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Abstract 26 

Purpose 27 

To show the feasibility of real-time CT image generation technique utilizing internal fiducial markers that facilitate 28 

the evaluation of internal deformation. 29 

Methods 30 

In the proposed method, linear regression model that can derive internal deformation from the displacement of 31 

fiducial markers is built for each voxel in the training process before the treatment session. Marker displacement 32 

and internal deformation are derived from the four-dimensional computed tomography (4DCT) dataset. In the 33 

treatment session, the three-dimensional deformation vector field is derived according to the marker displacement, 34 

which is monitored by the real-time imaging system. The whole CT image can be synthesized by deforming the 35 

reference CT image with a deformation vector field in real-time. To show the feasibility of the technique, image 36 

synthesis accuracy, and tumor localization accuracy were evaluated using dataset generated by extended NURBS-37 

Based Cardiac-Torso (XCAT) phantom and clinical 4DCT datasets from six patients, containing ten CT datasets 38 

each. In the validation with XCAT phantom, motion range of the tumor in training data and validation data were 39 

about 10 and 15 mm, respectively, so as to simulate motion variation between 4DCT acquisition and treatment 40 

session. In the validation with patient 4DCT dataset, eight CT datasets from the 4DCT dataset were used in the 41 

training process. Two excluded inhale CT datasets can be regarded as the datasets with large deformations more 42 

than training dataset. CT images were generated for each respiratory phase using the corresponding marker 43 

displacement. Root mean squared error (RMSE), normalized RMSE (NRMSE) and structural similarity index 44 

measure (SSIM) between the original CT images and the synthesized CT images were evaluated as the quantitative 45 

indices of the accuracy of image synthesis. The accuracy of tumor localization was also evaluated. 46 

Results 47 
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In the validation with XCAT phantom, the mean NRMSE, SSIM and three-dimensional tumor localization error 48 

were 7.5±1.1%, 0.95±0.02 and 0.4±0.3 mm, respectively. In the validation with patient 4DCT dataset, the mean 49 

RMSE, NRMSE, SSIM and three-dimensional tumor localization error in six patients were 73.7±19.6 HU, 50 

9.2±2.6%, 0.88±0.04 and 0.8±0.6 mm, respectively. These results suggest that the accuracy of the proposed 51 

technique is adequate when the respiratory motion is within the range of the training dataset. In the evaluation with 52 

a marker displacement larger than that of the training dataset, the mean RMSE, NRMSE, and tumor localization 53 

error were about 100 HU, 13%, and less than 2.0 mm, respectively, except for one case having large motion variation. 54 

The performance of the proposed method was similar to those of previous studies. Processing time to generate the 55 

volumetric image was less than 100 ms. 56 

Conclusion 57 

We have shown the feasibility of the real-time CT image generation technique for volumetric imaging. 58 

 59 

Keywords: CT image generation, synthetic CT, volumetric imaging, motion management, fiducial markers, partial 60 

least squares regression  61 
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Introduction 62 

Respiratory motion is a major source of dosimetric error in radiation therapy. Respiratory-gated irradiation using 63 

an external surrogate, such as abdominal motion, has been clinically applied for motion management.1-5 In addition, 64 

real-time tumor-tracking radiation therapy (RTRT) 6, which monitors the internal tumor motion directly, has been 65 

applied in lung7,8, liver9 and pancreas. In RTRT, the three-dimensional position of internal fiducial markers, which 66 

are inserted near the tumor, are monitored in real-time by means of orthogonal x-ray imaging during treatment. 67 

Treatment beam is irradiated only when the fiducial marker is within the gating window, which is cubic region of 68 

2 mm in typical clinical setting. RTRT has been also clinically applied in proton therapy10,11. Tracking irradiation 69 

techniques that change the irradiation position/field according to the tumor position by using electromagnetic 70 

transponder guided multileaf collimator (MLC)12, a compact linear accelerator mounted on a robotic arm13 and the 71 

gimbaled x-ray head14 have also been realized in photon therapy. However, for accurate irradiation, especially in 72 

particle therapy and stereotactic body radiation therapy (SBRT), both the tumor position and volumetric information 73 

of the surrounding organs and tissue are needed for real-time motion management. 74 

Real-time volumetric imaging, which can reconstruct anatomical structures, could be applied for a novel motion 75 

management technique. Volumetric imaging, based on the estimation of the coefficients of the principal components 76 

of internal deformation from a planar x-ray image, has been studied.15,16 Other approaches based on deep learning 77 

have also been reported.17-19 Previous studies demonstrated that clinically acceptable accuracy of image synthesis 78 

and tumor localization can be obtained. However, imaging accuracy may depend on imaging angle and quality.19 79 

In this study, we propose a novel real-time CT image generation technique for volumetric imaging by utilizing the 80 

positional displacement of internal fiducial markers evaluated in real-time during treatment. In RTRT using an 81 

orthogonal x-ray imaging system, the three-dimensional position of the fiducial markers can be obtained with a high 82 

spatial accuracy of less than 1 mm and a high temporal resolution up to 30 times per second. Accuracy does not 83 

depend as much on image quality of planar x-rays, as long as the marker can be recognized correctly.20 In addition, 84 

doses due to x-ray imaging can be suppressed by collimating the imaging area using only the regions of the fiducial 85 
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markers. The positional displacement of the internal fiducial markers, which are inserted near the tumor, should be 86 

an appropriate surrogate to evaluate internal deformation. Fewer studies focus on volumetric imaging based on 87 

internal fiducial markers. In the proposed method, linear regression coefficients to derive the three-dimensional 88 

internal deformation from the displacement of the fiducial markers are optimized in each voxel using four-89 

dimensional computed tomography (4DCT) images as the training dataset. CT image can be generated in real-time 90 

by applying the deformation derived by the displacement of the fiducial markers to the reference CT image. The 91 

purpose of this study was to demonstrate the clinical feasibility of the proposed real-time CT image generation 92 

technique. The accuracy of image synthesis and tumor localization were evaluated using dataset generated by 93 

extended NURBS-Based Cardiac-Torso (XCAT21) phantom and clinical 4DCT datasets from six patients. 94 

