
 

Instructions for use

Title Theoretical consideration of the rheological properties of aggregated suspensions

Author(s) Tanii, Yutaro; Kamata, Namiko; Saito, Hiroki; Harada, Shusaku; Sawada, Manabu

Citation Physics of fluids, 34(9), 93309
https://doi.org/10.1063/5.0103829

Issue Date 2022-09

Doc URL http://hdl.handle.net/2115/90298

Rights
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP
Publishing. This article appeared in "Theoretical consideration of the rheological properties of aggregated suspensions",
Physics of Fluids 34, 093309 (2022) and may be found at https://doi.org/10.1063/5.0103829.

Type article

File Information 5.0103829.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Phys. Fluids 34, 093309 (2022); https://doi.org/10.1063/5.0103829 34, 093309

© 2022 Author(s).

Theoretical consideration of the rheological
properties of aggregated suspensions
Cite as: Phys. Fluids 34, 093309 (2022); https://doi.org/10.1063/5.0103829
Submitted: 17 June 2022 • Accepted: 16 August 2022 • Accepted Manuscript Online: 17 August 2022 •
Published Online: 09 September 2022

Yutaro Tanii (谷井勇太郎), Namiko Kamata (鎌田奈実子),  Hiroki Saito (斉藤弘樹), et al.

ARTICLES YOU MAY BE INTERESTED IN

Rheological identification of jetted fluid using machine learning
Physics of Fluids 34, 093103 (2022); https://doi.org/10.1063/5.0100575

Effect of geometric disorder on chaotic viscoelastic porous media flows
Physics of Fluids 34, 093105 (2022); https://doi.org/10.1063/5.0108240

Granular flow around a cylindrical obstacle in an inclined chute
Physics of Fluids 34, 093308 (2022); https://doi.org/10.1063/5.0101694

https://images.scitation.org/redirect.spark?MID=176720&plid=1936365&setID=379031&channelID=0&CID=710611&banID=520831033&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=3e1bf161d77115efe3dba8feaaeae8cb589b0dd8&location=
https://doi.org/10.1063/5.0103829
https://doi.org/10.1063/5.0103829
https://aip.scitation.org/author/Tanii%2C+Yutaro
https://aip.scitation.org/author/Kamata%2C+Namiko
https://orcid.org/0000-0002-4978-9175
https://aip.scitation.org/author/Saito%2C+Hiroki
https://doi.org/10.1063/5.0103829
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0103829
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0103829&domain=aip.scitation.org&date_stamp=2022-09-09
https://aip.scitation.org/doi/10.1063/5.0100575
https://doi.org/10.1063/5.0100575
https://aip.scitation.org/doi/10.1063/5.0108240
https://doi.org/10.1063/5.0108240
https://aip.scitation.org/doi/10.1063/5.0101694
https://doi.org/10.1063/5.0101694


Theoretical consideration of the rheological
properties of aggregated suspensions

Cite as: Phys. Fluids 34, 093309 (2022); doi: 10.1063/5.0103829
Submitted: 17 June 2022 . Accepted: 16 August 2022 .
Published Online: 9 September 2022

Yutaro Tanii (谷井勇太郎),1 Namiko Kamata (鎌田奈実子),1 Hiroki Saito (斉藤弘樹),1 Shusaku Harada (原田周作),1,a)

and Manabu Sawada (澤田学)2

AFFILIATIONS
1Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, N13W8, Sapporo,
Hokkaido 060-8628, Japan
2Murata Manufacturing Co., Ltd., 1-10-1, Higashikotari, Nagaokakyo, Kyoto 617-8555, Japan

a)Author to whom correspondence should be addressed: harada@eng.hokudai.ac.jp. Tel./Fax: þ81-11-706-6310

ABSTRACT

The rheological properties of particulate dispersions containing aggregate structures were theoretically investigated in this study. Under the
assumption of Stokes flow, the viscosity of fluids with fine particles was derived by a theoretical method based on the multipole expansion in
reciprocal space. In this method, many-body hydrodynamic interactions were considered as the multipole-expanded moment of the force
density at the surface of the particles. It is possible to calculate the viscosity of particulate suspensions by considering higher-order moments.
The viscosity of monodisperse particulate suspensions was calculated under various conditions. To verify the accuracy of the calculation, the
viscosity of uniformly distributed particulate suspensions was calculated, and the results were compared with the experimental results of pre-
vious studies. The calculated viscosities were in good agreement with the experimental results for a wide range of particle volumetric concen-
trations. The viscosity of aggregated suspensions was also calculated to examine the mechanism of viscosity change. The viscosity was
systematically calculated with changing the aggregate size and particle concentration. The results indicate that the hydrodynamic effect is not
significant on the viscosity change by aggregation, which is contrary to the assumption of previous viscosity models. The calculation results
suggest that the increase in the viscosity of aggregated suspensions is instead caused by the direct influence of inter-particle forces.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0103829

INTRODUCTION

The rheological properties of particulate dispersions are important
in a wide variety of engineering fields. Understanding these properties is
essential to, for example, manufacturing processes in ceramic engineer-
ing,1 the transport of slurries in resources engineering,2 and the coating
of electrode paste in electronic device engineering.3 It is also important
for understanding various natural phenomena, such as lava flows and
mudflows in geophysics and geomorphology. Therefore, numerous
studies have been conducted beyond the realm of academia.

