

HOKKAIDO UNIVERSITY

Title	Sulfurimonas aquatica sp. nov., a sulfur-oxidizing bacterium isolated from water of a brackish lake	
Author(s)	Kojima, Hisaya; Kato, Yukako; Watanabe, Tomohiro; Fukui, Manabu	
Citation	Archives of Microbiology, 204, 559 https://doi.org/10.1007/s00203-022-03167-3	
Issue Date	2022-08-17	
Doc URL	http://hdl.handle.net/2115/90297	
Rights	This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature 's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00203-022-03167-3	
Туре	article (author version)	
Additional Information There are other files related to this item in HUSCAP. Check the above URL.		
File Information	H1576_Main_220802_B.pdf	

1	
Δ	
3	Sulfurimonas aquatica sp. nov., a sulfur-oxidizing bacterium
4	isolated from water of a brackish lake
5	
6	Hisaya Kojima [*] , Yukako Kato, Tomohiro Watanabe, and Manabu Fukui
7	
8	The Institute of Low Temperature Science, Hokkaido University. Kita-19, Nishi-8, Kita-
9	ku, Sapporo 060-0819, Japan
10	
11	*Corresponding author
12	
13	
14	

15 Abstract

16	A novel chemolithoautotrophic bacterium, strain H1576 ^T , was isolated from
17	water of a brackish lake. Strain H1576 ^T grew aerobically on inorganic sulfur compounds.
18	Hydrogen gas did not support autotrophic growth, and heterotrophic growth was not
19	observed. Cells were rod-shaped, motile, 1.5–2.7 μm in length and 0.6–0.7 μm in width.
20	Growth was observed at 3–22°C with an optimum growth temperature of 13–15°C. The
21	pH range for growth was 6.0–7.4 with an optimum pH of 6.6–6.8. Major fatty acids were
22	summed feature 3 (C _{16:1} ω 7c and/or C _{16:1} ω 6c). The complete genome of strain H1576 ^T
23	consists of a circular chromosome and a plasmid, with total length of 2.8 Mbp and G + C
24	content of 46.4 mol%. Phylogenetic analyses indicated that strain H1576 ^T belongs to the
25	genus Sulfurimonas but distinct from representatives of existing species. On the basis of
26	genomic and phenotypic characteristics, a new species named Sulfurimonas aquatica sp.
27	nov. is proposed with the type strain of strain $H1576^{T}$ (= BCRC 81254^{T} = JCM 35004^{T}).
0.0	

29 Introduction

30 According to the List of Prokaryotic Names with Standing in Nomenclature, LPSN (Parte et al., 2020), the genus Sulfurimonas belongs to the family 31 32 Helicobacteraceae and currently includes eight species with validly published names (as 33 of 26 July 2022). They grow chemolithoautotrophically by oxidizing inorganic sulfur 34 compounds, with oxygen as electron acceptor. In some species, anaerobic growth and H₂ gas oxidation are observed. As chemotaxonomic feature, they share major fatty acids of 35 $C_{16:1}$, $C_{18:1}$ and $C_{16:0}$. Besides these eight species, three other species and two 36 37 Candidatus species have been proposed in this genus, on the basis of genomic and phenotypic characterizations of isolated strains (Table 1). 38

As reviewed previously (Han & Perner, 2015), members of the genus 39 40 Sulfurimonas have been repeatedly detected by 16S rRNA gene sequence analysis, in various ecosystems represented by hydrothermal vents, marine sediments and water 41 42 columns. In addition, Sulfurimonas is known to be a dominating bacterial genus in some engineered microbial systems, as shown in recent studies employing 16S rRNA gene 43 44 amplicon sequencing (Fu et al., 2020; Wu et al., 2020; Haosagul et al, 2021). With the 45 same approach, a dominance of Sulfurimonas species at specific water depths of a stratified brackish lake was recently reported (Watanabe et al., 2022). This shallow 46

52	Materials and methods
51	
50	and characterized as a representative of a new species in the genus Sulfurimonas.
49	study, a novel sulfur-oxidizing autotroph was isolated from anoxic water of Lake Harutori,
48	concentration of sulfide in bottom water (Kubo et al, 2014; Watanabe et al., 2022). In this
47	eutrophic lake, Lake Harutori in Japan, is characterized by steep chemocline and high