Materials and Methods 95 

Algorithm of real-time CT image generation 96 

Figure 1 shows the general scheme of the proposed real-time CT image generation technique, including the training 97 

process and the assumed use in the treatment session. In the training process (before the treatment), a linear 98 

regression coefficients matrix to evaluate the internal deformation from the displacement of the fiducial markers is 99 

generated for each voxel using a 4DCT dataset. The internal deformation 𝒀  is derived from the deformable image 100 

registration (DIR) relative to the exhale phase CT, referred to as phase 50 in this study, as the reference volume  101 

𝑽 . 𝒀  is a matrix with three columns and the number of rows for the matrix equals the number of phases of 4DCT, 102 

including the three-dimensional deformation in all respiratory phases at voxel 𝑖. The displacement of the fiducial 103 

markers 𝑿 is evaluated for each CT dataset relative to the reference. 𝑿 is a matrix whose columns and rows are 3𝑛 104 

and the number of phases, respectively, including the three-dimensional displacement of the 𝑛 internal fiducial 105 

markers in all respiratory phases. Assuming a linear relationship between the internal deformation and the 106 

displacement of the fiducial markers, their relationship is described as 𝒀 ≅ 𝑿𝑾 , where 𝑾  is a matrix of linear 107 

regression coefficients whose columns and rows are 3 and 3𝑛, respectively. The linear relationship in the lung 108 

region, including the tumor, was considered to be reasonable since the fiducial markers were inserted around the 109 

tumor. 𝑾  can be derived mathematically by regarding 𝑿  and 𝒀  as the explanatory and response variables, 110 
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respectively. When there is a high correlation between the explanatory variables, output values may fluctuate 111 

significantly due to multicollinearity in the ordinary multiple linear regression. In this study, partial least squares 112 

regression (PLSR)22,23, which can address multicollinearity in regression analysis, was utilized to derive 𝑾 . 113 

 114 
 115 

Fig. 1. General scheme of the proposed real-time CT image generation technique. 116 
 117 

In the first step of the treatment session, a patient is aligned to the planning position, according to rigid anatomical 118 

landmarks such as the vertebra, by an image guidance technique, such as cone beam CT (CBCT). In this study, we 119 

assumed an orthogonal x-ray imaging system to obtain the three-dimensional position of the internal fiducial 120 

markers. Treatment system with floor/ceiling mounted orthogonal imaging device has been clinically applied in 121 

photon therapy6, and gantry mounted type has been realized in proton therapy10. Please refer the literatures for the 122 

detail of treatment system. Geometrical relationship between the iso-center and the reference position of the fiducial 123 

markers is determined in treatment planning process in advance. The three-dimensional positions of the fiducial 124 

markers are obtained in real-time, using orthogonal x-ray imaging during treatment. The three-dimensional 125 

positional displacement of the 𝑛 fiducial markers 𝑿 𝑡  at time 𝑡 is obtained as the difference between the current 126 

and reference position of the fiducial markers. The three-dimensional deformation vector 𝒀 𝑡  at voxel 𝑖 is derived 127 
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as 𝒀 𝑡 𝑿 𝒕 𝑾 , according to the marker displacement. The volumetric image 𝑽 𝑡  can be synthesized by 128 

deforming the reference volume  𝑽  with the deformation vector field 𝒀 𝑡 , which is constructed from all voxels.  129 

Validation with XCAT phantom 130 

For the evaluations, a ground truth volumetric image was necessary. In this study, the evaluations were conducted 131 

by using the dataset of volumetric images generated by extended NURBS-Based Cardiac-Torso (XCAT) phantom21 132 

as with the previously reported studies24,25. XCAT phantom can generate three-dimensional imaging data according 133 

to the arbitrary anterior-posterior (AP) motion data and superior-inferior (SI) motion data for simulating the motion 134 

of chest wall and diaphragm, respectively. In this study, in order to mimic actual patient motion, internal marker 135 

motion data and external surrogate motion data that were acquired simultaneously by using RTRT system were 136 

used. The external surrogate motion and SI direction motion of the fiducial marker were resampled into 5 Hz and 137 

were used as input motion data for simulating chest wall and diaphragm motion, respectively, in XCAT phantom. 138 

One motion dataset that can simulate the change of motion amplitude between training session and validation 139 

session was used. Motion range of the tumor in training session and validation session was about 10 and 15 mm, 140 

respectively. Tumor of which diameter was 20 mm and one fiducial marker were inserted in right lower lung region. 141 

Image synthesis accuracy and tumor localization accuracy were evaluated as described later. 142 

Validation with patient 4DCT dataset 143 

The evaluations were also conducted with the patient 4DCT dataset. The schematic representation of the testing 144 

protocol with patient 4DCT dataset for this study is shown in Figure 2. The 4DCT dataset included ten respiratory 145 

phases. Eight CT images from phase 10 to phase 80 were used to obtain the matrix of linear regression coefficients 146 

in the training process. The CT images were generated for each respiratory phase using the corresponding marker 147 

displacement that was derived from 4DCT dataset and compared with the original CT datasets. The two excluded 148 

inhale CT datasets, defining phases 0 and 90, corresponded to validation of the datasets that had large deformations 149 

not included in the training process. Evaluation with the training CT datasets containing phases 10 to 80 was 150 

regarded as the validation of model goodness of fit.  151 
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MATLAB (MathWorks Inc, USA) was used for data processing, including CT image import/export, PLSR, and 152 

DIR.  153 

 154 
  155 

Fig. 2 Schematic representation of the testing protocol with patient 4DCT dataset. 156 
 157 

Patient data for evaluation 158 

The 4DCT datasets from six patients, who underwent lung RTRT, were used for the analysis. Slice thickness, image 159 

size, and pixel spacing for all CT images were 2.5 mm, 512 512 pixels, and 0.98 mm/pixel, respectively. We set 160 

two criteria for data selection. The first criterion was that fiducial markers, with a three-dimensional motion range 161 

in ten respiratory phases of more than 5 mm, were included. The second criterion was that the difference in motion 162 

range between the ten respiratory phases and the eight respiratory phases without the two inhale phases was more 163 

than 1 mm. The motion ranges for each fiducial marker in the six patients are summarized in Table 1. Three or four 164 

fiducial markers have been included for each patient. Harada et al. reported26 that the mean motion amplitude during 165 

radiation therapy was larger than that evaluated in a 4DCT dataset by about 2 mm. Four 4DCT datasets in this study 166 

had motion differences of more than 2 mm; hence, these evaluations adequately mimicked the clinical situation. 167 

Table 11. Motion range for each internal fiducial marker in six patients.  168 

   Motion range in LR/SI/AP/3D [mm] 

 
1 RML, right middle lobe; LUL, left upper lobe; LLL, left lower lobe; RLL, right lower lobe. 
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Pat. 

