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Chapter 1

Introduction

Big data analytics is valuable for text analytics, machine learning, predictive analytics,

data mining, statistics, businesses, and so on. Nowadays size of world’s data in is growing

exponentially. The exploding volume of data growth has led to several challenges: data

center power, cooling, storage, data movement, and management complexity, and so on.

Quantum computation is an attractive tool to perform faster processing speed for big

data analytics, since quantum computation has been shown to solve efficiently some hard

problems for conventional computers.

For the conventional (classical) computers, the computer memory to simulate the

physical systems is required exponentially in proportion to the increasing dimension

of the state space with the size of the physical systems. Accordingly, a simulation of

the physical systems is generally inefficient using the conventional computers. In 1982,

Richard Feynman came up with the idea of a quantum computer that bring out the advan-

tage of quantum mechanics, which can simulate quantum systems efficiently. In 1985,

David Deutsch proposed the quantum Turing machine. In the quantum Turing machine,

a ”qubit”, which can hold a quantum superposition of 0 and 1, enable us to encode many

inputs to a logic circuit simultaneously, and then it can make calculations on all the inputs

at the same time. In 1994, Peter Shor showed that his proposed algorithm for integer fac-

torization can be performed exponentially less operations than the most efficient known

algorithm[1]. Shor’s algorithm, processing on a quantum computer, can factorize even

integers of orders exceeding 1000 used for RSA-encryption in reasonable time. In 1996,

Grover proposed a database search algorithm to perform a polynomial speedup over the

best classical algorithm. In Grover’s algorithm, amplitude amplification of the intended

quantum state is employed, which is an important techique in quatum algorithm [2].

Today, in several candidates for a element of quantum computer, the accuracy of quan-

tum gates have made progress toward a goal of the threshold value required by large scale

quantum computation. For example, in the superconducting and trapped-ion qubit, the

error probability of a two-qubit gate has been less than 1%. However, these prototype
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systems of quantum computer are small; none of them contain as many as 20 qubits,

since cracking RSA Encrypt that requires a 100-million-qubit system can not be achiev-

able in presence technology. Nonetheless, quantum computer composed of small number

of qubits can reach so-called ”quantum supremacy”; that is, quantum computing can out-

perform classical computing by quantum computer expected to arrive around the much

more modest 50-100 qubits. In 2017, major corporation such as IBM and Google claim

that they will perform quantum supremacy within years.

Unlike quantum supremacy, a large-scale quantum circuit that requires scalable entan-

gled states is still a significant experimental challenge for most candidates of qubits. In

quantum computation with the continuous variables, squeezed vacuum states with the op-

tical setting have shown great potential to generate scalable entangled states because the

entanglement is generated by only beam splitter coupling between two squeezed vacuum

states [3]. However, scalable computation with squeezed vacuum states has been shown to

be difficult to achieve because of the accumulation of errors during the quantum compu-

tation process, even though the states are created with perfect experimental apparatus [4].

Therefore, fault-tolerant protection from noise is required that uses the quantum error

correcting code. Because noise accumulation originates from the “continuous” nature

of the continuous variable, it can be circumvented by encoding continuous variables into

digitized variables using an appropriate code, such as Gottesman–Kitaev–Preskill (GKP)

code [5], which are referred to as GKP qubits. In 2014, Menicucci showed that fault-

tolerant quantum computation (FTQC) with continuous variables is possible within the

framework of measurement-based quantum computation using squeezed vacuum states

with GKP qubits [4]. Moreover, GKP qubits keep the advantage of squeezed vacuum

states on optical implementation that they can be entangled by only BS coupling. Hence,

GKP qubits offer a promising element for the implementation of FTQC with continuous

variables.

To be practical, the squeezing level required for large scale quantum computation

should be experimentally achievable. Unfortunately, the required squeezing level is still

high. Thus, another twist is necessary to reduce the required squeezing level. It is analog

information contained in the GKP qubit that has been overlooked. The effect of noise on

continuous variable states is observed as a deviation in an analog measurement outcome,

which includes beneficial information for quantum error correction. Despite this, the

analog information from the GKP qubit has been wasted because the GKP qubit has
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been treated as only a discrete variable qubit, for which the measurement outcomes are

described by bits, when we identify the bit value. Harnessing the wasted information for

the QEC will improve the error tolerance compared with using the conventional method

based on only bit information.

In this thesis, toward large scale quantum computation with the GKP qubtis, we pro-

pose the analog quantum error correction and high-threshold fault-tolerant quantum com-

putation, where the analog quantum error correction is applied to the surface code and the

resource state for quantum computation is constructed with a low error accumulation with

the help of analog information. In addition to the implementation of large-scale quantum

computation, the GKP qubits will be recognized as an important technological element to

implement quantum communication with continuous variables. We also present several

novel methods that offer the way of secure and high-fidelity quantum computation and

quantum communication. Hence, our works will pave the way for constructing a practical

quantum computations and communication with continuous variables.

In this thesis based on the works in Refs. [6, 7, 8] and the works in preparation. The

outline of this thesis is as follows:

Chapter 2

In chapter 2 we review quantum computation based on discrete variables, continuous vari-

ables, and digitized continuous variable states including the GKP qubit. This comparison

between discrete variables and digitized variables is aid to understand the key concepts of

quantum system of continuous variables. Our introduction to digitized continuous vari-

ables concludes with the threshold of the squeezing level of the GKP qubits for large-scale

quantum computation based on the measurement-based quantum computation, and neces-

sity of reducing this threshold required. We give a method to alleviate this requirement in

later chapters.

Chapter 3

Chapter 3 is devoted to a analog quantum error correction. The analog information ob-

tained by measuring continuous variable states (including GKP qubits) reflects the effect

of noise as a deviation in the measurement outcome. Therefore, it contains beneficial in-

formation to improve the error tolerance. We propose a method to use analog information
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for quantum error correction to improve the quantum error correction performance. Then,

we apply the method to various quantum error correcting codes, such as the three-qubit

bit-flip code, the Knill’s C4/C6 code, and the surface code. We numerically investigate va-

lidity of analog quantum error correction for the C4/C6 code and the surface code against

the Gaussian quantum channel with ideal syndrome measurements, and show that the ana-

log quantum error correction achieves close to the lower bound of the quantum capacity

of the Gaussian quantum channel. This implies that the analog quantum error correc-

tion with the C4/C6 code and the surface code provides an optimal performance against

Gaussian quantum channel.

Chapter 4

In Chapter 4, we present a method to implement large-scale quantum computation with

the GKP qubit harnessing analog information. The proposed high-threshold fault-tolerant

quantum computation consists of two parts. One is to apply analog quantum error cor-

rection [6] to the surface code under realistic error conditions, which allows us to imple-

ment the high-threshold fault-tolerant quantum computation. The other is a construction

of the cluster state for topologically protected measurement-based quantum computation

[9, 10, 11, 12] with a low error accumulation by using the highly-reliable measurement

with the help of analog information. We numerically show that the required squeezing

level for topologically protected measurement-based quantum computation with the 3D

cluster state constructed by our method can be reduced to 9.8 dB. By achieving the re-

quirement of the squeezing level around 10 dB, the proposed method can considerably

take a step closer to the realization of large-scale quantum computation with digitized

continuous variables and will be indispensable to construct fault-tolerant quantum com-

putation with continuous variables.

Chapter 5

This chapter describes the tracking quantum error correction to reduce the number of

qubits required for the quantum error correction during large scale quantum computa-

tion, where the logical-qubit level quantum error correction is partially substituted for the

single-qubit level quantum error correction. The numerical results shows that the tracking

quantum error correction with analog quantum error correction is effective way to reduce
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the required number of the qubits, since the tracking quantum error correction with analog

quantum error correction can reduce the number of physical qubits required. To the best

of our knowledge, this approach is the first practical attempt to utilize both the single- and

logical standard qubit quantum error corrections to alleviate the requirement of the num-

ber of qubits. Hence, the proposed method has a great advantage in using fault-tolerant

quantum computation with continuous variables and will open a new way to practical

quantum computers.

Chapter 6

In this chapter, we propose the entanglement distillation protocol with the GKP qubit

using analog information to improve the entanglement distillation performance. In the

proposed method, the highly-reliable measurement is applied to the conventional en-

tanglement distillation protocol. To provide an insight into our method, we apply the

highly-reliable measurement to a quantum privacy amplification protocol with the ideal

and approximate GKP qubit.

Chapter 7

In chapter 7, we present a method to implement a long-distance quantum communication

with GKP qubits. In this chapter, we propose the method to implement resource-efficient

quantum repeater protocol using analog information contained in the GKP qubit. In the

proposed method, we apply the highly-reliable measurement using GKP qubits to ”all

photonic quantum repeater protocol” based on photon qubits to enhance tolerance against

photon loss. Numerical results show that our method can achieve the comparative perfor-

mance with the conventional method based on photon qubits. Furthermore, our method

can reduce the number of the GKP qubits required for quantum communication by several

orders of magnitude less than the conventional method.

Chapter 8

Chapter 8 is devoted to summary and conclusions.
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Chapter 2

Quantum computation with digitized
continuous variables

In this chapter, we review the quantum computation with continuous variable states.

Quantum computation with the discrete variables, continuous variables, and digitized con-

tinuous variables are described to make it easy to compare them. In the end of this chapter,

we will introduce a way of calculation of the squeezing level required for fault-tolerant

quantum computation.

2.1 Quantum computation with the discrete variable states

2.1.1 Qubit

In quantum information processing, the information of a binary bit value is described by

a quantum bit, which is so-called qubit. Qubit is quantum counterpart of a classical bit

that takes a bit value 0 or 1. The obvious difference between a qubit and a classical bit

is that qubit can exist in a superposition of states of a bit. This can be attributed to the

parallelism of computation, since qubits can exist in a superposition of 0 and 1 states.

Consequently, n-qubits can store all the 2n states in a quantum register at the same time.

In general, the state of the qubit |ψ⟩ is described by

|ψ⟩= α |0⟩+β |1⟩ , (2.1)

where α and β are an arbitrary complex value, and satisfy the condition, |α|2 + |β |2 = 1.

The states of the qubits |0⟩ and |1⟩ can be defined by the standard basis as

|0⟩=

 1

0

 , |1⟩=

 0

1

 , (2.2)

respectively. Examples of candidates of a qubit for the two level quantum systems include

the polarization of a photon, trapped ion, superconducting exhibiting quantized states of

electronic charge, magnetic flux, or Josephson junction phase, and so on.
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2.1.2 Quantum gate

Quantum gate and Pauli matrices

Like classical logic gates for a circuit of a classical computer, a quantum circuit is com-

posed of the quantum gates.

The Pauli matrices form a basis of unitary operators and are defined in the standard

basis by

I =

 1 0

0 1

 , X =

 0 1

1 0

 , Y =

 0 −i

i 0

 , Z =

 1 0

0 −1

 , (2.3)

where X , Y , and Z are also described as X = σx = σ1, Y = σy = σ2, and Z = σz = σ3,

respectively. The Pauli matrices act on a qubit as

X |0⟩= |1⟩ , X |1⟩= |0⟩ , Z |0⟩= |0⟩ , Z |1⟩=−|1⟩ , (2.4)

respectively. Therefore, X and Z operators are interpreted as a bit and phase operators,

respectively. Also, Y operator satisfy Y = iXZ. The Pauli group P consists of tensor

products of Pauli operators and the Pauli group on n-qubits is described as

P =
{

1, i,−1,−i
}
×
{

I,X ,Y,Z
}⊗n

. (2.5)

The Hadamard gate H, the π
4 rotation about the Z axis T , and the phase gate P that is the

π
2 rotation about the Z axis are given by

H =
1√
2

 1 1

1 −1

 , P =

 1 0

0 i

 , T =

 1 0

0 eiπ/4

 , (2.6)

where T is also known as the π
8 gate.

