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ABSTRACT
Recently, we proposed a new orbital analysis method, natural reaction orbital (NRO), which automatically extracts orbital pairs that character-
ize electron transfer in reaction processes by singular value decomposition of the first-order orbital response matrix to the nuclear coordinate
displacements [Ebisawa et al., Phys. Chem. Chem. Phys. 24, 3532 (2022)]. NRO analysis along the intrinsic reaction coordinate (IRC) for sev-
eral typical chemical reactions demonstrated that electron transfer occurs mainly in the vicinity of transition states and in regions where the
energy profile along the IRC shows shoulder features, allowing the reaction mechanism to be explained in terms of electron motion. However,
its application has been limited to single configuration theories such as Hartree–Fock theory and density functional theory. In this work, the
concept of NRO is extended to multiconfigurational wavefunctions and formulated as the multiconfiguration NRO (MC-NRO). The MC-
NRO method is applicable to various types of electronic structure theories, including multiconfigurational theory and linear response theory,
and is expected to be a practical tool for extracting the essential qualitative features of a broad range of chemical reactions, including covalent
bond dissociation and chemical reactions in electronically excited states. In this paper, we calculate the IRC for five basic chemical reaction
processes at the level of the complete active space self-consistent field theory and discuss the phenomenon of electron transfer by performing
MC-NRO analysis along each IRC. Finally, issues and future prospects of the MC-NRO method are discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0098230

I. INTRODUCTION

As is well known, molecular orbitals (MOs)1,2 are very use-
ful in understanding the reactivity of chemical reactions. Fukui’s
frontier orbital theory3,4 and the Woodward–Hoffmann rule5–9 are
the most representative works that reveal the essence of chemical
reactivity in terms of MOs. These two theories have been widely
accepted and applied to various systems involving reactions in elec-
tronically excited states. Although frontier orbital theory and the
Woodward–Hoffmann rule were established more than half a cen-
tury ago, the concept of MO is by no means old. In recent years,
properties of MOs, such as orbital energies, have been used as
descriptors in cutting-edge data science approaches.10,11 Molecular
orbitals are still a powerful tool for extracting the essence of chemical
phenomena, a concept with such a long history that it still under-
lies chemists’ thinking today. However, it is not clear whether the

properties of MOs are fully exploited in the analysis of reaction
mechanisms.

In standard reaction mechanism analysis, the interaction of
MOs possibly involved in a chemical reaction is traced along reac-
tion coordinates.8 Therefore, MOs and reaction coordinates that
characterize a reaction are necessary to perform reaction mecha-
nism analysis. Nowadays, with the development of computational
chemistry, it is easy to obtain MOs for molecular systems, and
various sophisticated methodologies12–17 have made it possible to
calculate typical reaction pathways, such as intrinsic reaction coor-
dinates (IRCs).18 Thus, the basic tools necessary for MO-based
reaction mechanism analysis are already available. However, it must
be remembered that the definition of MO is not unique, and due
to its arbitrariness, it is necessary to select an appropriate definition
for the purpose of analysis. This arbitrariness of MO comes from
the invariance of the wavefunction to orbital rotations. For example,
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the Hartree–Fock wavefunction is invariant to transformations that
rotate occupied and virtual orbitals separately.19 This situation could
be compared to a choice of coordinate axes. It is very common to
choose a coordinate axis that is convenient for describing the sys-
tem to be analyzed, e.g., applying classical multidimensional scaling
methods20,21 or principal component analysis22 to chemical reaction
analysis. Such a choice of characteristic coordinate axes is allowed
because the rotation of the coordinate axes never changes the nature
of the data. Rotation of the coordinate axes only changes the way
the data are represented and labeled. Thus, choosing the appropri-
ate coordinate axes often highlights the essence of the data without
changing the nature of the system. Given this invariance, it is no
more beneficial to insist on a particular definition of MO than it is
to insist on a particular coordinate. It is also pointed out that there
does not exist an optimal definition of MO for any given analysis.23

For example, even the well-known frontier orbitals of the canonical
molecular orbital (CMO), the diagonal basis of the Fock matrix, do
not correlate well with the polarizability, contrary to conventional
understanding.11 Since the analysis of MOs is meaningful as long
as the MOs appropriately characterize the subject of analysis, it is
essential to choose an appropriate definition of MOs for the purpose
of analysis.

In order to understand and characterize the various chemical
properties of many-body wavefunctions, a great number of orbital
definitions have been introduced: natural orbital (NO),24 localized
orbital (LO),25 interacting frontier orbitals (IFOs),26 natural bond
orbital (NBO),27 natural localized molecular orbitals (NLMOs),28

intrinsic bond orbitals (IBOs),29 valence virtual orbitals (VVOs),30

principal interacting orbitals (PIOs),31 and energy natural orbitals
(ENOs).32 All of these methods are useful for characterizing the
static nature of many-body wavefunctions at a single geometrical
structure, but by definition, there are no molecular orbitals that
directly characterize changes in electron density along a reaction
pathway. Considering that pushing-arrow diagram, a common tech-
nique for describing reaction mechanisms in organic chemistry,
schematically show the electron flow in (elementary) chemical reac-
tions, it seems quite natural to design MOs for reaction mechanism
analysis and characterize electron density changes along reaction
coordinates. However, if MOs that are not suitable for the analysis
of electron density changes are used, the contribution to electron
density changes may be distributed among many MOs, making
orbital-based reaction mechanism analysis difficult.

Recently, we proposed a new type of molecular orbital designed
for chemical reaction analysis, the natural reaction orbital (NRO).33

Actually, we recently noted that the terminology, natural reaction
orbital (NRO), was first used by Ruedenberg et al.34,35 as the natural
orbital basis within full reaction space. In order to avoid confu-
sion, it should be declared that our “NRO” is a concept different
from their “NRO.” The NRO is obtained by applying singular value
decomposition (SVD), first applied to orbital transformations by
Amos and Hall,36 to the first-order orbital response to nuclear coor-
dinate perturbations given by the coupled-perturbed self-consistent
filed (CPSCF) equation.37–39 The orbitals obtained by applying SVD
to the CPSCF with respect to charge fluctuations are known as
intrinsic soft molecular orbitals (ISMOs).40 ISMO is the optimal
basis for characterizing electron density changes due to partial
charge fluctuations. Similarly, NRO can be considered as the optimal
basis for characterizing electron density changes due to changes in

molecular geometry. Indeed, NRO could successfully characterize
various types of chemical reactions without having to track orbitals
along the reaction pathway. Moreover, NRO can automatically
extract representative orbitals of a given chemical reaction based on
the magnitude of the singular values of occupied-virtual NRO pairs,
which measure the mixing rate of the NRO pairs. Interestingly, the
product of NRO pairs can indicate the electron density change due
to the mixing of the pairs. Thus, NRO can not only identify represen-
tative orbitals, but it also describes the changes induced by represen-
tative orbitals without manual work based on in-depth knowledge
of chemistry. This is the main reason why NRO is suitable for
reaction analysis.