The mechanism of viscosity change of fluids with fine particles
has been explained from the aspect of hydrodynamics. In dilute sys-
tems, where hydrodynamic interactions between particles are negligi-
ble, it is known that the viscosity increase is caused by stresslets
produced by individual particles.4 In such systems, the viscosity
change is expressed as a linear function of particle concentration. In
contrast, in systems with large particle concentrations, the hydrody-
namic interactions between particles cannot be neglected, and the vis-
cosity becomes a function of higher-order terms of the concentration.5

The viscosity of actual particulate suspensions is influenced by
various factors in addition to the fluid effect described above.
According to Bossis et al.,6 the viscosity can be represented additively
by each contribution, as expressed by the following equation:

gr ¼ gBr þ gIr þ gHr ; (1)

where gr is the ratio of the viscosity of the suspension to that of carrier
fluid, gBr is the contribution of Brownian motion to the viscosity, gIr is
the contribution of particle–particle interactions, and gHr is the contri-
bution of hydrodynamic interactions. For each of these contributions,
there is a complex relationship between the particle concentration,
particle size, shear rate, and particle structure. To evaluate the viscosity
of particle dispersions precisely, it is important to examine these
contributions.

As described in Eq. (1), the rheological properties of particulate
suspensions are determined by the balance of forces acting on the par-
ticles, namely, the Brownian force FB, inter-particle force FI, and fluid
force FH as well as the particle structures resulting from the balance of
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these forces. The significance of each force is expressed by the follow-
ing dimensionless numbers:

Pe ¼ FH

FB
¼ g0d

3 _�0
kT

; (2)

Fa ¼ FH

FI
¼ g0d

3 _�0
A

; (3)

where g0 is the viscosity of the carrier fluid, d is the particle diameter, _�0
is the shear rate of carrier flow, k is the Boltzmann constant, T is the
absolute temperature, and A is a constant with units of J representing
the magnitude of the inter-particle force, such as the Hamaker con-
stant.7 The P�eclet number Pe is the ratio of the contribution of the
hydrodynamic force to that of Brownian force. In addition, the
Fragmentation number Fa is the ratio of the contribution of the hydro-
dynamic force to that of the inter-particle force. These two dimension-
less numbers determine the significance of each term in Eq. (1).

In actual particulate suspensions, the particles often form aggre-
gate structures due to inter-particle forces. The effect of aggregation on
the viscosity has been investigated in previous studies and has been
modeled as functions of the particle concentration or aggregate
structures.8–10 In these studies, the fundamental concept of the viscos-
ity model incorporating the effect of aggregates is that the interstitial
fluid in aggregates becomes immobile, and the resulting change in the
apparent volumetric concentration increases the viscosity. Thus, these
viscosity models are based on changes in the hydrodynamic contribu-
tion gHr , which is described by the third term in Eq. (1).

However, the mechanism of viscosity change according to the
above models, in which the viscosity in aggregated suspensions
increases as a result of an increased apparent particle concentration
due to immobile fluid in aggregates, has not been clearly verified. As
demonstrated in Eq. (1), there are two possible mechanisms of the
effect of particle aggregation on viscosity. The first mechanism is based
on the hydrodynamic effect described by the third term in Eq. (1),
while the second is based on the inter-particle forces described in the
second term in Eq. (1). As mentioned above, existing viscosity models
in aggregated suspensions are based on the first mechanism. However,
according to the second mechanism, the viscosity increases as a result
of pairwise inter-particle forces behaving as the source of stress (stress-
lets). The first mechanism certainly exists; however, whether it produ-
ces the excessive viscosity increase associated with particle aggregation
remains unclear.

In this study, theoretical analysis of Stokes flow was performed to
investigate the mechanism of viscosity change of particulate suspen-
sions with aggregate structures. The hydrodynamic contribution of
aggregation to the viscosity change was investigated under large Pe
conditions. A theoretical method considering the hydrodynamic inter-
actions between particles was used to calculate the suspension viscosity
precisely. The results of the theoretical analysis were validated by a
comparison of the viscosity of uniformly distributed particulate sus-
pensions obtained from previous studies as well as various hydrody-
namic transport coefficients. Then, assuming aggregate structures of
particles without inter-particle forces, the stresslets of particles consti-
tuting to the aggregate were calculated. The bulk viscosity of suspen-
sions containing aggregates was calculated from the stresslets, and the
influence of the interstitial fluid of loose and dense aggregates, which
has been explained by previous viscosity models, was examined.

THEORETICAL METHOD
Basic theory

In this study, flow with fine particles is theoretically analyzed
based on the formulation of Stokes flow in reciprocal space derived by
Ladd.11–13 Monodisperse particles suspended in a viscous flow at the
low Reynolds number limit Re (¼ qd2 _�0=g0) ! 0 are considered.
Assuming incompressible flow through an infinite particle system con-
sisting of a periodic array of unit cells of volume V containing N par-
ticles, the velocity of the surrounding fluid vðr; tÞ (r: position vector, t:
time) is described by the unsteady Stokes equation and the continuity
equation as follows:

q
@

@t
vðr; tÞ ¼ �r � Pðr; tÞ þ Findðr; tÞ jr � RiðtÞj > a; (4)

r � vðr; tÞ ¼ 0; (5)

where q is the fluid density, g0 is the viscosity, a is the particle radius,
and RiðtÞ is the position vector of particle i. Pðr; tÞ is the fluid stress
tensor and Findðr; tÞ is the induced force per unit volume, i.e., the force
density vector exerted on the fluid by particles at their surfaces.14 The
fluid velocity on the surface of particle i is given by

vðr; tÞ ¼ U iðtÞ þXiðtÞ � r � RiðtÞð Þ for jr � RiðtÞj ¼ a; (6)

where U iðtÞ and XiðtÞ are the translational and angular velocities of
particle i, respectively. The Fourier transform of Eq. (4) with respect to
time t can be written as a function of frequency x,

ð�ixq� g0r2Þvðr;xÞ ¼ �rpðr;xÞ þ Findðr;xÞ: (7)

Taking the divergence of both sides of Eq. (7) and applying the incom-
pressible condition in Eq. (5), the following equation is obtained:

r2pðr;xÞ ¼ r � Findðr;xÞ: (8)