Universal set

The gate set UC,
{

X ,Y,Z,H,S
}

, are normalizers of the Pauli group, which generate a

group of single-qubit Clifford operations as UCσiU
†
C. To generate arbitrary single-qubit

unitary operations, a non-Clifford operation such as T gate is required. Then, to gener-

ate arbitrary n-qubit unitary operations, two-qubit gate is inevitable. The controlled-Not
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(CNOT) gate and the controlled-Z (CZ) gate are well known as a two-qubit gate and

defined as

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , UCZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (2.7)

The CNOT gate and CZ gate are acted on the controlled qubit c and the target qubit t as

UCNOT = |0⟩⟨0|c ⊗ It + |1⟩⟨1|c ⊗Xt , UCZ = |0⟩⟨0|c ⊗ It + |1⟩⟨1|c ⊗Zt , (2.8)

respectively. In Eq. (2.8) a symbol ⊗ is called the tensor product that represents in n-

quantum systems, e.g.

H ⊗ I =
1√
2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

 , (2.9)

UCNOT ·X ⊗ I =


0 0 1 0

0 1 0 1

0 1 0 0

1 0 0 0

= X ⊗X ·UCNOT. (2.10)

Since the gate set
{

H,P,T,UCNOT
}

or
{

H,P,T,UCZ
}

can construct any unitary operation,

these gate set is called a universal set.

Quantum noise

To describe the quantum noise, we consider an data qubit system D and external (envi-

ronmental) system E. Quantum noise can be modeled as interaction between the systems

D and E. The joint state of systemsD and E is given by

ρD ⊗ρE (2.11)

The quantum noise transform ρD ⊗ρE as

U(ρD ⊗ρE)U† (2.12)
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Since the environmental system after the noise will be needed to be accessible, the data

qubit system can be obtained by the partial trace of Eq. (2.12) as

E (ρD) = trE

[
U(ρD ⊗ρE)U†

]
, (2.13)

where E is superoperator (trace-preserving completely positive map) acting on a density

operator ρD. This operation of the quantum noise E (ρD) can be also described by

E (ρD) = ∑
k

EkρDE†
k , (2.14)

where the operation elements Ek satisfy ∑k EkE†
k = I. In the case of the depolarizing

channel acting on qubits, the channel in the high temperature limit can be described by

stochastic Pauli errors with probabilities pi as

E (ρD) =
[
1− p1 − p2 − p3

]
ρ +∑

3
piσiρDσi, (2.15)

where σ1 = X , σ2 = Y, and σ3 = Z are Pauli matrices.

2.1.3 Entangled states and stabilizer

Bell state and GHZ state

An entangled states refer to a quantum state which cannot be decomposed into two inde-

pendent subsystems. The Bell state, |Bell⟩, and GHZ state, |GHZ⟩, are typical examples

of entangled states in two- and three-qubit system:

|Bell⟩ =
1√
2

(
|0⟩A |0⟩B + |1⟩A |1⟩B

)
, (2.16)

|GHZ⟩ =
1√
3

(
|0⟩A |0⟩B |0⟩C + |1⟩A |1⟩B |1⟩C

)
, (2.17)

respectively. These entangled states cannot be decomposed by a tensor product of a state

in the subsystem and another state in the subsystem. The Bell state and GHZ state are

depicted in Fig. 2.1 (a) and (b), respectively.

Cluster state
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Figure 2.1: Entangled states. (a) Bell state (b) GHZ state (c) Cluster state

The cluster state is used for measurement-based quantum computation (or one-way quan-

tum computation), which is generated as follows. Firstly, we prepare the a qubit composed

of graph G in the state |+⟩= (|0⟩+ |1⟩)/
√

π . Next, we perform the CZ gate between the

two qubits corresponding to every edge E. For example, the 3-linear cluster state |3l⟩ and

4-tree cluster state |4t⟩ described in Fig. 2.1 (c) are written as

|3l⟩ = (|+⟩1 |0⟩2 |+⟩3 + |−⟩1 |1⟩2 |−⟩3)/
√

2, (2.18)

|4t⟩ =
{
|+⟩1 (|0⟩2 |0⟩3 |0⟩4 + |1⟩2 |1⟩3 |0⟩4 + |1⟩2 |0⟩3 |1⟩4 + |0⟩2 |1⟩3 |1⟩4)

+ |−⟩1 (|0⟩2 |0⟩3 |1⟩4 + |0⟩2 |1⟩3 |0⟩4 + |1⟩2 |0⟩3 |0⟩4 + |1⟩2 |1⟩3 |1⟩4)
}
/2

√
2, (2.19)

respectively.

Stabilizer

The stabilizer formalism [13, 14] offers a elegant way to represent any graph state. For a

n-qubit |ψ⟩ is stabilized by

S |ψ⟩= |ψ⟩ for all S ∈ S , (2.20)

where S represents a stabilizer group. For the Bell state and GHZ state, the stabilizer

groups are given by

SBell = ⟨X ⊗X ,Z ⊗Z⟩, (2.21)

SGHZ = ⟨X ⊗X ⊗X ,Z ⊗Z ⊗ I, I ⊗Z ⊗Z⟩, (2.22)

The cluster states associated to a graph G = (V,E), where G consists of a vertex set
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V =
{

vi
}n

i=1 and a set of edges E, is stabilized by operators K j as

Ki = Xi ∏
j∈Ni

Z j, (2.23)

where the Pauli operators Xi and Z j act on the qubits associated to the vertices i and j,

respectively, and Ni denotes the set of indices defined as the set of vertices neighboring

vi. For the 4-tree cluster state |4t⟩ in Eq. (2.19), the qubit 1 corresponds to the vertice i.

2.1.4 Measurement-based quantum computation with discrete vari-

able states

Measurement-based quantum computation is an alternative to the standard quantum cir-

cuit model. In measurement-based quantum computation, quantum computation is im-

plemented by single-qubit measurements on a large-scale cluster state. Since the resource

state to implement quantum computation is prepared in off-line processing, there is no

need to generate the on-demand entangled state during quantum computation. In Fig.

2.2(a), the schematic view of measurement-based quantum computation for single-qubit

gates is described with the two qubit state UCZ · |ψ⟩ |+⟩. In particular, we consider the

gate defined by

Mθ ,m = XmHZθ (m = 0,1), (2.24)

where Mθ=nπ/2,m and Mθ=nπ/4,m are used to implement the gates for the single-qubit

Clifford group and universal for single-qubit quantum computation, respectively. In Fig.

2.2 (a), the data qubit 1 is measured in the basis X and the qubit 2 transform into XmH |ψ⟩,
where m denotes the measurement outcome, 0 or 1. In the case of the gate Mθ ̸̸=0,m, the

qubit 1 is measured in the basis Z†
θ XZθ , and the qubit 2 transform into XmHZθ |ψ⟩, where

the Zθ is the single qubit rotation regarding to Z axis. By repeatedly performing this

procedure, we can implement a sequence of single qubit rotations

Mθn,mnMθn−1,mn−1 · · ·Mθ1,m0 . (2.25)
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Figure 2.2: Introduction of measurement-based quantum computation.

In the case of n = 3 in Fig. 2.2(a), the gate Mθ3,m3Mθ2,m2Mθ1,m1 can transform as

Mθ3,m3Mθ2,m2Mθ1,m1 = M(−1)m3θ3,0M(−1)m2 θ2,0M(−1)m1 θ1,0. (2.26)

by using a commutation relation XZθ X = Z(−θ). Two qubit gate is also performed by

measurement based quantum computation model as shown in Fig. 2.2 (b). The CNOT

gate based on a circuit model in Fig. 2.2 (b) to the left is equal to the sequence of the

measurement in Fig. 2.2 (b) to the right. Therefore, the cluster states enable universal

quantum computation, since cluster states realize the measurement based implementation

of a single ( for Clifford and universal) and two qubit gate.

2.1.5 Quantum error correcting codes

Three-qubit bit flip code

We describe the simplest quantum error correcting code, the three-qubit bit flip code. The

three-qubit bit flip code has generators

S1 = Z ⊗Z ⊗ I, S2 = I ⊗Z ⊗Z. (2.27)
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The stabilizer subspace is spanned by the logical states

|0⟩L = |000⟩ , |1⟩L = |111⟩ . (2.28)

The logical operator for X is given by

XL = X ⊗X ⊗X , (2.29)

acting on the logical states as XL |0⟩L = |1⟩L and XL |1⟩L = |0⟩L. This quantum error

correcting code is a quantum analogue of the classical there-bit repetition code, and can

correct the single bit flip error X with the probability p on the qubit i described by super-

operator as

E ρ = (1− p)ρ + pXiρXi. (2.30)

In quantum error correction (QEC), it is necessary that the measurements on the logi-

cal qubit to determine the location of errors are performed indirectly on the code state,

to avoid destructing the superposition of quantum states. To avoid the destruction of

quantum information of the logical qubit, by using ancilla qubits, we need to determine

the location of errors without measurement of the logical qubit. For the three-qubit flip

code, the circuit, two ancilla qubits are initialized to the state |0⟩, interacted with the data

qubit through the CNOT gate, and measured in the computational (Z) basis. From the

measurement outcomes, the syndrome to determine the location of the single X error is

extracted. To see the way of the QEC, we consider that the logical state |ψ⟩ is |b1b2b3⟩
(b1 = b2 = b3 = 0 or 1), and the measurement outcomes of the two ancilla qubits are x

and y, respectively. Since the X error occurs on the three qubit as

|ψ⟩= X l1 ⊗X l2 ⊗X l3(α |000⟩+β |111⟩), (2.31)

measurement outcomes x and y are equal to l1 + l2 and l1 + l3, respectively. In the case of

no error, both x and y are 0. On the other hand, the x = 0 and y = 1 shows the single X

error on the qubit 3. Therefore, we can determine the location of the X error.
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Steane 7-qubit code

The class of quantum error correcting codes, so-called the Calderbank-Shor-Steane (CSS)

codes, are particularly well suited for use in quantum computation, since these codes are

an important element to make quantum computation fault-tolerant. The Steane 7-qubit

code is the smallest CSS code and has the stabilizer generators

S1 = I ⊗ I ⊗ I ⊗X ⊗X ⊗X ⊗X , S2 = I ⊗X ⊗X ⊗ I ⊗ I ⊗X ⊗X , (2.32)

S3 = X ⊗ I ⊗X ⊗ I ⊗X ⊗ I ⊗X , S4 = I ⊗ I ⊗ I ⊗Z ⊗Z ⊗Z ⊗Z, (2.33)

S5 = I ⊗Z ⊗Z ⊗ I ⊗ I ⊗Z ⊗Z, S6 = Z ⊗ I ⊗Z ⊗ I ⊗Z ⊗ I ⊗Z. (2.34)

The logical operator for X and Z are given by

XL = X ⊗X ⊗X ⊗X ⊗X ⊗X ⊗X , ZL = Z ⊗Z ⊗Z ⊗Z ⊗Z ⊗Z ⊗Z. (2.35)

By using the stabilize generators, the Steane 7-qubit code is described as

|i⟩L ∝
6

∏
j=1

I +S j

2
|i⟩⊗7 (i = 0,1), (2.36)

where |i⟩⊗7 means |i⟩ |i⟩ |i⟩ |i⟩ |i⟩ |i⟩ |i⟩. A quantum error correcting code is referred to as

an
[
n,k,d

]
code indicating that k logical qubits of information are encoded into n physical

qubits and t arbitrary errors can be corrected, where d denotes the distance of the code

and satisfies the condition d ≥ 2t +1. For the Steane 7-qubit code, the code is referred to

as an
[
7,4,3

]
code.

Surface code

In 1997 Alexei Kitaev proposed surface codes [15]. For general surface code, we can

define a simultaneous +1 eigenstate of check operators ( stabilizer generators ) for vertex

V and plaquette P as

Ai = ∏
j∈V

Xi, Bi = ∏
j∈P

Zi, (2.37)

respectively. We check the measurement outcomes Ai and Bi for a syndrome extraction to

detect errors, where Ai and Bi are I with no errors. If measurement outcome give a value
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of -1, we can detect an error on the lattice. Since a single X error occurs on the lattice that

is anti-commutes with Bi, the error can be detected by the measurement of the Bi = −1

around each check operators. In addition, among all error correction codes, a surface

code is one of the best candidates to be the chosen protocol to implement fault-tolerant

quantum computation because of their simple architecture and high error threshold value.