Although NRO was successfully applied to typical reactions in
the ground state, the applicability of the NRO method was limited
to electronic structure theory based on a single-determinant con-
figuration. Accordingly, chemical reactions involving explicit bond
dissociation and formation processes that require multiconfigura-
tional wavefunctions could not be analyzed by NRO. Thus, there
is a need for another practical method of orbital analysis that can
be applied to multiconfigurational theory41,42 and linear response
theory as well.43–45

In this study, we extend the NRO to a multiconfigurational the-
ory, called multiconfiguration NRO (MC-NRO); MC-NRO is not
equivalent to NRO, but it is possible to automatically extract rep-
resentative orbitals of a given reaction even in electronically excited
states at a moderate computational cost.

Section II describes the formulation of the MC-NRO method.
Section III then presents five application examples and discussion.
In the respective examples, it is shown that the MC-NRO method
successfully characterizes the reaction. A discussion of the symmetry
of the MC-NRO is also included in Sec. III and the supplementary
material.

II. MULTICONFIGURATION NATURAL
REACTION ORBITAL
A. Natural reaction orbital for Hartree–Fock theory

First, a brief description of the NRO formulation for the
Hartree–Fock (HF) method is given. The detailed formulation is
given in our previous report.33 Let Φ denote the HF wavefunc-
tion for a given geometry and the first-order response of the
HF wavefunction to nuclear coordinate displacements, Φ(1), be
given by39

∣Φ(1)⟩ = ∑
a∈vir
i∈occ

U(1)ai a†
aai∣Φ⟩ −

1
2 ∑i∈occ

S(1)ii ∣Φ⟩, (1)

where the matrix U(1)ai is defined by

U(1)ai :=∑
μν

cμaSμνc(1)νi . (2)

The subscripts μ and ν are used for the atomic orbital (AO) basis. Sμν
is the overlap matrix, cμa is the a-th virtual canonical orbital coeffi-
cient, and c(1)νi is the first-order response to the nuclear coordinate
displacement of the i-th occupied canonical orbital. The operators
ai and a†

a in Eq. (1) are the annihilation and creation operators for
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i-th occupied and a-th virtual canonical orbitals, respectively. S(1)ii in
Eq. (1) is defined as

S(1)ii :=∑
μν

cμiS(1)μν cνi, (3)

where S(1)μν is the first-order response of the overlap matrix. The sec-
ond term in Eq. (1) comes from the orthonormalization condition of
the occupied orbitals and is not considered essential for understand-
ing chemical reactivity. Then, we will use only the virtual-occupied
block of the first-order response given by

⟨Φ(1)∣a†
aai∣Φ⟩ = U(1)ai (4)

to characterize the response of the HF wavefunction to the nuclear
coordinate displacement. The first-order response matrix U(1)ai is
obtained by solving the CPSCF equations.

A suitable molecular orbital basis for characterizing the first-
order response matrix in Eq. (4) is given by SVD. For a given U(1)ai , a
couple of unitary transformations can be found,

U(1)VO = LΛR†, (5)

where U(1)VO is defined by

U(1)VO := ∑
a∈vir
i∈occ

U(1)ai ca ⊗ ci. (6)

L and R are unitary matrices of size Nvir ×Nvir and Nocc ×Nocc,
respectively. Nocc and Nvir are the number of occupied and virtual
orbitals, respectively. Λ is a rectangular matrix of size Nvir ×Nocc
with nonnegative singular values (λ1, . . . , λmin(Nocc ,Nvir)

) in the diag-
onal elements. In the SVD process, occupied and virtual orbitals are
transformed separately,

⎧⎪⎪
⎨
⎪⎪⎩

(n1, . . . , nNocc) = (c1, . . . , cNocc)R,
(n′1, . . . , n′Nvir) = (cNocc+1, . . . , cNocc+Nvir)L.

(7)

Using the generated occupied and virtual basis, (n1, . . . , nNocc) and
(n′1, . . . , n′Nvir

), U(1)VO can be written as

U(1)VO =

min(Nocc ,Nvir)

∑
i=1

λin′i ⊗ ni. (8)

Here, it will be clear that the occupied and virtual basis sets with
the same subscripts form a pair and share a common singular value
λi. There is no coupling term between the basis sets with different
subscripts. Thus, the SVD basis of U(1)VO can simplify the relationship
between virtual and occupied orbitals for a given nuclear coordinate
displacement. In other words, the SVD basis is the best basis for sim-
plifying response density matrices. The NRO is the SVD basis pair
given by Eq. (7) with nonzero singular values.

B. Straightforward generalization of natural reaction
orbital to multiconfigurational theory

The generalization of NRO to multiconfigurational theory is
simple in the formula. Let Ψ be an arbitrary multiconfigurational

wavefunction. The first-order response density matrix for nuclear
coordinate displacements given by

⟨Ψ(1)∣a†
paq∣Ψ⟩ (9)

is used to characterize the change in the wavefunction. Here, the
subscripts p and q are used for all molecular orbital basis. Evalu-
ating the matrix in Eq. (9) requires derivatives of the configuration
interaction coefficients with respect to the nuclear coordinates. The
computational cost for this term would be quite large, and it is not
easy to adopt Eq. (9) as is. Therefore, it is necessary to introduce a
more practical formulation that is different from the straightforward
generalization.

C. Definition for CASSCF
In this subsection, we will define the molecular orbitals that

characterize the electronic density change along a given reaction
coordinate in the framework of the complete active space self-
consistent field (CASSCF) theory. First, it is necessary to clarify
how the electron density change will be represented in this study.
The AO density matrix DAO is positive semi-definite. Thus, there
exists one positive semi-definite square root of DAO,46,47 denoted as
D1/2

AO, which satisfies the following condition:

DAO = D1/2
AOD1/2

AO. (10)

In general, the trace of the AO density matrix does not give the total
number of electrons, ntotal, which is given by

ntotal = tr(DAOS), (11)

where S is the overlap matrix. Since the overlap matrix is also posi-
tive semi-definite, we can define its square root, S1/2. Then, the trace
of the Hermitian matrix gives the total number of electrons,

D̃ := S1/2DAOS1/2
= S1/2D1/2

AOD1/2
AOS1/2. (12)