# 

Tumor 

location 

Marker 

# 

from phase 0 to 

phase 90  

from phase 10 to 

phase 80 

difference 

 

#1 RML 

1 

2 

3 

3.1/7.5/5.7/9.9 

2.4/10.6/3.3/11.4 

2.6/9.3/4.6/10.7 

2.1/5.5/5.7/8.2 

2.4/10.6/3.3/11.4 

1.5/6.5/4.6/ 8.1 

1.0/2.0/0.0/1.7 

0.0/0.0/0.0/0.0 

1.1/2.8/0.0/2.6 

#2 LUL 

1 

2 

3 

4 

1.8/5.2/2.9/6.2 

2.6/6.6/3.1/7.7 

1.2/6.0/3.6/7.1 

2.4/5.5/5.5/8.1 

1.5/4.7/2.7/5.6 

1.7/5.7/2.5/6.4 

1.2/4.8/2.9/5.7 

1.1/5.5/3.8/6.8 

0.3/0.5/0.2/0.6 

0.9/0.9/0.6/1.3 

0.0/1.2/0.7/1.4 

1.3/0.0/1.7/1.3 

#3 LLL 

1 

2 

3 

4 

3.2/20.0/6.8/21.4 

2.2/18.5/4.7/19.3 

5.0/23.0/9.5/25.4 

7.2/25.6/5.7/27.2 

2.6/10.0/6.8/12.3 

2.2/10.7/4.7/11.9 

5.0/12.5/7.0/15.2 

7.0/22.1/5.1/23.7 

0.6/10.1/0.0/9.1 

0.0/7.8/0.0/7.3 

0.0/10.5/2.5/10.2 

0.2/3.5/0.6/3.5 

#4 LUL 

1 

2 

3 

1.6/2.6/2.2/3.7 

1.5/5.8/2.4/6.4 

1.9/7.6/2.3/8.2 

1.3/2.5/2.0/3.4 

1.2/4.6/2.4/5.3 

1.9/6.0/2.3/6.7 

0.3/0.1/0.2/0.3 

0.3/1.2/0.0/1.1 

0.0/1.6/0.0/1.5 

#5 RLL 

1 

2 

3 

4 

1.8/12.6/3.4/13.1 

1.8/15.9/2.5/16.2 

1.4/18.0/3.1/18.4 

0.5/18.2/1.2/18.2 

1.8/7.9/2.0/8.4 

1.3/11.2/1.4/11.3 

0.7/12.0/3.0/12.3 

0.5/17.2/1.2/17.3 

0.0/4.7/1.4/4.7 

0.5/4.7/1.1/4.9 

0.7/6.0/0.1/6.1 

0.0/1.0/0.0/0.9 

#6 RML 

1 

2 

3 

4 

4.2/3.2/4.0/6.6 

1.9/6.0/2.9/6.9 

2.9/3.2/5.2/6.7 

4.8/2.5/1.4/5.6 

3.6/3.2/3.5/6.0 

1.9/6.0/2.3/6.7 

2.2/3.2/2.5/4.6 

4.2/2.5/1.4/5.0 

0.6/0.0/0.5/0.6 

0.0/0.0/0.6/0.2 

0.7/0.0/2.7/2.1 

0.6/0.0/0.0/0.6 

 169 

Three-dimensional positions of the fiducial markers in the CT images were determined using projection images 170 

created in the anterior-posterior (AP) and left-right (LR) directions. First, maximum intensity projection (MIP) 171 

images were created. Then, the images were converted to binary images with a threshold CT value of 2000 HU to 172 

segment the marker. The marker position was designated as the center of gravity of the rectangular-shaped region 173 

of interest enclosing the segmented fiducial marker.  174 

Accuracy of image synthesis 175 
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In this study, RMSE and NRMSE between the ground truth CT images and the synthesized CT images were 176 

evaluated as the quantitative indices of the accuracy for the image synthesis. RMSE and NRMSE were evaluated 177 

as: 178 

RMSE
1
𝑛

𝐼 𝐼∗ ,  179 

NRMSE=
∑ 𝐼 𝐼∗

∑ 𝐼∗
,  180 

where 𝐼∗ is the actual CT value at voxel 𝑖 in the ground truth image, 𝐼  is the CT value at voxel 𝑖 in the synthesized 181 

image, and 𝑛 is voxel number. In addition, structural similarity index measure (SSIM) which is commonly used in 182 

pattern matching as a measure of the similarity of image structures was evaluated as: 183 

SSIM
2𝜇 𝜇 𝐶 2𝜎 𝐶

𝜇 𝜇 𝐶 𝜎 𝜎 𝐶
, 184 

where 𝜇  and 𝜇  are the average CT values in ground truth image and synthesized image respectively, 𝜎  and 𝜎  185 

are variance of CT value in ground truth image and synthesized image respectively, and 𝜎  is a covariance of 186 

ground truth image and synthesized image. 𝐶  and 𝐶  were defined as  𝐶 0.01 𝐿  and 𝐶 0.03 𝐿  , 187 

respectively. 𝐿 was dynamic range of the image and was defined as the maximum CT value except for the fiducial 188 

marker in the ground truth image. RMSE, NRMSE and SSIM were evaluated in the three-dimensional region 189 

constructed from the body half including the tumor and the slices encompassing tumor motion in the superior-190 

inferior (SI) direction. The performance of the proposed technique was limited by the accuracy of the DIR. For the 191 

benchmark of the image synthesis accuracy, the reference image, referred to as phase 50 in this study, was deformed 192 

to the ground truth images. RMSE, NRMSE and SSIM were evaluated by comparing the ground truth image and 193 

the registered image. To quantitatively confirm the goodness of fit in the linear regression, percent variance 194 

explained (PVE), which corresponds to the determination coefficient in the linear regression, was examined in the 195 
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PLSR. In XCAT phantom, NRMSE and SSIM were evaluated since the dataset generated by XCAT phantom 196 

consisted of attenuation coefficient, not of CT value. 197 

Accuracy of tumor localization 198 

Tumor was manually segmented with referring the images binarized with CT value which was evaluated from the 199 

tumor in the ground truth image as threshold. After delineation of the tumor region in both ground truth image and 200 

the synthetic image, the distance of center-of-mass between two tumor regions was evaluated as tumor localization 201 

accuracy. Dice coefficient between two delineated tumor regions was also evaluated in order to confirm the 202 

similarity of the tumor shape. Since the uncertainty of tumor delineation in patients #2 and 4 whose tumor in lung 203 

peripheral region was in contact with the pleura would be large, evaluation of tumor localization accuracy was 204 

limited to four patients, #1, 3, 5, and 6, whose tumor was located in the central lung region. 205 

