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Abstract 15 

Environmental variability often degrades the performance of algorithms designed to capture the 16 
global convergence of a given search space. Several approaches have been developed to 17 
challenge environmental uncertainty by incorporating biologically inspired notions, focusing on 18 
crossover, mutation, and selection. This study proposes a bio-inspired approach called NEAT-19 
HD, which focuses on parent selection based on genetic similarity. The originality of the proposed 20 
approach rests on its use of a sigmoid function to accelerate species formation and contribute 21 
to population diversity. Experiments on two classic control tasks were performed to demonstrate 22 
the performance of the proposed method. The results show that NEAT-HD can dynamically adapt 23 
to its environment by forming hybrid individuals originating from genetically distinct parents. 24 
Additionally, an increase in diversity within the population was observed due to the formation of 25 
hybrids and novel individuals, which has never been observed before. Comparing two tasks, the 26 
characteristics of NEAT-HD were improved by appropriately setting the algorithm to include the 27 
distribution of genetic distance within the population. Our key finding is the inherent potential of 28 
newly formed individuals for robustness against dynamic environments. 29 
 30 
Keywords 31 
Dynamic environment, bio-inspired, evolutionary algorithm, genetic algorithms, crossover, neural 32 
network 33 
  34 
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1. Introduction 35 

Neuroevolution (NE) is an area of machine learning that develops artificial neural 36 
networks (ANNs) using an evolutionary algorithm (EA) or a similar bio-inspired stochastic 37 
search/optimization algorithm (Floreano et al., 2008; Papavasileiou et al., 2021). ANNs originate 38 
from biological neural networks in the brain. They are generally composed of interconnected 39 
neurons and weights to determine their behavior. EAs evolve ANNs to find suitable network 40 
parameters and topology structures inspired by the principles of Darwinian evolution. The 41 
concept of EA is to maintain a population of solution candidates through the search space and 42 
process a stochastic search that has the advantage of sampling many points simultaneously by 43 
selection, crossover, and mutation. Thus, the population can avoid falling to the local optima, 44 
leading to global optima. The potential of NE has been widely recognized and applied in fields 45 
ranging from quantum physics (Piacentino, 2009) to video games (Stanley et al., 2005) and 46 
chemical reaction networks (Dinh et al., 2015); which are considered competitive with deep 47 
learning (Stanley et al., 2019). 48 

One approach to gaining considerable attention in EA is the neuroevolution of 49 
augmenting topologies (NEAT) algorithm (Stanley and Miikkulainen, 2002). NEAT adopts a 50 
framework in which an ANN adapts to an environment by evolution, owing to unique properties 51 
represented by “speciation”. Speciation is an idea from biology that each ANN is regarded as 52 
an individual in terms of genetic relationships. Genetically close individuals (i.e., the same 53 
species) can cross over, while genetically distinct individuals (i.e., different species) cannot. 54 
Speciation prevents the population from losing innovative ANNs having near-global convergence 55 
in subsequent generations.  56 

In methods such as Genetic Algorithm (GA), speciation often matches individuals to 57 
improve the performance of the algorithm. Various selection rules have already been proposed 58 
for parent selection, such as roulette wheel selection, tournament selection, and rank selection. 59 
These well-known methods find parents with better fitness (Thierens and Goldberg, 1994). On 60 
the other hand, in the field of natural ecology and evolution, various studies have argued that 61 
the hybridization process between distinct individuals can significantly affect the evolution of the 62 
population (Mallet, 2007). Empirical and theoretical studies in biology have shown that 63 
hybridization between ecologically divergent taxa results in a rise in genetic variation, allowing 64 
the hybrids to adapt to a novel environment, thus forming a new species (Grant and Grant, 2011; 65 
Grant and Grant, 2019; Yamaguchi and Otto, 2020). The introduction of genetic relationships as 66 
a novel parent selection process would improve the performance of GA.  67 

In this work, we propose a new method called NEAT with biological Hybridization for a 68 
Dynamic environment (NEAT-HD), which extends NEAT by replacing the parent selection 69 
process of NEAT with a bio-inspired operation based on the genetic distance. NEAT-HD allows 70 
the population to crossover within a given species group and between genetically distinct species. 71 
This property results in the emergence of a hybrid individual, defined as offspring produced from 72 
parents of two different species. Despite the low probability of emergence, we demonstrate that 73 
a population including both interspecies and intraspecies crossover effectively searches a 74 
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search space in dynamic environments where the solution changes over time. More specifically, 75 
we show that NEAT-HD can achieve the suppression of considerable fitness reduction and 76 
diversity preservation, referred to as fitness endurance contributed by genetic diversity when 77 
the environment changes dynamically. 78 

The remainder of this paper is organized as follows. Section 2 discusses previous 79 
studies on parent selection as a critical attribute of the search for exploration and exploitation in 80 
GA and the NE methodology, which includes parent selection and variability for dynamic 81 
environments. In Section 3, we present and discuss the features of NEAT-HD. Section 4 explains 82 
our experimental methodology and our testing results and discussion for a simple task. In 83 
addition, we examined the performance of NEAT-HD against another more difficult task. 84 
Concluding remarks and suggestions for future research are summarized in Section 5. 85 
  86 
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2. Related Works 87 

1.- Exploration and Exploitation in parent selection 88 
To develop a successful algorithm, Eas, there is a need to address the exploration and 89 

exploitation of a search space (Črepinšek et al., 2013). The former aims to approach entirely 90 
new areas of search space to find better solutions. The latter seeks to visit a search space of 91 
previously visited points to sophisticate the solutions already found. As a rule of thumb, 92 
maintaining a good ratio between exploration and exploitation is required to establish a practical 93 
algorithm, that is, to control operators such as selection of individuals that enable offspring, 94 
mutation, and crossover. Parent selection is also among the significant components that 95 
influence the balance between exploration and exploitation. 96 
 97 
1.1 – Parent selection in genetic algorithms 98 

Fitness proportional-based methods such as roulette wheel selection, tournament 99 
selection, and rank selection (Thierens and Goldberg, 1994) are widely used for parent selection. 100 
All these operators are based on the common assumption that individuals with higher fitness are 101 
more likely to generate offspring than those with lower fitness. Parents are chosen by non-102 
uniform sampling, which depends only on fitness. 103 
 104 
1.2 – Parent selection and diversity preservation 105 

