
 

Instructions for use

Title Effect of prenatal exposure to phthalates on epigenome-wide DNA methylations in cord blood and implications for fetal
growth : The Hokkaido Study on Environment and Children's Health

Author(s) Miura, Ryu; Ikeda-Araki, Atsuko; Ishihara, Toru; Miyake, Kunio; Miyashita, Chihiro; Nakajima, Tamie; Kobayashi,
Sumitaka; Ishizuka, Mayumi; Kubota, Takeo; Kishi, Reiko

Citation Science of the total environment, 783, 147035
https://doi.org/10.1016/j.scitotenv.2021.147035

Issue Date 2021-08-20

Doc URL http://hdl.handle.net/2115/90324

Rights © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/

Rights(URL) https://creativecommons.org/licenses/by-nc-nd/4.0/

Type article (author version)

File Information Sci Total Environ 783 147035.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


1 

 

Effect of prenatal exposure to phthalates on epigenome-wide DNA 1 

methylations in cord blood and implications for fetal growth: The 2 

Hokkaido Study on Environment and Children’s Health 3 

 4 

Ryu Miuraa, Atsuko Arakia, Toru Ishiharaa,b, Kunio Miyakec, Chihiro Miyashitaa, Tamie 5 

Nakajimad, Sumitaka Kobayashia, Mayumi Ishizukae, Takeo Kubotaf, Reiko Kishia,* 6 

 7 

aHokkaido University Center for Environmental and Health Sciences, Sapporo, Japan 8 

bGraduate School of Human Development and Environment, Kobe University, Kobe Japan 9 

cDepartments of Health Sciences, Interdisciplinary Graduate School of Medicine and 10 

Engineering, University of Yamanashi, Yamanashi, Japan 11 

dCollege of Life and Health Sciences, Chubu University, Aichi, Japan 12 

eDepartment of Environmental Veterinary Sciences, Graduate School of Veterinary 13 

Medicine, Hokkaido University, Sapporo, Japan 14 

fFaculty of Child Studies, Seitoku University, Chiba, Japan 15 

 16 

*Correspondence: e-mail: rkishi@med.hokudai.ac.jp  17 

mailto:rkishi@med.hokudai.ac.jp


2 

 

ABSTRACT  18 

Prenatal exposure to phthalates negatively affects the offspring’s health. In particular, 19 

epigenetic alterations, such as DNA methylation, may connect phthalate exposure with health 20 

outcomes. Here, we evaluated the association of di-2-ethylhexyl phthalate (DEHP) exposure 21 

in utero with cord blood epigenome-wide DNA methylation in 203 mother-child pairs 22 

enrolled in the Hokkaido Study on Environment and Children’s Health, using the Illumina 23 

HumanMethylation450 BeadChip. Epigenome-wide association analysis demonstrated the 24 

predominant positive associations between the levels of the primary metabolite of DEHP, 25 

mono(2-ethylhexyl) phthalate (MEHP), in maternal blood and DNA methylation levels in 26 

cord blood. The genes annotated to the CpGs positively associated with MEHP levels were 27 

enriched for pathways related to metabolism, the endocrine system, and signal transduction. 28 

Among them, methylation levels of CpGs involved in metabolism were inversely associated 29 

with the offspring’s ponderal index (PI). Further, clustering and mediation analyses suggested 30 

that multiple increased methylation changes may jointly mediate the association of DEHP 31 

exposure in utero with the offspring’s PI at birth. Although further studies are required to 32 

assess the impact of these changes, this study suggests that differential DNA methylation 33 

may link phthalate exposure in utero to fetal growth and further imply that DNA methylation 34 

has predictive value for the offspring’s obesity. 35 

 36 

Keywords: EWAS, DEHP, MEHP, increased methylation, ponderal index  37 

 
Abbreviations: EDC, Endocrine-disrupting chemicals; EWAS, Epigenome-wide association studies; DMR, 

Differentially methylated regions; DEHP, di-2-ethylhexyl phthalate; CpG, cytosine-guanine dinucleotide; PI, 

Ponderal index; MEHP, mono(2-ethylhexyl) phthalate; BMI, Body mass index; FDR, False discovery rate; 

DMCpG, differentially methylated CpG, DRHM-CpGs, DEHP-related higher methylated CpGs;  KEGG, Kyoto 

Encyclopedia Genes and Genomes; SD, Standard deviation; TSS200, 200 bases from the transcription start site; 

IGR, Intergenic region; GO, Gene Ontology; MAPK, Mitogen-activated protein kinase. 
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1. Introduction 38 

Phthalates are widely used plasticizers (Koch et al. 2013) included in the composition 39 

of consumer products, such as food packages, toys, and personal care products, which can 40 

lead to chemical exposure through ingestion, inhalation, and skin adsorption (Ait Bamai et al. 41 

