, F̃ µ = F0F

µ, and F µ can be explicitly written as

(3.14) F µ =
1√

ψ2(µ)ψ2(µ)− ψ1(µ)ψ1(µ)

(
ψ2(µ) ψ1(µ)
ψ1(µ) ψ2(µ)

)
,

where ψj(µ = 1) = ψj (j = 1, 2) are the original generating spinors of a timelike minimal
surface f . For a timelike minimal surface, the Maurer-Cartan form αµ = Uµdz + V µdz̄ of a
general extended frame F̃ µ can be written explicitly as follows:

(3.15) Uµ =

(
1
2
(log h)z − i′

4
hµ−1

4i′Bh−1µ−1 −1
2
(log h)z

)
, V µ =

(
−1

2
(log h)z̄ −4i′B̄h−1µ
i′

4
hµ 1

2
(log h)z̄

)
.

4. Sym formula and duality between timelike minimal surfaces in
three-dimensional Heisenberg group and timelike CMC surfaces in

Minkowski space

In this section we will derive an immersion formula for timelike minimal surfaces in Nil3 in
terms of the extended frame, the so-called Sym formula. Unlike the integral represetnation
formula, the so-called Weierstrass type representation [21, 26, 10, 19], the Sym-formula will
be given by the derivative of the extended frame with respect to the spectral parameter.

We define a map Ξ : su′1,1 → nil3 by

(4.1) Ξ (x1E1 + x2E2 + x3E3) := x1e1 + x2e2 + x3e3

where

(4.2) E1 =
1

2

(
0 −i′
i′ 0

)
, E2 =

1

2

(
0 −1
−1 0

)
, E3 =

1

2

(
i′ 0
0 −i′

)
.

Clearly, Ξ is a linear isomorphism but not a Lie algebra isomorphism. Moreover, define a
map Ξnil : su

′
1,1 → Nil3 as Ξnil = exp ◦Ξ, explicitly

(4.3) Ξnil

(
1

2

(
x3i

′ −x2 − x1i′
−x2 + x1i

′ −x3i′
))

= (x1, x2, x3).

Then we can obtain a family of timelike minimal surfaces in Nil3 from an extended frame of
a timelike minimal surface.

Theorem 4.1. Let D be a simply connected domain in C′ and F µ be an extended frame
defined in (3.14) for some conformal timelike minimal surface on D for which the functions
ψ1, ψ2 are given by the formula (2.11) with ε = i′ and the function h defined by (2.14) has
positive values on D.

Define maps fL3 and NL3 respectively by

(4.4) fL3 = −i′µ(∂µF µ)(F µ)−1 − i′

2
Ad(F µ)σ3 and NL3 =

i′

2
Ad(F µ)σ3,

where σ3 = ( 1 0
0 −1 ). Moreover, define a map fµ : D→ Nil3 by

(4.5) fµ := Ξnil ◦ f̂ with f̂ = (fL3)o − i′

2
µ(∂µfL3)d,
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where the superscripts “o” and “d” denote the off-diagonal and diagonal part, respectively.
Then, for each µ ∈ S1

1 = {ei
′t ∈ C′ | t ∈ R} the following statements hold:

(1) The map fµ is a timelike minimal surface (possibly singular) in Nil3 and NL3 is the
isometric image of the normal Gauss map of fµ. Moreover, fµ|µ=1 and the original
surface are same up to a translation.

(2) The map fL3 is a timelike constant mean curvature surface with mean curvature
H = 1/2 in L3 and NL3 is the spacelike unit normal vector of fL3.

Proof. Because of the continuity of the extended frame with respect to the parameter µ, F µ

can be represented in the form of

F µ =
1√

ψ2(µ)ψ2(µ)− ψ1(µ)ψ1(µ)

(
ψ2(µ) ψ1(µ)
ψ1(µ) ψ2(µ)

)
for some C′-valued functions ψ1(µ) and ψ2(µ) with ψk(1) = ψk for k = 1, 2. Since F µ satisfies
the equations

F µ
z = F µUµ, F µ

z̄ = F µV µ,

with (3.7), (3.8) and H = 0, by considering the gauge transformation

F µ 7→ F µ

(
µ−1/2 0
0 µ1/2

)
,

it can be shown that the deformation with respect to parameter µ does not change the Dirac
potential, that is, ψ2(µ)ψ2(µ)− ψ1(µ)ψ1(µ) is independent of µ.

Since F µ is SU′
1,1-valued, a straightforward computation shows that i′µ(∂µF µ)(F µ)−1 and

NL3 take values in su′1,1. Hence fL3 is a su′1,1-valued map. Therefore, the diagonal entries of
i′µ(∂µfL3) take purely imaginary values and the trace of i′µ(∂µfL3) vanishes. Thus i′µ(∂µfL3)d

takes su′1,1 values.

Next we compute ∂zf̂ . By the usual computations we obtain

∂zfL3 = ∂z

(
−i′µ(∂µF µ)(F µ)−1)− i′

2
Ad(F µ)σ3

)
= Ad(F µ)

(
−i′µ(∂µUµ)− i′

2
[Uµ, σ3]

)
= −2µ−1ew/2Ad(F µ)σ3(4.6)

= µ−1

(
ψ1(µ)ψ2(µ) −(ψ2(µ))

2

(ψ1(µ))
2 −ψ1(µ)ψ2(µ)

)
.

Then we have

∂zfL3 =
1

2

(
φ3(µ) −φ2(µ)− i′φ1(µ)

−φ2(µ) + i′φ1(µ) −φ3(µ)

)
= φ1(µ)E1 + φ2(µ)E2 + i′φ3(µ)E3(4.7)

with

φ1(µ) = µ−1i′
(
(ψ2(µ))

2 + (ψ1(µ)
2)
)
, φ2(µ) = µ−1

(
(ψ2(µ))

2 − (ψ1(µ)
2)
)
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and
φ3(µ) = µ−12ψ1(µ)ψ2(µ).