Since the total number of electrons does not change with geometrical
structure change, the trace of the matrix D̃ is constant,

d
dτ

tr(D̃) = 0, (13)

where τ is an arbitrary reaction coordinate. Equation (13) implies
that conservation of the total number of electrons holds for a given
nuclear coordinate change. The derivative of D̃ along the reaction
coordinate is given by

d
dτ

D̃ =
d

dτ
(S1/2D1/2

AO)D
1/2
AOS1/2

+ (h.c.), (14)

where (h.c.) stands for Hermite Conjugate. Apparently, the deriva-
tive of D̃ includes the derivative of S1/2. Essentially, the derivative
of the overlap matrix should not be interpreted as MO mixing but
simply as AO translation. Then, the derivative of S1/2 would seem
unnecessary for evaluating MO mixing. However, the derivative
of S1/2 is necessary to satisfy Eq. (13). To solve this problem, the
derivative terms of S1/2, ( d

dτ S1/2
)DAOS1/2, are approximated as
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YCASSCF :=
1

Ninactive
tr(C†

inactiveS1/2
(

d
dτ

S1/2
)DAOSCinactive)Iinactive

+
1

Ninactive
tr(C†

inactiveS1/2
(

d
dτ

S1/2
)DAOSCinactive)Iinactive

+
1

Nsecondary
tr(C†

secondaryS1/2
(

d
dτ

S1/2
)DAOSCsecondary)Isecondary, (15)

where Cinactive, Cactive, and Csecondary are the MO coefficients and
Iinactive, Iactive, and Isecondary are the identity matrices for inactive
(doubly occupied), active, and secondary (unoccupied) spaces.42

N inactive, Nactive, and Nsecondary are the number of MOs in each space.
Finally, we evaluate the density change due to nuclear coordinate
displacement as

XCASSCF := C†S(
d

dτ
D1/2

AO)D1/2
AOSC + YCASSCF (16)

and its Hermitian conjugate (C is the entire MO coefficient
matrix). A more compact description of the matrix in Eq. (16)
can be found in the supplementary material. In fact, the derivative
can be approximated by numerical differentiation, e.g., dD1/2

AO/dτ
∼ (2Δτ)−1

{D1/2
AO(Δτ) −D1/2

AO(−Δτ)}, where Δτ is the step size of the
numerical differentiation. In this work, all derivatives in Eq. (16) are
evaluated numerically.

The MC-NRO for CASSCF is defined as the SVD basis
for the secondary-active, secondary-inactive, active–active, and
active–inactive blocks of XCASSCF. To separate XCASSCF into blocks,
the MO used to define the active space, e.g., NO, may be useful.
Each SVD basis characterizes the density change of each block.
For example, the SVD basis of a secondary-active block character-
izes the electron transfer from the active space to the secondary
space. In particular, the SVD basis for the off-diagonal blocks of the
secondary-active, secondary-inactive, and active–inactive blocks is
interpreted as the optimal basis to characterize the orbital mixing
between the two spaces. On the other hand, the SVD basis for the
active–active block includes the contribution to the electron den-
sity change of the change in the CI coefficient as well as the change
in the MO coefficient. Therefore, the contribution of the diagonal
block cannot necessarily be interpreted as pure MO mixing. This
point will be discussed in detail in Sec. III. The above definition can
be applied to state-averaged (SA) CASSCF48 as well as state-specific
(SS) CASSCF. In the case of SA-CASSCF, the density matrix of each
root can be used to calculate the MC-NRO. However, it is necessary
to carefully check whether the orbitals optimized by the SA-CASSCF
method provide a balanced description of the multi-state potential
energy surfaces.49

The reason for separate SVD, or orbital rotation, for the four
blocks of the XCASSCF matrix requires explanation. If the separation
were not done, MOs defined in distinguished spaces, such as MOs
in secondary space and MOs in active space, could be mixed due
to unitary transformations in SVD process. However, the CASSCF
wavefunction is not invariant to the mixing of MOs in distinguished
spaces.42,50 Thus, SVD without separation changes the wavefunction
and destroys the physical nature of the system. From the viewpoint
of analysis, the loss of nature of the system does not seem desirable.
In other words, when performing SVD, the separation should be

performed in such a way that the orbital invariance of the CASSCF
wavefunction is not lost.

Next, we explain the density change expressed in the MC-NRO
basis. The right and left MC-NROs are given by

⎧⎪⎪
⎨
⎪⎪⎩

(ϕsR
1 , . . . ,ϕsR

Ns) = (ψ
s
1, . . . ,ψs

Ns)R
†,

(ϕtL
1 , . . . ,ϕtL

Nt) = (ψ
t
1, . . . ,ψt

Nt)L,
(17)

where (ψs
1, . . . ,ψs

Ns
) and (ψt

1, . . . ,ψt
Nt
) are the MOs in subsets s (e.g.,

active space) and t (e.g., secondary space), respectively, and Ns and
Nt are the number of MOs in the respective spaces. The matrices
R and L are the right and left singular vectors of the t-s block of the
matrix X. The right and left singular vectors of X are included as
rows and columns of R and L. Then,

λi(ϕtL∗
i ϕsR

i + ϕ
tL
i ϕ

sR∗
i ) = 2λiϕtL

i ϕ
sR
i (i = 1, . . . , min(Ns, Nt)) (18)

gives the component of the density change induced by the displace-
ment of the nuclear coordinates. Here, the orbitals are assumed to be
real. The contribution of the derivative of the overlap matrix to the
density change is evaluated in its trace [see Eq. (15)]. The singular
value of each MC-NRO pair represents the extent to which the pair
contributes to the density change. As the nature of SVD, the sum of
squares of singular values is equal to the square of Frobenius norm of
the matrix to be decomposed, the sum of squares of all the matrix
elements. The square of Frobenius norm of the given block of matrix
X gives the sum of the squares of density change or orbital mixing
rates within the block. Throughout this work, we use the square of
Frobenius norm to evaluate the total density change or orbital mix-
ing rates along reaction pathways. Usually, only a small number of
MC-NRO pairs have large singular values, and the density changes
can only be characterized by such pairs. The relative phase of all MC-
NRO pairs is uniquely determined for a given nuclear displacement
direction.33 Reversing the displacement direction inverts the relative
phase of all MC-NRO pairs.

It should be noted that the singular values are computed by
numerically differentiating the density matrix and are, therefore, not
very numerically stable. Although the shape of the dominant MC-
NRO is not so unstable, singular values can be unstable in cases such
as CASSCF. To extract the qualitative essence of a chemical reaction,
the MC-NRO method using numerical differentiation is effective.