53 Sampling of water from Lake Harutori was conducted on 16 Feb 2016. A sample 54 of anoxic bottom water was collected from 5 m depth, at a site where previous studies 55 were conducted (Kubo et al., 2014; Watanabe et al., 2022). A portion of the sample (0.3 ml) was inoculated into 30 ml of a medium for aerobic thiosulfate oxidizers. The medium 56 (hereafter referred to as basal medium) was prepared as described below. First, the 57 following salts (g l⁻¹) were dissolved in distilled water and then sterilized by autoclaving: 58 NaCl (20), Na₂S₂O₃ • 5H₂O (5), MgCl₂ • 6H₂O (3), MgSO₄ • 7H₂O (0.3), CaCl₂ • 2H₂O 59 60 (0.1), NH₄Cl (0.1), KH₂PO₄ (0.1) and KCl (0.1). To the autoclaved and cooled salt solution, the following stock solutions (ml l⁻¹) were aseptically added: trace element 61 62 solution (1), selenite-tungstate solution (1), vitamin mixture solution (1) and 1M NaHCO3 63 solution (30). The vitamin mixture solution consisted of the followings (mg l⁻¹): biotin (20), folic acid (20), pyridoxine-HCl (100), thiamine-HCl·2H₂O (50), riboflavin (50), 64

65	nicotinic acid (50), calcium D(+) pantothenate (50), 4-Aminobenzoic acid (50), lipoic
66	acid (50) and cyanocobalamine (1). The other stock solutions were prepared as described
67	previously (Widdel & Bak, 1992). Finally, pH of the medium was adjusted to 7.0-7.2
68	with HCl. From the enrichment culture established, pure culture of strain H1576 ^T was
69	obtained by repeated serial dilution with the basal medium. The enrichment and isolation
70	were performed at 15°C in the dark.
71	Phenotypic characteristics of strain H1576 ^T were investigate by culturing the
72	strain at 15°C in the basal medium, unless otherwise specified. Cell morphology was
73	observed with phase-contrast light microscopy, and Gram-stain test was conducted with
74	a kit (Fluka). Cellular fatty acid profile was obtained with the Sherlock Microbial
75	Identification System (MIDI) version 6.0 (database; TSBA6).
76	To determine upper and lower limits of temperature for growth, strain H1576 ^T
77	was inoculated into the basal medium and incubated at 0, 3, 5, 8, 13, 15, 18, 22, 25, 28,
78	30 and 32°C. Effect of NaCl concentration on growth was examined by using media
79	modified from the basal medium, with lowered concentration of MgCl ₂ \cdot 6H ₂ O (0.2 g l ⁻
80	¹) and varying concentrations of NaCl (0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 $\%$ and 6.0 w/v).
81	Effect of pH on growth was tested with media of various pH which were prepared as
82	below. The media commonly contained the following constituents (1^{-1}) : 20 g NaCl, 5 g

83	$Na_2S_2O_3 \cdot 5H_2O$, 1 g NaHCO ₃ , 0.2 g MgCl ₂ · 6H ₂ O, 0.1 g CaCl ₂ · 2H ₂ O, 0.1 g NH ₄ Cl, 0.1 g
84	KH ₂ PO ₄ , 0.1 g KCl, 1 ml trace element solution, 1 ml selenite-tungstate solution and 1 ml
85	vitamin mixture solution. Each medium of varying pH contained one of buffering
86	reagents listed below (at a final concentration of 20 mM), along with NaOH for pH
87	adjustment. Tested pH and buffering reagents were as follows; pH 5.8, 5.9, 6.0, 6.1, 6.2,
88	6.3, 6.4, 6.5, 6.7, 6.8, 6.9, 7.1, 7.2, 7.4 and 7.7 with MES; pH 6.6, 6.9 and 7.2 with PIPES;
89	pH 7.0, 7.2, 7.3 and 7.6 with MOPS. All ingredients were mixed and then sterilized by
90	filtration.