By using (4.6), we can compute

∂z

(
−i

′

2
µ (∂µfL3)

)
= −i

′

2
µ∂µ(∂zfL3)

= i′ew/2µ(−µ−2)Ad(F µ)

(
0 1
0 0

)
+i′ew/2

[
i′µ−1(−fL3 −NL3),−1

2
µe−w/2∂zfL3

]
=

i′

2
∂zfL3 +

[
fL3 +NL3 ,

1

2
∂zfL3

]
.

Using (4.6), we have[
fL3 ,

1

2
∂zfL3

]d
=

1

2

(
φ2(µ)

∫
φ1(µ)dz − φ1(µ)

∫
φ2(µ)dz

)
E3

and [
NL3 ,

1

2
∂zfL3

]
=
i′

2
∂zfL3 .

Consequently, we have

∂z

(
−i

′

2
µ (∂µfL3)

)d

=

(
φ3(µ) +

1

2

(
φ2(µ)

∫
φ1(µ)dz − φ1(µ)

∫
φ2(µ)dz

))
E3.

Thus we obtain

∂zf̂ = ∂z(fL3)o + ∂z

(
−i

′

2
µ (∂µfL3)

)d

= φ1(µ)E1 + φ2(µ)E2 +
(
φ3(µ) +

1

2

(
φ2(µ)

∫
φ1(µ)dz − φ1(µ)

∫
φ2(µ)dz

))
E3

and then

(4.8) (fµ)−1(∂zf
µ) = φ1(µ)e1 + φ2(µ)e2 + φ3(µ)e3.

The equation (4.8) means that, for µ = ei
′t with sufficiently small t ∈ R, the map fµ is confor-

mal with the conformal parameter z and the conformal factor 4(ψ2(µ)ψ2(µ) +ψ1(µ)ψ1(µ))
2.

To complete the proof of (1) we check the mean curvature and the normal Gauss map of fµ.
Since the Dirac potential of fµ is same with the one of the original timelike minimal surface,
the mean curvature of fµ is zero for µ with ψ2(µ)ψ2(µ) + ψ1(µ)ψ1(µ) nowhere vanishing on
D. Using the map nil3 ⊃ S̃2

1 → S2
1 ⊂ L3

(+,−,+) defined in Section 3.1, the normal Gauss map
of fµ is converted into NL3 . To prove (2), see Appendix A. �

Remark 4.2. In other cases, h < 0 or ε = −i′, we can get the same result with Theorem 4.1
by adapting the identification (3.3) between su′1,1 and L3

(+,−,+) and the linear isomorphism
(4.1) from su′1,1 to nil3 precisely. For example, when the original timelike minimal surface
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has h > 0 and ε = −i′, we should replace the identification (3.3) and the linear isomorphism
(4.1), respectively, into

su′1,1 3
1

2

(
ri′ −(−p− qi′)

−(−p+ qi′) −ri′
)
←→ (p, q, r) ∈ L3

(+,−,+)

and
Ξ (x1E1 + x2E2 + x3E3) := −x1e1 − x2e2 + x3e3

where Ej (j = 1, 2, 3) is defined in (4.2).

In Theorem 4.1, we recover a given timelike minimal surface in Nil3 in terms of generating
spinors and Sym formula. More generally, we can construct timelike minimal surfaces using
a non-conformal harmonic map into S2

1. As we have seen in the proof of Theorem 4.1 the
harmonicity of a map N into S2

1 in terms of

d(∗α1) + [α0 ∧ ∗α1] = 0,

where α is the Maurer-Cartan form of the frame F̃ : D → SU′
1,1 of N and moreover,

α = α0 + α1 is the representation in accordance with the decomposition su′1,1 = k + m.
Denote the (1, 0)-part and (0, 1)-part of α1 by α1

′ and α1
′′, and define a su′1,1-valued 1-form

αµ for each µ ∈ S1
1 by

αµ := α0 + µ−1α1
′ + µα1

′′.

Then αµ satisfies
dαµ +

1

2
[αµ ∧ αµ] = 0

for all µ ∈ S1
1 , and thus there exists F̃ µ : D → SU′

1,1 which is smooth with respect to the
parameter µ and satisfies (F̃ µ)−1dF̃ µ = αµ for each µ. Thus F̃ µ is the extended frame of the
harmonic map N . As well as Theorem 4.1 we can show the following theorem:

Theorem 4.3. Let F̃ µ : D→ SU′
1,1 be the extended frame of a harmonic map N into the S2

1.
Assume that the coefficient function a of (1, 2)-entry of α1

′ satisfies aa < 0 on D. Define the
maps f̃L3, ÑL3 and f̃µ respectively by the Sym formulas in (4.4) and (4.5) where F µ replaced
by F̃ µ. Then, under the identification (3.3)of su′1,1 and L3 and the linear isomorphism (4.1)
from su′1,1 to nil3, for each µ = ei

′t ∈ S1
1 the following statements hold:

(1) The map f̃L3 is a timelike constant mean curvature surface with mean curvature
H = 1/2 in L3 with the first fundamental form I = −16aadzdz̄ and ÑL3 is the
spacelike unit normal vector of f̃L3.

(2) The map f̃µ is a timelike minimal surface (possibly singular) in Nil3 and NL3 is the
isometric image of the normal Gauss map of fµ. In particular, F̃ µ is an extended
frame of some timelike minimal surface f .

Proof. To prove the theorem, one needs to define generating spinors properly: After gauging
the extended frame the upper right corner of α′

1 takes values in purely imaginary, that is a
can be assumed to be purely imaginary. Define h by h = −4i′a, and ψ̃1 and ψ̃2 by putting

F̃21 =
√
2ψ̃1h

−1/2, F̃22 =
√
2ψ̃2h

−1/2,
16



respectively. Then ψ̃1 and ψ̃2 are generating spinors of the map f̃µ and its angle function is
exactly h = 2

(
ψ̃2ψ̃2 − ψ̃1ψ̃1

)
. �

5. Generalized Weierstrass type representation for timelike minimal
surfaces in Nil3

In this section we will give a construction of timelike minimal surfaces in Nil3 in terms of
the para-holomorphic data, the so-called generalized Weierstrass type representation. The
heart of the construction is based on two loop group decompositions, the so-called Birkhoff
and Iwasawa decompositions, which are reformulations of [11, Theorem 2.5], see also [24], in
terms of the para-complex structure.