Some algorithms are designed to trigger innovation in search space exploration by 106 
utilizing parent selection, allowing crossover between different types of relatively dissimilar 107 
solutions. For instance, Drezner and Marcoulides (2003) and Farias and De Magalhães (2018) 108 
proposed algorithms in which one parent was chosen randomly from the population. The second 109 
parent was selected from randomly chosen K individuals and chooses the most dissimilar one. 110 
This second parent is often neither the most similar nor the most dissimilar from the first parent. 111 
It has been reported to preserve the diversity of the whole population. 112 
 113 
2.- NeuroEvolution of Augmenting Topologies (NEAT) 114 

NEAT is a highly sophisticated algorithm that finds the optimal neural network structures 115 
that solve a wide range of tasks (Dinh et al., 2015; Piacentino, 2009; Stanley et al., 2005; Stanley 116 
et al., 2019). NEAT has gained attention in the area of NE because it does not rely on a fixed 117 
neural network structure. However, it allows the evolution of its topology structures that perform 118 
significantly well. Compared to previous works, NEAT has some efficiency, such as assigning an 119 
ID called historical markings that avoids the loss of information embedded in the topology and 120 
making a sub-group to prevent an innovative network from being excluded from the population, 121 
called speciation.  122 
 123 
2.1.- Encoding 124 

NEAT represents the phenotype directly from the genotype (Fig. 1). The genotype 125 
contained two lists of genes. A node gene in the genotype corresponds to a node in the network. 126 
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A connection gene corresponds to a connection between two nodes in the network. The historical 127 
markings assigned to each gene make them distinguishable. Mutation and crossover occur by 128 
adding a change to the list of genes.  129 
 130 

 131 
Fig 1. Example of mapping from genotype to phenotype. For one genotype, two genes were 132 
listed: node genes and connection genes. The numbers (1, 2, …) and the type (Input, Output, 133 
Hidden) are assigned in the node genes. In the connection nodes, the direction of the connection 134 
(e.g., In 1–4), and the weight are assigned. Additionally, the genes allocated as “Disabled” were 135 
not expressed in the phenotype. The historical markings are assigned to each gene to identify 136 
each gene (e.g., No.innov 1). 137 
 138 
2.2.- Crossover 139 

When comparing two individuals, the use of historical markings helps to distinguish an 140 
identical gene (Fig. 2). Two lists of genes are lined up, and identical genes are regarded as 141 
matching genes. Otherwise, the non-identical genes are regarded as disjoint or excessive, 142 
producing a difference between the two individuals. The matching genes are always inherited 143 
from the parents. Disjoint and excess genes are inherited randomly. In this way, an offspring is 144 
generated that avoids the competing convention problem. The competing convention problem is 145 
that the two networks have an identical topology structure, although the genotype representation 146 
is different, making them incompatible for crossover. 147 
 148 
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 149 
Fig 2. An example of the crossover between two individuals (parent A and parent B). The top 150 
number of the genes is the historical markings. Although the structures of the individuals are 151 
different, each gene is aligned. Thanks to historical markings, the identical genes, called 152 
matching genes, are aligned together. Matching genes are directly inherited to offspring. For the 153 
non-identical genes such as disjoint and excess are randomly inherited to offspring. The offspring 154 
illustrated is an example when all genes are inherited.  155 
 156 
2.3.- Mutation 157 

Two types of mutations occur in the NEAT (Fig. 3). In the add node mutation, a new node 158 
splits an existing old connection and re-assigns new historical markings to new split connections 159 
(Fig. 3, top). The old connection was disabled. A new connection connects the two existing old 160 
nodes in the add connection mutation. It assigns a historical marking to the new connection (Fig. 161 
3, bottom). These mutations make the individual innovative, which has never been seen 162 
previously. Although innovative individuals are likely to die early in subsequent generations, 163 
speciation saves innovation by dividing the whole population.  164 
 165 
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 166 
Fig 3. Two types of mutations, add connection mutation (top) and add node mutation (bottom). 167 
For the add connection mutation, a new connection is added between selected two nodes, and 168 
a new historical marking is assigned to the new connection. For the add node mutation, a new 169 
node splits the already-existing connection into two new connections. The new two connections 170 
are assigned new historical markings, and the old connection is re-defined as “Disabled”.  171 
 172 
2.4.- Speciation 173 

Some new connections made by a mutation are added to an individual that might 174 
become innovative. This individual is often likely to die in subsequent generations because the 175 
weight of the newly added structure is not maturely optimized for the network. A niching scheme, 176 
called speciation, was introduced to protect these networks and expects survival. Speciation 177 
divides the population into non-overlapping sets of similar individuals based on their shared 178 
evolutionary history. 179 

To divide the population into species such that similar structures are in the same species, 180 
speciation uses a compatibility function to determine whether two individuals should be in the 181 
same species or not. Owing to the historical marking, each gene is comparable to the difference 182 
between two individuals. When comparing the genotypes of two selected individuals, identical 183 
or non-identical genes were detected. Some genes are in excess or disjoint. These genes are 184 
counted as their difference, converted to the compatibility distance to express the relative 185 
similarity of the two selected networks. The distance 𝛿𝛿 between two individuals is a simple linear 186 
combination of the number of excess E and disjoint D genes and, as well as the average weight 187 
differences of matching genes W, including disabled genes. 188 

𝛿𝛿 =
𝑐𝑐1𝐸𝐸
𝑁𝑁

+
𝑐𝑐2𝐷𝐷
𝑁𝑁

+ 𝑐𝑐3 ∙ 𝑊𝑊� (1) 189 

where 𝑐𝑐1, 𝑐𝑐2, and 𝑐𝑐3 are the adjusted coefficients, and N is the number of genes in the larger 190 
genome. The distance measure 𝛿𝛿 allows us to use a compatibility threshold to divide the group 191 
into species. In each generation, the individuals were sequentially placed into the species. 192 
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Suppose the distance between the focal individual and the representative individual of the 193 
species is under the compatibility threshold. In that case, the focal individual is assigned as a 194 
member of the species. Otherwise, if the distance between the focal one and the representative 195 
individual of every species is greater than the compatibility threshold, a new species originates 196 
with the focal individual as its representative.  197 