2015; Jensen et al. 2015). They are potential endocrine-disrupting chemicals (EDCs) and 42 

have been found to exert various adverse effects that negatively impact an individual’s 43 

health. In particular, phthalate exposure in utero has been linked to adverse birth outcomes, 44 

such as decreased birth size (Minatoya et al. 2017; Song et al. 2018; Whyatt et al. 2009) 45 

preterm birth (Ferguson et al. 2017; Huang et al. 2014), pregnancy loss (Gao et al. 2017), and 46 

reduced anogenital distance in infants (Swan et al. 2015). Prenatal exposure to phthalates can 47 

also affect childhood health outcomes, such as behavioral problems (Engel et al. 2010; Engel 48 

et al. 2009; Minatoya et al. 2018b; Tellez-Rojo et al. 2013), obesity (Buckley et al. 2016; 49 

Kim and Park 2014), and allergic diseases (Ait Bamai et al. 2018; Jaakkola and Knight 2008; 50 

Whyatt et al. 2014). Based on these, although phthalates are rapidly metabolized and 51 

excreted, early life exposure to phthalates may contribute to long-term health outcomes 52 

(Koch et al. 2013). However, the potential mechanisms underlying their long-lasting effects 53 

have not been fully elucidated. Epigenetic modifications, e.g., DNA methylation, may 54 

represent potential mechanisms by which phthalate exposure in utero exerts long-term 55 

effects. Several studies have indicated that epigenetic changes may connect EDC exposure 56 

in the developmental stage with long-term adverse health outcomes (Barouki et al. 2018; Ho 57 

et al. 2017; McLachlan 2016; Tapia-Orozco et al. 2017). In addition, animal studies have 58 

demonstrated that developmental phthalate exposure was associated with DNA methylation 59 

changes in the offspring (Abdel-Maksoud et al. 2015; Manikkam et al. 2013; Martinez-60 

Arguelles and Papadopoulos 2015; Rajesh and Balasubramanian 2015; Sekaran and 61 

Jagadeesan 2015; Wu et al. 2010). Several human cohort studies have also shown that 62 
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prenatal phthalate exposure correlates with DNA methylation changes in selected candidate 63 

genes, using placenta (LaRocca et al. 2014; Zhao et al. 2016; Zhao et al. 2015) or cord blood 64 

samples (Huang et al. 2018; Huen et al. 2016; Montrose et al. 2018; Tindula et al. 2018). 65 

Recently, a few epigenome-wide association studies (EWASs) were published, allowing a 66 

unbiased assessment of epigenetic modifications associated with environmental factors 67 

(Christensen and Marsit 2011). Among them, one study reported that phthalate exposure 68 

altered the placental methylome and DNA methylation modification on the epidermal growth 69 

factor receptor significantly mediated the associated effects from phthalates exposure on 70 

early placental function (Grindler et al. 2018). Moreover, several differentially methylated 71 

regions (DMRs) in cord blood associated with prenatal phthalate exposure have been 72 

identified (Solomon et al. 2017). Genes with these regions are implicated in the inflammation 73 

reaction, cancer, endocrine function, and male fertility. Another study also investigated 74 

genome-wide DNA methylation changes in cord blood associated with prenatal exposure to 75 

the most common phthalate, di-2-ethylhexyl phthalate (DEHP), and suggested that DNA 76 

methylation in genes involved in the androgen response, spermatogenesis, and cancer-related 77 

pathways may be affected by prenatal exposure to this chemical (Chen et al. 2018). Although 78 

existing evidence supports the role of prenatal phthalate exposure in modifying DNA 79 

methylation, few studies have focused on the potential effects of phthalate exposure-80 

associated methylation changes on the developing fetus and later in life.  81 

Here, using an epigenome-wide approach, we aimed to elucidate the relation between 82 

prenatal DEHP exposure and cord blood DNA methylation from participants of the Hokkaido 83 

Study. Furthermore, we explored whether DNA methylation at the identified loci mediated 84 

the effect of prenatal DEHP exposure on the ponderal index (PI) at birth as an indicator of 85 

fetal growth. 86 

 87 
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2. Materials and Methods 88 

2.1 Study population 89 

Details of participants enrolled in the Sapporo cohort of the Hokkaido Study on 90 

Environment and Children’s Health were previously described (Kishi et al. 2017; Kishi et al. 91 

2013; Kishi et al. 2011).  92 

 93 

2.2 Measurement of the primary metabolite of DEHP; mono(2-ethylhexyl) phthalate 94 

(MEHP) 95 

Maternal blood samples were obtained during the hospital examination of participants 96 

and stored at −80 °C. Concentrations of MEHP in maternal blood, as an indicator of DEHP 97 

exposure, were measured via gas chromatography mass spectrometry at Nagoya University, 98 

as described (Araki et al. 2017; Araki et al. 2014; Jia et al. 2015). The detection limit was 99 

0.28 ng/mL. 100 

 101 

2.3 450K DNA methylation analysis 102 

Umbilical cord bloods were collected immediately after birth and then stored at −80 °C. 103 