Results 206 

Validation with XCAT phantom  207 

Figure 3 shows NRMSE, SSIM, three-dimensional tumor localization error and Dice coefficient along with the 208 

tumor motion. All metrics showed better performance when the displacement of tumor position from the reference 209 

position was decreased. Relatively large error was observed when the tumor motion exceeded the range of training 210 

data. Average of NRMSE, SSIM and three-dimensional tumor localization error were 7.5±1.1% (ranging from 2.2 211 

to 10.1%), 0.95±0.02 (ranging from 0.91 to 0.99) and 0.4±0.3 mm (ranging from 0.0 to 1.3 mm), respectively. Trend 212 

of NRMSE and SSIM of the synthesized CT images were similar to those of registered images by DIR which can 213 

be regarded as benchmark. Examples of ground truth, synthesized, and absolute difference images in the worst and 214 

typical NRMSE are shown in Figure 4. Although the difference around the tumor and diaphragm were large in the 215 

worst case compared with the typical cases, internal anatomical structures were reasonably reconstructed with 216 

NRMSE less than 10%. 217 
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 218 

Fig. 3 Top two rows: SI and AP motion of the tumor, respectively. Ten circled points in the first part of the trajectory 219 

were corresponding to the training data. The sixth dataset at the exhale phase was used as the reference dataset. The 220 

rest data was used for the validation. Horizontal dashed lines show the motion range of the training data. Third row 221 

from the top: NRMSE in the validation data. Solid line and dashed line represent the NRMSE evaluated with the 222 

synthesized CT images and the registered CT images by DIR, respectively. Fourth row from the top: SSIM in the 223 
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validation data. Solid line and dashed line represent the SSIM evaluated with the synthesized CT images and the 224 

registered CT images by DIR, respectively. Fifth row from the top: three-dimensional tumor localization error. 225 

Bottom row: Dice coefficient between the tumor regions in synthesized images and ground truth images. Vertical 226 

dashed lines around 12 sec and 24 sec are corresponding to the data positions having worst and typical NRMSE. 227 

The example images in each dataset are shown in Figure 4. 228 

 229 

230 

Fig. 4 Top row: from left column, sagittal view of the ground truth image, synthesized image and the absolute 231 

difference image between the ground truth image and synthesize image in case of the worst RMSE of 10.1%. Bottom 232 

row: images in case of the RMSE of 7.5%. The tumor is a round object in right lower lung region. Fiducial marker 233 

is shown at the right side of the tumor. 234 

Accuracy of image synthesis in patient dataset 235 

Examples of MIP images and binary images for the marker segmentation of patient #1 are shown in Figure 5. The 236 

rectangle enclosing the segmented marker area was larger than the actual marker size, especially in the SI direction, 237 

due to motion artifact. The center of the rectangle was defined as the marker position. In this study, the mean size 238 
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of the rectangle in the SI direction was about 5.0 mm. Considering the marker diameter of 1.5 mm, the range of 239 

respiratory motion, and CT image acquisition time of several hundred milliseconds, it was thought that most of the 240 

marker positions were correctly determined. 241 

 242 

Fig. 5 (a) Maximum intensity projection image and binary image for marker segmentation generated in the anterior-243 

posterior (top row) and left-right (bottom row) directions in phase 50. The colored rectangles represent the marker 244 

enclosing area and its center was used to define the three-dimensional marker position. Images generated in phase 245 

0 are shown in (b). The motion of the fiducial markers between phase 0 and 50 due to respiration were confirmed. 246 

 247 

Examples of the PVE distribution for each deformation in the LR, AP, and SI directions evaluated in patient #1 are 248 

shown in Figure 6. Relatively high PVEs were obtained around the tumor and the fiducial markers. The median, 249 

25th, and 75th percentile of PVEs for each patient are summarized in Table 2. Focusing on the median values, high 250 

PVEs of more than 0.8 for deformations in all directions were obtained in most cases. These results suggest that 251 

there was reasonable linearity between the displacement of fiducial markers and the internal deformation in the 252 

evaluation region. 253 

Table 2. Median (25th - 75th percentile) of percent variance explained (PVE) representing the strength of 254 

relationship between the displacement of the markers and the deformation for each patient. 255 
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 #1 #2 #3 #4 #5 #6 

LR 
0.82 

 (0.60 – 0.93) 

0.88 

 (0.61 – 0.97) 

0.86  

(0.66 – 95) 

0.78  

(0.49 – 0.92) 

0.80  

(0.58 – 0.90) 

0.80  

(0.53 – 0.94) 

AP 
0.88 

 (0.64 – 0.96) 

0.97  

(0.86 – 0.99) 

0.88 

(0.72 – 95) 

0.87  

(0.63 – 0.94) 

0.76  

(0.49 – 0.90) 

0.91  

(0.65 – 0.97) 

SI 
0.80 

 (0.58 – 0.92) 

0.95 

 (0.77 – 0.99) 

0.84  

(0.50 – 0.95) 

0.84  

(0.53 – 0.94) 

0.87 

 (0.65 – 0.95) 

0.78  

(0.52 – 0.94) 

 256 

 257 
Fig. 6 The distribution of percent variance explained (PVE) obtained in the partial least squares regression (PLSR) 258 

between the displacement of the fiducial markers and the internal deformation in the left-right (left column), 259 

anterior-posterior (center column), and superior-inferior (right column) directions. Axial, coronal, and sagittal 260 

planes including the target center are shown in the top, middle, and bottom rows. 261 

 262 
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Examples of reference, ground truth, synthesized, and difference images for phase 0 in patient #1 are shown in 263 