Having formed a new species, stagnation promotes species extinction in which fitness 198 
is not updated within the species for some generations. Apart from stagnation, species can also 199 
be extinct when none of the individuals are assigned to that species because of the compatibility 200 
threshold. 201 
 202 
3.- Speciation and diversity in EC 203 

In EC, speciation restricts access to other species, thus maintaining diversity. As in the 204 
case of NEAT, the notion of preserving diversity is helpful because it prevents pre-optimized 205 
individuals from being excluded, which might be a novel solution later. Speciation strategies have 206 
been developed in algorithms derived from NEAT, such as grouping the population-based hidden 207 
neurons (Hadjiivanov and Blair, 2016) or clades sharing a common ancestor (Knapp and 208 
Peterson, 2019). To develop diversity, Novelty Search (NS) performed well (Lehman and Stanley, 209 
2011). Its primary strategy is not to set a fitness function related to the domain field but rather to 210 
set it related to the individual’s dissimilarity from the population. NS has enabled the development 211 
of new quality diversity algorithms (QDs) to generate large collections of diverse high-212 
performance solutions (Cully et al., 2015; Pugh et al., 2016). Additionally, these developments 213 
appear to be related to open-endedness, which attempts to understand processes that continue 214 
to generate exciting artifacts indefinitely in artificial life (Alife) (Packard et al., 2019; Stanley et 215 
al., 2017; Taylor et al., 2016). One recent study incorporates the idea of coevolution, in which 216 
both individuals and environments evolve interactively and permanently (Brant and Stanley, 217 
2019; Brant and Stanley, 2020). While NS or QD can actively produce novel individuals, our work 218 
aims to incorporate an idea from a biological context. Although some controversy exists that 219 
novel algorithms based on metaphors of natural processes lead the area away from scientific 220 
rigor (Sörensen, 2015), still, special attention has been paid to natural computations that copy 221 
the inherent advantages of different behaviors observed in biological systems. Bio-inspired 222 
computation has been explored to solve complex EC tasks (Del Ser et al., 2019). 223 
 224 
4.- Challenge to Environmental variability 225 

Many real-world optimization problems are subject to changing environments. They have 226 
become one of the most active areas in the EC field for decades (Jin and Branke, 2005; Nguyen 227 
et al., 2012). That is, an algorithm not only finds the optimum in the vast search space but also 228 
tracks it over time. Various techniques have been developed to adapt to a dynamic environment, 229 
such as memory-based (Goh and Tan, 2008; Jiang and Yang, 2016; Wang and Li, 2010), 230 
prediction-based (Jiang et al., 2017; Muruganantham et al., 2016; Zhou et al., 2014), and 231 
diversity-based (Deb and Karthik, 2007; Li and Yang, 2012). Memory-based methods retrieve 232 
archived historical information aimed at convergence. Prediction-based methods collect archives 233 
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from the past that the population passes along and integrate them into various predictions of a 234 
changing optimum. Diversity-based methods enhance population variations for some individuals 235 
to address environmental changes. From the perspective of diversity-based methods, one 236 
example is that an extension algorithm of NEAT (Krčah, P., 2012) which is capable of maintaining 237 
species size based not only on the previous generation but also the arbitral past generations, 238 
has shown significant performance over NEAT. The strategy used by the authors involved 239 
maintaining the number of species and allowing long-life species to form when the fitness of 240 
individuals dramatically changes between generations. As a diversity-based method, we 241 
challenge environmental variability by maintaining diversity by choosing parents according to 242 
their similarities. 243 
  244 
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3. Approach: distance-based parent selection 245 

We propose NEAT-HD to employ a parent selection operator, allowing genetically distinct 246 
individuals to be chosen as parents (Fig.4(a)). From a biological perspective, genetically close 247 
ones (e.g., creatures belonging to the same species) are likely to crossover and leave offspring. 248 
Conversely, the more distinct the biological relationship between two individuals, the less likely 249 
they are to be parents. Our approach generates a small proportion of hybrid offspring. We 250 
demonstrate that NEAT-HD preserves innovation through the speciation scheme and also makes 251 
the population robust to dynamic environmental changes by hybrid offspring. Algorithm 1 252 
represents the pseudocode of the novel distance-based parent selection (Fig.4(b)). 253 
 254 

Fig 4. (a) The concept of biological hybridization. In most major cases, crossover happens within 255 
the same species (e.g., only species A or species B, represented by small black arrows). 256 
However, in a rare case, crossover happens between different species (e.g., species A and B, 257 
represented by a large black arrow) that are genetically distinct and generate hybrid offspring. 258 
(b) The process of selecting a pair to generate offspring. Select one parent (parent A), and 259 
calculate the mating probability through all possible pairs (represented by black arrows) from the 260 
whole population. Then choose the other parent (parent B) by non-equal sampling. Though the 261 
most possibilities are that individuals within the same species get parents, some rare cases 262 
happen so that parents from different species generate offspring. 263 
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 264 

 265 
The algorithm selects each species, excluding low-ranked individuals from the 266 

population (Step 2 in Algorithm 1). At each iteration, a set of first parent is generated within the 267 
species. For each parent, the candidate of the second parent is selected through the population 268 
(Step 4). In Step 5, genetic distances 𝐷𝐷 between individual 𝑖𝑖 and 𝑗𝑗 are calculated (Gaier and 269 
Ha, 2019) as follows: 270 

𝐷𝐷(𝑖𝑖, 𝑗𝑗) = 𝑐𝑐1
𝐺𝐺

𝑁𝑁′ + 1
+ 𝑐𝑐2𝑊𝑊� , (2) 271 

where 𝐺𝐺 is the number of non-matching genes of the two individuals, and 𝑊𝑊�  is the average 272 
weight difference of matching genes between individual 𝑖𝑖 and 𝑗𝑗. The normalization constant 𝑁𝑁′ 273 
is the number of added genes to the minimal network of two individuals. 𝑐𝑐1 and 𝑐𝑐2 are the gene 274 
and weight coefficients, respectively. In Step 6, GeneticIncompatibility 𝐼𝐼 is calculated using the 275 
genetic distance using (2). Genetic incompatibility refers to the difficulties faced by the offspring 276 
by mating two genetically distinct individuals. When genetic incompatibility increases, the 277 
probability of creating offspring decreases. Herein, we used a sigmoidal function to associate 278 
the genetic distance with genetic incompatibility, which reports a high likelihood of speciation 279 
even while allowing hybridization (Yamaguchi and Iwasa, 2017). 280 