In general, the value Δi defined by the following equation can
have a nonzero value if the subsets s and t are identical:

Δi := λi(⟨ϕtL
i ∣ϕ

sR
i ⟩ + ⟨ϕ

sR
i ∣ϕ

tL
i ⟩), (19)

where ⟨ϕtL
i ∣ϕsR

i ⟩ is the inner product of ϕtL
i and ϕsR

i . Conversely,
Δi is always zero when the two subsets are different. Regardless
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of whether the two subspaces are identical or not, the following
equation holds:

∑
i
Δi = 0. (20)

Actually, Δi can be considered as the change of occupation num-
ber in ϕsR

i due to the change of CI coefficients. This point will be
discussed in detail in Sec. III.

III. RESULTS AND DISCUSSION
Here, the MC-NRO analysis is applied to five reaction

examples: covalent bond formation of H2, triple bond forma-
tion of N2, Diels–Alder reaction of ethylene and 1,3-butadiene,
[1,5]-sigmatropic rearrangement of 1,3-pentadiene, and intramolec-
ular hydrogen transfer of malonaldehyde in the S1 state. We will
demonstrate how the new approach can be used to understand
chemical reaction processes in terms of electron transfer and dis-
cuss future challenges. All calculations were performed in Gaussian
16 Rev.C.01.51

A. Hydrogen molecule
As a simple example, the MC-NRO analysis of the covalent

bond formation of H2 is demonstrated. The main purpose of this
demonstration is to confirm that the MC-NRO method provides a
reasonable picture that is consistent with conventional understand-
ing provided by other methods, e.g., natural orbitals. The bond for-
mation process of H2 is so simple that it is considered the best system
to validate the MC-NRO method and to understand how it works. It
is well known that the dissociated state of H⋅ ⋅ ⋅H cannot be described
by a single-determinant wavefunction, e.g., the Slater determinant
given by the Hartree–Fock theory.52,53 Thus, this process needs to
be studied with a multiconfigurational wavefunction. The poten-
tial energy curve for the singlet ground state (black curve) of H2

FIG. 1. Potential energy curve of the singlet ground state of the hydrogen molecule
(black curve) and the sum of squares of the singular values of the MC-NROs for the
two blocks of active–active (red curve) and secondary-active (blue curve) (shown
as∑iλ2

i ). The electronic structure is computed at the CASSCF(2,2)/aug-cc-pVQZ
level. A and B are the characteristic regions where the sum of squares of the
singular values shows an outstandingly large value.

at CASSCF(2,2)/aug-cc-pVQZ54,55 is shown in Fig. 1. The sum of
squares of the singular values of MC-NRO, which indicate the degree
of electron density change, is shown for two blocks: active–active
and secondary-active blocks. The density change in active space
is larger in two regions: A (R ∼ 2.10 Å) and B (R < 1.20 Å),
where R is the bond length of the hydrogen molecule.

The dominant MC-NRO pairs and the corresponding density
changes in the two regions are shown in Fig. 2. The direction of
nuclear displacements is in the direction of bond formation. The
dominant MC-NRO pairs in region A are the antibonding orbital
(σu
∗) pair with the opposite sign and the bonding orbital (σg) pair

with the same sign. Since the product of the right and left MC-
NROs gives an electron density change in the direction of molecular
formation, the electron density of the antibonding σu

∗ orbital pair
decreases and that of the bonding σg orbital pair increases as the
bond length R decreases. These density changes clearly correspond
to the formation of H–H covalent bond.

The opposite-phase interference of the σu
∗ orbital and in-

phase interference of the σg orbital are interpreted as follows: In
the dissociation limit, the two electron wavefunction of H2 for the
singlet ground state is given by a linear combination of two Slater
determinants as follows:56

FIG. 2. Active–active MC-NRO pairs for H–H covalent bond formation at (a)
R = 2.10 Å and (b) R = 0.77 Å. ϕR

i and ϕL
i denote the ith right and left MC-

NROs, and the numbers in parentheses indicate the occupation number. The
product of each MC-NRO pair is also shown, with the yellow/cyan colors indicating
increasing/decreasing electron density. λi (amu−1/2 bohr−1

) indicates the sin-
gular value of the ith MC-NRO pair. The contribution of the MC-NRO pair to the
density change of active–active block, defined as 100 × λ2

i /∑jλ2
j , is also shown

for each singular value. The isovalues of MC-NRO and density change are 0.0250
and 0.006 25, respectively.
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ΨR→∞(1, 2) =
1
2

RRRRRRRRRRRR

χ1s
HA(1)α(1) χ1s

HB(1)β(1)
χ1s

HA(2)α(2) χ1s
HB(2)β(2)

RRRRRRRRRRRR

+
1
2

RRRRRRRRRRRR

χ1s
HB(1)α(1) χ1s

HA(1)β(1)
χ1s

HB(2)α(2) χ1s
HA(2)β(2)

RRRRRRRRRRRR

=
1
2
{χ1s

HA(1)χ
1s
HB(2) + χ

1s
HB(1)χ

1s
HA(2)}

× {α(1)β(2) − β(1)α(2)}, (21)

where χ1s
HA

and χ1s
HB

are the normalized 1s orbitals of the two hydro-
gen atoms HA and HB, and α and β are spin functions. By rotating
the orbitals,
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, (22)

the wavefunction is rewritten as

ΨR→∞(1, 2) =
1
2

RRRRRRRRRRRR

σg(1)α(1) σg(1)β(1)
σg(2)α(2) σg(2)β(2)

RRRRRRRRRRRR

−
1
2

RRRRRRRRRRRR

σu
∗
(1)α(1) σu

∗
(1)β(1)

σu
∗
(2)α(2) σu

∗
(2)β(2)

RRRRRRRRRRRR

.
(23)

Around the equilibrium bond length, the HF wavefunction given by
a single Slater determinant is known to give a good approximation,

ΨReq(1, 2) ∼
1
√

2

RRRRRRRRRRRR

σg(1)α(1) σg(1)β(1)
σg(2)α(2) σg(2)β(2)

RRRRRRRRRRRR

. (24)

Using the CI coefficients, C1and C2, the wavefunction with the
minimal basis can be rewritten as

Ψ(1, 2) = C1

RRRRRRRRRRRR

σg(1)α(1) σg(1)β(1)
σg(2)α(2) σg(2)β(2)

RRRRRRRRRRRR

+C2

RRRRRRRRRRRR

σu
∗
(1)α(1) σu

∗
(1)β(1)

σu
∗
(2)α(2) σu

∗
(2)β(2)

RRRRRRRRRRRR

. (25)

Then, ∣C1∣
2 increases toward the equilibrium structure while ∣C2∣

2

decreases. In the bond formation process where the symmetry of the
system is preserved, σg and σu