Two partial differential equations described by Eqs. (7) and (8) can
be solved with the Green’s functions G. Introducing Gðr;xÞ
¼ ð4pg0rÞ�1 exp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ixq=g0

p
r

� �
for Eq. (7) and Gðr;xÞ

¼ ð4pg0rÞ�1 for Eq. (8), the fluid velocity is obtained as follows:11

vðr;xÞ ¼ 1
V

X
k 6¼0

eik�r

�ixqþ g0k2
ðI � k̂ k̂Þ � Findðk;xÞ; (9)

where I represents the second-rank unit tensor, and k̂ ¼ k=k denotes
the unit vector in the reciprocal space. The velocity field at steady state
is obtained by settingx¼ 0 as

vðrÞ ¼ 1
V

X
k 6¼0

eik�r

g0k2
ðI � k̂ k̂Þ � FindðkÞ; (10)

where FindðkÞ is the induced force in reciprocal space as follows:

FindðkÞ ¼
ð
V
e�ik�rFindðrÞ dr: (11)

In Eq. (10), the term k ¼ 0 is excluded from the summation with
respect to the vector k, which is based on the assumption that the net
force [Findðk ¼ 0Þ in reciprocal space] is balanced with the ambient
pressure gradient in the fluid.15
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The induced force in real space is the sum of the force density
vector f j acting on the fluid at the surface of particle j as follows:14

FindðrÞ ¼
XN
i¼j

a�2f jðn̂ jÞdðjr � Rjj � aÞ; (12)

where n̂j is the unit vector from the center of particle j to its surface.
Substituting Eq. (12) into Eq. (11) yields

FindðkÞ ¼
XN
j¼1

e�ik�Rj

ð
Sj

e�ik�n̂ j f jðn̂jÞ dn̂j; (13)

where Sj denotes the surface of particle j. The plane wave eik�r can be
expanded by irreducible tensors kp and rp , which are symmetric and
traceless:16

eik�r ¼
X1
p¼0

ip
ð2pþ 1Þ!!

p!
jpðkrÞk̂p � r̂p ; (14)

where jp denotes the spherical Bessel function, k ¼ jkj, and r ¼ jrj.
The operator � represents the full contraction between two tensors.
From Eqs. (13) and (14), the induced force can be written in the form
of a multipole expansion in reciprocal space with the force moment,

FindðkÞ ¼
XN
j¼1

e�ik�Rj
X1
p¼0

ð�iÞpð2pþ 1Þ!!jpðkaÞk̂p �F pþ1
j ; (15)

where the force momentF pþ1
i is defined as

F pþ1
i � ðp!Þ�1

ð
Si

n̂p
i f jðn̂iÞ dn̂ i: (16)

The first and second moments of F i correspond to the fluid
force Fi and the torque T i acting on particle i by the fluid and stresslet
Si, respectively,

F 1
i ¼ �Fi; F 2a

i ¼ ð2aÞ�1
e : T i; � aF 2s

i ¼ Si; (17)

where e is the Levi-Civita tensor. Superscripts 2a and 2s denote the
asymmetric and symmetric parts of the second-rank tensor, respec-
tively. The moment of fluid velocity at particle surface can be defined
in a similar manner as

Upþ1
i � ð2pþ 1Þ!!

4pa2

ð
n̂p
i vðrÞ � v0ðrÞð Þdðjr � Rij � aÞ dr; (18)

where v0ðrÞ denotes the ambient flow velocity in the absence of par-
ticles, which is composed of the translational velocity u0, the angular
velocity x0, and the shear rate _�s0 as

v0ðrÞ ¼ u0 þ x0 � r þ _�s0 � r: (19)

From the boundary condition at the particle surface given by Eq.
(6), the velocity moments are related to the translational velocity, the
angular velocity of particle i, and the shear rate, such that

U1
i ¼ U i � u0; U2a

i ¼ ae � ðXi � x0Þ; U2s
i ¼ �a _�s0: (20)

From Eqs. (10), (15), and (18), the velocity moments Upþ1
i can be

related to the force momentsF p0þ1
i ,

Upþ1
i ¼

XN
j¼1

X1
p0¼0

Gpþ1;p0þ1
ij �F p0þ1

j ; (21)

where p and p0 represent the order of the velocity and force moments,
respectively. In this study, p ¼ p0. The coefficient tensor Gpþ1;p0þ1

ij is
described as follows:

Gpþ1;p0þ1
ij ¼ ip�p0ð2pþ 1Þ!!ð2p0 þ 1Þ!!

X
k 6¼0

eik�ðRi�RjÞ

� jpðkaÞjp0 ðkaÞ
g0k2V

k̂
p
I � k̂ k̂ð Þk̂p0 : (22)

The calculation of Eq. (21) with the higher order moments p and p0

corresponds to a more rigorous consideration of hydrodynamic inter-
actions between particles. Therefore, the accuracy of this method
depends on the truncation of the number of these moments
pmaxð¼ p0max). For systems with large particle concentrations, it is nec-
essary to consider higher order moments because the hydrodynamic
interactions are more significant. However, the accuracy of this
method also depends on the problem to be solved, as described later.