2.1.6 Fault-tolerant quantum computation with discrete variable states

Fault-tolerance

To implement large-scale and reliable quantum computation, fault-tolerance is an essen-

tial procedure that realize quantum computation on logical qubits without any error propa-

gating between logical qubits; that is, in a fault-tolerant operation a single error introduces

at most a single error per block of the code. Hence, by using the fault-tolerant operation,

we can perform the X syndrome extraction of the CSS code , where the logical code states

|0⟩L is used as ancilla qubits to detect errors, By contrast, the syndrome extraction with-

out fault-tolerance , where the single error on the ancilla qubit, introduces to two or more

physical qubits.

Fault-tolerant quantum computation

There are various methods for fault-tolerant quantum computation using different error

correcting codes. To implement fault-tolerant quantum computation, the transversal gates

are used for universal gates and syndrome measurements in a fault-tolerant manner. By

using a fault-tolerance manner, the QEC for the logical qubit encoded by the quantum

error correcting code is performed so that the single error leads to just a single error in

the output logical qubit. Similarly, a logical operation using transversal gates between the

logical qubits can be performed transversally to introduce the errors into any other logical

qubits.
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Figure 2.3: Introduction of a concatenated code.

Threshold theorem

To realize reliable quantum computation, the logical error probability should be substan-

tially low so as to obtain a solution of quantum computation with a high-accuracy. This

can be done by the concatenation of the quantum error correcting code or surface codes

with fault-tolerant manner. This is called threshold theorem, which is defined as

”If the noise per elementary operation is below a constant non-zero threshold then an ar-

bitrarily long quantum computation can be performed with arbitrary accuracy and small

operational overhead ”.

Concatenation

Suppose a quantum error correcting code can reduce the logical error probability from p

to Cp2 by using the QEC, where p denotes the error probability on the single qubit and

C is constant. Then, we define the logical error probability Cp2 as p(1), and we perform

repeatedly the QEC to reduce the level-2 logical error probability to p(2) = C(p(1))
2
=

C(Cp2)2 as shown in Fig 2.3. By repeating this procedure, the logical error probability

can be reduced to

pl =C(p(l−1))
2
=

(Cp)2l

C
, (2.38)

where l is the concatenation level. Hence, if the error probability p satisfies the condition

p < 1/C, the level-l logical error probability can be super exponentially reduced as l

becomes large, that is threshold theorem.
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2.2 Quantum computation with continuous variable states

2.2.1 Qumode

In quantum information processing with discrete variable systems, a discrete and finite

number of quantum states are utilized as a basis. By contrast, in quantum information

processing with continuous variable systems, a continuous and infinite number of quan-

tum states are utilized as a basis, where the basis is continuously varying quantum states,

such as eigenstates of the position and the momentum operators. In continuous variable

systems, the individual physical state is referred to as a qumode.

Electromagnetic field

The electric and magnetic field in the vacuum state, where there are no charge, is formu-

lated by the Maxwell Equations:

∇ ·E = 0, ∇ ·B = 0, ∇×E+
∂B
∂ t

= 0, ∇×B−µ0ε0
∂E
∂ t

= 0, (2.39)

where µ0 and ε0 are the magnetic permeability and electric permittivity for free space,

respectively, and satisfy the relation with the free space speed of light c as
√µ0ε0 = c.

Then, the time dependent electric field E(r, t) is obtained from the equation as

(
∇2 − ∂ 2

∂ t2

)
E = 0. (2.40)

From the equation, E(r, t) is described as

E(r, t) = ∑
k

√
hωk

2ε0

(
αkvk(r)e−iωkt −αk

∗vk(r)
∗eiωkt

)
= 0, (2.41)

where hbar, k, ωk, αk, and v are the reduced Planck constant, the index of the mode, the

angular frequency of the mode k, the electric field complex amplitude for the mode k, and

a mode function, respectively.

Quantized electromagnetic field
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E(r, t) in Eq. (2.42) is quantized by replacing the electric field complex amplitude by the

annihilation âk and creation operators â†
k as

Ê(r, t) = ∑
k

√
hωk

2ε0

(
âkvk(r)e−iωkt − â†

kvk(r)
∗eiωkt

)
= 0. (2.42)

The Hamiltonian for the electromagnetic field H is also quantized as

H = ∑
k

h̄ωk
(
â†

k âk +
1
2
)
. (2.43)

For the operators âk and â†
k , the commutation relations become

[âk, âk′] = [â†
k , â

†
k′] = 0, [â†

k , â
†
k′] = δkk′. (2.44)

The quadrature operators of the position q̂ and the momentum p̂ are described as

q̂ =

√
h̄
2
(â+ â†), p̂ =−i

√
h̄
2
(â− â†), (2.45)

respectively, and also described as

â =

√
h̄
2
(q̂+ ip̂), â† =

√
h̄
2
(q̂− ip̂†). (2.46)

Uncertainty principle for quadratures

The quadrature operators q̂ and p̂ obey the relation [q̂, p̂] = i, and by applying the un-

certainty principle to q̂ and p̂ the variances of quadrature operators obey the Heisenberg

uncertainty principle as

∆2q̂ ∆2 p̂ ≥ 1
2

h̄, (2.47)

where the variances ∆2x̂ and ∆2 p̂ are given as

∆2q̂ =
⟨
q̂2⟩−⟨

q̂
⟩2
, ∆2 p̂ =

⟨
p̂2⟩−⟨

p̂
⟩2
. (2.48)
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Eq. (2.47) means that q̂ and p̂ cannot be determined simultaneously.

Coherent state

Suppose the state |α⟩ is representing a coherent state. The state |α⟩ is described using the

annihilation operator â as

â |α⟩= α |α⟩ , (2.49)

where |α⟩ is the eigenvalue of the annihilation operator acting on the coherent state. The

vacuum state|0⟩ is represented by a coherent state with α = 0. The coherent state can be

also described by photon number state ( Fock state ) as follows:

|α⟩= e−
1
2 |α|2 ∑

n

αn
√

n!
|n⟩ , (2.50)

where |n⟩ is photon number states.

Squeezed vacuum state

A squeezed vacuum state is defined as

Ŝ(r) |0⟩ , (2.51)

where Ŝ(r) is a squeezing operator described as Ŝ(r) = e
r
2 (â

2−â2†), and r is a squeezing

parameter. The squeezing operator transforms â and â†:

Ŝ†(r)âŜ = âcoshr− â†sinhr, Ŝ†(r)â†Ŝ = â†coshr− âsinhr, (2.52)

Ŝ†(r)q̂Ŝ = e−rq̂, Ŝ†(r)p̂Ŝ = er p̂. (2.53)

From Eq. (2.53), we obtain
⟨
q̂
⟩
=
⟨

p̂
⟩
= 0,

⟨
q̂2
⟩
= h̄

2e−2r , and
⟨

p̂2
⟩
= h̄

2e2r, respectively.

Hence, we get

⟨
∆2q̂

⟩
=

h̄
2

e−2r,
⟨
∆2 p̂

⟩
=

h̄
2

e2r,
⟨
∆q̂

⟩
=

√
h̄
2

e−r,
⟨
∆p̂

⟩
=

√
h̄
2

er, (2.54)
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respectively. We notice that
⟨
∆q̂

⟩
and

⟨
∆ p̂

⟩
satisfy the relation

⟨
∆q̂

⟩⟨
∆p̂

⟩
= h̄/2.

Homodyne detection

The continuous variables in quantum optics are generally detected by using the homodyne

detection. In this thesis, we assume that the homodyne measurement is used to measure

on quantum states in the quadrature. The annihilation operator of the signal mode and the

complex amplitude of the local oscillator are given by â and |α|eiϕ , respectively. A beam

splitter coupling implemented between the signal and the local oscillator modes by using

a 50:50 beam splitter ( half beam splitter ). This operation leads to the operators as

â1 =
1√
2
(â+α), â2 =

1√
2
(−â+α), (2.55)

where the â1 and â2 are the annihilation operator for the mode 1 and 2 coupled by the

beam splitter.

2.2.2 Quantum gate

In the continuous variables, the analog for the computational basis states |0⟩(|1⟩) and the

conjugate basis states |+⟩(|−⟩) are given by a continuum of orthogonal states |s⟩q and

|s⟩p:

|s⟩p =
1√
2π

∫ ∞

−∞
dreirs |r⟩q = F |s⟩q , (2.56)

|s⟩q =
1√
2π

∫ ∞

−∞
dre−irs |r⟩p = F† |s⟩p , (2.57)

where |s⟩q and |s⟩p related by a Fourier transform operation F . The |s⟩q and |s⟩p are also

defined by q̂ |s⟩q = s |s⟩q and p̂ |s⟩p = s |s⟩p, respectively. These basis states satisfy

∫ ∞

∞
dq |q⟩⟨q|= 1,

∫ ∞

∞
d p |p⟩⟨p|= 1, ⟨q|q′⟩= δ (q−q′), ⟨p|p′⟩= δ (p− p′). (2.58)
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Displacement operation

The displacement operation is represented by X(s) = e−isp̂ (h̄ = 1) for the q quadrature

and Z(s) = eisq̂ for the p quadrature, where this operations act on the states |0⟩q and |0⟩p

as

|s⟩q = X(s) |0⟩q , |s⟩p = Z(s) |0⟩p , (2.59)

respectively. By using â = (q̂+ ip̂)/
√

π , the coherent state |α⟩ is represented by the

displacement operation D̂(α) acting on the vacuum state as

|α⟩= D̂(α) |0⟩ , (2.60)

where D̂(α) = eα â†−α∗â . As shown in Eq. (2.59), the displacement operation X(s) =

e−isp̂ and Z(s) = eisq̂ are referred to as Gaussian transformation in terms of the quadrature: q̂

p̂

→

 q̂+ s

p̂

 ,

 q̂

p̂

→

 q̂

p̂+ s

 , (2.61)

respectively.

Rotation operation

A rotation ( phase shift ) operation is defined as R(θ) = eiθ(q̂2 + p̂2)/2, which rotates a

state in phase space by an angle θ : q̂

p̂

→

 cosθ −sinθ

sinθ cosθ

 q̂

p̂

 . (2.62)

In the case of θ = π/2, the rotation operation R(π/2) is equal to Fourier transformation

F .

Squeezing operation

The squeezing operation Ŝ(r) = e
r
2 (â

2−â2†) is also represented as R(θ) = e−ir2(q̂ p̂+p̂q̂): q̂

p̂

→

 er 0

0 e−r

 q̂

p̂

 . (2.63)
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Shearing operation

The shearing operation, which is so-called the phase gate, P(s) = e
s
2 q̂2

with respect to the

q quadrature by a gradient of s: q̂

p̂

→

 1 0

s 1

 q̂

p̂

 . (2.64)

CZ gate

The CZ gate operation is defined as UCZ = eigq̂1·q̂2 with the weighted parameter (interac-

tion strength) g, which interacts between the two qumodes 1 and 2:
q̂1

p̂1

q̂2

p̂2

=


1 0 0 0

0 1 g 0

0 0 1 0

g 0 0 1




q̂1

p̂1

q̂2

p̂2

 . (2.65)

In the case of the weighted parameter g=1, the CZ gate transforms the quadrature as
q̂1

p̂1

q̂2

p̂2

→


q̂1

p̂1 − q̂2

q̂2

p̂2 − q̂1

 . (2.66)

2.2.3 Entangled states and stabilizer

Cluster state

In a continuous variable system with squeezed vacuum states, the cluster states is gen-

erated by the CZ gate between the squeezed vacuum states in the p quadrature. For ex-
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ample, the two-mode cluster state ( the 2-linear cluster state ) |2l⟩=UCZ12 |0⟩p,1 |0⟩p,2 =

e
i
h̄ q̂1q̂2 |0⟩p,1 |0⟩p,2, is described as

|2l⟩= 1√
2π h̄

∫ ∞

−∞
du |u⟩q,1 |u⟩p,2 =

1√
2π h̄

∫ ∞

−∞
dv |v⟩p,1 |v⟩q,2 . (2.67)

The relations in terms of the quadrature are p̂1 − q̂2 = 0 and p̂2 − q̂1 = 0, satisfied (p̂1 −
q̂2) |2l⟩ = 0 and (p̂2 − q̂1) |2l⟩ = 0. Similarly, the three-mode cluster state ( the 3-linear

cluster state ), |3l⟩=UCZ12UCZ23 |0⟩p,1 |0⟩p,2 |0⟩p,3 = e
i
h̄ q̂1q̂2e

i
h̄ q̂2q̂3 |0⟩p,1 |0⟩p,2 |0⟩p,3, is de-

scribed as

|3l⟩= 1√
2π h̄

∫ ∞

−∞
du

∫ ∞

−∞
dv |u⟩q,1 |u+ v⟩p,2 |v⟩q,3 =

1√
2π h̄

∫ ∞

−∞
du |u⟩p,1 |u⟩q,2 |u⟩p,3 .