Cord blood DNA methylation levels at 485,577 CpGs was measured using the Infinium 104 

HumanMethylation450 BeadChip (Illumina Inc., San Diego, CA, USA) by G&G Science 105 

Co., Ltd. (Fukushima, Japan). Details of the 450K methylation analysis have been described 106 

previously (Miura et al. 2019; Miura et al. 2018). After quality control (Aryee et al. 2014),  107 

functional normalization (Fortin et al. 2014) and reducing the batch effects (Leek et al. 2012), 108 

-values, ranging from 0-1 for 0% to 100% methylated, at 426,413 CpG probes were 109 

obtained. 110 

 111 

2.4 Data analysis 112 
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Among the 514 participants, 203 mother-infant pairs had detectable MEHP levels in 113 

maternal blood and cord blood DNA methylation data. Data analyses methods were 114 

previously described (Miura et al. 2019; Miura et al. 2018). Briefly, the associations of the -115 

values with MEHP natural log (ln)-transformed concentrations were determined using robust 116 

linear regression analysis (Fox and Weisberg 2011) with the limma package in the 117 

R/Bioconductor, which was adjusted for maternal age, level of education, pre-pregnancy 118 

body mass index (BMI), smoking status during pregnancy, blood sampling periods, 119 

gestational age, infant sex, and estimates of cord blood cell counts for CD4+ T cells, CD8+ T 120 

cells, monocytes, granulocytes, B cells, and nucleated red blood cells. The proportion of cord 121 

blood cells was estimated using the minfi package in the R (ver.3.3.2)/Bioconductor (ver. 122 

3.3). We selected covariates previously reported to be associated with exposure or cord blood 123 

DNA methylation. For multiple comparisons, p-values were adjusted using a false discovery 124 

rate (FDR) to obtain q-values. Since we obtained a reduced number of FDR-significant 125 

findings, we evaluated the differentially methylated CpGs (DMCpGs) with an uncorrected p-126 

value < 2.5E-04. We also assessed DEHP-related higher methylated CpGs (DRHM-CpGs) 127 

for functional enrichment with Kyoto Encyclopedia Genes and Genomes (KEGG) pathways 128 

(Kanehisa et al. 2002) via the gometh function of the missMethyl package in R/Bioconductor 129 

(Phipson et al. 2016). 130 

To ascertain whether MEHP levels were associated with the characteristics of 131 

participants, we utilized the Spearman’s correlation test, Mann–Whitney U test, and Kruskal–132 

Wallis test. 133 

Moreover, we examined associations between methylation levels (-values) at DRHM-134 

CpGs and the PI at birth using a multivariate regression model adjusted for maternal age, 135 

level of education, parity, pre-pregnancy BMI, smoking status during pregnancy, gestational 136 
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age, and infant sex, with JMP Pro 14 (SAS Institute Inc., Cary, NC, USA). The PI was 137 

calculated as follows: PI (kg/m3) = birth weight (kg) / (birth length (m))3. 138 

After identification of CpGs related to the PI, we tested the methylation patterns of 139 

these CpGs for mediation in the association between maternal MEHP levels and the PI, using 140 

a structural equation model from lavaan in R ver. 3.6.3. CpGs inversely associated with the 141 

PI and with p-value < 0.1 were selected, and z-scores for methylation levels were calculated. 142 

To determine inter-individual patterns in DNA methylation, we performed hierarchical 143 

clustering with Euclidean distance and the Ward D2 agglomeration method (Clifford et al. 144 

2011) in R and stratified participants by methylation profile. In the mediation analysis, 145 

methylation levels () or the methylation cluster was used as a mediator, and models were 146 

adjusted for ln(MEHP), maternal age, gestational age, and infant sex in the association 147 

between the methylation cluster and the PI, and for maternal age, smoking during pregnancy, 148 

and blood sampling periods in the association between ln(MEHP) and the methylation. These 149 

factors were associated with the PI and methylation, respectively, with p < 0.1 in the 150 

regression analysis. The clustering approach enables us to clarify whether the methylation in 151 

each identified CpGs had occurred simultaneously or independently. In addition, they allow 152 

to adequately incorporate the mediators into the model considering the inter-individual 153 

patterns in DNA methylation. 154 

The flow for the analyses is represented in Supplementary Figure S1. 155 

 156 

2.5 Ethics 157 

This study was conducted with written informed consent from all subjects. The study 158 

protocol was approved by the institutional Ethical Board for Human Gene and Genome 159 

Studies at the Hokkaido University Graduate School of Medicine and the Hokkaido 160 
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University Center for Environmental and Health Science. All experiments were performed in 161 

accordance with the relevant guidelines and regulations. 162 

 163 

3. Results 164 

3.1 Study population 165 

The characteristics of the subjects are shown in Table 1. The median MEHP 166 

concentration in maternal blood was 10.3 ng/mL (interquartile range: 5.8–15.3 ng/mL), with 167 

a 100% detection rate. The average ± standard deviation (SD) of the mothers’ age was 29.8 ± 168 