91 Utilization of electron donors was tested with the basal medium, by replacing 92 thiosulfate with one of the followings (mM); sulfide (2), pyruvate (5), lactate (5), acetate 93 (5), propionate (2.5), succinate (2.5), fumarate (2.5), malate (2.5), butyrate (2.5), benzoate (2.5), isobutyrate (2.5), methanol (5), ethanol (2.5), formate (5), citrate (5), glucose (2.5), 94 xylose (2.5), phenol (2), *m*-cresol (1). As insoluble substrates, elemental sulfur (0.5 g l^{-1}) 95 and hydrogen gas (air/H₂; 2 : 1, v/v; 150 kPa total pressure) were also tested with the 96 thiosulfate-free basal medium. Utilization of electron acceptors was tested with the basal 97 medium supplemented with nitrite (2 mM) or nitrate (5, 10 mM), under atmosphere of N₂ 98 99 and CO₂ (80% and 20% in volume, respectively).

100

The novel isolate was subjected to whole genome sequencing, with the PacBio

101	RS II platform. From linear contigs obtained, circular chromosome and plasmid were
102	manually reconstructed based on sequence alignment. The resulting complete genome
103	sequence was subjected to comparative analysis with the closest relatives, by the TYGS
104	web server (https://tygs.dsmz.de). In the TYGS, the Type (Strain) Genome Server,
105	relatives of the subjected genome were automatically identified for subsequent genome-
106	based phylogenetic analysis and calculation of digital DNA-DNA hybridization (dDDH)
107	values (Meier-Kolthoff & Göker, 2019). Phylogenetic analysis was also conducted with
108	the 16S rRNA gene identified in the genome, by using MEGA version 11 (Tamura et al.,
109	2021). The reference sequences of Sulfurimonas species were retrieved from LPSN
110	(accessed on 06 July 2022). The sequences of strain H1576 ^T and references were aligned
111	with the MUSCLE algorithm. As an outgroup, Sulfuricurvum kujiense $YK-1^T$ was
112	included in the alignment. The best substitution model with the lowest Bayesian
113	Information Criterion score was selected by the model selection tool in MEGA.
114	Phylogenic tree was constructed with the selected model by excluding positions with gaps.
115	Values of average nucleotide identity (ANI) between strain H1576 ^T and type strains of
116	Sulfurimonas species were computed by ANI calculator available in the EzBioCloud,
117	based on the OrthoANIu algorithm (Yoon et al., 2017).

Results

120	Cells of the novel isolate, strain H1576 ^T , were Gram-stain-negative, motile, rod-
121	shaped, 1.5–2.7 μm in width, 0.6–0.7 μm in length. The strain grew at 3–22°C with
122	optimum growth at 13–15°C. At 15°C, growth was observed at pH range of 6.0–7.4, with
123	optimum growth at pH of 6.6–6.8. Growth was observed in the presence of 2–5% (w/v)
124	NaCl. The cellular fatty acid profile of strain H1576 ^T is shown in Table S1. In the profile,
125	summed feature 3 (C _{16:1} ω 7c and/or C _{16:1} ω 6c) and C _{16:0} were predominant, accounting
126	for 65.5% and 21.9%, respectively.
127	Chemolithoautotrophic growth of strain H1576 ^T was supported by thiosulfate,
128	sulfide and elemental sulfur, but not by H2 gas. None of the tested organic substrate
129	supported aerobic growth of the strain. As sole electron acceptor for thiosulfate oxidation,
130	nitrate and nitrite did not support anaerobic growth of strain H1576 ^T .
131	The reconstructed genome of strain H1576 ^T consists of a circular chromosome
132	and a plasmid, with length of 2.76 Mbp and 81.9 kbp, respectively. The G+C contents of
133	the chromosome and plasmid are 34.8% and 32.8%, respectively. By analyzing the
134	genome with the TYGS platform, it was revealed that the closest relatives of strain
135	H1576 ^T are <i>Sulfurimonas</i> species. Genome-based phylogenetic analysis by the TYGS

136 indicated that strain H1576^T belongs to the genus *Sulfurimonas*, but not to any known

species (Fig. S1). The calculated values of dDDH and ANI indicated strain H1576^T should 137 138 not be affiliated to any Sulfurimonas species previously proposed (Table 1). Phylogenetic 139 analysis was also conducted with the 16S rRNA gene identified in the genome. The generated phylogenetic tree indicated that strain H1576^T is phylogenetically distinct from 140 all type strains of the genus (Fig. 1). The genome of H1576^T has been incorporated in the 141 142 genome taxonomy database (GTDB), which provides genome-based taxonomy 143 framework on the basis of conserved proteins (Parks et al., 2018). In the latest release of the GTDB (07-RS207), strain H1576^T is classified into a *Sulfurimonas* species which 144 145 encompasses no other organisms. All these analyses consistently indicate that strain H1576^T is representative of a new species in the genus *Sulfurimonas*. 146

147

148 Conclusion

The genomic analyses of different approaches consistently indicated that strain H1576^T should be classified into a new species of the genus *Sulfurimonas*. Within the genus, strain H1576^T is differentiated from the type strains of the other species by a unique combination of phenotypic characteristics (Table 1). On the basis of these results, H1576^T is proposed to be assigned to a new species, with the name *Sulfurimonas aquatica* sp. nov.