(2.68)

The relations in terms of the quadrature are p̂1− q̂2 = 0, p̂2− q̂1− q̂3 = 0, and p̂3− q̂2 = 0.

2.2.4 Measurement-based quantum computation with continuous vari-

able states

We here explain measurement-based quantum computation with squeezed vacuum states.

In a similar fashion with the discrete variables, quantum computation is implemented by

the measurement of the qumodes and the feedforward operation depending on the mea-

surement results. For example of measurement-based quantum computation in continuous

variables, suppose that the input state is

UCZ(|ϕ⟩in |0⟩p) =UCZ
(∫ ∞

−∞
ds f (s) |s⟩q |0⟩q

)
=

∫ ∞

−∞
ds f (s) |s⟩q |s⟩q . (2.69)

The first mode of the 2-linear cluster is measured in the p quadrature with associated

result m , and then the output state, teleporting to the second mode , is given

|ϕ⟩out ∝
∫ ∞

−∞
ds f (s)

(
⟨m|p |s⟩q

)
|s⟩p ∝

∫ ∞

−∞
ds f (s)e−ism |s⟩p (2.70)

= e−isp̂
∫ ∞

−∞
ds f (s) |s⟩p = X(m)F |ϕ⟩in . (2.71)

The arbitrary single-mode Gaussian unitary operation is implemented by the measurement

on the 4-linear cluster state. We define a sequence of measurement on the 4-linear cluster

in the (p̂+m jq̂) quadrature as (m1, m2, m3, m4), where j denotes the j-th qumode. By
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using this definition, the quantum gates I, F , and P on the input state |ϕ⟩in is given by (0,

0, 0, 0), (1, 1, 1, 0), and (1, 0, 0, 0), respectively.

2.2.5 Fault-tolerant quantum computation with continuous variable

states

Unfortunately, it is impossible to implement fault-tolerant quantum computation with

only the squeezed vacuum states, since the squeezed vacuum state does not offer the QEC

with a fault-tolerant manner. Hence, to implement QEC with a fault-tolerant manner, the

continuous variable state should be digitized using the appropriate code states such as the

GKP qubit and the cat code. Then, the digitized continuous variable states can be applied

to the standard quantum error correcting code used for fault-tolerant quantum computa-

tion with the discrete variables. In the next section, we explain the fault-tolerant quantum

computation with the GKP qubit.

2.3 Quantum computation with the GKP qubit

In this section, we firstly explain the GKP qubit and the noise model in this thesis. Then,

we describe measurement-based quantum computation with the GKP qubit. Finally, fault-

tolerant quantum computation regarding the threshold of the squeezing level of the GKP

qubit is described.

2.3.1 GKP qubit

Gottesman, Kitaev, and Preskill proposed a method to encode a qubit in an oscillator’s q

and p quadratures to correct errors caused by a small deviation (displacement) in the q

and p quadratures.

Ideal GKP qubit

The basis of the ideal GKP qubit is composed of a series of Gaussian peaks of a Dirac

comb and separation
√

π embedded in a infinite phase space. The code words of the GKP

qubit code are coherent superpositions of infinitely squeezed states (up to normalization)
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and are defined as

|0̃⟩ideal =
∞

∑
t=−∞

|2t
√

π⟩q =
∞

∑
t=−∞

|t
√

π⟩p , (2.72)

|1̃⟩ideal =
∞

∑
t=−∞

|2(t +1)
√

π⟩q =
∞

∑
t=−∞

(−1)t |t
√

π⟩p . (2.73)

Also, we can construct the GKP qubit as

( ∞

∑
s=−∞

e−ispα)( ∞

∑
t=−∞

e2πitq/α) |ψ⟩= ∑
s,t=

exp
[
i(−spα +2πtq/α +πst)

]
|ψ⟩ . (2.74)

Approximate GKP qubit

Figure 2.4: Absolute value of the wave function of the approximate GKP qubit (a) |0̃⟩
state and (b) |1̃⟩ state.

The ideal GKP qubit is clearly unphysical, since they they have an infinite squeezing that

requires infinite energy expectation value. Hence, we must consider the approximation

of the ideal GKP qubit that are physically realizable. The basis of the approximate GKP

qubit is composed of a series of Gaussian peaks of width σ and separation
√

π embedded

in a larger Gaussian envelope of width 1/σ . Although in the case of infinite squeezing

(σ → 0) the GKP qubit bases become orthogonal, in the case of finite squeezing, the

approximate code states are not orthogonal. The approximate GKP qubit |0̃⟩ and |1̃⟩ (up
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Figure 2.5: Measurement error probabilities of the GKP qubit with the finite squeezing.

to normalization) are defined as

|0̃⟩ ∝
∞

∑
t=−∞

∫
e−2πσ2t2

e−(q−2t
√

π)2/(2σ2) |q⟩dq, (2.75)

|1̃⟩ ∝
∞

∑
t=−∞

∫
e−πσ2(2t+1)2/2e−(q−(2t+1)

√
π)2/(2σ2) |q⟩dq. (2.76)

Measurement error of the approximate GKP qubit

Since the approximate GKP qubits are not orthogonal, there is a probability of misidenti-

fying |0̃⟩ as |1̃⟩, and vice versa. Provided the measured magnitude deviates less than
√

π/2

from the peak value, the decision of the bit value from the measurement of the GKP qubit

is correct. The probability pcorr that we identify the correct bit value is the portion of a

normalized Gaussian of a variance σ2 that lies between −
√

π/2 and
√

π/2 [4]:

pcorr =
∫ √

π
2

−
√

π
2

dx
1√

2πσ2
exp(−x2/2σ2). (2.77)

The probability of the misidentification of the bit value is calculated as 1− pcorr. In Fig.

2.8, measurement error probability 1− pcorr is plotted as a function of the squeezing level,

where the squeezing level is equal to −10log10(2σ2). In addition to the imperfection that

originates from the finite squeezing of the initial states, we consider the Gaussian quantum

channel and a photon loss channel.

Gaussian quantum channel
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The Gaussian quantum channel is a natural generalization of the Gaussian classical chan-

nel. The Gaussian quantum channel [5, 16] leads to a displacement in the q and p quadra-

tures independently. The channel is described by superoperator ζ acting on density oper-

ator ρ as follows:

ρ → ζ (ρ) =
1

πξ 2

∫
d2αe−|α|2/ξ 2

D(α)ρD(α)†, (2.78)

where D(α) is a displacement operator in the phase space. The position q and momentum

p are displaced independently as follows:

q → q+ v, p → p+u, (2.79)

where v and u are real Gaussian random variables with mean zero and variance ξ 2. The

Gaussian quantum channel conserves the position of the Gaussian peaks in the probability

density function on the measurement outcome of the GKP qubit, but increases the vari-

ance as ξ 2. Therefore, we evaluate the performance under a code capacity noise model,

where the noise is parameterized by a single variance σ2 that includes the squeezing level

of the initial GKP qubit and the degradation via the Gaussian quantum channel.

Photon loss channel

In addition to the Gaussian quantum channel, we consider the transmission loss channel

L , i.e. photon loss channel. The transmission loss channel L transforms the variables

in the q and p quadrature

q̂ →
√

η q̂, p̂ →
√

η p̂, (2.80)

where
√η is the transmittance coefficient. The variances in the q and p quadrature,

σ2
in,q → σ2

out,q = ησ2
in,q +(1−η)/2, (2.81)

σ2
in,p → σ2

out,p = ησ2
in,p +(1−η)/2, (2.82)

where σ2
in,q and σ2

in,p are the variances before the transmission loss channel L , respec-

tively. In this work, we assume that the σ2
in,q and σ2

in,p of the single GKP qubit are equal

to (1/2)e−2r, where r is the squeezing parameter.
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Single-qubit level quantum error correction

In Ref. [5], the single-qubit level QEC has been proposed to correct a displacement (devi-

ation) error derived from the finite squeezing of the GKP qubit or the Gaussian quantum

channel. We here explain the single-qubit level QEC to correct the displacement error in

the p quadrature in detail. In this single-qubit level QEC in the p quadrature as shown in

Fig. 2.6(a), an additional single ancilla qubit is entangled with the data qubit by a CNOT

gate, where the data qubit is the target qubit. The ancilla qubit is prepared in the state

|0̃⟩ to prevent us from identifying the bit value of the data qubit. The CNOT gate, which

corresponds to the operator exp(-iq̂a p̂D) for continuous variables, transforms

q̂a → q̂a, (2.83)

p̂a → p̂a − p̂D, (2.84)

q̂D → q̂D + q̂a, (2.85)

p̂D → p̂D, (2.86)

where q̂D(p̂D) and q̂a(p̂a) are the quadrature operators of the data and ancilla qubits in

the position q (momentum p), respectively. Regarding the deviation, the CNOT gate

operation displaces the deviation of the q and p quadratures as

∆q,a → ∆q,a, (2.87)

∆p,a → ∆p,a −∆p,D, (2.88)

∆q,D → ∆q,D +∆q,a, (2.89)

∆p,D → ∆p,D, (2.90)

where ∆q,D(∆p,D) and ∆q,a(∆p,a) are the true deviation values of the data and ancilla qubits

in the position q (momentum p), respectively. We assume that the deviations of the data

qubit in the q and p quadratures obey the Gaussian distribution with the variance σ2
D,q and

σ2
D,p, and the deviations of the ancilla qubit in the q and p quadratures obey the Gaus-

sian distribution with the varianceσ2
a,q and σ2

a,p, respectively. After the CNOT gate, we
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Figure 2.6: A circuit for the single-qubit level QEC for (a) the p quadrature and (b) the q
quadrature .

measure the ancilla qubit in the p quadrature, and obtain the deviation of the ancilla qubit

∆mp,a that obeys the Gaussian distribution with the variance σ2
D,p +σ2

a,p. Then, we per-

form the displacement |∆mp,a| on the p quadrature of the data qubit to correct by shifting

back in the direction to minimize the deviation. If |∆mp,a| = |∆p,a −∆p,D| is less than
√

π/2, the true deviation value of the data qubit in the p quadrature changes from ∆p,D to

∆p,a after the displacement operation, which displaces ∆p,D by ∆mp,a(= ∆p,a −∆p,D). On

the other hand, if |∆p,a −∆p,n| is more than
√

π/2, the bit error in the p quadrature occurs

after the displacement operation. Therefore, the single-qubit level QEC for the data qubit

in the p quadrature can reduce the variance of the data qubit in the p quadrature from

σ2
D,p to σ2

a,p. The variance of the data qubit in the q quadrature after the single-qubit level

QEC increases from σ2
D,q to σ2

D,q +σ2
a,q, since the true deviation ∆q,D and ∆q,a obey the

Gaussian distribution with the variance σ2
D,q and σ2

a,q, respectively, where the ∆q,D and

∆q,a are the true deviation of the data qubit and the ancilla qubit, respectively. Similarly,

the single-qubit level QEC in the q quadrature can be performed using the second ancilla

qubit. As shown in Fig. 2.6(b), the ancilla is prepared in the state |+̃⟩ and the data qubit

is assumed to be the control qubit. Regarding the deviation, the CNOT gate operation

displaces the deviation of the q and p quadratures as

∆q,a2 → ∆q,a2 +∆q,D +∆q,a, (2.91)

∆p,a2 → ∆p,a2, (2.92)

∆q,D +∆q,a → ∆q,D +∆q,a, (2.93)

∆p,a → ∆p,a −∆p,a2, (2.94)

where ∆q,a2(∆p,a2) is the true deviation value of the second ancilla qubit in the posi-

tion q (momentum p). After the CNOT gate, we measure the ancilla qubit in the q

quadrature, and obtain the deviation of the ancilla qubit ∆mq,a2 . Then, we perform
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the displacement |∆mq,a2| on the q quadrature of the data qubit to correct by shifting

back in the direction to minimize the deviation. If |∆mq,a2| = |∆q,a2 +∆q,D +∆q,a| is less

than
√

π/2, the true deviation value of the data qubit in the q quadrature changes from

∆q,D +∆q,a to −∆q,a2 after the displacement operation, which displaces ∆q,D +∆q,a by

−∆mp,a(= −∆q,a2 −∆q,D −∆q,a). On the other hand, if ∆q,a2 +∆q,D +∆q,a is more than
√

π/2, the bit error in the q quadrature occurs after the displacement operation. To

summarize, after the sequential single-qubit level QECs in the p and q quadrature, the

variances of the data qubit in the q and p quadratures become σ2 and 2σ2, respectively,

where the variance of ancilla qubits is σ2. Although the single-qubit level QEC works

well for the small deviation, we need to operate the logical-qubit level QEC to correct the

deviation greater than
√

π/2.