4.9 years. Maternal blood sampling periods were significantly associated with MEHP levels 169 

(p-value < 0.01). Of the 203 newborns, 94 (46.3%) were male. The mean gestational age, 170 

birth weight, and birth length were 39.9 weeks, 3137.5 g, and 48.5 cm, respectively. The 171 

MEHP level was negatively correlated with the PI (ρ = –0.133, p = 0.059). 172 

 173 

3.2 EWAS of DEHP exposure in utero 174 

In adjusted robust linear regression models, there were two CpGs with significant 175 

epigenome-wide methylation alteration (FDR q-value < 0.05): one located at 200 bases from 176 

the transcription start site (TSS200) of ZC3H10 (cg26409978) and another mapped to SDK1 177 

(cg00564857), as shown in Figure 1A. Maternal MEHP levels showed more positive 178 

association with methylation levels than negative association, as seen in the volcano plot. For 179 

instance, of 271 DMCpGs with uncorrected p-values < 2.5E-04, 253 (93.4%) were positively 180 

associated with MEHP levels (Figure 1B). The list of the DMCpGs with p-values < 2.5E-04 181 

is available in the Supplemental Table S1. 182 

We had very few findings with a significant false discovery rate (FDR) to confirm the 183 

effect of prenatal DEHP exposure on DNA methylation changes. We examined the location 184 

of the DRHM-CpGs with p-value < 2.5E-04 in gene features and CpG islands; notably, we 185 
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found statistically significant differences in the association with MEHP levels considering the 186 

expected proportions (for gene features, Χ2 p-value = 0.004; for CpG islands, Χ2 p-value = 187 

0.01; Figure 2). A decrease of methylation level in island and an increase in the intergenic 188 

region (IGR) were particularly observed. 189 

Next, we compared our results to those of a published study on the association between 190 

prenatal phthalate exposures and DNA methylation in cord blood that used Illumina 191 

HumanMethlation450 BeadChips (Solomon et al. 2017). In this study, the authors identified 192 

seven DMRs associated with MEHP levels in maternal urine at 26 gestational weeks using 193 

two different approaches (see Supplementary Table S2). We extracted the results of our 194 

EWAS at CpGs in the DMRs identified by (Solomon et al. 2017) (Table 2). Since the CpGs 195 

included in each region showed methylation alteration in the same direction, the average the 196 

partial regression coefficients were shown in Table 2. Although no CpG was associated with 197 

maternal MEHP levels with genome-wide statistical significance in our cohort, six of the 198 

seven DMRs showed increased methylation changes. Among them, five DMRs that mapped 199 

to MUC4, C5orf63, CNPY1, SVIL-AS1, and FIBIN, showed the same positive direction as 200 

those identified by (Solomon et al. 2017).  201 

 202 

3.3 Gene Ontology (GO) analysis 203 

To investigate the biological processes influenced by DEHP-associated increased 204 

methylation, we tested for KEGG pathway (Kanehisa et al. 2002) enrichment among the 253 205 

DRHM-CpGs with p < 2.5E-04. We observed 12 enriched pathways with FDR < 0.05. GO 206 

analyses of the data obtained from EWAS are inclined for cancer-related genes (Harper et al. 207 

2013) and relatively healthier children were included in the analysis; therefore, the enriched 208 

pathways excluding cancer and human disease pathways are listed in Table 3. The most 209 

significant pathway was “metabolic pathway,” with FDR = 2.4E-08. We also observed three 210 
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pathways involved in the endocrine system—GnRH signaling pathway, renin secretion, and 211 

cortisol synthesis and secretion—and two pathways involved in signal transduction: the 212 

mitogen-activated protein kinase (MAPK) and Notch signaling pathways. 213 

 214 

3.4 Methylation for mediation in the association between prenatal DEHP exposure and the 215 

offspring’s PI at birth  216 

Initially, we conducted multiple regression analyses to examine the association between 217 

the PI and methylation levels at 16 DRHM-CpGs on genes involved in metabolic pathways 218 

(Table 3). Of those, methylation levels at 12 DRHM-CpGs were inversely related to the PI 219 

(Figure 3). In particular, the methylation levels at cg27433759:PIK3CG, 220 

cg10548708:ACAA1, and cg07002201:FUT9 were associated with PI with p-value < 0.1. 221 

Although the methylation levels at the three CpGs were positively correlated (Supplementary 222 

Table S3), we could not determine whether the methylation in each identified CpGs had 223 

occurred simultaneously or independently. To clarify this, we stratified samples based on the 224 

methylation levels (z-scores) at those three CpGs using hierarchical clustering. This approach 225 

revealed two distinct methylation clusters: the increased methylation cluster (cluster 1, n = 226 

59) and the decreased methylation cluster (cluster 2, n = 144) (Supplementary Figure S1). 227 

Cluster 1 exhibited significantly higher methylation levels at all three CpGs than cluster 2. 228 