5.1. From minimal surfaces to normalized potentials: The Birkhoff decomposi-
tion. Let us recall the hyperbola on C′:
(5.1) S1

1 = {µ ∈ C′ | µµ̄ = 1, Reµ > 0}.
Since an extended frame F µ is analytic on S1

1 (in fact it is analytic on C′\{x(1±i′) | x ∈ R}),
it is natural to introduce the following loop groups:

Λ′SL2C′
σ =

{
g : S1

1 → SL2C′ | g = · · ·+ g−1µ
−1 + g0 + g1µ

1 + · · ·
and g(−µ) = σ3g(µ)σ3

}
,

Λ′+SL2C′
σ =

{
g ∈ Λ′SL2C′

σ | g = g0 + g1µ
1 + · · ·

}
.

On the one hand, we define
Λ′−SL2C′

σ =
{
g ∈ Λ′SL2C′

σ | g = g0 + g−1µ
−1 + · · ·

}
.

We now use the lower subscript ∗ for normalization at µ = 0 or µ =∞ by identity, that is
Λ′±

∗ SL2C′
σ =

{
g ∈ Λ′±SL2C′

σ | g(0) = id for Λ′+SL2C′
σ or g(∞) = id for Λ′−SL2C′

σ

}
.

Moreover, we define the loop group of the special para-unitary group SU′
1,1 :

Λ′SU′
1,1σ =

{
g ∈ Λ′SL2C′

σ | σ3
(
g(1/µ̄)

T
)−1

σ3 = g(µ)

}
.

Further, let us introduce the following subgroup

U′
1 =

{
diag(ei

′θ, e−i′θ) | θ ∈ R
}
.

The fundamental decompositions for the above loop groups are Birkhoff and Iwasawa de-
compositions as follows:

Theorem 5.1 (Birkhoff and Iwasawa decompositions). The loop group Λ′SL2C′
σ can be

decomposed as follows:

(1) Birkhoff decomposition: The multiplication maps
(5.2) Λ′−

∗ SL2C′
σ × Λ′+SL2C′

σ → Λ′SL2C′
σ and Λ′+

∗ SL2C′
σ × Λ′−SL2C′

σ → Λ′SL2C′
σ

are diffeomorphism onto the open dense subsets of Λ′SL2C′
σ, which will be called the

big cells of Λ′SL2C′
σ.
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(2) Iwasawa decomposition: The multiplication map
(5.3) Λ′SU′

1,1σ × Λ′+SL2C′
σ → Λ′SL2C′

σ

is an diffeomorphism onto the open dense subset of Λ′SL2C′
σ, which will be called the

big cell of Λ′SL2C′
σ.

Proof. We first note that a given real Lie algebra g, the para-complexification g⊗C′ of g is
isomorphic to g⊕ g as a real Lie algebra, that is, the isomorphism is given explicitly as

(5.4) g⊕ g 3 (X,Y ) 7→ 1

2
(X + Y ) +

1

2
(X − Y )i′ ∈ g⊗ C′.

Accordingly an isomorphism between SL2R × SL2R and SL2C′ follows. In particular we
have an isomorphism between {diag(a, a−1) | a ∈ R×} × {diag(a, a−1) | a ∈ R×} and
{diag(rei′θ, r−1e−i′θ) | r 6= 0, θ ∈ R} follows. Let us consider two real Lie algebras sl2R and
su′1,1:

sl2R =

{(
a b
c −a

)
| a, b, c ∈ R

}
, su′1,1 =

{(
ci′ b− ai′

b+ ai′ −ci′
)
| a, b, c ∈ R

}
.

Then an explicit map

(5.5) X 7→ 1

2
(X +X∗) +

1

2
(X −X∗)i′, X∗ = −σ3X

T
σ3

induces an isomorphism between sl2R and su′1,1. Note that X∗ = −σ3Xσ3 for X ∈ sl2R.
Then accordingly an isomorphism between SL2R and SU′

1,1 follows.

Let us now define the loop algebras of sl2R by
Λsl2Rσ =

{
ξ : R+ → sl2R | ξ = · · ·+ ξ−1λ

−1 + ξ0 + ξ1λ+ · · · and ξ(−λ) = σ3ξ(λ)σ3
}
,

Λ±sl2Rσ =
{
ξ ∈ Λsl2Rσ | ξ = ξ0 + ξ±1λ

±1 + · · ·
}
.

Moreover, the lower subscript ∗ denotes normalization at λ = 0 and λ =∞, that is, ξ0 = 0
in Λ±sl2R. On the one hand the loop algebra of su′1,1 is defined by

Λ′su′1,1σ =
{
τ : S1

1 → su′1,1 | τ(−µ) = σ3τ(µ)σ3
}
.

The Lie algebra of Λ′SL2C′
σ is defined by

Λ′sl2C′
σ =

{
τ : S1

1 → sl2C′ | τ = · · ·+ τ−1µ
−1 + τ0 + τ1µ+ · · · and τ(−µ) = σ3τ(µ)σ3

}
,

and it is easy to see that the loop algebra Λ′su′1,1σ can be extended to the following fixed
point set of an anti-linear involution of Λ′sl2C′

σ:
Λ′su′1,1σ = {τ ∈ Λ′sl2C′

σ | τ ∗(1/µ̄) = τ(µ)} .

We now identify the two loop algebras Λsl2Rσ and Λ′su′1,1σ as follows: Let ξ = · · ·+ξ−1λ
−1+

ξ0 + ξ1λ+ · · · with ξi ∈ sl2R be an element in Λsl2Rσ and consider the isomorphism (5.5):

ξ 7→ ξ̃ = ξ`+ ξ∗ ¯̀

= · · ·+ (ξ−1`+ ξ∗−1
¯̀)λ−1 + ξ0`+ ξ∗0

¯̀+ (ξ1`+ ξ∗1
¯̀)λ+ · · · ,

where we set
` =

1

2
(1 + i′).
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Since λ ∈ R+ corresponds to λ = µ`+µ−1 ¯̀with µ ∈ S1
1 (µ̄ = µ−1) and the properties of null

basis {`, ¯̀}, that is, `¯̀= 0 and `2 = `, ¯̀2 = ¯̀, we have

ξ̃ = · · ·+ (ξ−1`+ ξ∗1
¯̀)µ−1 + (ξ0`+ ξ∗0

¯̀) + (ξ1`+ ξ∗−1
¯̀)µ+ · · · .