2.3.2 Fault-tolerant quantum computation with the GKP qubit

To implement FTQC with continuous variables, Menicucci adopted the squeezed vacuum

states as a resource for measurement-based quantum computation and GKP ancilla qubits

for the single-qubit level QEC for small deviation in phase space. In this model an an-

cilla’s noise in the q quadrature propagates in the data qubit and is teleported to squeezed

vacuum states. In this thesis, since we consider mainly quantum computation with the

f ull-GKP qubits, we adopt the GKP qubits as a resource for not only error correction, but

also measurement-based quantum computation.

Measurement-based quantum computation with the squeezed vacuum state and the

GKP qubit

Firstly, we describe the FTQC with the squeezed vacuum state and the GKP qubits. Fig.

2.7 shows a quantum circuit based on the measurement-based quantum computation to

perform an arbitrary single-mode quantum gate and the single-qubit level QECs in the q

and p quadratures. The sequential single-qubit level QECs correct the deviation on the

data qubit |ψ̃⟩ in both the q and p quadratures, where the deviation is accumulated during

the single-mode quantum gate. This deviation in the p quadrature, sp, is an added-up

value of the deviation of both the data qubit and first ancilla GKP qubit |0̃⟩ as shown

in Fig. 2.7 (a), which is based on a circuit model. The ancilla is measured to perform
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Figure 2.7: A quantum circuit for the arbitrary single-mode quantum gate with the single-
qubit level QEC on the data (input) qubit |ψ̃⟩ in the q and p quadratures.

the single-qubit level QEC in q quadrature. To correct the deviation in the p quadrature,

second |0̃⟩ and two Fourier transforms on the data are used. This is because that 0 and

1 states in the computational basis
{
|0̃⟩ , |1̃⟩

}
, and + and - states in the conjugate basis

states
{
|+̃⟩ , |−̃⟩

}
are related by the Fourier transform F . Hence, we can correct the devi-

ation in the q and p quadratures in the sequential single-qubit level QEC using two ancilla

GKP qubits |0̃⟩. The circuits depicted in Fig.2.7 (a) can be written by cluster states with

squeezed vacuum cluster states in Fig. 2.7 (b), where the blank nodes represent squeezed

vacuum states. After the measurement on the squeezed vacuum states and GKP qubits

except for last blank node of the squeezed vacuum state, the data qubit |ψ̃⟩ is teleported

to the last blank node after the feedforward operation according to the measurement out-

come. Therefore, we can perform any single mode gate with the single-qubit level QECs

in the q and p quadratures, since the arbitrary single mode gate is implemented by the

measurement on the linear cluster states composing the four squeezed vacuum states. The

failure probability of the qubit-level error is determined by the initial variance (squeez-

ing level) of the data and the ancilla qubits. When the qubit-level errors occur, we must

correct these errors by using the quantum error correcting code such as the steane 7-qubit

code, the Knill’s C4/C6 code, the surface code, and so on, which is referred as a logical-

qubit level QEC.

Measurement-based quantum computation with the full-GKP qubit
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In the above model, the noise of ancilla qubits (squeezed vacuum states) in the q quadra-

ture propagate in data qubit and teleported to the subsequent ancilla qubit. To remove

this propagation of noise, we can consider the model to eliminate necessity for using the

ancilla qubits to correct the deviation on the data qubit by using the quantum teleporta-

tion between the only GKP qubits. A quantum circuit for the single-qubit level QEC cab

be implemented by quantum teleportation with the Bell state using only the GKP qubits.

Quantum teleportation for the single-qubit level QEC works as follows: the data qubit

|ψ̃⟩= α |0̃⟩+β |1̃⟩ is prepared, along with a Bell pair |ψ̃⟩= (|0̃0̃⟩+ |1̃1̃⟩)/
√

2. Then |ψ̃⟩
and one qubit of the Bell pair are measured together in the q and p quadrature, respec-

tively, which is called the Bell measurement. From the Bell measurement, we obtain a

random bit values q (= 0 or 1), p (= 0 or 1). The output qubit teleporting to the other

qubit of the Bell pair becomes in the initial data qubit |ψ̃⟩ after the feedforward oper-

ation depending on measurement results. In the case of the GKP qubit, note that we

can obtain two bit and deviation values, and the single-qubit level QEC succeeds when

quantum teleportation succeeds. Hence, the single-qubit level QEC succeeds, when the

magnitude of the deviations of the data and one of the Bell pair for the q and p quadrature

are both less than
√

π/2. Here, the Bell measurement implicitly works as the CZ gate

between the data qubit and one of the Bell pair, . Therefore, measurement-based quantum

computation with the error correction of the deviation can be implemented by a series of

single-qubit measurements on a cluster states composed of GKP states without squeezed

vacuum states.

Threshold of the squeezing level of the GKP qubits

To calculate the squeezing level required for FTQC in the model composed of squeezed

vacuum states and GKP qubits, Ref. [4] calculate the error probability for the CZ gate

with the sequence of the single-qubit level QEC as shown in Fig. 2.8. In Fig. 2.8, the

model with squeezed vacuum states and GKP qubits implements the CZ gate on the input

states |ψ̃⟩ and |ϕ̃⟩, followed by two single-qubit level QEC after with the identity gate.

The error probability for the CZ gate is the probability that any four single-qubit level

QECs fail, considering the operations including the CZ gate. The reason why we focus

on the CZ gate is that the CZ gate between the two data qubits is the noisiest gate among

the universal gate sets. The thresholds of the squeezing level for FTQC based on the
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Figure 2.8: A quantum circuit to implement the CZ gate between the data qubits |ψ̃⟩and
|ϕ̃⟩

circuit model are calculated to be about 10−6 [17, 18, 15] –10−2 [19, 20, 21] depending

on the QEC protocols and noise models, which corresponds to the squeezing level 14.8–

20.5 dB [4]. When we adopt the 3D cluster state to topologically protected measurement

based quantum computation, the threshold squeezing for the model with the squeezed

vacuum and GKP qubits is obtained as 16.0 dB.
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Chapter 3

Analog quantum error correction

This chapter contains an introduction to the analog quantum error correction and the ap-

plication for several quantum error correcting codes such as the repetition codes, the con-

catenated code, and the surface code.

3.1 Analog information and likelihood function

Because quantum states has intrinsically continuous nature, the measurement outcome is

also analog information using an appropriate detector such as homodyne and hetelodyne

detectors. In the measurement of the GKP qubit using a homodyne detector, we make a

decision on the bit value k(= 0,1), digital information, from the measurement outcome of

the GKP qubit qm = qk+∆m to minimize the deviation |∆m|, where qk(k = 0,1) is defined

as (2t + k)
√

π(t = 0,±1,±2, · · · .) as shown in Fig. 3.1(a). . If we consider only digital

information k, as in conventional QEC, we waste the analog information contained in ∆m.

To utilize the analog information, in this chapter, we consider a likelihood function and

propose a maximum-likelihood method to improve the QEC performance.

We here define the true deviation |∆̄| as the difference between the measurement out-

come and true peak value q̄k, that is, |∆̄| = |q̄k − qm|. We consider the following two

possible events: one is the correct decision, where the true deviation value |∆| is less than
√

π/2 and equals to |∆m| as shown in Fig. 3.1(b). The other is the incorrect decision,

where |∆| is greater than
√

π/2 and satisfies |∆̄|+ |∆m| =
√

π , as shown in Fig. 3.1(c).

Because the true deviation value obeys the Gaussian distribution function f (∆), we can

evaluate the probabilities of the two events by

f (∆) =
1√

2πσ2
e−∆2

/(2σ2). (3.1)

In our method, we regard function f (∆) as a likelihood function. Using this function, the
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Figure 3.1: Introduction of a likelihood function. (a) Measurement outcome and deviation
from the peak value in q quadrature. The dotted line shows the measurement outcome qm
equal to (2t + k)

√
π + ∆m (t = 0,±1,±2, · · · , k = 0,1), where k is defined as the bit

value that minimizes the deviation ∆m. The red areas indicate the area that yields code
word (k+1) mod 2, whereas the white area denotes the area that yields the codeword k.
(b) and (c) Gaussian distribution functions as likelihood functions of the true deviation
value ∆represented by the arrows. (b) refers to the case of the correct decision, where the
amplitude of the true deviation value is |∆|<

√
π/2, whereas (c) the case of the incorrect

decision
√

π/2 < |∆|<
√

π .

likelihood of the correct decision is calculated by

f (∆) = f (∆m). (3.2)

The likelihood of the incorrect decision, whose |∆| is
√

π −|∆m|, is calculated by

f (∆) = f (
√

π −|∆m|). (3.3)

We can reduce the decision error on the entire code word by considering the likelihood of

the joint event and choosing the most likely candidate. Strictly speaking, the likelihood

function should be the periodic function including the sum of the Gaussian functions,

considering the superposition of the Gaussian states. In this thesis, the likelihood function
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is approximated by simple Gaussian functions given by Eqs. (3.2) and (3.3) since the tail

of the Gaussian function next to the measurement outcome is small enough to ignore. For

example, in the case of the squeezing levels of 1-2 dB and 10 dB, the probabilities that

lies between 0 and
√

π/2 are about 102 and 1012 times as large as the probability that lies

between 0 and 3
√

π/2, respectively.

3.2 Introduction to analog quantum error correction

3.2.1 Three-qubit bit-flip code

To provide an insight into our method, we apply the analog QEC to the repetition code. As

a simple example, we focus on the three-qubit bit-flip code. In this code, a single logical

qubit |ψ̃⟩L=α |0̃⟩L+β |1̃⟩L, where |α|2+ |β |2 = 1, is encoded into three GKP qubits. The

two logical basis states |0̃⟩L and |1̃⟩L are defined as

|0̃⟩L = |0̃⟩1 |0̃⟩2 |0̃⟩3 , |1̃⟩L = |1̃⟩1 |1̃⟩2 |1̃⟩3 , (3.4)

respectively. In the QEC with the three-qubit bit-flip code, the error identification for the

GKP qubits is substantially different from that for DV-QEC. While the parity of the code

qubits is transcribed on the ancilla qubit in DV-QEC, the deviation of the physical GKP

qubits is projected onto the deviation of the ancillae.