Resistance problem

It follows from Eqs. (17), (20), and (21) that the force and torque
exerted on particles by the fluid, and the stresslet are related to the
translational and angular velocities of particles and the shear rate,
respectively,

Fi

T i

Si

2
64

3
75 ¼ �

XN
j¼1

fTTij fTRij afT;2sij

fTRij fRRij afR;2sij

af2s;Tij af2s;Rij a2f2s;2sij

2
6664

3
7775�

U j � u0
Xj � x0

� _�s0

2
64

3
75; (23)

where f is the friction coefficient matrix f ¼ G�1 and the superscripts
T and R denote the coefficients relating to translational and rotational
motion of particles, respectively. Each component of the friction tensor
is described as follows:

fTTij ¼ f
1;1
ij ; fTRij ¼ af1;2aij : e; fRTij ¼ �ae : f2a;1ij ;

fRRij ¼ �a2e : f2a;2aij : e; f
T;2s
ij ¼ f

1;2s
ij ; f

R;2s
ij ¼ �ae : f2a;2sij ;

f
2s;T
ij ¼ f

2s;1
ij ; f

2s;R
ij ¼ af2s;2aij : e:

(24)

The accuracy of Eq. (23) depends on the maximum order of the
force and velocity moment pmax. For checking the accuracy of this
method for various pmax values, the preliminary calculation of two-
body problem was conducted. When two particles exist in a static
fluid, the force F and torque T acting on each particle are related to the
translational velocityU and angular velocityX as follows:

F1

F2

T1

T2

2
66664

3
77775 ¼ �

fTT11 fTT12 fTR11 fTR12

fTT21 fTT22 fTR21 fTR22

fRT11 fRT12 fRR11 fRR12

fRT21 fRT22 fRR21 fRR22

2
666664

3
777775�

U1

U2

X1

X2

2
66664

3
77775; (25)

where numerical subscripts indicate the particle number. The above
expression is known as the resistance problem. In the case of two-
body resistance problem, each component tensor f in Eq. (25) can be
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expressed by combinations of scalar functions.17 For example, fTT11 is
expressed as follows:

fTT11 ¼ XA
11eeþ YA

11 d� eeð Þ; (26)

where e denotes the unit vector directed from one to another particles
and d is the Kronecker delta. XA

11 and Y
A
11 indicate the scalar resistance

functions.17 The exact solution of the scalar resistance functions of two
equal-sized spherical particles was derived by Jeffrey and Onishi.18 For
example, the scalar function XA

11 is expressed by particle center-to-cen-
ter distance r as follows:

XA
11 ¼ g1ð1� 4r�2Þ�1 � g2 lnð1� 4r�2Þ

� g3ð1� 4r�2Þ lnð1� 4r�2Þ þ f0 � g1

þ
X1

m¼2ðevenÞ
2�2mfm � g1 � 2m�1g2 þ 4m�1m�1

1 g3
� � 2

r

� �m

;

(27)

where

m1 ¼ �2dm2 þ ðm� 2Þð1� dm2Þ
and

g1 ¼ 1=4; g2 ¼ 9=40; g3 ¼ 3=112;
f0 ¼ 1; f1 ¼ 3; f2 ¼ 9; f3 ¼ 19; f4 ¼ 93;

f5 ¼ 387; f6 ¼ 1197; f7 ¼ 5331; f8 ¼ 19 821;
f9 ¼ 76 115; f10 ¼ 320 173; f11 ¼ 1 178 451;

respectively.
We solved the above-mentioned two-body problem approxi-

mately. We set two particles in a large-sized calculation cell for avoid-
ing the effect of the periodic boundary and calculated the scalar
functions stated above. The length of calculation cell is set to be con-
stant as L ¼ 20a (a: particle radius), and the inter-particle distance
(surface-to-surface distance) Lmin(¼ r � 2a) is changed. Figure 1 indi-
cates the scalar function XA

11 for the calculation with pmax from 1 to 6.

The solid line indicates the exact solution given in Eq. (27). If the
inter-particle distance is large enough, the obtained scalar function
agrees well with the exact one regardless of pmax. By contrast, when the
inter-particle distance is smaller than Lmin ¼ 0:5; XA

11 for small pmax

deviates from the exact solution. As shown in Fig. 1, the calculation
with pmax ¼ 6 keeps accuracy for the inter-particle distance
Lmin=a > 0:08. This value of the inter-particle distance corresponds to
dense particle systems. Taking the regular structure of particle layers
as examples, it is found from simple geometric calculations that the
particle volume fraction / ¼ 0:47 for simple cubic (SC), / ¼ 0:6 for
body-centered cubic (BCC), and / ¼ 0:66 for face-centered cubic
(FCC) particle layers. Based on the above results, we set pmax ¼ 6
in this study because the calculation keeps accuracy at dense particle
volume fraction close to the maximum packing.

Calculation of viscosity

The viscosity of particulate suspension can be calculated from
Eq. (23). For incompressible, isotropic, and Newtonian fluids, the vis-
cosity is independent of the shear direction. Focusing only on the xy
component, Newton’s viscous law states that the shear stress is propor-
tional to the shear rate,

rxy ¼ g_�sxy; (28)

where g is the viscosity of the suspension, rxy and _�sxy are the xy com-
ponents of the shear stress and shear rate in the presence of particles,
respectively. The shear stress of the suspension consists of the contri-
bution from the ambient shear flow and the contribution from the dis-
turbance of the flow by particles, rxy ¼ rfluid;xy þ rind;xy . Here, rfluid;xy
denotes the shear stress caused by the ambient shear flow,

rfluid;xy ¼ g0 _�xy; (29)

where g0 is the fluid viscosity. rind;xy is calculated from the stresslet of
each particle,

rind;xy ¼ V�1
XN
i¼1

Si;xy ¼ 3/
4pa3N

XN
i¼1

Si;xy; (30)

where V represents the volume of the unit cell containing N particles
and is expressed asV ¼ N � 4

3pa
3

� �
=/ using the particle volume frac-

tion /. Under the condition of low particle inertia, particles move fol-
lowing the ambient flow, signifying that no fluid or torque is exerted on
them. Expanding Eq. (23) for Si and substituting F i ¼ 0 and T i ¼ 0,