Thus the following map is an isomorphism between Λsl2Rσ and Λ′su′1,1σ

(5.6) Λsl2Rσ 3 ξ(λ) 7→ ξ(µ)`+ ξ∗(1/µ̄)¯̀∈ Λ′su′1,1σ,

where µ = λ`+ λ−1 ¯̀.

Then combining two isomorphisms (5.4) and (5.6), we have isomorphisms

Λsl2Rσ ⊕ Λsl2Rσ
∼= Λ′su′1,1σ ⊕ Λ′su′1,1σ

∼= Λ′sl2C′
σ,

where the maps are explicitly given by

(5.7) (ξ(λ), η(λ)) 7→
(
ξ(µ)`+ ξ∗(1/µ̄)¯̀, η(λ)`+ η∗(1/µ̄)¯̀

)
for Λsl2Rσ ⊕ Λsl2Rσ

∼= Λ′su′1,1σ ⊕ Λ′su′1,1σ, and

(5.8) (ξ(λ), η(λ)) 7→ ξ(µ)`+ η∗(1/µ̄)¯̀

for Λsl2Rσ ⊕ Λsl2Rσ
∼= Λ′sl2C′

σ. Moreover, by the map (5.8), the following isomorphisms
follow:

Λ+sl2R⊕ Λ−sl2R ∼= Λ′+sl2C′
σ, Λ−sl2R⊕ Λ+sl2R ∼= Λ′−sl2C′

σ.

It is well known that [11, Section 2.1] the loop algebra Λsl2Rσ is a Banach Lie algebra and
thus Λ′sl2C′

σ(
∼= Λsl2Rσ × Λsl2Rσ) is also a Banach Lie algebra, and the corresponding loop

groups ΛSL2Rσ and Λ′SL2C′
σ(
∼= ΛSL2Rσ×ΛSL2Rσ) become Banach Lie groups, respectively.

Then the Birkhoff and Iwasawa decompositions of ΛSL2Rσ and ΛSL2Rσ × ΛSL2Rσ were
proved in Theorem 2.2 and Theorem 2.5 in [11]: The following multiplication maps

Λ−SL2Rσ × Λ+SL2Rσ → ΛSL2Rσ, Λ+SL2Rσ × Λ−SL2Rσ → ΛSL2Rσ,

and
∆(ΛSL2Rσ × ΛSL2Rσ)× Λ+SL2Rσ × Λ−SL2Rσ → ΛSL2Rσ × ΛSL2Rσ

are diffeomorphisms onto the open dense subsets of ΛSL2Rσ and ΛSL2Rσ×ΛSL2Rσ, respec-
tively. Then these decomposition theorems can be translated to the Birkhoff and Iwasawa
decompositions for Λ′SL2C′

σ. This completes the proof. �

Remark 5.2. In this paper, we consider only the loop group of a Lie group G which is defined
on the hyperbola S1

1 and has the power series expansion. We have denoted such loop group
by the symbol ΛGσ. However in [11], the authors considered the loop group Λ̃Gσ which was
a space of continuous maps from R+ and it can be analytically continued to C×, that is, an
element of Λ̃Gσ has the power series expansion. If an element of Λ̃Gσ is restricted to R+,
then it corresponds to an element of ΛGσ as discussed above.

In the following, we assume that an extended frame F µ is in the big cell of Λ′SL2C′
σ. Using

the Birkhoff decomposition in Theorem 5.1, we have the para-holomorphic data from a
timelike minimal surface.
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Theorem 5.3 (The normalized potential). Let F µ be an extended frame of a timelike minimal
surface f in Nil3, and apply the Birkhoff decomposition in Theorem 5.1 as F µ = F µ

−F
µ
+

with F µ
− ∈ Λ′−SL2C′

σ and F µ
+ ∈ Λ′+SL2C′

σ. Then the Maurer-Cartan form of F µ
−, that is,

ξ = (F µ
−)

−1dF µ
−, is para-holomorphic with respect to z. Moreover, ξ has the following explicit

form:

(5.9) ξ = µ−1

(
0 b(z)

−B(z)
b(z)

0

)
dz,

where

b(z) = −i
′

4

h2(z, 0)

h(0, 0)
.

The data ξ is called the normalized potential of a timelike minimal surface f .

Proof. Let F µ be an extended frame of a timelike minimal surface f in Nil3. Applying the
Birkhoff decomposition (5.2) in Theorem 5.1:

F µ = F µ
−F

µ
+ ∈ Λ−

∗ SL2C′
σ × Λ′+SL2C′

σ.

Then the Maurer-Cartan form of F µ
− can be computed as

ξ = (F µ
−)

−1dF µ
−(5.10)

= F µ
+(F

µ)−1d
{
F µ(F µ

+)
−1
}

= F µ
+α(F

µ
+)

−1 − dF µ
+(F

µ
+)

−1.

Since ξ takes values in Λ′sl2C′
σ and does not have µ0-term, thus

ξ = µ−1F+0

(
0 − i′

4
h

4i′B
h

0

)
F−1
+0

∣∣∣
z̄=0

dz,

where F µ
+0 denotes the first coefficient of F µ

+ expansion with respect to µ, that is, F µ
+ =

F+0+F+1µ+F+2µ
2+ · · · . Therefore F µ

− is para-holomorphic with respect to z and moreover,
ξ can be computed as

ξ(z, µ) = µ−1

(
0 − i′

4
h(z, 0)f 2

0 (z, 0)
4i′B(z)
h(z,0)

f−2
0 (z, 0) 0

)
dz,

where F+0(z, 0) = diag(f0(z, 0), f
−1
0 (z, 0)). We now look at the µ0-terms of both sides of

(5.10): Then
0 = (F+0α

′
0F

−1
+0 − dF+0F

−1
+0 )|z̄=0,

where α′
0 is α′

0 = (1
2
log hz(z, 0))σ3dz. It is equivalent to dF+0 = F+0α

′
0, and therefore

f0(z, 0) = h1/2(z, 0)c,

where c is some constant, follows. Since F+0(0, 0) = id, thus c = h−1/2(0, 0). This completes
the proof. �
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5.2. From para-holomorphic potentials to minimal surface: The Iwasawa decom-
position. Conversely, in the following theorem we will show a construction of timelike
minimal surface from normalized potentials as defined in (5.9), the so-called generalized
Weierstrass type representation.