𝐼𝐼(𝑖𝑖, 𝑗𝑗) =
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑎𝑎(−𝑏𝑏 + 𝐷𝐷)�
, (3) 281 

where 𝑎𝑎  and 𝑏𝑏  are parameters that determine the steepness and coordination of 282 
incompatibilities of 0.5, respectively. Finally, in Step 7, the probability of being chosen as a parent 283 
is given by MatingProbability 𝑃𝑃: 284 

𝑃𝑃(𝑖𝑖, 𝑗𝑗) = 1 − 𝐼𝐼. (4) 285 
Using these metrics from (2) to (4), the mating pair is chosen from the population based on the 286 
above mating probability. 287 

We expect that utilizing this function will make hybrid offspring more likely to maintain 288 
diversity, stability, and reactivity within the population in changing environments. 289 

The NEAT algorithm adopts speciation such that the genetic distance between the 290 
representative of a species and each member of the species is under the compatibility threshold 291 
defined by an optimizer. This indicates that the genetic distance between two individuals within 292 
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a species might be greater than the compatibility threshold. Unlike this previous approach, such 293 
as implicitly assuming the possibility of mating between genetically distinct individuals, we test 294 
an explicit approach that calculates the genetic distance between individuals. Therefore, it might 295 
have a chance of crossover between different species. NEAT-HD is tested in two classic control 296 
problems: single-cart pole swing-up and lunar lander experiments in Sections 4. 297 
  298 
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4. Experiments and Results  299 

We conducted two experiments, the cart-pole swing-up, and the lunar lander tasks, using 300 
the same parameters (Table 1). NEAT was executed for 50 runs of 300 generations, where 128 301 
agents were the total population using the code from (Gaier and Ha. 2019). NEAT-HD used the 302 
parameters 𝑎𝑎 = 0.2, 𝑏𝑏 = 1.3 in (3). Source code for the experiment is available at 303 
https://github.com/j-s9vcp/NEAT-HD. 304 

 305 
 306 
4.1. Cart-Pole Swing-Up 307 

https://github.com/j-s9vcp/NEAT-HD
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Choosing a domain with simple input and a relatively small network architecture is 308 
desirable to see how the population includes individuals from the same species and different 309 
species. We tested the cart-pole swing-up task as our first examination to validate the 310 
effectiveness of NEAT-HD, one of the most classic and straightforward control problems.  311 

The goal of the cart-pole swing-up task is to balance the pole upright by moving the cart 312 
left and right (Fig.5(a)). The trained ANN has to add nodes by mutation because the cart 313 
encounters nonlinear phases such as swinging up the pole or balancing the pole. The cart has 314 
six inputs, including the information of the cart and the pole; two of them are the position and 315 
velocity of the cart, three are the sine and cosine of the angle and angular velocity of the pole, 316 
and the other is the bias term. This setup is identical to that employed by (Gaier and Ha, 2019).  317 

Fitness is evaluated by how long the pole is straight up from the cart and how close the 318 
cart is to the optimal position in a fixed time. The fitness is expressed as follows: 319 

𝐹𝐹 =  𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. (5) 320 

𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  
cos𝜃𝜃 + 1

2
. (6) 321 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =  
𝑒𝑒 − (𝑜𝑜𝑒𝑒𝑜𝑜𝑖𝑖𝑜𝑜𝑎𝑎𝑜𝑜 𝑒𝑒𝑜𝑜𝑝𝑝𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝)

2.4
×
𝜋𝜋
2

, (7) 322 

where 𝜃𝜃 is the angle from the perpendicular line of the ground to the pole, 𝑒𝑒 is the coordinate 323 
of the cart. Over 300 generations, the dynamic change is set at the pre-specified 100th and 324 
200th generations. The 𝑜𝑜𝑒𝑒𝑜𝑜𝑖𝑖𝑜𝑜𝑎𝑎𝑜𝑜 𝑒𝑒𝑜𝑜𝑝𝑝𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝 at 𝑒𝑒 = 0 remains until the first change to 𝑒𝑒 = −1.5, 325 
and finally, at the second change transition to 𝑒𝑒 = 1.5  (Fig.5(b)). We intend to change the 326 
magnitude of the transition to observe the differences. The second change was more severe 327 
than the first change because the magnitude was more significant. Thus, the second change 328 
seems to greatly influence the population, which is close to convergence significantly. Note that 329 
the magnitudes of the first and second changes were comparable. The first change has little 330 
effect on the second change due to the long-generation pass after the first change, in which the 331 
population can re-organize for convergence. 332 
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 333 
Fig 5. Overview of the cart-pole swing-up task. (a) The goal is to balance the pole upright by 334 
moving the cart left and right. (b) the trajectory of the optimal point.  335 
 336 

Parents are regarded as the same or different species by genetic distance, proceeding 337 
with the algorithm. Here, utilizing a threshold can determine the species identity, called the 338 
compatibility threshold, which was initially introduced by (Stanley and Miikkulainen, 2002). When 339 
the genetic distance between a parent is under the compatibility threshold, the two individuals 340 
are regarded as the same species. As the compatibility threshold directly affects the parent 341 
sameness, we changed the value of the compatibility threshold to some extent and explored the 342 
difference within the range. 343 

The following three performance metrics were employed to check how the algorithm 344 
could endure a dynamic environment. We utilized and modified the performance measures 345 
developed by (Weicker, 2002) to this specific study for that purpose. 346 
 347 
-Accuracy indicates how the population can suppress dynamic changes that occur suddenly. 348 
This metric can be measured by recording the best-fitness observed from the population at 349 
generation t when the optimal position of the cart changes. The accuracy at generation t is 350 
defined as: 351 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝐴𝐴𝑐𝑐 =  
𝐵𝐵𝑒𝑒𝑝𝑝𝑜𝑜𝑐𝑐 − 𝑀𝑀𝑖𝑖𝑝𝑝𝑐𝑐
𝑀𝑀𝑎𝑎𝑒𝑒𝑐𝑐 − 𝑀𝑀𝑖𝑖𝑝𝑝𝑐𝑐