Figure 7. The internal anatomical structure, including the tumor shape, was well reconstructed in the synthesized 264 

image. Since cardiac motion cannot be modeled by the proposed method, differences in CT values around the heart 265 

were increased. In this example, differences in CT values in the back side region tended to increase since the 266 

linearity in phase 0 was probably decreased. Note that CT dataset of phase 0 was not included in the training dataset. 267 

To quantify the accuracy of the image synthesis, box and whisker plots of the absolute differences in CT values, 268 

RMSE, NRMSE and SSIM, were evaluated. Differences in CT values may be small in regions where deformations 269 

were relatively small, such as the upper lung region. Hence, to avoid underestimations, evaluation areas were limited 270 

by three-dimensional regions, including the body half represented by a black solid line shown in the difference 271 

images in Figure 7. 272 

 273 

 274 
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Fig. 7 From left column, reference image of phase 50, ground truth image of phase 0, synthesized image targeting 275 

phase 0 and difference image between the ground truth image and synthesized image. Axial, coronal and sagittal 276 

plane are shown from top row. Black solid rectangular in the difference image represent the evaluation region of 277 

PVE, RMSE, NRMSE and SSIM. 278 

 279 

To show the distribution of the absolute differences in CT values between the ground truth image and the 280 

synthesized image, box plots for each patient and each respiratory phase are shown in Figure 8. The bottoms and 281 

tops of the boxes represent the 25% point (Q1) and 75% point (Q3) of the absolute difference in the CT values, 282 

respectively. The lower and upper whiskers are Q1–1.5 × (Q3–Q1) and Q3+1.5 × (Q3–Q1). Large differences were 283 

observed around the fiducial markers and bones having high CT values. The ratio of voxels with a large discrepancy 284 

(more than upper whisker) to all voxels in the evaluation area was about 10%. The samples having large differences 285 

were regarded as outliers and not shown in the plot. In all patients, absolute differences tended to increase in the 286 

inhale respiratory phase and the distribution expanded gradually. The median was less than 25 HU in most cases. 287 

(a)  

 

(b)  
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(c)  

 

(d)  

 

(e) 

 

(f) 

 

Fig. 8 Boxplots of the absolute difference of CT value between the ground truth image and the synthesized image 288 

for each patient. Listed from patient #1 to #6 in order from (a) to (f). 289 

 290 

To quantify the accuracy of image synthesis, RMSE and NRMSE are summarized in Tables 3 and 4, respectively. 291 

For comparison to the benchmark, RMSE and NRMSE evaluated with the registered image by DIR are also 292 

summarized. As shown in Table 3, RMSEs from phase 10 to phase 80, corresponding to validation with the training 293 

dataset, were comparable to the benchmark performance in all patients. Since the linear regression by PLSR can 294 

addresses multicollinearity in multiple explanatory variables, the volumetric images synthesized from the input 295 

within the range of the training dataset were expected to be stable. In the evaluation of phases 0 and 90, which had 296 

marker displacement larger than that of the training dataset, the mean RMSEs were about 100 HU. The trends in 297 

NRMSEs were similar to the trends in RMSEs. Hence, there was less dependence of the image synthesis accuracy 298 
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on the distribution of CT values. SSIM are summarized in Table 5. As with the evaluations of RMSE and NRMSE, 299 

SSIMs evaluated from phase 10 to phase 80 were comparable to the benchmark performance in all patients, although 300 

SSIMs in phase 0 and 90 were decreased a little. These results suggested that the both image intensity and structure 301 

of the synthesized images could be comparative those of DIR, although the accuracy could be reduced when the 302 

marker displacement exceeds the range of training dataset. 303 

The processing time to generate the volumetric images using the proposed method was less than 100 ms using a 304 

conventional CPU (Intel(R) i9-9820X 3.30GHz). Thus, the proposed technique can be applied to real-time processes 305 

during treatment. 306 

Table 3. The root mean squared error (RMSE) [HU] of image synthesis for each patient. For reference, RMSEs of 307 

deformable image registration (DIR) are shown at the bottom of each cell. 308 

phase #1 #2 #3 #4 #5 #6 Mean ± SD 

0 
111.1 

80.2 

85.4 

68.8 

135.7 

83.3 

62.8 

57.1 

110.0 

63.5 

121.5 

76.8 

104.4 ± 22.2 

71.6 ± 8.6 

10 
77.9 

75.0 

70.3 

69.1 

75.4 

73.2 

62.5 

59.7 

63.4 

55.8 

78.3 

78.1 

71.3 ± 6.0 

68.5 ± 7.5 

20 
68.1 

60.7 

68.5 

66.1 

69.9 

63.5 

62.4 

65.0 

58.6 

55.3 

74.3 

66.0 

67.0 ± 7.5 

62.8 ± 4.8 

30 
72.5 

57.4 

64.9 

63.1 

67.1 

61.4 

61.7 

61.0 

63.9 

48.0 

81.0 

76.1 

68.5 ± 6.0 

61.2 ± 7.7 

40 
60.4 

49.1 

63.1 

60.8 

58.6 

54.1 

59.7 

53.8 

49.0 

31.8 

72.3 

70.4 

60.5 ± 6.4 

53.3 ± 10.9 

50 
50.3 

- 

57.1 

- 

61.4 

- 

56.0 

- 

41.5 

- 

48.9 

- 

52.5 ± 6.0 

- 

60 
72.9 

55.8 

65.1 

63.9 

65.4 

58.7 

65.5 

63.0 

48.4 

40.9 

69.5 

58.2 

64.5 ± 7.1 

56.8 ± 7.1 

70 
100.5 

101.3 

67.3 

64.6 

71.4 

67.0 

65.1 

65.0 

65.1 

54.0 

74.5 

69.9 

74.0 ± 11.4 

70.3 ± 13.6 

80 
89.4 

82.1 

66.4 

65.3 

72.8 

69.4 

61.4 

60.9 

68.7 

64.5 

87.2 

78.1 

74.3 ± 9.7 

70.0 ± 7.1 

90 
113.2 

81.4 

95.0 

67.7 

116.6 

77.9 

63.2 

60.3 

105.5 

66.2 

106.2 

91.6 

100.0 ±1 6.5 

74.2 ± 9.8 
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Mean 

± SD 

81.6 ± 20.2 

64.3 ± 26.2 

70.3 ± 10.7 

58.9 ± 19.8 

79.4 ± 24.2 

60.8 ± 22.0 

62.0 ± 2.6 

54.6 ± 18.5 

67.4 ± 21.8 

48.0 ± 19.0 

81.4 ± 19.1 

66.5 ± 23.7 

73.7±19.6 

58.9 ± 22.6 

 309 
 310 
Table 4. The normalized root mean squared error (NRMSE) [%] of image synthesis for each patient. For 311 