We then examined the differences in MEHP levels and PI between both clusters. Cluster 1 229 

showed higher MEHP levels and lower PI than cluster 2 (Supplementary Figure S2). These 230 

results demonstrated that the increased methylation in cg27433759:PIK3CG, 231 

cg10548708:ACAA1, and cg07002201:FUT9 associated with higher MEHP levels and lower 232 

PI simultaneously occurred in the current participants. Finally, we tested the methylation 233 

cluster for mediation in the association between MEHP levels and the PI (Figure 4). The 234 

mediation path through the methylation cluster explained 28.8% (indirect/total) of the effect 235 
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of MEHP levels on the PI, although methylation levels at each of the three CpGs did not 236 

mediate statistically significant effects (Supplementary Table S4). Since the methylation 237 

levels at the three CpGs were positively correlated (Supplementary Table S3), we considered 238 

total methylation levels at the three CpGs and observed a mediation effect with p-value < 239 

0.05 considering the methylation cluster as the mediator, which explained 32.7 % of the 240 

effect of MEHP levels on PI (Supplementary Table S4). 241 

 242 

4. Discussion 243 

Here, we assessed the effect of prenatal DEHP exposure on DNA methylation in cord 244 

blood and found that maternal MEHP levels were predominantly associated with increased 245 

methylation changes. The genes annotated to DRHM-CpGs were enriched for pathways 246 

related to metabolism, the endocrine system, and signal transduction. Further, clustering and 247 

mediation analyses suggested that the increased methylation changes related to metabolic 248 

pathways may link prenatal DEHP exposure to fetal growth (as indicated by the offspring’s 249 

PI at birth). 250 

As we described previously (Araki et al. 2014), maternal MEHP levels from subjects 251 

in-between the second and third trimester (median = 10.3 ng/mL) were higher than those at 252 

18 weeks of gestation (median = 1.18 ng/mL). Additionally, in most cases, phthalate 253 

metabolite levels in blood samples are noticeably higher than in urine samples (Frederiksen et 254 

al. 2010). 255 

Noteworthy, we found two DMCpGs with FDR < 0.05: cg26409978 located in TSS200 256 

of zinc finger CCCH-type domain-containing 10 (ZC3H10)) and cg00564857 mapped to 257 

SDK1 (sidekick cell adhesion molecule 1), both showing increased methylation changes. We 258 

also observed a preference for methylation positively associated with MEHP levels with p-259 

values < 2.5E-04. In a previous study using the 450K platform, (Solomon et al. 2017) 260 
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reported seven DMRs associated with MEHP levels in maternal urine at 26 gestational weeks 261 

(n = 332, median: 3.63 g/g creatinine). Our study differs in sample size, matrices, sampling 262 

time, and analysis methods; nonetheless, when we evaluated the direction of methylation 263 

changes in these DMRs, increased methylation in five of them was replicated in our data set 264 

(Table 2). The observed phthalate-induced increased methylation was also consistent with a 265 

previous study that demonstrated a positive association between prenatal levels of high 266 

molecular weight phthalate and cord blood methylation region of MEG3 (Tindula et al. 267 

2018). These results suggested that maternal MEHP would predominantly induce higher 268 

methylation in the offspring. However, other studies on cord blood methylation alterations 269 

have also reported prenatal phthalate-induced decreased methylation. A previous study 270 

demonstrated a negative association between maternal levels of monoethyl phthalate, a 271 

metabolite of diethyl phthalate, with Alu methylation and a similar but weaker association 272 

with the methylation of LINE-1 (Huen et al. 2016). In addition, mono-n-butyl phthalate and 273 

monobenzyl phthalate in maternal urine samples were inversely associated with Alu 274 

methylation (Huang et al. 2018). Another study showed that a negative association of 275 

maternal phthalate concentrations with the methylation of the metabolism-related genes IGF2 276 

and PPARA (Montrose et al. 2018), as well as LINE-1 methylation. The differences in 277 

metabolite type, measuring time, and level of phthalates may account for these disparities. 278 

We also observed an enrichment of DRHM-CpGs in the IGR, with a decrease within 279 

CpG islands (Figure 2). Previous studies showed that disease-associated and environmentally 280 

induced DMCpGs, such as those resulting from obesity or exercise intervention, have 281 

accumulated in the IGR or open seas (Grundberg et al. 2013; Huang et al. 2015; Ronn et al. 282 

2013; Zhu et al. 2018), suggesting that DNA methylation may also be dynamically regulated 283 

outside CpG islands. The enrichment of DMCpGs within the IGR may affect the function of 284 

gene expression regulators located within the region. A recent study showed that the 285 
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methylation levels at CpGs in the IGR were anticorrelated to the nearest gene expression 286 

(Zhu et al. 2018).  287 

Since prenatal DEHP exposure was predominantly associated with increased 288 

methylation changes, we conducted GO analysis for 253 DRHM-CpGs with p < 2.5E-04 to 289 

examine the effects of DEHP-associated increased methylation on the biological processes. 290 