∗ belong to different irreducible rep-
resentations and do not mix with each other. Therefore, the electron
density change in this process is not due to orbital mixing but to a
change in the CI coefficient. Nevertheless, the density change can be
described by the MO norm change. That is, the change in the weight
of the configuration can be described by an increase or decrease in
the norm of σg/σu

∗, rather than an increase or decrease in ∣C1∣
2/∣C2∣

2.
Thus, the opposite-phase interference of the σu

∗ orbital and the
in-phase interference of the σg orbital correspond to a decrease in
the weight of the doubly excited-state configuration and an increase
in the ground-state configuration, respectively. This result indicates
that MC-NRO provides a way to express the change in electron
density due to CI coefficient change in terms of MO. The domi-
nant MC-NRO pair in region B shows an opposite density change, a

FIG. 3. Secondary-active MC-NRO pairs with H–H covalent bond formation at
R = 0.77 Å. ϕR

i and ϕL
i represent the ith right and left MC-NRO, and the numbers

in parentheses indicate the occupation number. The product of each MC-NRO pair
is also shown, with the yellow/cyan color indicating increasing/decreasing electron
density. λi(amu−1/2 bohr−1

) represents the singular value of the ith MC-NRO
pair. Also shown below each singular value is the contribution of the MC-NRO pair
to the overall density change. The isovalues of MC-NRO and density change are
0.0250 and 0.006 25, respectively.

decrease/increase in σg/σu
∗, possibly working to mitigate the repul-

sion between electrons. However, this behavior may be an artifact
due to the small active space. This will be discussed in more detail
later.

The dominant secondary-active MC-NRO pair in the region B,
ϕR

1 and ϕL
1 , is composed of bonding σg orbitals, one composed of 1s

orbitals and the other of 2s orbitals (Fig. 3). These two σg orbitals
are in-phase near the H–H bond axis, but they are out-of-phase in
the outer region. The product of the MC-NRO pair gives a density
change, which means that the MC-NRO pair condenses the elec-
tron density around the H–H bond axis and reduces the nuclear
repulsion.

In region B, there is a remarkable density change due to miss-
ing of the secondary-active MC-NRO, indicating that the active

FIG. 4. Potential energy curve of the singlet ground state of hydrogen molecule
(black curve) and the sum of squares of the singular values of MC-NROs for the
two blocks of active–active (red curve) and secondary-active (blue curve) (denoted
by ∑iλ2

i ) as a function of H⋅ ⋅ ⋅H distance. The electronic structure is calculated
at the CASSCF(2,10)/aug-cc-pVQZ level. A and B are the characteristic regions
where the sum of squares of the singular values shows outstandingly large value.
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space is not closed in the H–H bond formation process. Ideally,
the active space of CASSCF should be set large enough to describe
any dominant change during the chemical reaction. From this
viewpoint, a large orbital mixing between the active space and inac-
tive or secondary spaces is undesirable. In this study, preliminary
CASSCF calculations were performed to check the convergence of
the CASSCF calculations, and converged results were obtained with
CASSCF(2,10)/aug-cc-pVQZ. The orbitals of this active space are
shown in the supplementary material. Figure 4 shows the result with
CASSCF(2,10)/aug-cc-pVQZ. Compared to Fig. 1, it can be seen that
the mixing of the active and secondary space orbitals is significantly
reduced.

Figure 5 shows the dominant MC-NRO pairs. In region A, the
dominant MC-NRO pair is almost the same as in Fig. 2(a), while
in region B, the dominant MC-NRO pairs are different from those
shown in Fig. 2(b) but rather similar to the first MC-NRO pair
in Fig. 3. This indicates that the first left MC-NRO ϕL

1 shown in
Fig. 3 is included in the expanded active space. Thus, the expanded
active space can be considered to be more closed throughout the
reaction process. Indeed, Fig. 6 suggests an improvement in the
active space from the energy viewpoint as well. Figure 6 shows that
the energy difference between the CASSCF(2,2) and CASSCF(2,10)
results increases in the direction of bond formation. This feature
may be explained in terms of radial correlations. The significance
of radial correlations for the electron affinity of carbon, oxygen, and
fluorine was reported by Botch and Dunnig.57 Subsequently, Walch
et al. studied the effect of radial correlation on the height of the reac-
tion barrier in the reaction X + H2 → XH + H (X = O, F).58,59 In
Ref. 58, an orbital basis with additional radial nodes was found to be
important in describing the tight–diffuse correlation of anion-like
oxygen atom around the transition state (TS) region. In the present

FIG. 5. The active–active MC-NRO pairs in the H–H covalent bond formation pro-
cess: (a) R = 2.08 Å; (b) R = 0.77 Å. ϕR

i and ϕL
i represent the ith right and left

MC-NROs and the numbers in parentheses indicate the occupation number. The
product of each MC-NRO pair is also shown, with the yellow/cyan color represent-
ing the increase/decrease in electron density. λi(amu−1/2 bohr−1

) denotes the
singular value of the ith MC-NRO pair. Also shown below each singular value is
the contribution of the MC-NRO pair to the overall density change. The isovalues
of MC-NRO and density change are 0.0250 and 0.006 25, respectively.

FIG. 6. Energy difference between CASSCF(2,2) and CASSCF(2,10) results.

homonuclear reaction H + H → H2, the reactants, two hydrogen
atoms with an isolated electron each, do not have radial tight–diffuse
correlations, but the product, hydrogen molecule, does, and the
radial tight–diffuse correlations increase. In fact, in the MC-NRO
on the left in Fig. 5(b), there are extra radial nodes with nonzero
occupancy, indicating the presence of tight–diffuse correlations.

Through the analysis of hydrogen molecule formation with
different active spaces, it was shown that MC-NRO basis properly
characterizes the density change along the covalent bond formation.
Also, it should be reemphasized that the sum of squares of the sin-
gular values of MC-NRO can provide a kind of criterion to verify the
quality of the active space in terms of electron density changes along
the reaction path. Actually, the expanded active space was improved
in terms of both density change and energy. Since the sum of square
of singular values of MC-NROs is equal to square of the Frobenius
norm of the matrices decomposed by SVD, validation of active space

FIG. 7. Potential energy curve of the singlet ground state of the nitrogen molecule
(black curve) and the sum of squares of the singular values of MC-NROs (denoted
by ∑iλ2

i ) for the four blocks, active–active (red curve), secondary-active (blue
curve), active–inactive (yellow curve), and secondary-inactive (green) blocks,
as a function of N⋅ ⋅ ⋅N distance. The electronic structure is calculated at the
CASSCF(6,6)/cc-pVTZ level.
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itself does not necessarily require the computation of MC-NROs.
Thus, it will be sufficient for chemical reaction analysis to perform
MC-NRO analysis only for the validated active space.