reference, NRMSEs of deformable image registration (DIR) are shown at the bottom of each cell.  312 

phase #1 #2 #3 #4 #5 #6 Mean ± SD 

0 
15.2 

11.0 

11.3 

9.1 

15.2 

9.4 

7.6 

6.9 

14.6 

8.4 

15.2 

9.6 

13.2 ± 2.7 

9.1 ± 1.1 

10 
10.6 

10.2 

9.3 

9.1 

8.5 

8.2 

7.5 

7.2 

8.2 

7.2 

9.8 

9.8 

9.0 ± 0.9 

8.6 ± 1.1 

20 
9.2 

8.2 

9.0 

8.7 

7.8 

7.1 

7.5 

7.8 

7.5 

7.1 

9.2 

8.2 

8.4 ± 0.7 

7.8 ± 0.5 

30 
9.8 

7.8 

8.5 

8.3 

7.5 

6.9 

7.4 

7.3 

8.1 

6.1 

9.9 

9.3 

8.5 ± 0.9 

7.6 ± 0.9 

40 
8.2 

6.6 

8.3 

8.0 

6.5 

6.0 

7.1 

6.4 

6.1 

4.0 

8.8 

8.6 

7.5 ± 0.9 

6.6 ± 1.4 

50 
6.8 

- 

7.5 

- 

6.8 

- 

6.7 

- 

5.2 

- 

6.0 

- 

6.5 ± 0.7 

- 

60 
9.7 

7.5 

8.5 

8.3 

7.3 

6.5 

7.8 

7.5 

6.0 

5.1 

8.5 

7.2 

8.0 ± 1.1 

7.0 ± 0.9 

70 
13.4 

13.5 

8.8 

8.4 

7.9 

7.5 

7.8 

7.8 

8.2 

6.8 

9.1 

8.6 

9.2 ± 1.8 

8.8 ± 2.1 

80 
12.0 

11.0 

8.7 

8.5 

8.1 

7.7 

7.4 

7.3 

9.0 

8.5 

10.7 

9.5 

9.3 ± 1.4 

8.8 ± 1.1 

90 
15.5 

11.1 

12.6 

9.0 

13.1 

8.7 

7.6 

7.2 

13.9 

8.7 

13.0 

11.2 

12.6 ± 2.2 

9.3 ± 1.3 

Mean ± 

SD 

11.0 ± 2.8 

8.7 ± 3.5 

9.2 ± 1.4 

7.7 ± 2.6 

8.9 ± 2.7 

6.8 ± 2.5 

7.4 ± 0.3 

6.5 ± 2.2 

8.7 ± 3.0 

6.2 ± 2.5 

10.0 ± 2.4 

8.2 ± 2.9 

9.2 ± 2.6 

7.4 ± 2.9 

 313 
 314 
Table 5. The structural similarity index measure (SSIM) for each patient. For reference, SSIMs of deformable 315 
image registration (DIR) are shown at the bottom of each cell. 316 

phase #1 #2 #3 #4 #5 #6 Mean ± SD 

0 
0.78 

0.85 

0.88 

0.92 

0.70 

0.82 

0.93 

0.94 

0.79 

0.88 

0.81 

0.88 

0.82 ± 0.08 

0.88 ± 0.04 

10 
0.85 

0.85 

0.92 

0.92 

0.82 

0.83 

0.93 

0.93 

0.88 

0.90 

0.88 

0.88 

0.88 ± 0.04 

0.89 ± 0.04 
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20 
0.87 

0.88 

0.92 

0.93 

0.83 

0.85 

0.93 

0.94 

0.89 

0.90 

0.89 

0.90 

0.89 ± 0.04 

0.90 ± 0.03 

30 
0.86 

0.89 

0.93 

0.93 

0.82 

0.84 

0.93 

0.94 

0.89 

0.91 

0.89 

0.91 

0.89 ± 0.04 

0.90 ± 0.03 

40 
0.86 

0.89 

0.93 

0.93 

0.82 

0.84 

0.93 

0.94 

0.89 

0.91 

0.89 

0.91 

0.89 ± 0.04 

0.90 ± 0.03 

50 
0.93 

- 

0.98 

- 

0.93 

- 

0.97 

- 

0.96 

- 

0.98 

- 

0.96 ± 0.02 

- 

60 
0.86 

0.89 

0.93 

0.94 

0.83 

0.84 

0.94 

0.95 

0.90 

0.92 

0.93 

0.95 

0.90 ± 0.05 

0.91 ± 0.04 

70 
0.81 

0.83 

0.93 

0.93 

0.81 

0.83 

0.93 

0.93 

0.88 

0.90 

0.90 

0.91 

0.88 ± 0.05 

0.89 ± 0.05 

80 
0.82 

0.83 

0.93 

0.93 

0.82 

0.83 

0.93 

0.93 

0.87 

0.88 

0.87 

0.90 

0.87 ± 0.05 

0.88 ± 0.05 

90 
0.78 

0.85 

0.86 

0.92 

0.73 

0.82 

0.92 

0.93 

0.80 

0.88 

0.82 

0.86 

0.82 ± 0.07 

0.88 ± 0.04 

Mean 

± SD 

0.84 ± 0.05 

0.87 ± 0.03 

0.92 ±0.03 

0.93 ±0.01 

0.82 ±0.07 

0.84 ± 0.04 

0.94 ± 0.01 

0.94 ± 0.01 

0.88 ± 0.05 

0.90 ± 0.02 

0.89 ± 0.05 

0.90 ± 0.02 

0.88 ± 0.04 

0.90 ± 0.02 

 317 
 318 

Accuracy of tumor localization in patient dataset 319 

An example of tumor image in phase 0 of patient #1 is shown in Figure 9. The tumor shape was well reconstructed 320 

in the synthesized image. The accuracy of tumor localization and Dice coefficient for each patient are summarized 321 

in Table 6. In all evaluated patients, three-dimensional tumor localization error was less than 1.0 mm from phase 322 