We explain how the deviation of the physical GKP qubits is projected onto the de-

viation of the ancillae in the following. Fig.3.2 shows a quantum circuit for the QEC

with the three-qubit bit-flip code. This circuit looks almost the same as the circuit for DV

apart from the third ancilla qubit. However, the error identification for the GKP qubits

is substantially different from that for DV-QEC. In this circuit, the sum of deviations of

the physical GKP qubits i and i+ 1 (i = 1,2) are projected onto the ancilla i. The de-

viation of the physical GKP qubit 3 is projected onto ancilla 3. First, a single logical

qubit |ψ̃⟩L is prepared by two controlled-not (CNOT) gates acting on the data qubit |ψ̃⟩1

= α |0̃⟩1 +β |1̃⟩1 and two ancillae |0̃⟩i ( i = 2, 3). The CNOT gate, which corresponds to

the operator exp(-iq̂L p̂A), transforms

q̂L → q̂L, p̂L → p̂L − p̂A , (3.5)

q̂A → q̂A + q̂L, p̂A → p̂A, (3.6)

36



Figure 3.2: A quantum circuit of the QEC for the three-qubit bit-flip code with GKP
qubits using the proposed method. The data qubit |ψ̃⟩1 and two GKP qubits |0̃⟩2 and
|0̃⟩3 encode a single logical qubit. |0̃⟩A1 , |0̃⟩A2 ,and |+̃⟩A3 denote ancilla qubits for the
QEC. The Gaussian quantum channel and Mq denote the Gaussian quantum channel and
measurements of ancillae in q quadrature, respectively.

where q̂L (q̂A) and p̂L ( p̂A) are the q and p quadrature operators of the logical (ancilla)

qubit, respectively. Then, the Gaussian quantum channel displaces the q and p quadra-

tures randomly and independently, and increases the variance of the three physical GKP

qubits. After the Gaussian quantum channel, the bit-flip error correction is implemented

using the three ancillae |0̃⟩A j ( j=1, 2) and |+̃⟩A3. Before the CNOT gates in the error

correction circuit, the true deviation values of the physical GKP qubits and ancillae in

the q quadrature, which obey Gaussian distribution with mean zero, are denoted by ∆ j

and ∆A j ( j=1, 2, 3), respectively. For simplicity, because the ancilla qubits are fresh, we

assume that the initial variance is much smaller than that of the physical qubits of the

logical qubit. Then, the CNOT gates change the true deviation values of three ancillae

∆A j in q quadrature as follows:

∆A1 → ∆A1 +∆1 +∆2 = ∆1 +∆2 ,

∆A2 → ∆A2 +∆2 +∆3 = ∆2 +∆3 ,

∆A3 → ∆A3 +∆3 = ∆3 . (3.7)

Therefore, the sum of deviations of the physical GKP qubits i and i+ 1 (i = 1,2) are

projected onto the ancilla i. The deviation of physical GKP qubit 3 is projected onto

ancilla 3.
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From the measurement of the three ancillae in q quadrature, we obtain the outcome

qm,Ai = q0 +∆m,Ai (i = 1, 2) from ancillae 1 and 2, and qm,A3 = qk +∆m,A3 (k = 0, 1)

from ancilla 3, under the conditions ∆m,Ai ∈ [−
√

π,
√

π] and ∆m,A3 ∈ [−
√

π/2,
√

π/2].

We then define the values δ1 = ∆m,A1 −∆m,A2 +∆m,A3 and δ2 = ∆m,A2 −∆m,A3. For i =

1, 2, if δi ∈ [−
√

π,
√

π], then we define the values Mi=δi. Otherwise, if δi ∈ [
√

π,2
√

π],

we define the values Mi=δi − 2
√

π , and if δi ∈ [−2
√

π,−
√

π], we define the values Mi=

2
√

π + δi. Error identification is executed from M1 and M2 as follows. If both |M1|
and |M2| are smaller than

√
π/2, we decide that no error occurs on the logical qubits.

Otherwise, we consider two error patterns: one containing a single error, and the other

containing double errors. For the first pattern, we presume that the true deviation values

∆i (i = 1, 2) and ∆3 of the qubits in the logical qubit are Mi and ∆m,A3, respectively. Then,

the likelihood of the first pattern F1 is given by

F1 = f (M1) f (M2) f (∆m,A3). (3.8)

For the second pattern, if Mi ∈ [0,
√

π], we presume that ∆i is Mi
∗ = Mi −

√
π , and if

Mi ∈ [−
√

π,0], we presume that ∆i is Mi
∗ = Mi +

√
π . If ∆m,A3 ∈ [0,

√
π/2], we presume

∆3 to be ∆∗
m,A3 = ∆m,A3−

√
π , and if ∆m,A3 ∈ [−

√
π/2,0], we presume that ∆3 is ∆∗

m,A3 =

∆m,A3 +
√

π . Then, the likelihood of the second pattern F2 is given by

F2 = f (M1
∗) f (M2

∗) f (∆∗
m,A3). (3.9)

Hence, we can use the likelihood functions f (|∆m|) and f (
√

π − |∆m|) to compare the

two error patterns and decide the more likely pattern. For example, if M1 is in the range

[
√

π/2,
√

π], and both M2 and ∆m,A3 are in the range [0,
√

π/2], we consider the first

error pattern as a single error on qubit 1 of the logical qubit and the second error pattern

as double errors on qubits 2 and 3. If F1 > F2, we decide that the first error pattern

occurs, and vice versa. In error identification, the likelihood that |∆i| is greater than
√

π

is not taken into account because it is always less than
√

π provided |∆i| is less than
√

π . In the conventional manner, based on majority voting with binary measurement

outcomes, the first error pattern is invariably selected because an estimation using only

digital information yields a larger probability for a single error than that for double errors.
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Figure 3.3: Simulation results for the failure probabilities of the three-qubit bit-flip code
using the conventional (blue line with open circles) and proposed methods (red line with
filled circles).

3.2.2 Numerical results for the three-qubit bit-flip code

We numerically simulated the QEC for the three-qubit bit-flip code using the Monte Carlo

method. In this simulation, it is assumed that the encoded data qubit is prepared perfectly,

that is, the initial variances of the data qubit and ancillae are zero, and the variances of the

GKP qubits of the encoded data qubit increase independently in the Gaussian quantum

channel. These assumptions are set to allow a clear comparison between the conventional

and proposed methods. In Fig. 3.3, the failure probabilities of the QEC are plotted as a

function of the standard deviation of the data qubit after the Gaussian quantum channel.

The failure occurs when the assumed error pattern is incorrect. The results confirm that

our method suppresses errors more effectively than the conventional method that uses only

digital information. To obtain a failure probability less than 10−9, the standard deviation

should be less than 0.25 for the proposed method, whereas it needs to be less than 0.21

for the conventional method, which corresponds to the squeezing level of 9.0 dB and 10.6

dB, respectively. This improvement comes from the fact, as mentioned before, that our

method can correct double errors, whereas the conventional method corrects only a single

error.
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3.3 Analog quantum error correction for the concatenated

code

3.3.1 C4/C6 code

In the following, we demonstrate that the proposed likelihood method improves the error

tolerance on a concatenated code, which is indispensable for achieving FTQC. The use

of a maximum likelihood method for a concatenated code was proposed with a message-

passing algorithm by Poulin [22], and later Goto and Uchikawa [23] for Knill’s C4/C6

code [19]. However, because previous proposals have been based on the probability of the

correct decision given by Eq. (1), the error correction provides a suboptimal performance

against the Gaussian quantum channel, as shown later using a numerical calculation.

We apply our method to the C4/C6 code modified with a message-passing algorithm

proposed by Goto and Uchikawa [23]. The QEC in the C4/C6 code is based on quantum

teleportation, where the logical qubit |ψ̃⟩L encoded by the C4/C6 code is teleported to

the fresh encoded Bell state. The quantum teleportation process refers to the outcome of

the Bell measurement on the encoded qubits and determines the amount of displacement.

If this feedforward is performed correctly, the error is successfully corrected. From Bell

measurement, we obtain the outcomes of both bit values and deviation values for the phys-

ical GKP qubits of the encoded data qubit and encoded qubit of the encoded Bell state.

Therefore, we can improve the error tolerance of the code by introducing the likelihood

method to the Bell measurement.

The error correction in the C4/C6 code is based on quantum teleportation, where the

logical qubit |ψ̃⟩L encoded by the C4/C6 code is teleported to the fresh encoded Bell

state, as shown in Fig.3.4. The quantum teleportation process refers to the outcomes Mp

and Mq of the Bell measurement on the encoded qubits, and determines the amount of

displacement. We obtain the Bell measurement outcomes of bit values mpi and mqi for the

i-th physical GKP qubit of the encoded data qubit and encoded qubit of the encoded Bell

state, respectively. In addition to bit values, we also obtain deviation values ∆pmi and ∆qmi

for the i-th physical GKP qubit. Therefore, the proposed likelihood method can improve

the error tolerance of the Bell measurement.

As a simple example to explain our method for the Bell measurement, we describe the

level-1 C4/C6 code, that is, the C4 code. The C4 code is the [[4,2,2]] code and consists of
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four physical GKP qubits to encode a level-1 qubit pair; thus, it is not the error-correcting

code but the error-detecting code in the conventional method. The logical bit value of

the C4 code is k (=0,1) when the bit value of the level-1 qubit pair is (k,0) or (k,1), that

is, the bit value of the first qubit k defines a logical bit value of a qubit pair. As the

parity check of the Z operator for the first and second qubits ZIZI and IIZZ indicates,

the bit value of the level-1 qubit pair (0,0) corresponds to the bit value of the physical

GKP qubits (mq1,mq2,mq3,mq4) = (0,0,0,0) or (1,1,1,1) [19]. The bit values of the pairs

(0,1), (1,0), and (1,1) correspond to the bit values of the physical GKP qubits (0,1,0,1)

or (1,0,1,0), (0,0,1,1) or (1,1,0,0), and (0,1,1,0) or (1,0,0,1), respectively. Therefore, if

the measurement outcome of the physical GKP qubits is (0,0,1,0) for the Z basis, then

we consider two error patterns, assuming the level-1 qubit pair (0,0). The first pattern

is a single error on the physical qubit 3 and the second pattern is the triple errors on the

physical qubits 1, 2, and 4. We then calculate the likelihood for the level-1 qubit pair (0,0)

F0,0, F0,1, F1,0, and F1,1 as

F0,0 = f (
√

π −|∆qm1|) f (
√

π −|∆qm2|) f (∆qm3) f (
√

π −|∆qm4|)

+ f (∆qm1) f (∆qm2) f (
√

π −|∆qm3|) f (∆qm4), (3.10)

F0,1 = f (|∆qm1|) f (
√

π −|∆qm2|) f (
√

π −∆qm3) f (
√

π −|∆qm4|)

+ f (
√

π −∆qm1) f (∆qm2) f (
√

π) f (∆qm4), (3.11)

F1,0 = f (
√

π −|∆qm1|) f (
√

π −|∆qm2|) f (
√

π −∆qm3) f (|∆qm4|)

+ f (∆qm1) f (∆qm2) f (|∆qm3|) f (
√

π −∆qm4), (3.12)

F1,1 = f (|∆qm1|) f (
√

π −|∆qm2|) f (∆qm3) f (
√

π −|∆qm4|)

+ f (
√

π −∆qm1) f (∆qm2) f (
√

π −|∆qm3|) f (
√

π −∆qm4), (3.13)

respectively. Finally, we determine the level-1 logical bit value for the Z basis by com-

paring F0,0 +F0,1 with F1,0 +F1,1, which refer to the likelihood functions for the logical

bit values zero and one, respectively. If F0,0 +F0,1 > F1,0 +F1,1, then we determine that

the level-1 logical bit value for the Z basis is zero, and vice versa. The level-1 logical bit

value for the X basis can be determined by the parity check of the X operator for the first

and second qubits XXII and IXIX in a similar manner. In the conventional likelihood

method [22, 23] F0,0, F0,1, F1,0, and F1,1 are given by the same joint probability

p3
corr(1− pcorr)+ pcorr(1− pcorr)

3, (3.14)
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Figure 3.4: Error correction by quantum teleportation. The encoded data qubit |ψ̃⟩L, two
encoded qubits |+̃⟩L, and |0̃⟩L are encoded by C4/C6 code. Gaussian quantum channel
and MLD denote the Gaussian quantum channel and a maximum-likelihood decision,
respectively.

where the probability pcorr is defined by Eq. (2.77) in Chap. 2. Because F0,0 +F0,1 =

F1,0 +F1,1, the C4 code is not error-correcting code but error-detecting code in the con-

ventional method, whereas it is the error-correcting code in our method. For higher levels

of concatenation, the likelihood for the level-l (l ≧ 2) bit value can be calculated by the

likelihood for the level-(l −1) bit value in a similar manner.