. (8) 352 

where 𝐵𝐵𝑒𝑒𝑝𝑝𝑜𝑜𝑐𝑐  is the best-fitness at generation t, 𝑀𝑀𝑎𝑎𝑒𝑒𝑐𝑐  is the possible max-fitness value at 353 
generation t in the task, 𝑀𝑀𝑖𝑖𝑝𝑝𝑐𝑐 is the possible worst-fitness value at generation t in the task. The 354 
accuracy ranges from 0 to 1, where 1 is the best possible value. 355 
 356 
-Stability is the ratio of the number of iterations that successfully recovered after the dynamic 357 
change at generation t. It is counted as “recovered” when the mean value of the accuracy after 358 
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the dynamic change is greater than or equal to the mean value of the accuracy before the 359 
dynamic change. The stability at generation t is defined as: 360 

𝑆𝑆𝑜𝑜𝑎𝑎𝑏𝑏𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝐴𝐴𝑐𝑐 =
∑ (𝑝𝑝𝑜𝑜𝑎𝑎𝑏𝑏𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝐴𝐴𝑖𝑖𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖=𝑘𝑘)(𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝 𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑐𝑐 𝑝𝑝𝑜𝑜 𝑖𝑖𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖)
𝑘𝑘

(𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜 𝑝𝑝𝐴𝐴𝑜𝑜𝑏𝑏𝑒𝑒𝐴𝐴 𝑜𝑜𝑜𝑜 𝑖𝑖𝑜𝑜𝑒𝑒𝐴𝐴𝑎𝑎𝑜𝑜𝑖𝑖𝑜𝑜𝑝𝑝𝑝𝑝) , (9) 361 

 362 

𝑝𝑝𝑜𝑜𝑎𝑎𝑏𝑏𝑖𝑖𝑜𝑜𝑖𝑖𝑜𝑜𝐴𝐴𝑖𝑖𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖=𝑘𝑘 = �1, 𝑖𝑖𝑜𝑜 
𝐵𝐵𝑝𝑝𝑖𝑖𝑐𝑐

𝑐𝑐≤𝑖𝑖≤𝑐𝑐+99 (𝑎𝑎𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝐴𝐴𝑖𝑖)
𝑀𝑀𝑝𝑝𝑐𝑐𝑖𝑖

𝑐𝑐−100≤𝑖𝑖≤𝑐𝑐−1 (𝑎𝑎𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝐴𝐴𝑖𝑖)
≥ 1

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝐴𝐴𝑒𝑒𝑖𝑖𝑝𝑝𝑒𝑒
. (10) 363 

where 𝑀𝑀𝑝𝑝𝑐𝑐𝑖𝑖
𝑐𝑐−100≤𝑖𝑖≤𝑐𝑐−1 (𝑎𝑎𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝐴𝐴𝑖𝑖) is the mean value of the accuracy between generations 𝑜𝑜 − 100 364 

and 𝑜𝑜 − 1 . This value corresponds to the accuracy criterion before the dynamic change. 365 
𝐵𝐵𝑝𝑝𝑖𝑖𝑐𝑐

𝑐𝑐≤𝑖𝑖≤𝑐𝑐+99 (𝑎𝑎𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝐴𝐴𝑖𝑖) is the best accuracy value between generation 𝑜𝑜 and 𝑜𝑜 + 99. This value 366 
corresponds to the best value that an algorithm can increase from dynamic change. For both 367 

𝑀𝑀𝑝𝑝𝑐𝑐𝑖𝑖
𝑐𝑐−100≤𝑖𝑖≤𝑐𝑐−1 (𝑎𝑎𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝐴𝐴𝑖𝑖) and 𝐵𝐵𝑝𝑝𝑖𝑖𝑐𝑐

𝑐𝑐≤𝑖𝑖≤𝑐𝑐+99 (𝑎𝑎𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝐴𝐴𝑖𝑖), 100 generations before and after the change 368 
are considered because of the duration of 100 generations between two changes at the 100th 369 
and 200th generations. 370 
 371 
-Reactivity represents the speed at which the population adjusts their strategies and recovers 372 
their fitness from the environmental change at generation t. An assumption in this metric is that 373 
the iteration is regarded as recovered in the stability metric. Measurements are applied, such as 374 
recording how many generations take to catch up with the fitness before the environmental 375 
change, the mean value of the accuracy. The reactivity at generation t is defined as 376 

𝑅𝑅𝑒𝑒𝑎𝑎𝑐𝑐𝑜𝑜𝑖𝑖𝑅𝑅𝑖𝑖𝑜𝑜𝐴𝐴𝑐𝑐 =  𝑀𝑀𝑖𝑖𝑝𝑝 �(𝑜𝑜′ − 𝑜𝑜)� 𝑎𝑎𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝐴𝐴𝑐𝑐′
𝑀𝑀𝑝𝑝𝑐𝑐𝑖𝑖

𝑐𝑐−100≤𝑖𝑖≤𝑐𝑐−1 (𝑎𝑎𝑐𝑐𝑐𝑐𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝐴𝐴𝑖𝑖)
≥ 1� ∪ {𝑜𝑜𝑎𝑎𝑒𝑒𝑚𝑚𝑒𝑒𝑝𝑝 − 𝑜𝑜}. (11) 377 

where 𝑜𝑜, 𝑜𝑜′ ∈ ℕ   and 𝑜𝑜 < 𝑜𝑜′ ≤ 𝑜𝑜𝑎𝑎𝑒𝑒𝑚𝑚𝑒𝑒𝑝𝑝 , with 𝑜𝑜𝑎𝑎𝑒𝑒𝑚𝑚𝑒𝑒𝑝𝑝  referring to the total number of 378 
generations. Lower values indicate a better and faster reaction to changes. 379 
 380 
4.2. Application Results of NEAT-HD on Cart-Pole Swing-Up task 381 
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First, it is necessary to verify that hybrid individuals are born, as shown in Figure 6. We 382 
can confirm that hybrids were formed more often in NEAT-HD than in NEAT in the low region of 383 
the compatibility threshold. This allows mating between genetically distinct parents. Figure 7 384 
shows an overview of the best-fit values along each compatibility threshold. We confirmed that 385 
the fitness dropped in both algorithms (NEAT and NEAT-HD) at the 100th and 200th generations, 386 
where the optimal position of the cart-pole changes. In addition, it is observed that the drop at 387 
the 200th generation is more significant than that at the 100th generation because of the 388 
significant dynamic change at the 200th generation. When the compatibility threshold is 0.5, and 389 
0.9, the best fitness of NEAT-HD is slightly below that of NEAT throughout the generation. As the 390 
compatibility threshold increased, both algorithms exhibited fewer differences. In the high region 391 
of the compatibility threshold, the essential difference between the two algorithms decreases, 392 
thus resulting in similar trajectories.  393 