Si;xy ¼ a2
XN
j¼1

~f
2s;2s
ij;xykl _�

s
0;lk; (31)

where ~f
2s;2s
ij is the modified form of f2s;2sij incorporating the zero force

and zero torque condition,

~f
2s;2s
ij ¼ f

2s;2s
ij � f

2s;T
ij f

2s;R
ij

h i
�

fTTij fTRij

fRTij fRRij

2
4

3
5
�1

�
f
T;2s
ij

f
R;2s
ij

2
4

3
5: (32)

If the system is isotropic, ~f
2s;2s
ij can be regarded as the fourth-rank iso-

tropic tensor. Therefore, all components excluding ðk; lÞ ¼ ðx; yÞ;
ðy; xÞ of the inner-product in Eq. (31) are zero. ~f

2s;2s
ij and _�s0 are both

symmetric tensors, therefore,
FIG. 1. Scalar function XA

11 of two-body resistance problem as a function of inter-
particle distance Lmin=a for various pmax values.
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Si;xy ¼ 20
3
pg0a

3c2s;2si;xyxy _�
s
0;xy; (33)

where c2s;2si;xyxy is the normalized form of
PN

j¼1
~f
2s;2s
ij;xyxy with its low-

density limit f2s;2s0 ¼ ð10=3Þpg0a.13
Combining Eqs. (29), (30), and (33), the shear stress is given by

rxy ¼ g0 1þ 5
2
/
1
N

XN
i¼1

c2s;2si;xyxy

 !
_�xy; (34)

where the difference between _�s and _�s0 is negligible for periodic
boundary conditions. Comparing Eqs. (28) and (34), the relative vis-
cosity is obtained as

gHr ¼ g
g0

¼ 1þ 5
2
/hc2s;2sxyxyi; (35)

where h� � �i denotes the ensemble average over N particles. hc2s;2sxyxy i ¼ 1
for a dilute suspension, which leads to Einstein’s viscosity formula,4

gHr j/!0 ¼ 1þ 5
2
/: (36)

Verification of theoretical method

Various hydrodynamic coefficients other than viscosity can be
derived from the coefficient tensor Gpþ1;p0þ1

ij in Eq. (22).13 As men-
tioned in the Introduction, the main purpose of this study is to exam-
ine the viscosity of particulate suspensions containing aggregate
structures. Before discussing the main topic, the calculation results of
other hydrodynamic coefficients that can be obtained by this method
are presented. By comparing the results with those obtained in previ-
ous studies, the accuracy of this analysis is verified. It should be noted
that the demonstrations presented here are basically identical to those
given by Ladd.13

First, the permeability of a fixed particle bed is derived. The flow
permeating through the particle layer with translational velocity
vðrÞ ¼ u0 is considered. If the system is isotropic, the permeability
can be regarded as a scalar quantity K that is independent of the flow
direction. In this case, the pressure gradient rp and the mean flow
velocity u0 are related by the permeability K using Darcy’s law,

rp ¼ �g0K
�1u0: (37)

At steady state, the pressure gradient is balanced by the force per unit
volume exerted on the fluid by the particles,

rp ¼ �V�1
XN
i¼1

Fi: (38)

From Eq. (23), it follows from the force Fi related to the fluid velocity
via the friction coefficient matrix fTT that Eq. (38) can be written as

rp ¼ �V�1
XN
i;j¼1

fTTij � u0; (39)

where the translational and angular velocities of the particles are zero
because the particles are immobile. For an isotropic system, fTTij is the

second-rank isotropic tensor, i.e.,
PN

i;j¼1 f
TT
ij ¼ 1

3 trð
PN

i;j¼1 f
TT
ij ÞI,

therefore,

rp ¼ �V�1 1
3
tr
XN
i;j¼1

fTTij

0
@

1
Au0: (40)

Combining Eqs. (40) and (37), the permeability K can be expressed in
the inverse form:

K�1 ¼ ðg0VÞ�1 1
3
tr
XN
i;j¼1

fTTij

0
@

1
A: (41)

Figure 2 illustrates the dimensionless permeability K� ¼ K=a2 in
a randomly distributed particle bed obtained from Eq. (41) with parti-
cle volume fraction /. The solid line indicates the permeability theo-
retically obtained by Brinkman19 as follows:

K� ¼ 2
9/

1þ 3
4
/ 1�

ffiffiffiffiffiffiffiffiffiffiffiffi
8
/
� 3

r" # !
: (42)

Equation (42) is derived on the assumption of a dilute particle concen-
tration. The dashed line in Fig. 2 indicates the well-known
Kozeny–Carman equation derived semi-empirically as

K� ¼ ð1� /Þ3
45/2 ; (43)

where the Kozeny constant is set to 5.20 Equation (43) is valid for
moderate to dense concentrations. Both Eqs. (42) and (43) are decreas-
ing functions with /, which indicates that the flow is less permeable in
particle beds with large concentrations. The plots in Fig. 2 display the

FIG. 2. Dimensionless permeability of a fixed particle bed as a function of particle
volume fraction.
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permeability obtained from this method with changing the maximum
order of the force and velocity moments pmax from 1 to 6. Focusing on
a dilute concentration / < 0:2, the theoretical results for all pmax con-
ditions agree well with the Brinkman equation presented in Eq. (42).
However, the results with pmax ¼ 1 deviate from the Brinkman equa-
tion at a moderate concentration of / � 0:2. At dense concentrations,
the results with pmax from two to six quantitatively agree with the
Kozeny–Carman equation given by Eq. (43). This indicates that the
above theory can properly calculate the hydrodynamic interactions
between particles, and that the calculation with pmax ¼ 2 is adequate
for the calculation of the permeability from dilute to dense concentra-
tions close to the maximum packing of / � 0:6.