B. Nitrogen molecule
As a second example, MC-NRO analysis was applied to the

triple bond formation of N2. The potential energy curve for the sin-
glet ground state (black curve) of N2 at CASSCF(6,6)/cc-pVTZ54 is
shown in Fig. 7. The active space consists of six 2p orbitals of two
nitrogen atoms. The sum of squares of the singular values, indi-
cating the degree of electronic density change, is also shown for
the four blocks: active–active, secondary-active, active–inactive, and
secondary-inactive blocks. While the active–active contribution is
dominant at the early stages of bond formation, the secondary-active
and active–inactive contributions are non-negligible near the equi-
librium bond length. Thus, the active space consisting only of 2p
orbitals seems to be unsatisfactory near equilibrium. However, it
would be meaningful to investigate the cause of such poor behavior.
Therefore, we first show an active–active MC-NRO that under-
goes a bond formation process. Next, we show the secondary-active
and active–inactive MC-NROs near equilibrium. Figure 8 shows the
active–active MC-NROs for R = 2.000 Å, which clearly shows the
formation of a σ bond, ϕR

1ϕ
L
1 , and two π bonds, ϕR

4,5ϕ
L
4,5.

Figure 9 shows the secondary-active and active–inactive MC-
NROs at R = 1.120 Å. The secondary MC-NROs with large singular
values work to concentrate the electron density around the bonding
region, as in the case of hydrogen molecule. This result indicates that
AOs with higher principal quantum number than valence AOs work
to concentrate the electron density around the nucleus and relax

FIG. 8. The active–active MC-NRO pairs for the N–N triple bond formation for
R = 2.000 Å. ϕR

i and ϕL
i represent the ith right and left MC-NROs, and the numbers

in parentheses indicate the occupation numbers. The product of each MC-NRO
pair is also shown, with the yellow/cyan color representing the increase/decrease
in electron density. λi(amu−1/2 bohr−1

) denotes the singular value of the ith MC-
NRO pair. Also shown below each singular value is the contribution of the MC-NRO
pair to the overall density change. The isovalues of MC-NRO and density change
are 0.020 and 0.004, respectively.

FIG. 9. (a) The dominant secondary-active and (b) active–inactive MC-NRO pairs
for N–N triple bond formation at R = 1.120 Å. ϕR

i and ϕL
i represent the ith right and

left MC-NROs, and the numbers in parentheses indicate the occupation number.
The product of each MC-NRO pair is also shown, with the yellow/cyan color repre-
senting the increase/decrease in electron density. λi(amu−1/2 bohr−1

) denotes
the singular value of the ith MC-NRO pair. Also shown below each singular value is
the contribution of the MC-NRO pair to the overall density change. The isovalues
of MC-NRO and density change are 0.020 and 0.004, respectively.

nuclear repulsion through the formation of covalent bonds. There-
fore, it is ideal that AOs with one higher principal quantum number
than the valence AOs relevant for bond formation should also be
included in the active space. Inactive MC-NROs with large singu-
lar values are the σu

∗ and σg orbitals, which consist of 2s orbitals.
The importance of these two orbitals may be understood in terms
of sp hybridization. In summary, the active–inactive contribution
is attributed to the use of a non-full-valence active space without
2s AOs, and the secondary-active contribution is attributed to the
lack of an AO with one higher principal quantum number than the
valence AO, which is important for density concentration around
nuclei. Thus, the MC-NRO method can indicate which MOs should
be added to the active space based on density changes along the reac-
tion path. Although it is not easy to add all dominant MC-NROs to
the active space due to computational costs, the MC-NRO method
provides suggestions for improving the quality of the active space.

C. Diels–Alder reaction
As a more practical example, the Diels–Alder reaction, which

can be reproduced by a single-determinant wavefunction, was ana-
lyzed by the MC-NRO method. The purpose of this application is
to confirm that the MC-NRO analysis is consistent with the conven-
tional understanding of a well-studied reaction. The energy variation
along the intrinsic reaction coordinate (IRC) for the Diels–Alder
reaction of ethylene and 1,3-butadiene in the singlet ground state
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FIG. 10. Change of potential energy
along the IRC of the Diels–Alder
reaction of ethylene with 1,3-butadiene
(black curve), as well as change of
the sum of squares of singular values
of MC-NRO for the active–active (red
curve), secondary-active (blue curve),
active–inactive (yellow curve), and
secondary-inactive (green) blocks
(∑iλ2

i ), at the CASSCF(8,7)/cc-pVTZ
level. s is the reaction coordinate.
The geometries of reactants, TS, and
products are shown with the values of
the reaction coordinates.

(black curve) calculated at the CASSCF(8,7)/cc-pVTZ level is shown
in Fig. 10. The Cs symmetry is preserved along the IRC in this
system. The sum of squares of the singular values, which indi-
cate the degree of electron density change, is also shown for the
four blocks: active–active, secondary-active, active–inactive, and
secondary-inactive blocks. It can be seen that the active–active con-
tribution is dominant throughout the IRC. Thus, the active space
appears to be large enough to characterize density changes along
the IRC. The peak position of the sum of squares of the singu-
lar values indicates that the electron density changes dramatically
at the TS. The small change in the sum of squares of the singular
values around 4.6 amu1/2 bohr in Fig. 10 contributes to strength-
ening the C–C covalent bonds between ethylene and 1,3-butadiene
(Fig. S2 in the supplementary material). Density change to follow
the conformational change around the π bond to get planer is also
observed.

There is discontinuous behavior of the sum of squares of singu-
lar values of MC-NRO in Fig. 10, e.g., at −10.30 amu1/2 bohr and
around the TS. Such discontinuity originates from discontinuous
density matrix change along the IRC. Since the singular values are
computed using density matrix derivative evaluated by numerical
differentiation, a discontinuity of the density matrix leads to that of
the singular values. Also, the discontinuity tends to appear at the
ends of IRCs where IRCs often show staggered behavior. However,
it must be noted that the nature of active space and MC-NROs does
not change discontinuously around these discontinuous points. So,
such discontinuity seems not fatal for qualitative analysis of electron
transfer during chemical reactions.