156	Description of Sulfurimonas aquatica sp. nov.
157	Sulfurimonas aquatica (a.qua'ti.ca. L. fem. adj. aquatica, aquatic).
158	Cells and rod-shaped, motile, 1.5–2.7 μ m in length and 0.6–0.7 μ m in width. Gram-stain
159	-negative. Grows chemolithoautotrophically by oxidizing thiosulfate, sulfide and
160	elemental sulfur. Hydrogen gas is not used as electron donor. Aerobic. Nitrate and nitrite
161	do not support anaerobic growth when thiosulfate is provided as the sole electron donor.
162	Grows at 3–22°C with an optimum growth at 13–15°C. The pH range for growth is 6.0–
163	7.4, with an optimum pH range of 6.6–6.8. Grows with 2–5% NaCl (optimum 2–3%).
164	Predominant fatty acid is $C_{16:1}$. G + C content of genomic DNA of the type strain is 34.7
165	mol%.
166	The type strain H1576 ^T (= BCRC 81254^{T} = JCM 35004^{T}) was isolated from
167	water of a brackish lake in Japan.
168	The GenBank/EMBL/DDBJ accession numbers for the chromosome and

169 plasmid of type strain are CP046072 and CP046073, respectively.

References

172	Cai L, Shao M-F, Zhang T (2014) Non-contiguous finished genome sequence and
173	description of Sulfurimonas hongkongensis sp. nov., a strictly anaerobic denitrifying,
174	hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from marine sediment.
175	Stand Genomic Sci 9:1302–1310. https://doi.org/10.4056/sigs.4948668
176	Fu C, Li J, Lv X, Song W, Zhang X (2020) Operation performance and microbial
177	community of sulfur-based autotrophic denitrification sludge with different sulfur
178	sources. Environ Geochem Health 42:1009-1020. https://doi.org/10.1007/s10653-
179	019-00482-5
180	Han Y, Perner M (2015) The globally widespread genus Sulfurimonas: versatile energy
181	metabolisms and adaptations to redox clines. Front Microbiol 6:989.
182	https://doi.org/10.3389/fmicb.2015.00989
183	Haosagul S, Oaew S, Prommeenate P, Sawasdee V, Boonyawanich S, Pisutpaisal N
184	(2021) Profile of sulfur oxidizing bacteria in full-scale biotrickling filter to remove
185	H ₂ S in biogas from in cassava starch industry. Energy Rep 7:677–685.
186	https://doi.org/10.1016/j.egyr.2021.07.086
187	Henkel JV, Vogts A, Werner J, Neu TR, Spröer C, Bunk B, Schulz-Vogt HN (2021)
188	Candidatus Sulfurimonas marisnigri sp. nov. and Candidatus Sulfurimonas baltica sp.
189	nov., thiotrophic manganese oxide reducing chemolithoautotrophs of the class

190	Campylobacteria isolated from the pelagic redoxclines of the Black Sea and the Baltic
191	Sea. Syst Appl Microbiol 44:126155. https://doi.org/10.1016/j.syapm.2020.126155
192	Hu Q, Wang S, Lai Q, Shao Z, Jiang L (2021) Sulfurimonas indica sp. nov., a hydrogen-
193	and sulfur-oxidizing chemolithoautotroph isolated from a hydrothermal sulfide
194	chimney in the Northwest Indian Ocean. Int J Syst Evol Microb 71:004575.
195	https://doi.org/10.1099/ijsem.0.004575
196	Inagaki F, Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Sulfurimonas
197	autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ɛ-proteobacterium isolated
198	from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evo Microbiol
199	53:1801–1805. https://doi: 10.1099/ijs.0.02682-0
200	Kubo K, Kojima H, Fukui M (2014) Vertical distribution of major sulfate-reducing
201	bacteria in a shallow eutrophic meromictic lake. Syst Appl Microbiol 37:510-519.
202	https://doi.org/10.1016/j.syapm.2014.05.008