 394 
Fig 6. The number of hybrid offspring through generation at each compatibility threshold. The 395 
lines represent NEAT-HD, and dashed lines represent NEAT. The shaded regions indicate the 396 
standard deviation from the mean. 397 
 398 
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 399 
Fig 7. Best-fitness through generation at each compatibility threshold in the cart-pole task. The 400 
lines represent NEAT-HD, and dashed lines represent NEAT. The shaded regions indicate the 401 
standard deviation from the mean. 402 
 403 

We also investigated the three metrics to test the robustness of the proposed algorithm 404 
to dynamic environmental changes (Fig. 8 and Table.2). The accuracies at the 100th and 200th 405 
generations are illustrated in Figure 8(a) and 8(b), respectively. When a small change occurred 406 
at the 100th generation, no significant difference was observed between both algorithms. At the 407 
200th generation, on the other hand, some significance was found at compatibility thresholds of 408 
0.5, 0.9, and 1.3 (p < 0.05; Welch’s t-test). The difference between the two algorithms appears 409 
in the lower region of the compatibility threshold, demonstrating that NEAT-HD endures the 410 
dynamic change. These results indicate a trade-off between the best-fitness trajectory and 411 
endurance against the change. In the case of stability, it is determined whether the best-fitness 412 
recovers or remains after the dynamic change (Table.2). Both algorithms have similar stability 413 
because the best-fitness recovers after the dynamic change. More specifically, at the lower 414 
region of the compatibility threshold, NEAT-HD showed higher stability. However, NEAT was 415 
higher at the high region of compatibility threshold as well. In the case of reactivity, it detected 416 
the number of generations required to recover; the shorter the generations that need to recover, 417 
the higher their reactivity (Figure 8(c) and 8(d)). At both the 100th and 200th generations, in the 418 
low region of the compatibility threshold, significant differences are found so that NEAT-HD only 419 
requires a short duration to recover from dynamic change.  420 
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 421 
Fig 8. Left side are accuracies at the 100th (a) and 200th (b) generation at each compatibility 422 
threshold. Right side are reactivity at the 100th (c) and 200th (d) generation at each compatibility 423 
threshold. The white cross in the box represents the mean value.  424 
 425 

 426 
To determine the diversity of the population through simulations, the number of species 427 

was calculated, as shown in Figure 9. At a compatibility threshold of 0.5, the species number is 428 
significantly affected when dynamic changes occur, as the species number falls suddenly. When 429 
the threshold was increased, the effect was relaxed. At the compatibility thresholds of 1.3 and 430 
1.7, the decrease in species number stopped after some generations in response to the change, 431 
such as the 160th and 260th generations. This is identical to the stagnation duration of 432 
approximately 60 generations (see Table.1 for the parameters used) that species hold their 433 
individuals when fitness has not been updated. In some cases (e.g., compatibility threshold of 434 
1.3, 1.7), NEAT-HD contributed to maintaining the diversity compared to NEAT, as NEAT-HD 435 
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holds more species in terms of the mean value. In the other region, it is difficult to say that the 436 
contribution of NEAT-HD is greater than that of NEAT. 437 

 438 
Fig 9. The species number through generation at each compatibility threshold. The lines 439 
represent NEAT-HD, and dashed lines represent NEAT. The shaded regions indicate the 440 
standard deviation from the mean. 441 
 442 

The numbers of newly formed and extinct species are shown in Figure 10. In the lower 443 
region of the compatibility threshold, the number of newly formed and extinct species was higher 444 
in NEAT-HD than in NEAT. As the threshold increases, the difference decreases toward 445 
disappearance. Figure 11 shows another consequence for observing a significant difference in 446 
the species’ duration between NEAT-HD and NEAT at the compatibility threshold of 0.5, 0.9, 1.3, 447 
and 1.7 (p < 0.001; Welch’s t-test). This result implies that the cycles of the current model from 448 
formation to extinction are shorter due to the high rate of species formation and extinction. 449 
Figures 8(c), 8(d), 10, and 11 show the sigmoid effect proposed in (Yamaguchi and Iwasa, 2017). 450 
More specifically, as a new species is generated, the species becomes extinct shortly after that, 451 
and another new species is formed. This short cycle constantly generates new species during 452 
the speciation process of NEAT-HD. As species formation is rapid in NEAT-HD, species 453 
extinction is fast, resulting in a decrease in the species number in the compatibility threshold of 454 
0.5 (Figure 9 (a)). 455 
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 456 
Fig 10. The relationship between the total number of the species and the number of species 457 
extinction counted through the run at each compatibility threshold. The orange circle represents 458 
NEAT-HD, and the blue cross represents NEAT. The baseline drawn by dashed line indicates 459 
that all species formed through the generation were entirely extinct until the last generation. 460 
 461 

 462 
Fig 11. Duration of species at each compatibility threshold. The white cross in the box represents 463 
the mean value.  464 
 465 

Figure 12 depicts the number of novel networks observed through the generations, 466 
which were not observed in previous generations. We defined “novel” as to whether the topology 467 
of the focal network was ever seen before in the whole prior generations. The weights on the 468 
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edges between nodes are neglected to determine the pure difference in the topological 469 
architecture. Over generations, the number of novel networks increased in both models. In the 470 
last 300th generation, NEAT-HD was significantly higher than NEAT at the compatibility threshold 471 
of 0.5, 0.9, 1.3, and 1.7 (p < 0.05; Welch’s t-test), indicating the effect of forming hybrid individuals 472 
from different species.  473 
 474 

Fig 12. The number of novel networks through generation at each compatibility threshold. The 475 
lines represent NEAT-HD, and dashed lines represent NEAT. The shaded regions indicate the 476 
standard deviation from the mean. 477 
 478 