Theorem 5.4 (The generalized Weierstrass type representation ). Let ξ be a normalized
potential defined in (5.9), and let F− be the solution of

∂zF− = F−ξ, F−(z = 0) = id .

Then applying the Iwasawa decomposition in Theorem 5.1 to F−, that is F− = F µV+ with
F λ ∈ Λ′SU′

1,1σ and V+ ∈ Λ′+SL2C′
σ, and choosing a proper diagonal U′

1-element k, F µk is
an extended frame of the normal Gauss map f−1N of a timelike minimal surface f in Nil3
up to the change of coordinates.

Proof. It is easy to see that the solution F− takes values in Λ′SL2C′
σ. Then apply the Iwasawa

decomposition to F− (on the big cell), that is,

F− = F µV+ ∈ Λ′SU′
1,1σ × Λ′+SL2C′

σ.

We now compute the Maurer-Cartan form of F µ as (F µ)−1dF µ,

αµ = (F µ)−1dF µ(5.11)
= V+F

−1
− d(F−V

−1
+ )(5.12)

= V+ξV
−1
+ − dV+V −1

+ .

From the right-hand side of the above equation, it is easy to see αµ = µ−1α−1+α0+µ
1α1+· · · .

Since F µ takes values in Λ′SU′
1,1σ, thus

αµ = µ−1α−1 + α0 + µ1α1,

and α∗
j = α−j holds. From the form of ξ and the right-hand side of (5.11), the Maurer-Cartan

form αµ almost has the form in (3.6). Finally a proper choice of a diagonal U′
1-element k

and a change of coordinates imply that αµ is exactly the same form in (3.6). This completes
the proof. �

Remark 5.5. Taking an extended frame F̃ µ given by Theorem 5.4 with a Λ′SU′
1,1σ-valued

initial condition : F−(z = 0) = A (A ∈ Λ′SU′
1,1σ), extended frames F̃ µ and F µ differ by A,

that is, F̃ µ = AF µ. In general, timelike minimal surfaces in Nil3 corresponding to extended
frames for different initial conditions are not isometric.

6. Examples

In this section we will give some examples of timelike minimal surfaces in Nil3 in terms of
para-holomorphic potentials and the generalized Weierstrass type representation as explained
in the previous section.
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Figure 2. Hyperbolic paraboloids corresponding to a cylinder (left) and a
hyperbolic cylinder (right).

6.1. Hyperbolic paraboloids corresponding to circular cylinders. Let ξ be the nor-
malized potential defined as

ξ = µ−1

(
0 − i′

4
i′

4
0

)
dz.

The solution of the equation dF− = F−ξ with the initial condition F−(z = 0) = id is given
by

F− =

(
cos µ−1z

4
−i′ sin µ−1z

4

i′ sin µ−1z
4

cos µ−1z
4

)
.

Applying the Iwasawa decomposition to the solution F−:
F− = F µV+,

we obtain an extended frame F µ : C′ → Λ′SU′
1,1σ:

F µ =

(
cos µ−1z+µz̄

4
−i′ sin µ−1z+µz̄

4

i′ sin µ−1z+µz̄
4

cos µ−1z+µz̄
4

)
.

Then, by Theorem 4.3, we have the map fL3 explicitly

fL3 =
1

2

(
−i′ cos µ−1z+µz̄

2
− sin µ−1z+µz̄

2
− µ−1z−µz̄

2

− sin µ−1z+µz̄
2

+ µ−1z−µz̄
2

i′ cos µ−1z+µz̄
2

)
,

and

f̂ =
1

2

(
−−µ−1z+µz̄

4
sin µ−1z+µz̄

2
− sin µ−1z+µz̄

2
− µ−1z−µz̄

2

− sin µ−1z+µz̄
2

+ µ−1z−µz̄
2

−µ−1z+µz̄
4

sin µ−1z+µz̄
2

)
.

Thus we obtain timelike surfaces fL3 with the constant mean curvature 1/2 in L3 and timelike
minimal surfaces fµ in Nil3:

fL3 =

(
sin

µ−1z + µz̄

2
, i′
µ−1z − µz̄

2
,− cos

µ−1z + µz̄

2

)
and

fµ =

(
i′
µ−1z − µz̄

2
, sin

µ−1z + µz̄

2
, i′
µ−1z − µz̄

4
sin

µ−1z + µz̄

2

)
for µ = ei

′t with sufficiently small t on some simply connected domain D. Each surface fµ

describes a part of a hyperbolic paraboloid x3 = x1x2/2. Furthermore fµ has the function
h = 1, the Abresch-Rosenberg differential Bµdz2 = µ−2/16dz2 on D and the first fundamental
form I of fµ is I = cos2(µ−1z + µz̄)/2dzdz̄. The corresponding timelike CMC 1/2 surfaces
fL3 are called circular cylinders.
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6.2. Hyperbolic paraboloids corresponding to hyperbolic cylinders. Define the nor-
malized potential ξ as

ξ = µ−1

(
0 − i′

4

− i′

4
0

)
dz.

The solution of the equation dF− = F−ξ with the initial condition F−(z = 0) = id is given
by

F− =

(
cosh µ−1z

4
−i′ sinh µ−1z

4

−i′ sinh µ−1z
4

cosh µ−1z
4

)
.

Applying the Iwasawa decomposition to the solution F−:
F− = F µV+,

we obtain an extended frame F µ : C′ → Λ′SU′
1,1σ:

F µ =

(
cosh −µ−1z+µz̄

4
i′ sinh −µ−1z+µz̄

4

i′ sinh −µ−1z+µz̄
4

cosh −µ−1z+µz̄
4

)
.