3.3.2 Numerical calculations for the C4/C6 code

We simulated the quantum teleportation process for the C4/C6 code with the conven-

tional [23] and proposed method using the Monte Carlo method. In this simulation, it is

assumed that the encoded data qubit and encoded Bell state are prepared perfectly, and the

variance of the GKP qubits of the encoded data qubit σ2 increases only by the Gaussian

quantum channel. In Fig.3.5, the failure probabilities up to level-5 of the concatenation

are plotted as a function of the data qubit’s deviation. The results confirm that our method

suppresses errors more effectively than the conventional method. It is also remarkable

that our method achieves the hashing bound of the standard deviation for the quantum

capacity of the Gaussian quantum channel ∼ 0.607, which corresponds to the squeez-

ing level of 1.3 dB and has been conjectured to be an attainable value using the optimal

method [5, 16]. The quantum capacity is defined as the supremum of all achievable rates

at which quantum information can be transmitted over the quantum channel and the hash-

ing bound of the standard deviation is the maximum value of the condition that yields

the non-zero positive quantum capacity. By contrast, the concatenated code with only
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Figure 3.5: Simulation results for the failure probabilities of the C4/C6 code using the con-
ventional and proposed method. The failure probabilities using the conventional method
(blue line) and proposed method (red line) are represented for the concatenated level-
1 (solid), level-2 (dashed ), level-3 (dashed-dotted), level-4 (open circles), and level-5
(filled circles).

digital information achieves the hashing bound ∼ 0.555 [5, 16], which corresponds to the

squeezing level of 2.1 dB. This fact shows our method can lead to reduce the squeezing

level required for FTQC.
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3.4 Analog error correction with the surface code

3.4.1 Surface code

While the analog QEC has been investigated by using the three-qubit bit-flip code and

C4/C6 code, its validity on the surface code, which is one of the important candidate for

scalable fault-tolerant quantum computation, is still unknown. Here we first investigate

the QEC process of a surface code under a code capacity noise model, where the QEC

is operated with ideal syndrome measurements. In the code capacity noise model, the

encoded state is constructed from the single GKP qubit of an infinite squeezing, and after

the construction process the Gaussian quantum channel decreases the squeezing level of

the GKP qubits except for the syndrome qubits. Later we will extend to the phenomeno-

logical noise model, where the encoded state is constructed from the single GKP qubit of

an infinite squeezing, and the Gaussian quantum channel decreases the squeezing level of

not only the data qubits but the syndrome qubits.

We here investigate the QEC process of a surface code with the code capacity model

to verify whether analog QEC with the surface code can provide an optimal perfor-

mance against the Gaussian quantum channel, since we employ topologically protected

measurement-based quantum computation to implement FTQC. For the QEC, we employ

the minimum distance decoding, which can be done by finding a minimum path connect-

ing pairs of vertices. In the numerical simulations of the QEC process of a surface code

with the L×L lattice, we use a minimum-weight perfect matching algorithm [24, 25]. In

the minimum-weight perfect matching algorithm, we estimate the most likely location of

the errors from the possible locations provided by vertices on the graph. In the digital

QEC, the weight is calculated from a distance of the vertices. On the other hand, in the

anlog QEC, a weight is calculated by using a likelihood as

lin = −log
[

f (|∆m|)/ f (
√

π −|∆m|)
]
, (3.15)

where and lin is a likelihood for the incorrect decision. In Fig.2, the logical error proba-

bilities are plotted as a function of the standard deviation of the GKP qubits for the code

distances d = 5,7,9, · · · .
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3.4.2 Surface code with a code capacity noise model

To obtain the threshold value of the surface codes with the digital QEC and the ana-

log QEC, the finite-size scaling ansatz similar to Ref. [26, 27] was used. In the scaling,

the logical error probability PL = A+B(p− pth)L1/v was used for the fitting function,

where A, B, pth, and v are the fitting parameters. The results in Fig. 3.6 confirm that

our method can reduce the logical error probability. This indicates that the analog QEC

also achieves ∼0.607 close to the hashing bound of the quantum capacity of the Gaus-

sian quantum channel. On the other hand, the digital QEC with only binary information

achieves ∼0.540. This implies that the analog QEC with the surface code provides an

optimal performance against Gaussian quantum channel.

3.4.3 Surface code with a phenomenological noise model

Next, we simulate the QEC process of topologically protected measurement-based quan-

tum computation with the surface code [10, 11, 28, 29] under a phenomenological noise

model. We here investigate the QEC process on the 3D cluster state. There are the primal

and dual cubes, faces, and edges in a unit cell of the 3D cluster state. In topological QEC

on the 3D clsuter state, if there is no error, the parity of each six X-basis measurement

outcomes on the primal cube is always even. The errors are described by using a dual

1-chain and we estimate the location of errors from a set of odd parity cubes. In Fig.

3.7, the logical error probabilities are plotted as a function of the standard deviation. The

results confirm that our method can also suppress errors with the phenomenological noise

model, and the threshold for the standard deviation can be improved from 0.41 to 0.47,

which corresponds to improvement of the squeezing level from 4.7 dB to 3.5 dB. Hence,

analog QEC with the phenomenological noise model can reduce the required squeezing

level by 1.2 dB in comparison to the digital QEC.

3.5 Discussion and conclusion

We have proposed a maximum likelihood method which used not only digital information

but also analog information for an efficient QEC based on GKP qubits. Numerical results

showed our method improved the QEC performance for the three-qubit bit-flip code and

concatenated codes. In particular, we provide the first method to achieve the hashing
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bound for the quantum capacity of the Gaussian quantum channel. Such a use of analog

information has been developed in classical error correction against the disturbance such

as an additive white Gaussian noise [30] and identified as an important tool for qubit

readout [31, 32]. However, the use of analog information has been left unexploited to

improve the QEC performance.

Furthermore, our method can be also applied to various other codes [9, 10, 33, 34, 35].

Therefore, the squeezing level required for FTQC with a non-concatenated code such as

surface code which is used to implement topological quantum computation [9, 10] can

be reduced using our method. In addition, our method provide highly versatile quantum

error correction with continuous variables, because our method can be applied to GKP

code, cat code, and other various codes used to digitize continuous variables.

Although several methods to implement GKP qubits have been proposed [36, 37,

38, 39, 40, 41, 42] and the achievable squeezing level of a squeezed vacuum state is 15

dB [43], it is still difficult to experimentally generate GKP qubits with the squeezing

level required for FTQC. Our method can alleviate this requirement, and will encourage

experimental developments.
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Figure 3.6: Simulation results for the logical error probabilities of the surface code with
ideal syndrome measurements using (a) the digital QEC and (b) the analog QEC for sev-
eral distance d which is size of the 3D cluster state. The simulation results for the digital
QEC are obtained from 50000 samples. The simulation results for the analog QEC are
obtained from 50000 samples (for d = 5−15) and 10000 samples (for d = 17−25) .
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Figure 3.7: Simulation results for the logical error probabilities of the surface code with
noisy syndrome measurements using (a) the digital QEC and (b) the analog QEC. The
simulation results for the digital QEC are obtained from 50000 samples. The simulation
results for the analog QEC are obtained from 10000 samples.
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Chapter 4

Toward large-scale quantum
computation

Although small-scale quantum computation with various physical systems has been demon-

strated, large-scale quantum computation is still a significant experimental challenge for

most candidates of physical systems. In this chapter, we propose a method to realize high-

threshold FTQC wih the GKP qubits by harnessing analog information contained in the

GKP qubit, which can alleviate the required squeezing level for FTQC.

In Sec. 4.1, we briefly review large-scale quantum computation with continuous vari-

able stastes. In Sec. 4.2, we explain the accumulation of errors during the construction of

the large-scale cluster states. In Secs. 4.3 and 4.4, we propose the highly-reliable mea-

surement, and present a high-threshold FTQC on the 3D cluster state constructed by using

the highly-reliable measurement, respectively. In Sec. 4.5, the required squeezing level is

calculated. In the calculation, we first calculate the unheralded error in the leading order

for simplicity and then we simulate the analog QEC on the 3D cluster states constructed

by using the fusion gate with the highly-reliable measurement. Section 4.6 is devoted to

a discussion and conclusion.

4.1 Large-scale quantum computation

Among the candidates, squeezed vacuum states in an optical system have shown great

potential for large scale continuous variable quantum computation; in fact, more than

one million-mode continuous variable cluster state has been achieved already in an ex-

periment [3]. This ability of entanglement generation comes from the fact that squeezed

vacuum states can be entangled by using the time-domain multiplexing approach by only

beam splitter coupling to miniaturize optical circuits [44, 45].

Since continuous variable quantum computation itself has an analog nature, it is dif-
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ficult to handle the accumulation of analog errors caused, for example, by photon loss

during quantum computation [46, 47]. This can be circumvented by encoding digitized

variables into continuous variables using an appropriate code, such as Gottesman–Kitaev–

Preskill (GKP) code [5]. By digitizing continuous variables, the standard quantum error

correcting code can be applied to implement FTQC with continuous variables. Moreover,

GKP qubits inherit the advantage of squeezed vacuum states on optical implementation;

they can be entangled by only beam splitter coupling. Furthermore, qubit-level Clifford

gates on the GKP qubits in measurement-based quantum computation are implemented

by Gaussian operation achieved simply by a homodyne measurement on continuous vari-

able cluster states [48]. Menicucci showed that continuous variable-FTQC is possible

within the framework of measurement-base quantum com using squeezed vacuum clus-

ter states with GKP qubits [4]. A promising architecture for a scalable quantum circuit

has been proposed recently [49, 50], where the GKP qubits are incorporated to perform

FTQC. Hence, the GKP qubits will play an indispensable role in implementing continu-

ous variable-FTQC.

Regarding the generation of the GKP qubit, a promising proposal [37] exists to prepare

a good GKP qubit in circuit quantum electrodynamics with the squeezing level around

10 dB [51] within the reach of near-term experimental set-up. This implies that large

scale quantum computation is possible, if the required squeezing level of the initial single

qubit for FTQC is less than 10 dB. Yet, there is a large gap between the experimentally

achievable squeezing level and theoretical requirement squeezing level. For example,

the existing continuous variable-FTQC requires the squeezing level of both squeezed

vacuum state and GKP qubit 14.8–20.5 dB [4] to achieve the fault-tolerant threshold

2× 10−2 [19, 20, 21] −10−6 [17, 18, 15]. Therefore, it is highly desirable to reduce the

required squeezing level to around 10 dB to realize the large scale continuous variable-

FTQC.

In this work, we propose a high-threshold FTQC to alleviate the required squeezing

level for FTQC by harnessing analog information contained in the GKP qubit. The ana-

log information obtained by measuring continuous variable states (including GKP qubits)

reflects the effect of noise as a deviation in the measurement outcome. Therefore, it con-

tains beneficial information to improve the error tolerance. The proposed high-threshold

FTQC consists of two parts. One is to apply analog QEC [6] to the surface code, which

allows us to implement the high-threshold FTQC. The other is a construction of the clus-
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ter state for topologically protected measurement-base quantum com [9, 10, 11, 12] with a

low error accumulation by using the highly-reliable measurement with the help of analog

information. In general, the accumulation of errors on a qubit, which causes degradation

of the threshold, increases as the number of the entangling gate increases. In this work,

we develop a novel method to avoid this accumulation of errors by using the proposed

highly-reliable measurement which harnesses analog information. Accordingly, the re-

quired squeezing level for topologically protected measurement-base quantum com with

the 3D cluster state constructed by our method can be reduced to 9.8 dB. By contrast,

the required squeezing level in the existing continuous variable-FTQC scheme [4] com-

bined with the fault-tolerant scheme with the threshold 0.67×10−2 [12] is 16.0 dB. This

improvement results from the reduction from 16.0 dB to 9.8 dB corresponds to the re-

duction of the error probability to misidentify the single GKP qubit in q and p quadrature

from 2.7× 10−15 to 7.4× 10−5. By achieving the requirement of the squeezing level

around 10 dB, we believe this work can considerably take a step closer to the realization

of large-scale quantum computation with digitized continuous variable states and will be

indispensable to construct continuous variable-FTQC.