The analysis showed the accumulation of CpGs with DEHP-induced higher methylation in 291 

metabolic pathways. The effects on these pathways are accordant with those reported in 292 

previous epidemiological studies, which have shown that phthalate exposure in utero is 293 

associated with fetal metabolic outcomes, such as decreased birth size (Minatoya et al. 2017; 294 

Watkins et al. 2016; Whyatt et al. 2009) and adipokine levels, i.e., markers of metabolic 295 

function in cord blood (Ashley-Martin et al. 2014; Minatoya et al. 2018a; Minatoya et al. 296 

2017). It is possible that increased methylation associated with exposure to DEHP in utero 297 

may affect metabolic outcomes due to down-regulation of the expression of certain genes 298 

involved in metabolic pathways. 299 

Given the above, we hypothesized that these methylation changes would disrupt fetal 300 

growth. Therefore, we examined the association between methylation levels at 16 DRHM-301 

CpGs in metabolic pathways and the PI at birth, an indicator of fetal growth, and found that 302 

methylation levels at 12 CpGs were negatively associated with the PI (Figure 3). We also 303 

analyzed the association of two CpGs that survived FDR correction (ZC3H10: cg26409978 304 

and SDK1: cg00564857) with PI and found that both the CpGs were inversely related to PI; 305 

however, it was not statistically significant ( = -6.6, 95% CI: -59.5 to 46.2 for cg26409978, 306 

 = -6.9, 95% CI: -16.9 to 3.2 for cg00564857). 307 

Among them, three CpGs, cg27433759:PIK3CG, cg10548708:ACAA1, and 308 

cg07002201:FUT9, approached statistical significance (p-value < 0.1). PIK3CG 309 

(phosphatidylinositol-4,5-bisphosphate 3-kinase) encodes a class I catalytic subunit of 310 
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phosphoinositide 3-kinase (PI3K), which phosphorylates inositol lipids and is related to the 311 

pathway affecting insulin-like growth factor 1 (IGF1)-Akt (Matheny et al. 2017) and 312 

erythropoietin-induced JAK-STAT (Cokic et al. 2012) signaling pathways. ACAA1 (acetyl-313 

CoA acetyltransferase 1) encodes an enzyme operative in the β-oxidation system of the 314 

peroxisomes and is involved in fatty acid metabolism (Islam et al. 2019). FUT9 315 

(fucosyltransferase 9) belongs to the glycosyltransferase family and is involved in 316 

glycosphingolipid biosynthesis (Ogasawara et al. 2011). Hierarchical cluster analysis 317 

confirmed that the separation of samples at the DNA methylation level positively correlated 318 

with MEHP levels (Supplementary Figures S1 and S2), indicating that the inter-individual 319 

increased methylation changes could be induced by prenatal DEHP exposure. Furthermore, 320 

although each CpG did not show significant mediation in the association between prenatal 321 

DEHP exposure and offspring’s PI, both the methylation clusters and the total methylation at 322 

the three CpGs represented significant mediation effects (p-value < 0.05) and explained 323 

28.8% and 32.7 % of the effect of MEHP levels on the PI (Figure 4 and Supplementary Table 324 

S4), respectively. In addition, the direct effects are non-significant after adding the both 325 

mediators in the models. Since the direct effects are not closer to the zero than the indirect 326 

effects, the mediators not completely but quite robustly mediate the association between 327 

maternal MEHP levels and offspring’s PI. These results suggest that multiple DEHP-induced 328 

higher methylation may jointly contribute to the effects of DEHP exposure in utero on fetal 329 

development. 330 

GO analysis also showed that DEHP-induced increased methylation was associated 331 

with the MAPK signaling pathway, including nine genes (Table 3). Of those, four genes, 332 

namely MAP2K6, CACNA1D, CACNA1C, and MAP3K3, were also involved in the endocrine 333 

system, as shown in Table 3. Recently, an experimental study showed that MEHP has an 334 

impact on MAPK pathways as well as on peroxisome proliferator-activated receptor  335 
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(PPAR) transcriptional activity, leading to the disturbance in lipid metabolism and human 336 

villous cytotrophoblast differentiation (Shoaito et al. 2019). MAPK signaling modulates a 337 

diverse range of cellular functions, cellular functions cell proliferation, differentiation, and 338 

migration. In addition to the metabolic pathway, possibly, increased methylation on the genes 339 

related to the MAPK signaling pathway may link prenatal phthalate exposure to adverse 340 

health outcomes. The effect of methylation changes identified herein, specifically in the 341 

MAPK signaling pathway, on long-term health outcomes warrant further longitudinal studies. 342 