Then, by Theorem 4.3, we have the map fL3 for F µ explicitly

fL3 =
1

2

(
−i′ cosh −µ−1z+µz̄

2
−µ−1z+µz̄

2
+ i′ sinh i′ −µ−1z+µz̄

2

−µ−1z+µz̄
2
− i′ sinh i′ −µ−1z+µz̄

2
i′ cosh −µ−1z+µz̄

2

)
,

and thus we obtain timelike surfaces fL3 with the constant mean curvature 1/2 in L3 and
timelike minimal surfaces fµ in Nil3:

fL3 =

(
µ−1z + µz̄

2
,− sinh i′

−µ−1z + µz̄

2
,− cosh

−µ−1z + µz̄

2

)
and

fµ =

(
− sinh i′

−µ−1z + µz̄

2
,
µ−1z + µz̄

2
,
µ−1z + µz̄

4
sinh i′

−µ−1z + µz̄

2

)
for any µ on C′. Each timelike minimal surface fµ describes the hyperbolic paraboloid
x3 = −x1x2/2 and has the function h = 1, the Abresch-Rosenberg differential Bµdz2 =

−µ−2/16dz2 and the first fundamental form I(µ) =
{
cosh i′

2
(−µ−1z + µz̄)

}2
dzdz̄. The cor-

responding timelike CMC 1/2 surfaces fL3 are called hyperbolic cylinders.

6.3. Horizontal plane. Let ξ be the normalized potential defined by

ξ = µ−1

(
0 −i′
0 0

)
dz.

The solution of the equation dF− = F−ξ under the initial condition F−(z = 0) = id is given
by

F− =

(
1 −i′µ−1z
0 1

)
.

Then by the Iwasawa decomposition of the solution F− = F µV+, we have an extended frame
F µ : D̃→ Λ′SU′

1,1σ:

(6.1) F µ =
1

(1 + zz̄)1/2

(
1 −i′µ−1z
i′µz̄ 1

)
,
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where D̃ is a simply connected domain defined as D̃ = {z ∈ C′|zz̄ > −1}. Then fL3 is given
by

fL3 =
1

1 + zz̄

(
i′(3zz̄−1)

2
−2µ−1z

−2µz̄ − i′(3zz̄−1)
2

)
.

Hence the timelike surfaces fL3 with the constant mean curvature 1/2 in L3 and the timelike
minimal surfaces fµ in Nil3 are computed as

fL3 =

(
2(µ−1z + µz̄)

1 + zz̄
,
2i′(µ−1z − µz̄)

1 + zz̄
,
3zz̄ − 1

1 + zz̄

)
and

fµ =

(
2i′(µ−1z − µz̄)

1 + zz̄
,
2(µ−1z + µz̄)

1 + zz̄
, 0

)
.

The surfaces fµ are defined on D = {z ∈ C′| − 1 < zz̄ < 1}. In fact the first fundamental
form I of fµ is computed as

I = 16
(1− zz̄)2

(1 + zz̄)4
dzdz̄.

Moreover the Abresch-Rosenberg differential Bµdz2 vanishes on D.

In general the graph of the function F (x1, x2) = ax1 + bx2 + c for a, b, c ∈ R describes a
timelike minimal surface on D = {(x1, x2) | −(a+ x2/2)

2 + (b− x1/2)2 + 1 > 0}. This plane
has positive Gaussian curvature K:

K =
2(−(a+ 1

2
x2)

2 + (b− 1
2
x1)

2 + 1) + 1

4(−(a+ 1
2
x2)2 + (b− 1

2
x1)2 + 1)2

,

and it will be called the horizontal umbrellas. The horizontal umbrellas are obtained by
different choices of initial conditions of the extended frame of F µ in (6.1). For examples the
extended frame F0F

µ with

F0 =

(
cosh a µ−3 sinh a
µ3 sinh a cosh a

)
∈ Λ′SU′

1,1σ,

where a ∈ R gives a horizontal umbrella which is not a horizontal plane.

6.4. B-scroll type minimal surfaces. Let ξ be a normalized potential defined as

ξ = µ−1

(
0 − i′

4

−S(z)¯̀ 0

)
dz,

where ¯̀ = 1
2
(1 − i′) and S(z) is a para-holomorphic function. The solution Φ of dΦ = Φξ

with Φ(z = 0) = id cannot be computed explicitly, but it can be partially computed as
follows: It is known that a para-holomorphic function S(z) can be expanded as

S(z) = Q(s)`+R(t)¯̀

with s = x+ y and t = x− y for para-complex coordinates z = x+ i′y, Q = ReS+ImS and
R = ReS − ImS. Note that `2 = `, ¯̀2 = `, `¯̀= 0. Moreover, from the definition of s and t,
dz = `ds+ ¯̀dt follows. Then the para-holomorphic potential ξ can be decomposed by

ξ = ξs`+ ξt
∗ ¯̀,
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with ξt
∗
= −σ3

(
ξt(1/µ̄)

)T
σ3 and

(6.2) ξs = λ−1

(
0 −1

4
0 0

)
ds, ξt = λ

(
0 −R(t)
1
4

0

)
dt.