Next, the drag force exerted on a particle in a particulate suspen-
sion is derived. In Stokes flow, it is known that the drag force in a sus-
pension consisting of spherical particles can be obtained analytically as
a function of the particle volume fraction /. Brinkman19 theoretically
derived the drag force in a dilute suspension. With the help of the con-
siderations of van der Hoef,21 the normalized drag force acting on
each particle F� ¼ F=6plau0 is described as follows:

F� ¼ ð1� /Þ 1þ 3
4
/ 1�

ffiffiffiffiffiffiffiffiffiffiffiffi
8
/
� 3

r" # !�1

: (44)

For dilute to dense suspensions, Koch and Sangani22 proposed the
drag force in suspensions as follows:

F� ¼

ð1� /Þ 1þ 3ffiffiffi
2

p /1=2 þ 135
64

/ ln/þ 16:14/
� �
1þ 0:681/� 8:48/2 þ 8:16/3 ð/ < 0:4Þ;

10
/

ð1� /Þ2 ð/ > 0:4Þ:

8>>>>>><
>>>>>>:

(45)

Figure 3 shows the relationship between the normalized drag
force F� and the particle volume fraction /. In this analysis, the drag
force is calculated from the force balance of particle and fluid using
the permeability in Eq. (41) as follows:

F� ¼ 2ð1� /Þ
9/K� : (46)

The results of the analysis illustrated in Fig. 3 are obtained from calcu-
lation with pmax ¼ 6. The theoretical and numerical results of previous
studies are also indicated in the figure. The solid line indicates the the-
oretical results by Brinkman given by Eq. (44), while the dashed line
indicates the results by Koch and Sangani given by Eq. (45). The open
symbols denote the numerical results using the Lattice-Boltzmann
Method (LBM) by van der Hoef et al.21 and Hill et al.23

At the low concentration limit, the drag force is close to F� ¼ 1,
i.e., the Stokes drag F ¼ 6pg0au0. As the particle volume fraction
increases, the drag force increases gradually. At dilute concentrations,
the theoretical and numerical results are in almost perfect agreement
with the Brinkman equation, whereas at moderate to dense concentra-
tions, they are almost along with the results by Koch and Sangani.22 A
comparison of the theoretical results obtained in this study with the
others, and the present results somewhat overestimate the drag force
at dense concentrations, although the results shown here are calculated

considering high order moments (pmax ¼ 6). This indicates that
higher order moments must be considered in the calculation of the
drag force of a suspension for large concentrations.

The reason for the difference in the precision between the calcu-
lations of the permeability and drag force, which are given in Figs. 2
and 3, is that the drag force is calculated from the inverse of the per-
meability. It is known that there are two approaches for solving the
particle motion in Stokes flow, i.e., the resistance problem and mobility
problem.17 In the analysis, the calculation of the permeability and drag
force corresponds to the mobility and resistance problems, respec-
tively. In general, the resistance problem at large particle concentra-
tions is more sensitive than the mobility problem. Therefore, a higher
order calculation is required for the calculation of the drag force. For
solving the resistance problem at large concentrations with high preci-
sion, special treatments, such as lubrication correction, are required.13

The above two demonstrations indicate that the theoretical analysis in
this study can successfully represent the hydrodynamic transport coef-
ficients of particulate suspensions, and that the calculation precision
greatly depends on the problem to be solved.

RESULTS AND DISCUSSION
Viscosity of uniform suspension

The relative viscosity of particulate suspension gHr was calculated
from Eq. (35) for various concentrations and particle arrangements,
i.e., the particles are dispersed uniformly, or they make aggregates in
fluid. To verify the accuracy of the calculation, the results of the viscos-
ity of the uniform suspension were compared to those obtained in pre-
vious experimental studies.

FIG. 3. Normalized drag force acting on randomly arranged particles as a function
of particle volume fraction.
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Figure 4 presents the relationship between the relative viscosity
and the particle volume fraction for a uniformly dispersed suspension
of particles. The closed symbols denote the analytical results, which
were obtained from Eq. (35) by varying the maximum order of the
moments pmax. The solid line denotes the Einstein equation given in
Eq. (36), which does not take into account the hydrodynamic interac-
tions between particles, and the dashed line denotes the solution for
semi-dilute suspension by Batchelor and Green24 as follows:

gHr ¼ 1þ 5
2
/þ 5:2/2: (47)

The open symbols represent the results of previous experiments.25–27

For small particle concentrations, the analytical results of relative vis-
cosity are consistent with the Einstein equation for all orders of calcu-
lation and exhibit a linear relationship with the particle volume
fraction.

As the particle concentration increases above / ¼ 0:1, the exper-
imental and analytical results deviate from the Einstein equation and
exhibit nonlinear features. This indicates that the influence of hydro-
dynamic interactions becomes significant, and that the summation of
isolated particle stresslets can no longer represent the viscosity at non-
dilute concentrations. The analytical results for small pmax do not fully
capture the nonlinear changes observed in the experiments at large
concentrations, while the results for large pmax (¼ 4–6) approximately
represent the experimental results at small to large concentrations.
This is because the higher-order terms of velocity and force moments
become non-negligible as the average inter-particle distance decreases,
as is shown in Fig. 1. These results indicate that the present analysis
taking into account higher-order moments can approximately repro-
duce the rheological properties of particulate suspensions for a wide
range of concentrations.