10 to 80 with Dice coefficient more than about 0.9, which suggested that the tumor shape was reasonably reproduced. 323 

Although patient #3 exhibited a large tumor localization error, the three-dimensional tumor localization error in 324 

phase 0 and 90 of the other patients was less than 2.0 mm. 325 
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 326 
Fig. 9 Left column: The ground truth images around the tumor in phase 0 of patient #1. The yellow rectangular 327 

region represents the tumor region. Center column: The synthesized image cropped at the same position as the 328 

ground truth image. Right column: The overlay of the ground truth and synthesized images. The green and red 329 

regions indicate the mismatch of image intensity. The axial, coronal, and sagittal planes are shown from top to 330 

bottom. 331 

 332 

Table 6. Tumor localization error [mm] in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) 333 
direction. Dice coefficient was also summarized as a metric of similarity of tumor shape. 334 

Phase  #1 #3 #5 #6 Mean ± SD 

0 

LR 0.5 -0.3 0.8 -1.2 0.0 ± 0.9 
SI 1.5 2.4 0.8 -0.9 1.0 ± 1.4 
AP -0.5 -2.7 0.5 1.1 -0.4 ± 1.7 
3D 1.7 3.6 1.2 1.9 2.1 ± 1.1 

Dice 0.85 0.73 0.78 0.88 0.81 ± 0.07 

10 

LR 0.0 -0.5 0.1 -0.7 -0.3 ± 0.4 
SI -0.6 -0.5 0.6 -0.7 -0.3 ± 0.6 
AP -0.2 0.3 0.2 0.6 0.2 ± 0.3 
3D 0.6 0.7 0.6 1.2 0.8 ± 0.3 

Dice 0.91 0.91 0.83 0.91 0.89 ± 0.04 

20 
LR -0.1 0.0 -0.1 -0.5 -0.2 ± 0.2 
SI 0.0 0.7 0.5 -1.2 0.0 ± 0.8 
AP 0.5 0.2 0.0 0.4 0.3 ± 0.2 
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3D 0.5 0.7 0.5 1.4 0.8 ± 0.4 
Dice 0.91 0.93 0.86 0.88 0.90 ± 0.03 

30 

LR 0.0 -1.0 -0.1 -0.2 -0.3 ± 0.5 
SI 0.0 0.5 -0.1 -0.8 -0.1 ± 0.5 
AP 0.3 0.0 0.6 0.1 0.2 ± 0.3 
3D 0.3 1.1 0.6 0.8 0.7 ± 0.3 

Dice 0.90 0.91 0.86 0.91 0.89 ± 0.02 

40 

LR -0.1 -0.1 -0.1 -0.1 -0.1 ± 0.0 
SI -0.1 -0.4 0.0 -0.6 -0.3 ± 0.3 
AP 0.1 -0.2 0.5 0.2 0.1 ± 0.3 
3D 0.2 0.4 0.5 0.6 0.4 ± 0.2 

Dice 0.90 0.95 0.92 0.89 0.92 ± 0.03 

50 

LR 0.1 -0.1 0.0 0.0 0.0 ± 0.1 
SI 0.1 0.5 0.2 -0.2 0.1 ± 0.3 
AP 0.0 0.4 0.5 0.1 0.3 ± 0.2 
3D 0.1 0.6 0.6 0.2 0.4 ± 0.3 

Dice 0.94 0.95 0.93 0.97 0.95 ± 0.02 

60 

LR -0.2 -0.2 0.1 0.2 0.0 ± 0.2 
SI 0.0 -0.1 0.0 -0.2 -0.1 ± 0.1 
AP 0.0 -0.1 0.3 0.0 0.1 ± 0.2 
3D 0.2 0.2 0.4 0.3 0.3 ± 0.1 

Dice 0.90 0.95 0.91 0.94 0.93 ± 0.03 

70 

LR 0.2 0.2 0.3 -0.2 0.1 ± 0.2 
SI -0.5 -0.1 0.8 0.0 0.1 ± 0.5 
AP 0.3 0.0 -0.1 0.4 0.1 ± 0.3 
3D 0.6 0.2 0.9 0.5 0.5 ± 0.3 

Dice 0.86 0.93 0.85 0.93 0.89 ± 0.04 

80 

LR 0.0 0.0 0.1 0.5 0.2 ± 0.2 
SI 0.3 0.1 0.9 0.0 0.3 ± 0.4 
AP 0.1 -0.2 -0.2 -0.3 -0.2 ± 0.2 
3D 0.3 0.3 1.0 0.6 0.5 ± 0.3 

Dice 0.89 0.94 0.83 0.92 0.90 ± 0.05 

90 

LR 0.6 0.3 0.5 0.3 0.4 ± 0.1 
SI 1.7 3.8 0.5 -0.6 1.4 ± 1.9 
AP -0.6 -1.8 0.0 -0.3 -0.7 ± 0.8 
3D 1.9 4.2 0.7 0.7 1.9 ± 1.7 

Dice 0.84 0.76 0.81 0.89 0.83 ± 0.06 

Mean ± 
SD 

LR 0.1 ± 0.3 -0.1 ± 0.4 0.2 ± 0.3 -0.2 ± 0.5 0.0 ± 0.2 
SI 0.2 ± 0.8 0.7 ± 1.4 0.4 ± 0.4 −0.5 ± 0.4 0.2 ± 0.5 
AP 0.0 ± 0.3 -0.4 ± 1.0 0.2 ± 0.4 0.2 ± 0.4 0.0 ± 0.3 
3D 0.6 ± 0.6 1.2 ± 1.5 0.9 ± 0.4 0.8 ± 0.5 0.8 ± 0.6 