- 203 Labrenz M, Grote J, Mammitzsch K, Boschker HT, Laue M, Jost G et al. (2013)
- Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant 204
- epsilonproteobacterium isolated from a pelagic redoxcline, and an emended 205
- description of the genus Sulfurimonas. Int J Syst Evol Microbiol 63:4141-4148. 206
- https://doi: 10.1099/ijs.0.048827-0 207

208 Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for 209 state-of-the-art genome-based 10:2182. taxonomy. Nat Commun https://doi.org/10.1038/s41467-019-10210-3 210 Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, 211 212 Hugenholtz P (2018) A standardized bacterial taxonomy based on genome phylogeny life. 36:996-1004. 213 substantially revises the of Nat Biotechnol tree 214 https://doi.org/10.1038/nbt.4229 215 Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M (2020) List of 216 Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70:5607–5612. https://doi.org/10.1099/ijsem.0.004332 217 Ratnikova NM, Slobodkin AI, Merkel AY, Kopitsyn DS, Kevbrin VV, Bonch-218 Osmolovskaya EA, Slobodkina GB (2019) Sulfurimonas crateris sp. nov., a 219 220 facultative anaerobic sulfur-oxidizing chemolithoautotrophic bacterium isolated from 221 terrestrial mud volcano. Int J Syst Evol Microbiol 70:487-492 a 222 https://doi.org/10.1099/ijsem.0.003779 Takai K, Suzuki MT, Nakagawa S, Miyazaki M, Suzuki Y, Inagaki F et al. (2006) 223

225 oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a

224

Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-

226 deep-sea hydrothermal vent polychaete nest, reclassification of *Thiomicrospira*

227 *denitrificans* as *Sulfurimonas denitrificans* comb. nov. and emended description of

- 228 the genus Sulfurimonas. Int J Syst Evol Microbiol 56:1725–1733.
- 229 https://doi.org/10.1099/ijs.0.64255-0
- Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics
 Analysis version 11. Mol Biol Evol 38:3022–3027.
 https://doi.org/10.1093/molbev/msab120
- 233 Timmer-Ten Hoor A (1975) A new type of thiosulphate oxidizing, nitrate reducing
- 234 microorganism: *Thiomicrospira denitrificans* sp. nov. Netherlands J Sea Res 9:344–

235 350. http://dx.doi.org/10.1016/0077-7579(75)90008-3

- 236 Wang S, Jiang L, Liu X, Yang S, Shao Z (2020) Sulfurimonas xiamenensis sp. nov. and
- 237 *Sulfurimonas lithotrophica* sp. nov., hydrogen and sulfur-oxidizing 238 chemolithoautotrophs within the *Epsilonproteobacteria* isolated from coastal 239 sediments, and an emended description of the genus. Int J Syst Evol Microbiol
- 240 70:2657–2663. https://doi.org/10.1099/ijsem.0.004087
- 241 Wang S, Jiang L, Hu Q, Cui L, Zhu B, Fu X, Lai Q, Shao Z, Yang, S (2021a)
- 242 Characterization of Sulfurimonas hydrogeniphila sp. nov., a novel bacterium
- 243 predominant in deep-sea hydrothermal vents and comparative genomic analyses of

2	4	- 4

244 Sulfurimonas. Microbiol 12:626705. the Front genus 245 https://doi.org/10.3389/fmicb.2021.626705 246 Wang S, Shao Z, Lai Q, Liu X, Xie S, Jiang L, Yang S (2021) Sulfurimonas sediminis sp. 247 nov., a novel hydrogen-and sulfur-oxidizing chemolithoautotroph isolated from a 248 hydrothermal vent at the Longqi system, southwestern Indian ocean. Antonie van

Leeuwenhoek 114:813-822. https://doi.org/10.1007/s10482-021-01560-4 249

- 250 Watanabe T, Kubo K, Kamei Y, Kojima H, Fukui M (2022) Dissimilatory microbial sulfur
- 251 and methane metabolism in the water column of a shallow meromictic lake. Syst Appl