Then by the isomorphism in (5.6), the pair (ξs(λ), ξt(λ)) is the normalized potential in [11,
Section 6.2] for a timelike CMC surface in L3 B-scroll. Then the solution of dΦ = Φξ can
be computed by

dΦs = Φsξs, dΦt = Φtξt with Φs(0) = Φt(0) = id

and Φ is given by Φ = Φs` + Φt∗ ¯̀, where Φs = Φs(µ) and Φt∗ = σ3Φt(1/µ̄)
T−1

σ3 for
Φs,Φt ∈ ΛSL2Rσ. Then Φs can be explicitly integrated as

Φs =

(
1 −1

4
λ−1s

0 1

)
,

while Φt cannot be explicitly integrated. Set

(6.3) Φt = id+
∑
k≥1

λk
(
ak bk
ck dk

)
,

where a2k+1 = d2k+1 = b2k = c2k = 0 for all k ≥ 1. Then applying the Iwasawa decomposition
in Theorem 5.1 to Φ, that is, Φ = F µV+, one can compute

Φ = Φs`+ Φt∗ ¯̀= (F̂ `+ F̂ ∗ ¯̀)(V̂+`+ V̂ ∗
−
¯̀),

where F µ = F̂ ` + F̂ ∗ ¯̀ and V+ = V̂+` + V̂ ∗
−
¯̀ and F̂ ∈ ΛSL2Rσ, V̂+ ∈ Λ+SL2Rσ and V̂− ∈

Λ−SL2Rσ. Note that it is equivalent to the Iwasawa decomposition of ΛSL2Rσ × ΛSL2Rσ,
that is,

(6.4) (Φs,Φt) = (F̂ , F̂ )(V̂+, V̂−).

Proposition 6.1. The map F̂ can be computed as follows:

(6.5) F̂ = ΦtΦ−, with Φ− =

((
1 + 1

4
sc1
)−1 −1

4
λ−1s

0 1 + 1
4
sc1

)
,

where c1 = c1(s, t) is the function defined in (6.3).

Proof. From (6.4), the map F̂ can be computed as

Φs−1Φt = V̂ −1
+ V̂−

by the Birkhoff decomposition of Φ−1
s Φt and set F̂ = ΦtV̂ −1

− = ΦsV̂ −1
+ . We then multiply

Φ− on Φs−1Φt by right, and a straightforward computation shows that

Φs−1ΦtΦ− =

(
1 1

4
λ−1s

0 1

)(
id+

∑
k≥1

λk
(
ak bk
ck dk

))
Φ−

=

{(
1 + 1

4
sc1

1
4
λ−1s

0 1

)
+O(λ)

}( 1
1+ 1

4
sc1

−1
4
λ−1s

0 1 + 1
4
sc1

)
= id+O(λ)
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holds. Therefore Φs−1ΦtΦ− ∈ Λ+SL2Rσ with identity at λ = 0, and Φs−1Φt = V̂ −1
+ Φ−1

− is
the Birkhoff decomposition. This completes the proof. �

Plugging the F µ into fL3 in (4.4), we obtain

fL3 = {γ(t) + q(s, t)B(t)} `+ {γ(t) + q(s, t)B(t)}∗ ¯̀,

where A∗ = −σ3A(1/µ̄)
T
σ3 for A ∈ Λsl2Rσ and

γ(t) = −i′µ(∂µΦt)(Φt)−1 − i′

2
Ad(Φt)σ3,

B(t) = −i′µAdΦt

(
0 1
0 0

)
,

q(s, t) =
s

2(1 + 1
16
st)

.

Under the new coordinates (q, t), fL3 is a so-called B-scroll, that is, γ is null curve in L3 and
B is the bi-normal null vector of γ, see in detail [11, Section 6.2].

Further plugging the F µ into f̂ in (4.5), we obtain

f̂ =
{
γ̂(t) + q(s, t)B̂(t)

}
`+

{
γ̂(t) + q(s, t)B̂(t)

}∗
¯̀,

where

γ̂(t) = γ(t)o − i′

2
µ∂µγ(t)

d, and B̂(t) = B(t)o − i′

2
µ∂µB(t)d.

A straightforward computation shows that exp(γ̂(t)` + γ̂(t)∗ ¯̀) is null curve in Nil3 and
B̂(t)`+ B̂(t)∗ ¯̀ is a bi-normal vector of exp(γ̂(t)`+ γ̂(t)∗ ¯̀) analogous to the Minkowski case.
Therefore we call fµ is the B-scroll type minimal surface in Nil3. We will investigate property
of the B-scroll type minimal surface in a separate publication.

Appendix A. Timelike constant mean curvature surfaces in E3
1

We recall the geometry of timelike surfaces in Minkowski 3-space. Let L3 be the Minkowski
3-space with the Lorentzian metric

〈·, ·〉 = dx21 − dx22 + dx23,

where (x1, x2, x3) is the canonical coordinate of R3. We consider a conformal immersion
ϕ : M → L3 of a Lorentz surface M into L3. Take a para-complex coordinate z = x + i′y
and represent the induced metric by eudzdz̄.

Let N be the unit normal vector field of ϕ. The second fundamental form II of ϕ derived
from N is defined by

II = −〈dϕ, dN〉.
The mean curvature H of ϕ is defined by

H =
1

2
tr(II · I−1).
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For a conformal immersion ϕ : D→ L3, define para-complex valued functions φ1, φ2, φ3 by
ϕz = (φ2, φ1, φ3).

The analogy of the discussion in Section 2.4 shows that there exists ε ∈ {±i′} and a pair of
para-complex functions (ψ1, ψ2) such that

φ1 = ε
(
(ψ2)

2 + (ψ1)
2
)
, φ2 = εi′

(
(ψ2)

2 − (ψ1)
2
)
, φ3 = 2i′ψ1ψ2.

Then the conformal factor eu and the unit normal vector field N of ϕ can be represented as
eu = 4(ψ2ψ2 − ψ1ψ1)

2,

(A.1) N =
1

ψ2ψ2 − ψ1ψ1

(
−ε(ψ1ψ2 − ψ1ψ2), εi

′(ψ1ψ2 + ψ1ψ2), ψ2ψ2 + ψ1ψ1

)
.

As well as timelike surfaces in Nil3, we can show that (ψ1, ψ2) is a solution of the nonlinear
Dirac equation for a timelike surface in L3:

(A.2)
(

(ψ2)z + Uψ1

−(ψ1)z̄ + Vψ2

)
=

(
0
0

)
where U = V = i′Hε̂eu/2/2 and ε̂ is the sign of ψ2ψ2 − ψ1ψ1. Conversely, if a pair of para-
complex functions (ψ1, ψ2) satisfying the nonlinear Dirac equation (A.2) and ψ2ψ2−ψ1ψ1 6= 0
is given, there exists a conformal timelike surface in L3 with the conformal factor eu =
4(ψ2ψ2 − ψ1ψ1)

2.