From the overall results, as the compatibility threshold decreases, the properties of 479 
NEAT-HD have been increasingly highlighted, such as the formation of hybrid offspring, the 480 
acceleration the emergence of new species, and the extinction with short species duration, all of 481 
which influence the endurance in terms of accuracy. We note one disadvantage of NEAT-HD, 482 
which affects the best-fitness to decrease to some extent, as shown in Figure 7.  483 
 484 
4.3. Lunar-Lander 485 

Difficult domains include more inputs that are given more information about the 486 
environment. Another concern is that the domains that can be dynamic are desired in this study, 487 
where the optimal position varies across generations. We adopted a Lunar-Lander task as a 488 
challenge, a control task often used in machine learning, and a toolkit from Open AI (Brockman 489 
et al., 2016). In this task, a lander aiming to land on the moon’s surface in a realistic physics 490 
simulation was controlled by ANNs (Fig.13(a)).  491 

The task is as follows. The lander is set at a certain height pre-specified and starts to 492 
land smoothly using three engines. The engine can adjust its position above the surface and 493 
stability of the rotation, with one throttle pointing downward and the other two pointing in the left 494 
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and right directions. The lander has nine inputs, including the information of the lander and 495 
whether the lander is attached to the surface; four of them are the x- and y-axes of the position 496 
and velocity, two of which are the angle and angular velocity of the lander, two are for attachment 497 
to the surface, and the other is the bias term. The possible output actions are to fire the left 498 
orientation engine, fire the main orientation engine, fire the right orientation engine, and do 499 
nothing. The task ends if the lander crushes, receiving a penalty reward or rest for a while 500 
receiving an additional reward.  501 

Fitness is given as the sum of the rewards using an addition and subtraction method. As 502 
mentioned above, if the lander is crushed, the minus reward is assigned, and if the lander rests 503 
on the pad for a while, the plus reward is assigned. Additionally, some elements give the lander 504 
better rewards through the landing, such as maintaining a stable posture and using less engine 505 
fuel. Around the landing pad, the presence of an attachment on the ground provides a reward. 506 
We set this task to be dynamic as well as the cart-pole task by changing the optimal position for 507 
some generations. By default, the optimal position, the center of the landing pad, is at 508 
coordinates (0, 0). We changed the position to (-5, 0) at the 100th generation and (5, 0) at the 509 
200th generation, respectively, over 300 generations (Fig.13(b)). Similar to the cart-pole task, 510 
the second change was set to be severe. We tested this task, which was more difficult because 511 
of the increased input data; thus, the algorithm must find the optimal solution in the expanded 512 
search space compared to the cart-pole task.  513 

Fig 13. Overview of the lunar lander task. (a) The goal for the lander is to land safely on the 514 
ground with less use of engine. The area covered by two flags represents the landing pad. The 515 
optimal point is the center of the landing pad. (b) The trajectory of the optimal point.  516 
  517 
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 518 
4.4. Application results of NEAT-HD on the Lunar-Lander task 519 

The number of hybrid individuals is shown in Figure 14. Similar to the cart-pole task, we 520 
confirmed that hybrids were formed more often in NEAT-HD than in NEAT in the low region of 521 
the compatibility threshold.  522 

 523 
Fig 14. The number of hybrid offspring through generation at each compatibility threshold. The 524 
lines represent NEAT-HD, and dashed lines represent NEAT. The shaded regions indicate the 525 
standard deviation from the mean. 526 
 527 

Over 50 iterations, the trajectory of the best-fitness is plotted in Figure 15. The mean of 528 
the best-fitness seemed to show a similar result, as shown in Figure 7. In the lower region of the 529 
compatibility threshold, NEAT performs negligibly better than NEAT-HD. As the threshold 530 
increased, the difference decreased. 531 
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 532 
Fig 15. Best-fitness through generation at each compatibility threshold in the lunar lander task. 533 
The lines and dashed lines are utilized to separate the algorithm. The shaded regions indicate 534 
the standard deviation from the mean. 535 
 536 

The accuracy shown in Figure 16(a) and 16(b) indicates that some significant differences 537 
were observed at the 100th generation (compatibility threshold of 0.9, and 1.7, p < 0.05; Welch’s 538 
t-test). In addition, at the 200th generation, significant differences were observed (compatibility 539 
threshold of 2.1, p < 0.05; Welch’s t-test). In all cases where differences were significant, the 540 
mean value of best-fitness in NEAT was higher than in NEAT-HD. A trade-off observed in the 541 
cart-pole task was not apparent here. The stabilities were all 1.0 for each compatibility threshold 542 
and the 100th and 200th generations (Table.3). Figure 16(c) and 16(d) illustrates the reactivity 543 
at the 100th and 200th generations. At the 200th generation, NEAT-HD showed high reactivity, 544 
which was significant compared to NEAT at the compatibility threshold of 0.5, 0.9, and 1.7 (p < 545 
0.05; Welch’s t-test). These results indicate that NEAT-HD exhibited low endurance in terms of 546 
accuracy when dynamic changes occurred, although it recovered quickly in reactivity. 547 
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 548 
Fig 16. The left side is accuracies at the 100th (a) and 200th (b) generation at each compatibility 549 
threshold. The right side shows reactivities at the 100th (c) and 200th (d) generation at each 550 
compatibility threshold. The white cross in the box represents the mean value.  551 
 552 

 553 
The species number in Figure 17 as a diversity metric shows similar results for the two 554 

tasks compared with Figure 9. At the compatibility threshold of 0.5, as shown in Figure 17(a), 555 
the number decreases soon after a sudden rise, similar to Figure 9(a). Figure 18 illustrates the 556 
total number of species and the number of extinctions. Figure 18 implies that NEAT-HD 557 
generates more species and extinctions, especially in the low region of the compatibility 558 
threshold. As the threshold increased, both algorithms overlapped, showing minor differences. 559 
Figure 19 shows the duration of each species. At the low region of compatibility threshold (e.g., 560 
0.5, and 0.9), significant differences were found in the sense that species generated by NEAT-561 
HD have a shorter duration until extinction than NEAT (p < 0.001; Welch’s t-test). Similar to the 562 
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cart-pole task, a short cycle from the formation of new species to extinction is observed. In 563 
addition, at a compatibility threshold of 0.5 (Figure 17(a)), the decrease in the species number 564 
can be attributed to the rapid formation of species and extinction. 565 