252 Microbiol 45:126320. https://doi.org/10.1016/j.syapm.2022.126320

- 253 Widdel F, Bak F (1992) Gram-Negative Mesophilic Sulfate-Reducing Bacteria. In: The
- 254 Prokaryotes. 2nd ed. vol. 4 New York: Springer-Verlag, pp 3352–3378
- Wu J, Jiang X, Jin Z, Yang S, Zhang J (2020) The performance and microbial community 255
- in a slightly alkaline biotrickling filter for the removal of high concentration H₂S from 256
- 257 biogas. Chemosphere 249:126127.
- 258 https://doi.org/10.1016/j.chemosphere.2020.126127
- 259 Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms
- 260 to calculate average nucleotide identity. Antonie van Leeuwenhoek 110:1281-1286.
- 261 https://doi.org/10.1007/s10482-017-0844-4

Statements and Deciarations
This study was and supported by JSPS KAKENHI, Grant Number 15K07209.
The authors have no relevant financial or non-financial interests to disclose. The water
sample collection was performed with permission of the Agency of Cultural Affairs,
Government of Japan.
Figure legends
Fig. 1. Phylogenetic position of strain H1576 ^T within the genus <i>Sulfurimonas</i> , based on
the 16S rRNA gene sequences. This maximum likelihood tree was constructed based on
the Kimura 2-parameter model. All positions containing gaps and missing data were
eliminated, leaving 1099 positions in the final dataset. A discrete gamma distribution was
used to model differences in evolutionary rates among sites (5 categories, parameter =
0.3206). The rate variation model allowed for some sites to be invariable (68.83% sites).
Bar, substitutions per site. Numbers on nodes represent percentage values of 1000
bootstrap resampling.

Table 1. Differential properties of strain H1576^T and strains representing *Sulfurimonas* species. Strains: 1, H1576^T; 2, *S. autotrophica* OK10^T (Inagaki et al., 2003); 3, *S. paralvinellae* GO25^T (Takai et al., 2006); 4, *S. denitrificans* DSM 1251^T (Timmer-Ten Hoor, 1975); 5, *S. gotlandica* GD1^T (Labrenz et al., 2013); 6, *S. crateris* SN118^T (Ratnikova et al., 2020); 7, *S. xiamenensis* 1-1N^T (Wang et al., 2020); 8, *S. lithotrophica* GYSG_1^T (Wang et al., 2020); 9, *S. indica* NW8N^T (Hu et al., 2021); 10, '*S. hongkongensis*' AST-10^T (Cai et al., 2014); 11, '*S. hydrogeniphila*' NW10^T (Wang et al., 2021a); 12, '*S. sediminis*' S2-6^T (Wang et al., 2021b); 13, *Ca.* S. marisnigri SoZ1 (Henkel et al., 2021); 14, *Ca.* S. baltica GD2 (Henkel et al., 2021). NR, not reported.

Strair	ı: 1	2	3	4	5	6	7	8	9	10	11	12	13	14
Optimum temperature for growth (°C)	13-15	23-26	30	22	15	30	30	33	33	30	33	33	20	15
Growth at 5°C or lower	+	-	+	-	+	+	-	+	+	-	+	-	+	+
Growth at 35°C or higher	-	+	+	-	-	+	+	+	+	+	+	+	-	-
Optimum pH for growth	6.6-6.8	6.5	6.1	7.0	6.7-8.0	8.0	7.0	6.5	5.5	7.0-7.5	6.0-6.5	7.0	7.5-8.0	7.0-7.5
Growth at 8.5 or higher pH	-	+	+	NR	-	+	-	+	-	-	-	-	-	-
Growth at 5.5 or lower pH	-	+	+	NR	-	-	+	+	+	-	-	+	-	-
Growth by H ₂ oxidation	-	-	+	-	+	-	+	+	+	+	+	+	+	+
Nitrate respiration	-	-	+	+	+	+	+	+	-	+	+	+	+	+
Nitrite respiration	-	-	-	+	+	+	-	-	-	-	-	-	-	-
dDDH with strain H1576 ^{T} (%)	100	19.4	18.5	19.1	20.1	18.2	21.1	18.6	18.9	19.0	18.7	19.1	20.2	20.4
ANI with strain $H1576^{T}$ (%)	100	73.5	72.2	71.9	73.5	71.3	72.2	71.7	72.9	72.4	72.2	72.5	73.3	72.7