The MC-NROs at TS are shown in Fig. 11. The first MC-
NRO pair characterizes electron transfer from the C1–C2 and

C3–C4 π bonds of 1,3-butadiene to the π∗ orbital of ethylene.
The second MC-NRO pair, on the other hand, characterizes elec-
tron transfer from the π bond of ethylene to the 1,3-butadiene.
This result is consistent with our previous study that analyzed the
Diels–Alder reaction with NRO at the HF/6-31G(d,p) level.33 This
result is also consistent with the conventional understanding of reac-
tion mechanism based on frontier orbital theory,60 in which the
mutual electron transfer from the highest occupied MO (HOMO)

FIG. 11. Active–active MC-NRO pairs for the Diels–Alder reaction at TS. ϕR
i and ϕL

i
represent the i-th right and left MC-NROs, and the numbers in parentheses indi-
cate the occupation number. The product of each MC-NRO pair is also shown,
with the yellow/cyan color representing the increase/decrease in electron den-
sity. λi(amu−1/2 bohr−1

) denotes the singular value of the i-th MC-NRO pair.
Also shown below each singular value is the contribution of the MC-NRO pair to
the overall density change. The isovalues of MC-NRO and density change are
0.020 and 0.004, respectively. The black arrows indicate the motion of the normal
vibrational mode with an imaginary frequency from TS toward the product.
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FIG. 12. Changes of potential energy
along the IRC of the [1,5]-sigmatropic
rearrangement of 1,3-pentadiene (black
curve), as well as change of the sum of
squares of singular values of MC-NROs,
denoted by ∑iλ2

i , for the four blocks:
active–active (red curve), secondary-
active (blue curve), active–inactive
(yellow curve), and secondary-inactive
(green), at the CASSCF(6,6)/cc-pVTZ
level. Geometric structures with reac-
tion coordinates for TS and product
(reactant) are shown.

FIG. 13. Changes of potential energy
along the IRC of the [1,5]-sigmatropic
rearrangement of 1,3-pentadiene (black
curve), as well as change of the sum of
squares of singular values of MC-NROs,
denoted by ∑iλ2

i for four blocks,
active–active (red curve), secondary-
active (blue curve), active–inactive
(yellow curve), and secondary-inactive
(green), at the CASSCF(8,8)/cc-pVTZ
level. Geometry and reaction coordi-
nates of TS and product (reactant) are
shown.
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of 1,3-butadiene/ethylene to the lowest unoccupied MO (LUMO) of
ethylene/1,3-butadiene drives the Diels–Alder reaction. The density
changes shown by MC-NRO clearly characterize the mutual elec-
tron transfer. It is also noteworthy that MC-NRO belongs to the
irreducible representation of Cs symmetry and, therefore, that chem-
ical reactions can also be analyzed in terms of symmetry based on
MC-NRO.

D. Sigmatropic rearrangement
So far, we have examined examples where symmetry is pre-

served along the IRC. In the [1,5]-sigmatropic rearrangement of
1,3-pentadiene, the TS has Cs symmetry and falls to C1 symmetry
as it proceeds along the IRC. For this reaction, we performed IRC
calculations at the CASSCF(6,6)/cc-pVTZ level and performed MC-
NRO analysis. Figure 12 shows changes of potential energy and the
sum of squares of singular values indicating the degree of electronic
density change for four blocks along the IRC. It can be seen that
the active space is not large enough to describe the density change
because the contribution of the secondary-active and active–inactive
blocks is not negligible around the TS.

Considering the above result, the active space was refined by
adding one dominant secondary MC-NRO and one dominant inac-
tive MC-NRO to the active space at the TS, and the TS geometry
was reoptimized with the improved active space. Figure 13 shows the
change in energy and sum of squares of singular values along the IRC
at the CASSCF(8,8)/cc-pVTZ level. It can be seen that the quality of
the active space can be improved by adding a dominant MC-NRO
outside the original active space. Figure 14 shows the energy dif-
ference between the CASSCF(6,6) and CASSCF(8,8) results. Note
that the IRC is obtained in each active space. The energy differ-
ence is relatively large near TS, where MO mixing between active
and non-active spaces is observed in Fig. 12. This result suggests
that the expansion of the active space with MC-NRO basis effectively
improves the quality of the active space. However, this does not nec-
essarily mean that the addition of dominant non-active MC-NRO to
the active space always produces good results, since the addition of
the MC-NRO may cause problems such as the failure of CASSCF to
convergence.

FIG. 14. Energy difference between CASSCF(6,6) and CASSCF(8,8) results for
the [1,5]-sigmatropic rearrangement of 1,3-pentadiene along the IRC.

FIG. 15. Active–active MC-NRO pairs for the [1,5]-sigmatropic rearrangement at
TS. ϕR

i and ϕL
i represent the ith right and left MC-NROs, and the numbers in

parentheses indicate the occupation number. The product of each MC-NRO pair
is also shown, with the yellow/cyan color representing the increase/decrease in
electron density. λi(amu−1/2 bohr−1

) denotes the singular values of the ith MC-
NRO pair. Also shown below each singular value is the contribution of the MC-NRO
pair to the overall density change. The isovalues of MC-NRO and density change
are 0.020 and 0.004, respectively. The black arrows indicate the normal mode of
imaginary frequency directed from TS to the product.

The dominant MC-NROs at TS optimized with extended active
space are shown in Fig. 15. The first MC-NRO pair shows a
C–H σ bond rearrangement with a density increase/decrease in the
formed/dissociated C–H bond region. A rearrangement of the π
bond from C3–C4 to C2–C3 is also observed. The second MC-NRO
pair describes a π bond rearrangement from C1–C2 to C4–C5. These
representative orbitals for reaction, automatically extracted by the
MC-NRO method, are consistent with the representative orbitals
in the conventional correlation diagram.61 Thus, the two MC-NRO
pairs successfully characterize concerted bonding rearrangements
in the [1,5]-sigmatropic rearrangement of 1,3-pentadiene. It was
also confirmed that the MC-NRO method works without special
problems even when there is symmetry reduction on leaving the TS.

FIG. 16. Pushing-arrow diagram and schematic of electron transfer based on MC-
NRO analysis of [1,5]-sigmatropic rearrangement of 1,3-pentadiene. The curly
arrows of pushing-arrow diagram represent the movement of an electron pair. Note
that the dotted arrows in MC-NRO picture just show the direction of electron trans-
fer of the first MC-NRO pair (orange) and the second MC-NRO pair (blue). They
do not represent the movement of an electron pair, i.e., they do not indicate the
number of electrons.
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It should be noted that the electron transfer shown by the
MC-NRO method is not consistent with the conventional picture
represented by the arrow-pushing diagram (Fig. 16).61 According to
the arrow-pushing diagram, electron transfer occurs from C1–C2
to C1–H, from C3–C4 to C2–C3, and from C5–H to C4–C5. On
the other hand, based on the MC-NRO method, electron trans-
fer occurs from C5–H to C1–H, from C3–C4 to C2–C3, and from
C1–C2 to C4–C5. The inconsistency is not caused by the symme-
try at the TS, and actually electron transfer occurs in the same
manner at other geometries along the IRC (Fig. S3 in the supple-
mentary material). Additionally, this kind of inconsistency between
the arrow-pushing picture and molecular orbital picture is also seen
in Diels–Alder reaction in Subsection III C where the symmetry of
the system is preserved (Cs symmetry). For electron transfer analysis
based on quantum chemistry calculation, MC-NRO method will be
preferable to pushing-arrow method because MC-NRO is obviously
consistent with the computational results while pushing-arrow is not
necessarily consistent with.