Viscosity of aggregated suspension

When the suspended particles are unevenly but isotropically dis-
tributed, i.e., the particles form aggregates, the viscosity of suspensions
would change. As described in Eq. (1), the viscosity change of

particulate suspensions can be explained by three factors: Brownian
motion, inter-particle forces, and hydrodynamic effects. Several studies
have been reported that the effect of aggregates on viscosity is due to
changes in the apparent particle concentration as the interstitial fluid
of the aggregate becomes immobile.8–10 The viscosity model derived
under such assumptions is, for example, can be described as follows:8

gHr ¼ 1� /eff

1� /eff

/�

� �2 ; (48)

where /eff is the effective volumetric concentration and /� is the con-
centration of maximum random packing (e.g., /� ¼ 0:64). In this
model, the volume of immobile fluid is determined by considering the
space-filling properties of the aggregate (e.g., fractal dimension) when
calculating the effective concentration. This model contains the inter-
particle force as a parameter, which determines the morphological
properties of the aggregate but does not contribute to the viscosity
change directly. Therefore, it should be noted that the contribution of
inter-particle force in the previous model is reflected in gHr , not g

I
r of

Eq. (1).
In order to investigate whether the interstitial fluid in aggregates

contributes to the hydrodynamic viscosity change, the viscosity of sus-
pensions with aggregate structures was calculated. The suspended par-
ticles were locally concentrated by decreasing the inter-particle
distance from a uniform dispersion state. The inter-particle distance
was changed from Lmin=a ¼ 4 to Lmin=a ¼ 0:1 within the range
where the accuracy of this analysis was maintained, as shown in Fig. 1.
Figure 5 presents the analytical results of viscosity of locally concen-
trated suspensions for the particle volume fraction / ¼ 0:01 and the
number of particles N¼ 55. In the analysis, the maximum order of
moments pmax changes from 1 to 6. As mentioned above, the analysis
is based on a multipole expansion in reciprocal space, which corre-
sponds to an infinite periodic array of particle structures. Therefore,
the system considered here consists of periodically located aggregates
in a fluid. In Fig. 5, the lower horizontal axis represents the minimum
distance between particles in the aggregate, while the upper represents

FIG. 4. Relative viscosity of uniformly distributed particulate suspensions.

FIG. 5. Relationship between the relative viscosity and minimum inter-particle dis-
tance in aggregated suspensions.
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the aggregate radius. Therefore, Fig. 5 illustrates the transition from
large and loose aggregates (right) to small and compact aggregates
(left). In general, the inter-particle force of the colloidal system, such
as van der Waals force, is short-ranged;7 therefore, the aggregate with
Lmin=a ¼ 4 has somewhat an unrealistic structure. The reason for
assuming such loose aggregates is to systematically investigate the
effect of interstitial fluid on the viscosity.

When the inter-particle distance is large, i.e., the particles form
loose aggregates, the viscosity is asymptotically close to that obtained
from the Einstein equation. The viscosity increases as the inter-particle
distance decreases, and the particles form compact aggregates. Most
compact aggregate is formed at an aggregate radius of Ragg=a ¼ 5:5
for Lmin=a ¼ 0:1; however, the viscosity increases only a few percent.
There is almost no dependence of the viscosity on the maximum order
pmax at large inter-particle distances, whereas there is a considerable
dependence for the most compacted aggregate.

As shown in Fig. 4, the analytical results of the viscosity of uni-
form suspensions for pmax ¼ 4–6 are in approximate agreement with
the experimental results. As also shown in Fig. 5, the change in viscos-
ity decreases as pmax increases, and there is tiny difference between the
results for pmax ¼ 5 and 6 in the limit of small inter-particle distance.
Based on these results, the results for pmax ¼ 6 are presented in the
subsequent analysis of aggregated suspensions.

Stresslet distribution

To more thoroughly investigate the viscosity change due to
aggregation, the stresslet induced by individual particles was exam-
ined. Figures 6 and 7 show the distribution of the nondimensional
stresslet S�i;xy ¼ c2s;2si;xyxy of a uniform suspension and a suspension with

dense aggregates at the particle volume fractions of / ¼ 0:01 and
/ ¼ 0:15, respectively. The horizontal axis represents the distance to
each particle from the center of mass of the particles in the calculation
domain rC=a, while the vertical axis represents the stresslet of each
particle. The minimum inter-particle distance in dense aggregates is
Lmin=a ¼ 0:1.

As illustrated in Fig. 6(a), in the dilute uniform suspension
(/ ¼ 0:01), the nondimensional stresslets of particles are almost uni-
formly distributed, and their value is approximately one. This is
because each particle contributes to the viscosity of the system as an
isolated stresslet, similar to the assumption of the Einstein equation. In
contrast, in the non-dilute random suspension (/ ¼ 0:15) illustrated
in Fig. 7(a), the stresslets exhibit larger and more scattered values. This
indicates that the hydrodynamic interactions between particles
become significant as the particle concentration increases, and that
small variations in the inter-particle distance cause substantial changes
in the stresslet of each particle.

FIG. 6. Relationship between the stresslet and distance from the center in (a) uniform and (b) aggregated suspensions for / ¼ 0:01.

FIG. 7. Relationship between the stresslet and distance from the center in (a) uniform and (b) aggregated suspensions for / ¼ 0:15.
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In the locally aggregated suspensions (/ ¼ 0:01) shown in
Fig. 6(b), the stresslet of each particle varies greatly depending on the
relative position of particles in the aggregate. As shown in the figure,
the aggregate considered here has a concentric layered structure. The
stresslets of particles outside the aggregate are approximately one or
slightly larger than one. The stresslet increases as one approaches the
center of aggregate, reaching a maximum value at the central particle.
Even at the dilute concentration, the stresslet of each particle increases
due to hydrodynamic interactions as the particles become locally
dense. In the aggregated suspension for / ¼ 0:15 in Fig. 7(b), the
stresslet of a particle near the center of the aggregate is almost the
same as that for / ¼ 0:01. This is caused by the screening effect of
hydrodynamic interactions,35 i.e., long-range hydrodynamic interac-
tions decay in the aggregate, and the stresslet of the center particle is
determined almost entirely by the local particle arrangement. The par-
ticles at the outer edges of the aggregate exhibit scattered stresslets;
however, there is no significant difference between conditions of /
¼ 0:01 and / ¼ 0:15.