Theorem A.1. Let D be a simply connected domain in C′, U a purely imaginary valued
function and the vector (ψ1, ψ2) a solution of the nonlinear Dirac equation (A.2) satisfying
ψ2ψ2 − ψ1ψ1 6= 0. Take points z0 ∈ D and f(z0) ∈ L3, set ε as either i′ or −i′ and define a
map Φ by

Φ =
(
εi′
(
(ψ2)

2 − (ψ1)
2
)
, ε
(
(ψ2)

2 + (ψ1)
2
)
, 2i′ψ1ψ2

)
.

Then the map f : D→ L3 defined by

(A.3) f(z) := f(z0) + Re

(∫ z

z0

Φdz

)
describes a timelike surface in L3.

Proof. A straightforward computation shows that the 1-form Φdz + Φdz̄ is a closed form.
Then Green’s theorem implies that f(z) is well-defined. Thus we have fz = Φ. By setting
φk (k = 1, 2, 3) as Φ = (φ2, φ1, φ3), we derive φ2

2 − φ2
1 + φ2

3 = 0 and φ2φ2 − φ1φ1 + φ3φ3 =
2(ψ2ψ2 − ψ1ψ1)

2. This means that f is conformal, and then timelike. �

Remark A.2. The timelike surface defined in TheoremA.1 is conformal with respect to the
coordinate z. Denoting the mean curvature by H and the conformal factor by eu then we
have U = i′Hε̂eu/2/2 where ε̂ is the sign of ψ2ψ2 − ψ1ψ1.

Obviously, the Dirac equation for timelike minimal surfaces in (Nil3, ds
2
−) coincides the one

for timelike constant mean curvature H = 1/2 surfaces in L3. Combining the identification
of su′1,1 with L3 and (4.7), we can show that the corresponding timelike constant mean
curvature 1/2 surfaces for timelike minimal surfaces fµ in (Nil3, ds

2
−) are given by fL3 up
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to translations and represented in the form of (A.3). It is easy to see that the unit normal
vector field (A.1) of the timelike surface fL3 can be written as NL3 by the identification of
su′1,1 and L3.

Appendix B. Without para-complex coordinates

As we have explained in Example 6.4, the normalized potential ξ which is a 1-form taking
values in Λ′sl2C′

σ can be translated to the pair of two real potentials which is a pair of 1-forms
taking values in Λsl2Rσ × Λsl2Rσ. It can be generalized to any normalized potential ξ any
pair of two real potentials (ξs, ξt) as follows: For a normalized potential

ξ = µ−1

(
0 − i′

4
b(z)

4i′B(z)
b(z)

0

)
dz,

where b(z) = h2(z, 0)h−1(0, 0), one can define a pair of 1-forms by ξ = ξs`+ ξt
∗ ¯̀ such that

ξs = λ−1

(
0 −1

4
f(s)

Q(s)/f(s) 0

)
ds, ξt = λ

(
0 −R(t)/g(t)

1
4
g(t) 0

)
dt,

where para-complex coordinates z = x + i′y define null coordinates (s, t) by x = s + t and
y = s− t, and the functions f(s) and g(t) are given by

f(s) = Re b(s) + Im b(s), g(t) = Re b(t)− Im b(t),

and the functions Q(s) and R(t) are given by

(B.1) Q(s) = 4(ReB(s) + ImB(s)), R(t) = 4(ReB(t)− ImB(t)).

Note that we use relations b(z) = f(s)` + g(t)¯̀, and 4B(z) = Q(s)` + R(t)¯̀ with ` = 1+i′

2

and 1/(f(s)`+ g(t)¯̀) = `/f(s) + ¯̀/g(t).

Again that the para-holomorphic solution Φ taking values in Λ′SL2C′
σ of dΦ = Φξ with

Φ(0) = id can be identified with the pair (Φs,Φt) by

Φ = Φs`+ Φt∗ ¯̀,

where Φs = Φs(µ) and Φt∗ = σ3Φt(1/µ̄)
T−1

σ3. Thus using the partial differentiations with
respect to s and t by

∂s = `∂z + ¯̀∂z̄ and ∂t = ¯̀∂z + `∂z̄,

we need to consider the pair of ODEs

∂sΦ
s = Φsξs, ∂tΦ

t = Φtξt,

with the initial condition (Φs(0),Φt(0)) = (id, id). The Iwasawa decomposition of Φ, that is
Φ = F µV+, can be again translated to

(Φs,Φt) = (F̂ , F̂ )(V̂+, V̂−).

Again note that F µ = F̂ ` + F̂ ∗ ¯̀ and accordingly the Maurer-Cartan form αµ of F µ taking
values in Λ′su′1,1σ can be translated to αµ = α̂`+ α̂∗ ¯̀, where

(B.2) α̂ = Ûds+ V̂ dt with ∂sF̂ = F̂ Û , ∂tF̂ = F̂ V̂ .
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Note that α̂ = α̂(µ) and α̂∗ = −σ3α̂(1/µ̄)
T
σ3. Then a straightforward computation shows

that

Û =

(
1
2
(log ĥ)s −1

4
λ−1ĥ

λ−1Q(s)ĥ−1 −1
2
(log ĥ)s

)
, V̂ =

(
−1

2
(log ĥ)t −λR(t)ĥ−1

1
4
λĥ 1

2
(log ĥ)t

)
(B.3)

hold, where for a angle function h = h(z, z̄), ĥ is defined by ĥ(s, t) = Reh(s, t) + Imh(s, t),
and F µ has the Maurer-Caran form in (3.15).

Note that when we consider that α takes values in su′1,1, the spectral parameter takes

µ = ei
′θ = cosh(θ) + i′ sinh(θ) ∈ S1

1 (θ ∈ R).
Then the corresponding spectral parameter λ is given by

λ = eθ = cosh(θ) + sinh(θ) ∈ R+.

We would like to note that, in [11], the null coordinate is used. Moreover, the spectral
parameter λ is replaced by λ−1, and then Û (resp. V̂ ) in this paper plays a role of U(λ−1)
(resp. V (λ−1)) in [11, Section 5].
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