Nonetheless, there were some limitations in this study. First, MEHP levels were 343 

measured only once between the second and third trimesters. Consequently, we need to 344 

consider that a single MEHP measurement could represent a long-term prenatal exposure due 345 

to the short half-life of MEHP. In addition, among several metabolites of DEHP, only MEHP 346 

levels were measured. MEHP is the primary metabolite of DEHP, but other secondary 347 

metabolites, such as mono(2-ethyl-5-hydroxyhexypentyl) phthalate and mono(2-ethyl-5-348 

carboxyl) phthalate, have been detected in maternal serum (Hart et al. 2014). Further, 349 

although DEHP is the most common phthalate, there are several phthalates coexisted in the 350 

environment, such as di-butyl phthalate, dimethyl phthalate, and diethyl phthalate. These 351 

chemicals, including other secondary metabolites of DEHP, should be considered and fully 352 

examined in the future. Second, since urine samples were unavailable in this study, only 353 

blood samples were used to measure maternal MEHP levels. Recently, most studies have 354 

measured urinary phthalate levels, which keeps the risk of a potential contamination to a 355 

minimum. In this study, we cautiously handled all samples to prevent ex vivo hydrolysis of 356 

DEHP and contamination. In addition, we calculated the background levels of MEHP and 357 

confirmed that external contamination was of no consequence. Third, DEHP is known to 358 

affect multiple tissues. Notably, whether the association of prenatal DEHP exposure with 359 

cord blood DNA methylation that we observed potentially represents methylation changes in 360 
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other tissues is unknown. Moreover, replication analysis using a different population or gene 361 

expression analysis is important to validate the result from epigenome-wide analysis. Without 362 

validation analysis is also a limitation of this study. Fourth, this study limited participants to 363 

mothers who delivered vaginally, meaning that relatively healthier children were included in 364 

the analysis. Therefore, the effects of DEHP exposure on DNA methylation might be 365 

underestimated. Fifth, cord blood DNA methylation and the PI at birth were cross-sectional. 366 

Subsequently, the cause and effect relation between them was undetermined. Lastly, we 367 

analyzed CpGs showing a p-value < 2.5E-04 (not epigenome-wide significance), to confirm 368 

the effect that prenatal DEHP exposure had on DNA methylation. We cannot exclude the 369 

possibility that some results might be false positives. 370 

 371 

5. Conclusion 372 

Collectively, this EWAS identified increased methylation changes associated with 373 

prenatal DEHP exposure. The DEHP-associated increased methylation changes may jointly 374 

contribute to the effects of prenatal exposure to this chemical on fetal development. 375 

DNA methylation alterations in cord blood may be involved in modulating the 376 

postnatal growth trajectory. In addition, recent studies showed the sex-specific effects of 377 

phthalate exposure on DNA methylation (Chang et al. 2020; Svobada et al. 2020). Additional 378 

studies with larger sample sizes are needed to fully elucidate the influence of prenatal DEHP 379 

exposure on cord blood DNA methylation changes and the subsequent effects on infant long-380 

term outcomes, including sex-specific health outcomes. 381 

 382 
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Figures 

 

Figure 1. Manhattan (A) and volcano (B) plots of the epigenome-wide DNA methylation 

associations with prenatal exposure to DEHP. 

 

Adjusted for maternal age, level of educational, pre-pregnancy BMI, smoking status during 

pregnancy, blood sampling periods, gestational age, infant sex, and estimates of cord blood cell 

counts. Horizontal solid lines represent the significance threshold of an FDR < 0.05. Horizontal 

dotted lines represent the threshold of a p-value < 2.5E-04. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 2. Location of DRHM-CpGs with p < 2.5E-04 (253 CpGs) compared to that of all 

CpGs in the methylation array. 

 

Χ2 test: (A) p = 0.004, (B) p = 0.01. 



 

Figure 3. Linear regression coefficients () of the PI at birth in relation to the methylation 

levels, ranging from 0–1 for 0% to 100% methylated, at CpGs positively associated with MEHP 

with p-value < 2.5E-04, mapped to the genes involved in metabolic pathways (n = 203). 

Linear regression coefficients () indicates PI changes with one unit increase in 

methylation levels. 

Error bars indicate a 95% confidential interval. Adjusted for maternal age, level of educational, 

parity, pre-pregnancy BMI, smoking status during pregnancy, gestational age, and infant sex. 
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Figure 4. Mediator model for the association of prenatal MEHP exposure, methylation cluster 

for cg27433759, cg10548708, cg7002201, and PI at birth (n = 203). 

 

Models were adjusted for maternal age and smoking status during pregnancy in path “a” and 

for ln(MEHP), maternal age, parity, gestational age, and infant sex in path “b.” 

Effect sizes with *p < 0.05 and **p < 0.01 are shown. 

 



Table 1. Characteristics of the study population and their relationships with maternal 

serum MEHP concentrations (n = 203). 