 566 
Fig 17. The species number through generation at each compatibility threshold. The lines 567 
represent NEAT-HD, and dashed lines represent NEAT. The shaded regions indicate the 568 
standard deviation from the mean. At (e), the species number was 1 through the generation and 569 
all simulations, expressing only as a line.  570 
 571 
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Fig 18. The relationship between the total number of the species and the number of species 572 
extinction counted through the run at each compatibility threshold. The orange circle represents 573 
NEAT-HD, and the blue cross represents NEAT. Dashed lines are the baseline, which means 574 
that all species formed through the generation were entirely extinct until the last generation. 575 

 576 
Fig 19. Duration of species at each compatibility threshold. The white cross in the box represents 577 
the mean value. 578 
 579 

The novel networks that emerged over generations are summarized in Figure 20. 580 
Comparing the last 300 generations, hybrid offspring are generated significantly more often at 581 
the low region of compatibility threshold of 0.5, 0.9, and 1.7 (p < 0.05; Welch’s t-test).  582 

 583 
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Fig 20. The number of novel networks through generation at each compatibility threshold. The 584 
lines represent NEAT-HD, and dashed lines represent NEAT. The shaded regions indicate the 585 
standard deviation from the mean. 586 
 587 

In this task, from the perspective of species-cycle, the short duration from species 588 
formation to extinction affects the diversity, thus expecting to help the endurance against 589 
dynamic change. However, the accuracy metrics show the opposite results. We need to 590 
determine the distribution of the population diversity that crucially affects the fitness evaluation.  591 
  592 
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5. Conclusion 593 

This article proposes NEAT-HD, an algorithm that adapts a dynamic environment with a 594 
population including offspring from different species. This method attempts to preserve 595 
genetic/species diversity by forming hybrid offspring between genetically distinct parents to 596 
adapt to environmental changes. An essential advantage of NEAT-HD is that it employs the 597 
sigmoid function to determine the probability of mating, as supported by a study in which 598 
speciation was accelerated (Yamaguchi and Iwasa, 2017). We argue that some offspring from 599 
distinct parents can help endure environmental changes.  600 

We compared NEAT-HD with NEAT for two control tasks: (1) a single cart-pole swing-up 601 
task and (2) a lunar lander task. We tested how NEAT-HD behaves in these tasks under various 602 
compatibility thresholds. Our results showed two different results. One showed endurance in 603 
terms of accuracy when a dynamic change occurred. In addition, the contribution to the diversity 604 
was observed in the sense that the production of new hybrid individuals drastically accelerated 605 
the formation of species. However, one of the major pitfalls of this study is that the best-fitness 606 
is relatively low in NEAT-HD compared with NEAT at the complementary expense for endurance 607 
in terms of accuracy. Moreover, in some cases, diversity did not influence endurance in terms of 608 
accuracy. Our continued efforts will be made to implement and evaluate new approaches derived 609 
from this study.  610 

In future work, it will be necessary to combine NEAT-HD with other diversity-preserving 611 
methods, especially in dynamic environments. More specifically, other methods, such as NS or 612 
QD, are subject to testing within the same task. For example, the method proposed by (Brant 613 
and Stanley, 2019) and (Brant and Stanley, 2020) uses a mutation-only NS that spreads 614 
behavioral diversity. Our distance-based scheme can also be applied. Thus, diversity 615 
measurements must be unified in the study to compare them appropriately. Furthermore, it is 616 
interesting to employ the idea of genetic incompatibility with HyperNEAT (Stanley et al., 2009), 617 
an extended version of NEAT. HyperNEAT can treat very large neural network topologies. Thus 618 
the impacts on distance-based crossover are expected to be significant. Another concern is the 619 
use of our proposed algorithm in the area of multimodal optimization problems. In multimodal 620 
optimization problems, approaches that utilize species such as species conservation (Li et al., 621 
2002) are thought of an effective way to capture many global optimums. Our approach also has 622 
an expectation of improving the population diversity so that the population can handle multiple 623 
solutions within a single run. For future improvement of our proposed method, we must consider 624 
the criterion of the algorithm. In this study, genetic distance represents the difference between 625 
the two ANNs. Other metrics, such as behavioral representation, might be an alternative option 626 
that contributes to the population diversity used in the field of evolutionary robotics (Mouret and 627 
Doncieux, 2012).  628 
 629 
  630 
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Parameters Value

generation 300

population size 128

generations to trigger stagnation 64

number of repetition when evaluating individuals 2

type of speciation (“neat” or “none”) “neat”

percentage chance of applying second objective 
when using Multi Objective Optimization 0.0

activation function for hidden nodes 5

probability of adding connection 0.15

probability of adding node 0.1

probability of crossover 0.8

probability to enable disabled connection 0.01

probability of changing node activation function 0.0

probability of mutating connection weight 0.8

probability of enabling each initial connection 1.0

precent of individuals to remove from parent pool before selection 0.1

precent of individuals to pass on to next generation unchanged 0.1

how to scale individual rank (“exponential” or “linear”) “exp”

number of competitors in each tournament 2

species threshold 1.3

weighting of non-matching genes in compatibility distance 
calculation 1

weighting of weight differences in compatibility distance 
calculation 0.5

Table.1

The parameters used in this study.



compatibility 
threshold 0.5 0.9 1.3 1.7 2.1

type NEAT NEAT-HD NEAT NEAT-HD NEAT NEAT-HD NEAT NEAT-HD NEAT NEAT-HD

generation=100 1.0 1.0 0.94 1.0 0.88 0.94 0.92 0.90 0.86 0.84

generation=200 0.96 1.0 0.96 0.96 0.80 0.84 0.92 0.98 0.86 0.84

Table.2

The stabilities of both algorithms (NEAT and NEAT-HD) at each compatibility threshold in cart-pole swing-up task.



compatibility 
threshold 0.5 0.9 1.3 1.7 2.1

type NEAT NEAT-HD NEAT NEAT-HD NEAT NEAT-HD NEAT NEAT-HD NEAT NEAT-HD

generation=100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

generation=200 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table.3

The stabilities of both algorithms (NEAT and NEAT-HD) at each compatibility threshold in lunar lander task.
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