E. Intramolecular hydrogen transfer
of malonaldehyde in the excited state

As a final example, the MC-NRO method is applied to
the intramolecular hydrogen transfer of malonaldehyde in the S1
state.62–66 Excited state reactions are the most important target of
MC-NRO analysis, since a multiconfigurational wavefunction is
required to describe excited states. The S1 state of malonaldehyde

FIG. 17. Natural orbitals of malonaldehyde associated with electronic excitation
from S0 to S1. The geometry is optimized in the S1 state. Numbers in parentheses
indicate the occupation number of each natural orbital.

is characterized by a one-electron n-π∗ excitation.62–66 Figure 17
shows the natural orbitals related to the excitation to the S1 state
obtained with the S1-optimized geometry at the CASSCF(12,9)/cc-
pVTZ level. The natural orbitals indicate excitation from the in-
plane lone pair of the oxygen atom (hole) to the out-of-plane π∗
orbital (particle). Figure 18 shows changes of the potential energy
and the sum of squares of the singular values along the IRC. The
active–active contribution is dominant throughout the IRC, so the
active space is large enough to characterize density changes.

FIG. 18. Change of potential energy
along the IRC of the hydrogen transfer
reaction of malonaldehyde in the S1
state (black curve), as well as change
of the sum of squares of singular
values of MC-NROs for the four blocks:
active–active (red curve), secondary-
active (blue curve), active–inactive
(yellow curve), and secondary-inactive
(green), at the CASSCF(12,9)/cc-pVTZ
level. The geometry of TS and product
(reactant) is shown with the values of
the reaction coordinates.
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Figure 19 shows the MC-NROs at TS. The first and second MC-
NRO pairs show that the electron is moving in the same direction as
the proton migration. This is consistent with the behavior of the hole
shown in Fig. 17. As the proton moves from the left oxygen to the
right oxygen, the hole center moves from the right oxygen to the left
oxygen. Therefore, the electron density moves in the opposite direc-
tion of the hole migration, i.e., in the same direction as the proton
migration. Since the electron moves with the proton, this reaction
should be characterized as hydrogen transfer rather than proton
transfer. This is contrary to migration in the ground state, where
the electron moves in the opposite direction of proton migration.33

The π density change exhibited by the fourth and fifth MC-NRO
pairs is smaller than the density change exhibited by the first and
second MC-NRO pairs. This is consistent with the behavior of the
particles shown in Fig. 17. The particles are delocalized throughout
the molecular plane, and the shape of the particles is hardly changed
by hydrogen transfer. Therefore, the change in π density is relatively
small. As described above, the MC-NRO method can systematically

FIG. 19. Active–active MC-NRO pairs for hydrogen transfer of malonaldehyde at
TS in the S1 state. ϕR

i and ϕL
i denote the ith right and left MC-NROs, and the num-

bers in parentheses indicate the occupation number. The product of each MC-NRO
pair is also shown, with the yellow/cyan colors representing the increase/decrease
in electron density. λi(amu−1/2 bohr−1

) denotes the singular value of the i-th
MC-NRO pair. Also shown below each singular value is the contribution of the
MC-NRO pair to the overall density change. The isovalues of MC-NRO and density
change are 0.020 and 0.004, respectively. The black arrows indicate the normal
mode of imaginary frequency from TS toward the product.

extract representative orbitals for reaction in electronically excited
state. Although there are useful orbitals that characterize the nature
of excited states, such as natural transition orbitals (NTOs),67 nat-
ural difference orbitals (NDOs),68 and natural orbitals, the ability
to systematically extract representative orbitals for reaction is a fea-
ture of MC-NRO. Thus, MC-NRO is expected to be a powerful tool
for studying electron mobility in reactions in electronically excited
states.

IV. CONCLUSION
In this paper, we extend our recently proposed natural reaction

orbital (NRO) to multiconfigurational wavefunction and propose
the multiconfiguration natural reaction orbital (MC-NRO), which
can reveal the reaction mechanism along the reaction path in terms
of electron transfer. In the NRO and MC-NRO methods, pairs of
representative orbitals with common singular values are generated
by applying SVD to a matrix that characterizes the electron den-
sity change due to the displacement of nuclear coordinates. The
importance in the reaction of the electron transfer represented by
each representative orbital pair can be evaluated by the magnitude
of the singular value. By taking the product of each representative
orbital pair, the change in electron density for a given nuclear coor-
dinate displacement can be visualized. Since the MC-NRO method
by definition does not violate orbital invariance, the properties of
each MC-NRO other than density change can be analyzed without
suffering from contributions from outside the variational manifold.
In addition, MC-NRO belongs to an irreducible representation of
the point group of the molecular structure. The MC-NRO method is
based on multiconfigurational wavefunction theory and is expected
to be a practical tool for extracting the qualitative essence of a wider
range of chemical reactions, such as covalent bond dissociation and
chemical reactions in electronically excited states.

The most important advantage of the MC-NRO method is
its ability to automatically extract representative orbitals for a
given chemical reaction without requiring in-depth knowledge of
the chemical reaction. In particular, the systematic identification
of representative orbitals for a given reaction in the electroni-
cally excited state is very useful for studying reactions in excited
states that are more complex than those in the ground state. It
is also shown that the MC-NRO method can be used to verify
the descriptive performance of the active space of the CASSCF
wavefunction in reaction processes. Using the MC-NRO method,
not only the change in electron density due to orbital mixing but
also the change in CI coefficients can be characterized in terms
of MOs. Visualization of complex CI coefficients by MOs is very
useful for analyzing electron mobility and is expected to enhance
our understanding of various chemical phenomena in electronically
excited states.

SUPPLEMENTARY MATERIAL

See the supplementary material for more information on the
following: S1 for a compact explanation for the matrix of Eq. (16)
in II C; S2 for procedure to compute MC-NRO for the electronic
structure theories other than CASSCF; S3 for properties of MC-
NRO, symmetry, and behavior with regard to orbital rotation;
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S4 for natural orbitals in the active space of hydrogen molecule
at CASSCF(2,10)/aug-cc-pVQZ level (III A); S5 for MC-NRO of
Diels–Alder reaction at s = 4.59 amu1/2 bohr in Fig. 10 (III C); and S6
for MC-NRO of [1,5]-sigmatropic rearrangement at s = 0.50 amu1/2

bohr (III D).
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