        MEHP (ng/mL) 

      Mean ± SD/ ρ/     
p-value 

      N (%) Median 25th 75th 

Maternal characteristics           

  Maternal age (year)a 29.8 ± 4.9 ρ = 0.038     0.594 

  Prenatal BMI (kg/m2)a 21.2 ± 3.0 ρ = 0.049     0.485 

  Parityb 0 110 (54.2) 10.00 5.65 15.20 0.644 

    ≧1 93 (45.8) 10.37 6.00 15.65   

  Educational level (year)b 

    ≦12 93 (45.8) 10.37 5.92 14.66 0.831 

    >12 112 (54.2) 9.92 5.65 15.42   

  Annual household income (million yen)c 

    <3 39 (19.4) 11.53 6.03 16.60 0.379 

    3–5 103 (51.2) 8.65 5.57 14.92   

    5–7 43 (21.4) 11.41 6.90 16.80   

    >7 16 (8.0) 9.83 5.42 13.48   

  Smoking during pregnancyb 

    No 167 (82.3) 10.41 5.92 15.55 0.424 

    Yes  36 (17.7) 7.80 5.23 14.11   

  Alcohol consumption during pregnancyb 

    No 132 (65.5) 10.37 5.96 15.72 0.638 

    Yes  70 (34.5) 10.22 5.40 15.09   

  Caffeine intake during pregnancy (mg/day)a 

      143.0 ± 125.8 ρ = 0.064     0.374 

  Blood sampling period (week)c 

    <32 77 (37.9) 11.41 6.64 15.28 0.009 

    32–35 48 (23.6) 12.40 6.64 17.32   

    ≧35 78 (38.4) 7.08 5.00 13.80   

Infant characteristics           

  Gestational age (week)a 39.9 ± 1.0 ρ = 0.000     0.998 

  Sexb Male 94 (46.3) 9.86 6.32 14.42 0.673 

    Female 109 (53.7) 10.41 5.63 16.31   

  Birth weight (g)a 3137.5 ± 333.3 ρ = –0.066     0.352 

  Birth length (cm)a 48.5 ± 1.5 ρ = 0.057     0.416 



  PI (kg/m3)a 27.4 ± 2.2 ρ = –0.133     0.059 

aSpearman's correlation test (ρ) 
bMann–Whitney U test 
cKruskal–Wallis test



Table 2. Direction of cord blood DNA methylation changes associated with maternal MEHP levels at DMRs identified by Solomon et al. 

(2017) in the present study. 

Gene Chr Start End 

Sapporo cohort   Salomon et al. 2017 

Number of 

probes 

Average 

Coefa 

Min 

p-valueb 
Directionc 

 
Max 

bFCd 
Directionc 

  

MUC4 3 195489306 195490169 8 0.018 0.223 +  0.297 + 

C5orf63/FLJ44606 5 126408756 126409553 13 0.017 0.002 +  0.250 + 

VTRNA2-1 5 135414858 135416613 16 −0.007 0.320 −  −0.895 − 

RNF39 6 30038254 30039801 37 0.005 0.367 +  −0.833 − 

CNPY1 7 155283233 155284759 10 0.004 0.082 +  0.171 + 

SVIL-AS1 10 29698152 29698685 8 0.002 0.119 +  0.390 + 

FIBIN 11 27015519 27016671 8 0.003 0.166 +   0.231 + 

aAverage partial regression coefficient at CpG sites in the region. 
bMinimum p-value within the region. 
cDirection of methylation change: +, increase; −, decrease. 
dFold change in the DNA methylation M-value per log10 unit increase in phthalate metabolite concentration. 

Abbreviations: Chr, chromosome.   



Table 3. Significantly enriched pathways (FDR < 0.05) for the gene targets of 253 DRHM-CpGs associated with MEHP levels (p < 2.5E-

04). 

KEGG orthology KEGG pathway Genes* p-value 

Metabolism Metabolic pathways 

ENO1; ATP6V1G1; ADSL; PLA2G12A; AMDHD1; EPRS; 

PIK3CG; AGPAT1; HSD3B7; ADI1; PLCD1; DSE; EXT2; 

INPP5A; FUT9; ACAA1 

7.3E-11 

Signal transduction 
MAPK signaling pathway 

MAP2K6; EFNA3; CACNA1D; DAXX; FGF9; DUSP4; 

PPM1A; DUSP10; CACNA1C; MAP3K3 
3.0E-07 

Notch signaling pathway NUMBL; NCOR2; RFNG; CTBP1; NOTCH1 6.4E-07 

Endocrine system 

GnRH signaling pathway MAP2K6; CACNA1D; ITPR2; CACNA1C; MAP3K3 1.3E-04 

Renin secretion CACNA1D; ITPR2; CACNA1C 6.9E-04 

Cortisol synthesis and 

secretion 
CACNA1D; ITPR2; CACNA1C 1.2E-03 

Circulatory system 
Vascular smooth muscle 

contraction 
CACNA1D; PLA2G12A; CALD1; ITPR2; CACNA1C 4.0E-04 

Nervous system Dopaminergic synapse CACNA1D; TH; ITPR2; CACNA1C 7.4E-04 

*Genes annotated to the DRHM-CpGs with p < 2.5E-04.  
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