In order to gain insight into the screening effect of hydrodynamic
interactions inside an aggregate, the relationship between the local
concentration and stresslet at each particle location was investigated.
The locally averaged concentration /L was obtained by averaging the
particle existence function qðx; y; zÞ ¼ 0 or 1 using a weight function.
In this study, a Gaussian function was used as the weight function,

g x; y; zð Þ ¼ 1ffiffiffiffiffi
2p

p 3
k3

exp � x2 þ y2 þ z2

2k2

� �
; (49)

where k is a parameter that determines the amount of local averaging
and k ¼ 2:5a in this study. Using Eq. (49), the local concentration /L
can be obtained as follows:

/L x; y; zð Þ ¼
ð ð ð1

�1
g x � x0; y � y0; z � z0
� �

q x0; y0; z0
� �

dx0dy0dz0:

(50)

Figure 8 shows the stresslet distribution of aggregated suspen-
sions for particle concentrations / ¼ 0:01 and / ¼ 0:15. The hori-
zontal axis denotes the local concentration at each particle location. In
aggregated suspensions, the local concentration /L depends on the rel-
ative position in the aggregate. The local concentration increases from

the outside to the inside of the aggregate. For more quantitative discus-
sion, the results in Fig. 8 are compared with the stresslet of uniform
suspensions. As shown in Fig. 4, the viscosity of uniform suspension
increases with the concentration. Many theoretical, semi-empirical vis-
cosity models of uniform suspension have been proposed as a function
of the particle volume fraction /.28–33 For example, Mendoza et al.34

proposed the following model as a polynomial of /:

gHr ¼ 1þ 2:5/þ 4:5/2 þ 7/3 þ 10/4 þ 13:5/5

þ 17:5/6 þ 22/7 þ O /8
� �

: (51)

The solid line in Fig. 8 indicates the theoretical curve of a non-
dimensional stresslet of uniform suspensions, which is calculated from
Eqs. (33), (35), and (51),

S�i;xy ¼ 1þ 1:8/þ 2:8/2 þ 4/3 þ 5:4/4 þ 7/5 þ 8:8/6 þ O /7
� �

:

(52)

As can be seen in Fig. 8, the stresslet of each particle approximately
corresponds to the theoretical stresslet at each local concentration.
This indicates that the inner particles are shielded by the surrounding
particles, resulting in a locally dense structure. In consequence, the
stresslets of particles near the center of the aggregate are not influenced
by other aggregates and are determined only by their relative position
(i.e., local concentration) in the aggregate. For the outer particles, the
stresslets are slightly smaller than the theoretical values due to an
anisotropic particle arrangement, i.e., one side is dense and the other
side is sparse. Note that if the aggregate is a loose structure, the shield-
ing effect will be significantly reduced.

Hydrodynamic effect on viscosity of aggregated
suspension

Finally, the effective viscosity of the entire system is demonstrated
for the various particle structures described above. Figure 9 presents
the results of the relative viscosity of uniform suspensions and suspen-
sions with loose and dense aggregates for various particle concentra-
tions of the entire system. Although there is a large difference in the
distribution of stresslets between uniform and aggregated suspensions
as illustrated in Figs. 6 and 7, the viscosity shows only a little change.
The inset of Fig. 9 shows a close-up of the viscosity in dilute

FIG. 8. Relationship between the stresslet and local concentration in aggregated suspensions: (a) / ¼ 0:01 and (b) 0.15.
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suspensions (/ ¼ 0–0:05Þ. A detailed comparison of the results indi-
cates that the viscosity of aggregated suspension is slightly larger than
that of the uniform suspension; however, the difference is only several
percent. The solid lines indicate the viscosity calculated from Eq. (48)
with the effective volume fraction /eff ¼ 4pR3

agg=3V , under the
assumption that the interstitial fluid in the aggregate becomes entirely
immobile for respective Lmin=a conditions. The viscosity obtained
from the analysis is much smaller than the results of Eq. (48), even in
the case of dense aggregate (Lmin=a ¼ 0:1). It can be said that the
stresslet inside the aggregate changes due to hydrodynamic effects;
however, the influence on the entire viscosity is not significant within
the range of the calculation conditions, i.e., the aggregates composed
of several tens of particles. At least, it is unlikely that the immobile
fluid in the aggregate changes the viscosity by one to two orders of
magnitude, even for larger aggregates. This result suggests that the
direct contribution of inter-particle forces gIr , which is not considered
here, is greater than the hydrodynamic contribution gHr to the viscosity
increase due to the formation of aggregates.

CONCLUSION

A theoretical consideration of hydrodynamic effects on the rheo-
logical properties of particulate dispersions with aggregate structure
was performed. The hydrodynamic transport coefficients, such as the
permeability in the particle layer, the drag force in multi-particles, and
the viscosity of suspension, were calculated theoretically by the multi-
pole expansion of the particle velocity and the fluid force in reciprocal
space. The results of the permeability and drag force were consistent
with those obtained from previous studies over a wide range of particle
concentrations. The viscosity of uniformly distributed particulate sus-
pensions was also in good agreement with previous experimental
results from small to large concentrations.

The hydrodynamic effects on the viscosity in aggregated suspen-
sions were considered by examining the stresslet distribution in the
aggregate. The stresslet in the aggregate shows larger values in the cen-
ter as the particles become locally dense, and it almost corresponds to
the theoretical stresslet calculated by local concentrations. It means

that the stresslets of particles near the center of the aggregate are not
influenced by other aggregates by the shielding effect.

The effective viscosity of particulate suspension did not change
so much by aggregation in this analysis, i.e., the hydrodynamic effects
play a minor role in determining the viscosity of aggregated suspen-
sion. This suggests that, at least in aggregates composed of dozens of
particles, the direct contribution of inter-particle forces on the viscosity
is significant in aggregated suspensions, which is contrary to the
assumption of existing viscosity models.
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