Dice 0.89 ± 0.03 0.90 ± 0.08 0.86 ± 0.05 0.91 ± 0.03 0.89 ± 0.04 

 335 
 336 

Discussion 337 
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We presented a detailed evaluation of image synthesis accuracy and tumor localization accuracy for the proposed 338 

real-time CT image generation technique. The accuracies are similar to previous studies. Mishra et al. proposed 339 

volumetric imaging based on principal component analysis (PCA).25 They evaluated NRMSE, assuming the 340 

variation of motion magnitude of the chest wall and diaphragm, using XCAT phantom. In case of large variations 341 

of motion amplitude, NRMSE increased up to about 15%. Li et al. also demonstrated real-time volumetric imaging 342 

based on PCA24 and the mean NRMSE was 6.9 ± 2.4% when the respiratory motion amplitude changed between 343 

the 4DCT acquisition and the treatment session. NRMSEs evaluated in this study were 9.2±2.6% and 7.5±1.1% in 344 

patient 4DCT dataset and XCAT phantom, respectively. Although the testing protocol, data for validation, and 345 

algorithm of DIR were different, the imaging accuracy of the proposed technique is expected to be similar to those 346 

of previous research. 347 

The three-dimensional tumor localization accuracy in ten respiratory phases for the patient 4DCT dataset was 0.8 348 

± 0.6 mm and 0.4 ± 0.3 mm for the XCAT phantom in this study. These were equivalent to those of previous studies, 349 

including the study of Li et al.19, which demonstrated a three-dimensional accuracy of 0.8 ± 0.5 mm, and the study 350 

of Mishra et al.20, which demonstrated an accuracy of 1.0 ± 0.9 mm. The accuracy in phases 0 and 90 of the patient 351 

4DCT dataset was less than 2 mm, except for patient #3, and is considered clinically acceptable. Three-dimensional 352 

tumor localization accuracy in phases 0 and 90 of patient #3 was about 4 mm. In patient #3, variations in the 353 

difference of motion range were relatively large compared with the other cases. Linearity around the tumor may 354 

have been decreased in phases 0 and 90 due to the large motion variation. A more robust technique like deep learning, 355 

which can address nonlinearity, may be applicable. 356 

Motion artifact in 4DCT is a major source of error since the proposed volumetric imaging utilizes the CT datasets 357 

to derive marker displacement and internal deformation. CT reconstruction algorithms, which can reduce the 358 

artifacts, will be more effective27,28 in obtaining accurate deformations. Accuracy of image synthesis may be 359 

decreased in regions far from the fiducial markers since linearity between marker displacement and the internal 360 

deformation may decrease. Inferring models, such as deep learning, can be combined with the proposed model to 361 

address nonlinearity. In this study, patient setup error or inter-fractional anatomical variations, such as tumor 362 
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shrinkage or weight change, were not simulated in the evaluation, since a series of 4DCT dataset was used for 363 

testing. As for initial patient setup, the current image guidance techniques, such as CBCT, can correct patient 364 

position with an accuracy of less than 1 mm.29,30 However, the current volumetric imaging techniques, including 365 

the previous studies, could not handle large internal anatomical variations between 4DCT acquisition and treatment 366 

sessions. These variations may cause large errors in image synthesis and tumor localization. To adapt to these 367 

variations, 4D-CBCT, acquired just before the treatment, could be utilized for updating the evaluation model. 368 

In this study, we assumed an orthogonal x-ray imaging system to obtain the three-dimensional position of the 369 

internal fiducial markers. The fiducial markers such as gold sphere of which diameter is 1.5 or 2.0 mm can be 370 

recognized in x-ray images by means of pattern matching technique in most cases in lung or liver. Note that there 371 

could be a risk of miss detection of the markers in one or both x-ray images if the fiducial markers such as thin 372 

coiled shape are used31. In the current RTRT, the fiducial markers should be recognized in both x-ray images for 373 

three-dimensional calculation. On the other hand, the treatment systems that have dual imaging functions during 374 

treatment are not widely used yet. Li et al. proposed deriving the three-dimensional position from a single planar x-375 

ray image.32 A study on volumetric imaging utilizing the fiducial markers with a single x-ray imaging device, which 376 

can be widely applied in most clinical systems, is the next step of investigation for the proposed technique.  377 

Regarding clinical significance, the proposed CT image generation technique can be applied to real-time beam 378 

gating/tracking as a motion management technique based on tumor position and anatomical structure of the 379 

surrounding organs, especially for lungs in SBRT and particle therapy. For instance, since the volumetric images 380 

have CT values similar to treatment planning CTs, treatment beam gating based on the evaluation of water 381 

equivalent thickness for particle therapy33 could be realized. Synthesized volumetric images could be applied for 382 

both real-time dose calculations during treatment34 and retrospective dose accumulations. In addition, imaging doses 383 

due to continuous x-ray imaging can be minimized by collimating the imaging region using only the marker area. 384 

In all volumetric imaging techniques, the imaging accuracy will be decreased when actual motion is different from 385 

the training dataset. Displacement of the fiducial markers could also be used for interlock-function. For instance, 386 

when the marker displacement exceeds the threshold value, the treatment beam can be forced off. The volumetric 387 
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imaging technique using the fiducial markers can be one of the options due to its effectiveness, although the 388 

technique requires marker insertion and an additional imaging dose during treatment.  389 

Conclusion 390 

In this study, we proposed a real-time CT image generation technique utilizing the positional displacement of 391 

internal fiducial markers evaluated in real-time during the treatment. The XCAT phantom dataset and patient 4DCT 392 

dataset, including ten CT datasets for each respiratory phase, were used for the evaluation of image synthesis 393 

accuracy and tumor localization accuracy. In the validation with XCAT phantom, the mean NRMSE, SSIM and 394 

three-dimensional tumor localization error were 7.5±1.1%, 0.95±0.02 and 0.4±0.3 mm, respectively. In the 395 

evaluation with patient 4DCT dataset, eight CT datasets, excluding two CT datasets of the inhale respiratory phase, 396 

were used in the training process. CT images were generated for each of the ten respiratory phases using the 397 

corresponding marker displacements and compared with the original CT dataset. RMSEs, NRMSEs and SSIMS 398 

from phase 10 to 80, corresponding to the training dataset, were comparable to those of DIR. The three-dimensional 399 

tumor localization error was less than 1 mm. In the evaluation of phases 0 and 90, which had marker displacement 400 

larger than that of the training dataset, the mean RMSEs and NRMSEs were about 100 HU and 13%, respectively, 401 

and were comparable to previous studies. Three-dimensional tumor localization errors in phases 0 and 90 were less 402 

than 2.0 mm, except for one case having large motion variation. These results demonstrate the feasibility of the 403 

proposed real-time CT image generation technique.   404 
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