4.2 Accumulation of errors during the construction of the

large-scale cluster states

We have investigated the QEC process of topologically protected measurement-base quan-

tum com on the 3D cluster state prepared by the infinitely squeezed GKP qubits in the pre-

vious section. In this section, we consider more realistic condition, where the 3D cluster

state is constructed from the single GKP qubits of a finite squeezing level by using only

the CZ gate. In the following, we refer this noise model to the correlated error model. In

the construction of the 3D cluster state by using only the CZ gate, the accumulation of

errors on the qubit, which causes degradation of the squeezing level, generally increases

as the number of the the CZ gate on the qubit increases. The CZ gate for the GKP qubits,

which corresponds to the operator exp(-iq̂Cq̂T), transforms

q̂C → q̂C, (4.1)

p̂C → p̂C − q̂T , (4.2)

q̂T → q̂T, (4.3)
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p̂T → p̂T − q̂C , (4.4)

where q̂C (q̂T) and p̂C ( p̂T) are the q and p quadrature operators of the control (target)

qubit, respectively.

We here consider the error propagation caused by the CZ gate operation. The CZ gate

operation displaces the deviation for the q and p quadrature as

∆q,C → ∆q,C, (4.5)

∆p,C → ∆p,C −∆q,T, (4.6)

∆q,T → ∆q,T, (4.7)

∆p,T → ∆p,T −∆q,C, (4.8)

where ∆q,C (∆q,T) and ∆p,C (∆p,T) are true deviation values in the q and p quadrature of the

control and target qubit, respectively. Since the true deviation obeys Gaussian distribution

and takes a value randomly and independently, the variance of the control qubit and target

qubit in p quadrature changes as

σ2
p,C → σ2

p,C +σ2
q,T, (4.9)

σ2
p,T → σ2

p,T +σ2
q,C, (4.10)

where σ2
q,C(σ

2
q,T) and σ2

p,C(σ
2
p,T) are the variance of the control and target qubit in the q

and p quadrature, respectively. On the other hand, the variance in the q quadrature does

not change. Therefore, the CZ gate increases the probability of misidentifying the bit

value in p quadrature. In this work, we define the error propagation caused by the CZ gate

operation as the correlated error. Assuming that the variance of the single GKP qubit is

σ2, if the 3D cluster state is prepared straightforwardly by only the CZ gates, the variance

of the qubits in the p quadrature become 5σ2, since the qubit of the 3D cluster state is

generated by using the CZ gates between four neighboring qubits. This deteriorates the

required squeezing level for the surface code from 4.7 dB under the phenomenological

noise model to 13.7 dB under the correlated noise model. In the following, we propose

the highly-reliable measurement to avoid the accumulation of the errors, which allows us

to achieve a high threshold.
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]

Figure 4.1: Introduction of the highly-reliable measurement. (a) The conventional mea-
surement of the GKP qubit, where the Gaussian distribution followed by the deviation of
the GKP qubit that has variance σ2. The plain (blue) region and the region with vertical
(red) line represent the different code word (k−1) mod 2 and (k+1) mod 2, respectively.
The vertical line regions correspond to the probability of incorrect decision of the bit
value. (b) The highly-reliable measurement. The shown dot line represents a upper limit
vup. The horizontal line areas show the probability that the results of the measurement is
discarded by introducing vup. The vertical line areas show the probability that our method
fails.

4.3 Highly-reliable measurement

We propose the highly-reliable measurement that utilizes analog information, and explain

a method to generate an entanglement between the qubits by using the highly-reliable

measurement, avoiding the accumulation of errors during the construction process. Fol-

lowing Ref. [52], we call this entanglement generation with the highly-reliable measure-

ment as the fusion gate. As we mentioned, in the measurement of the GKP qubit, we

make a decision on the bit value k(= 0,1) from the measurement outcome of the GKP

qubit qm = qk +∆m. The conventional decision sets an upper limit for |∆m| at
√

π/2, and

assigns the bit value k = (2t + k)
√

π . The decision is correct as long as the amplitude of

the true deviation |∆| falls between 0 and
√

π/2. The probability to obtain the correct bit

value is thus given by pcorr in Eq. (2.77). The proposed decision sets an upper limit at

vup(<
√

π/2) to give the maximum deviation that will not cause incorrect measurement
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of the bit value as shown in Fig. 4.1. If the above condition |∆m|< vup is not satisfied, we

discard the result. Since the measurement error occurs when |∆̄| exceeds |
√

π/2+ vup|,
the error probability decreases as increasing vup at the cost of the success probability of

the measurement. The probability to obtain the correct bit value with the highly-reliable

measurement Ppost is equal to Pcor
post/(P

cor
post +Pin

post), where Pcor
post is the probability that the

true deviation |∆̄| falls in the correct area, and Pin
post is the probability that the true devia-

tion |∆̄| falls in the incorrect area. Pcor
post and Pin

post for the GKP qubit of the variance σ2 are

given by

Pcor
post =

+∞

∑
k=−∞

∫ 2k
√

π+
√

π
2 −vup

2k
√

π−
√

π
2 +vup

dx
1√

2πσ2
e−

x2

2σ2 (4.11)

and

Pin
post =

+∞

∑
k=−∞

∫ (2k+1)
√

π+
√

π
2 −vup

(2k+1)
√

π−
√

π
2 +vup

dx
1√

2πσ2
e−

x2

2σ2 . (4.12)

In Fig. 4.2, we plot the probability to misidentify the bit value with the highly-reliable

measurement Epost = 1−Ppost and the success probability of the post-selection PSuc =

Pcor
post + Pin

post as a function of the squeezing level for several vup. As an example, we

described the measurement on the qubit of the variance 3σ2, which is frequently occurred

in the Bell measurement during the construction process. Fig. 4.2 shows that both the

error probability Epost and the success probability PSuc decrease. In our method, we apply

the highly-reliable measurement with vup = 2
√

π/5 to the 3D cluster states construction

to prevent the deviation of the GKP qubit from propagating the qubit-level error derived

from the fusion gate. Because of the highly-reliable measurement, the operation such

as the fusion gate becomes nondeterministic. This will be also handled by the so called

divide and conquer approach [53, 54] below.

4.4 Construction of the 3D cluster state

We explain how to apply the highly-reliable measurement to prevent the squeezing level

from decreasing during the construction of the 3D cluster state. Hereafter, we omit “GKP”

of the GKP qubit and simply call it as a qubit. In our method, there are four steps. In

step 1, we prepare a node qubit and two leaf qubits of the variance σ2 in the q and p

quadrature (Fig. 4.3 (a)). By using the CZ gate we obtain 3-tree cluster state composed

of a node qubit and two leaf qubits, where the the variance of the node and leaf qubits in

the p quadrature increase from σ2 to 3σ2 and 2σ2 , respectively. On the other hand, the
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Figure 4.2: The error probabilities of the highly-reliable measurement Epost and the
success probabilities of the highly-reliable measurement PSuc on the qubit of the vari-
ance 3σ2. (a) The error probabilities with the method using the only CZ gate and our
method using the highly-reliable measurement for the upper limit vup = 0 (red solid),
vup =

√
π/10 (red dashed), vup =

√
π/6 (blue solid), and vup =

√
π/4 (blue dashed), re-

spectively. (b) The success probability for our method. The squeezing level is equal to
−10log106σ2.

variance of the node and leaf qubits in the q quadrature keep the variance σ2.

In step 2, we operate the single-qubit level QEC [5, 55, 56] by using the CNOT gate

with the highly-reliable measurement (Fig. 4.3 (b)). In this single-qubit level QEC, the

additional single ancilla qubit is entangled with the node qubit by using the CNOT gate,

assuming the node qubit is the target qubit. The ancilla qubit is prepared in the state |0̃⟩
to prevent us from identifying the bit value of the node qubit. The CNOT gate, which

corresponds to the operator exp(-iq̂C p̂T), transforms

q̂C → q̂C, (4.13)

p̂C → p̂C − p̂T , (4.14)
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q̂T → q̂T + q̂C, (4.15)

p̂T → p̂T, (4.16)

Regarding the deviation, the CNOT gate operation displaces the deviation for the q and p

quadrature as

∆q,C → ∆q,C, (4.17)

∆p,C → ∆p,C −∆p,T, (4.18)

∆q,T → ∆q,T +∆q,C, (4.19)

∆p,T → ∆p,T. (4.20)

After the CNOT gate, we measure the ancilla qubit in the p quadrature and obtain the de-

viation of the ancilla qubit ∆mp,a. In the single-qubit level QEC, if |∆mp,a|= |∆p,a −∆p,n|
is less than

√
π/2, the true deviation value of the node qubit in the p quadrature changes

from ∆p,n to ∆p,a after the displacement operation, which displaces ∆p,n by ∆mp,a(=

∆p,a −∆p,n). On the other hand, if |∆p,a −∆p,n| is more than
√

π/2, the bit error in the

p quadrature occurs after the displacement operation. This error can be reduced by the

highly-reliable measurement on the ancilla defined as follows: if |∆mp,a| is less than vup,

we then operate the displacement to the node qubit in the p quadrature by ∆mp,a. Other-

wise, we discard the resultant 3-tree cluster state and restart the procedure from step 1.

The error probability of the single-qubit level QEC ESQE is given by Epost defined in the

previous section with the variance of 4σ2, since after the CNOT gate the true deviation

of the ancilla qubit in the p quadrature |∆p,a −∆p,n| obeys Gaussian distribution with the

variance 4σ2, where 4σ2 comes from the node qubit and σ2 from the ancilla qubit. To

summarize, the single-qubit level QEC can reduce the variance of the node qubit in the p

quadrature from 3σ2 to σ2, since ∆p,a and ∆p,n obey Gaussian distributions with the vari-

ances 3σ2 and σ2, respectively. The variance of the node qubit in the q quadrature after

the single-qubit level QEC increases from σ2 to 2σ2, since the true deviation ∆p,n +∆q,a

obeys Gaussian distribution with the variance 2σ2, where the ∆p,n and ∆q,a are the true

deviation of the node qubit and the ancilla qubit, respectively. This increase in the vari-

ance in q quadrature has no effect on the threshold value, whereas the unheralded error in

the p quadrature affects it.

In step 3, we increase the number of the leaf qubits of the tree cluster state by using
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the fusion gate with the highly-reliable measurement. The fusion gate can avoid the de-

viation of the qubit from increasing and the highly-reliable measurement can prevent the

qubit-level error from propagating during constructing the 6-tree cluster state, which we

call the hexagonal cluster state. We describe the construction of the 4-tree cluster state

in detail as follows. By using the fusion gate, we construct the 4-tree cluster state from

the two 3-tree cluster states, one of which is corrected by the single-qubit level QEC and

the other is uncorrected (Fig. 4.3 (c)). In the fusion gate, the Bell measurement with the

highly-reliable measurement is implemented by beam splitter coupling and homodyne

measurement. Then feedforward is operated according to the homodyne measurement

outcomes on the leaf and the node qubits, respectively. If the misidentification of the bit

value of the leaf or node qubits occurs, the feedforward operation propagates the qubit-

level error in the 4-tree cluster. The probabilities to misidentify the bit value of the leaf

and node qubits are the probabilities to misidentify the bit value of the qubit of the vari-

ances 3σ2 and 4σ2, respectively. This unheralded qubit-level error can be reduced by

using the highly-reliable measurement. We define the unheralded errors on the leaf qubits

and node qubits with the highly-reliable measurement as Epost(3σ2) and Epost(4σ2), re-

spectively. The error probabilities Epost(3σ2) and Epost(4σ2) are given by Epost defined

in the previous section with the variance of 3σ2 and 4σ2, respectively.

To evaluate the variances of the leaf and node, we describe the process of the beam

splitter coupling in the following. The 50:50 beam splitter coupling between the leaf qubit

of the 3-tree cluster state after the single-qubit level QEC and the node qubit of the 3-tree

cluster state without the single-qubit level QEC transforms the variables of the leaf and

node qubits in the q and p quadrature as

q̂leaf → (q̂leaf + p̂node)/
√

2, (4.21)

p̂leaf → (p̂leaf + q̂node)/
√

2, (4.22)

q̂node → (q̂leaf − p̂node)/
√

2, (4.23)

p̂node → (p̂leaf − q̂node)/
√

2, (4.24)

where q̂leaf (q̂node) and p̂leaf (p̂node) the variables of the leaf (node) qubit in the q and p

quadrature, respectively. After the coupling, the variances of the leaf qubit in the q and p

quadrature changes as σ2 → 2σ2 and 2σ2 → 3σ2/2, respectively. The variances of the

node qubit in the q and p quadrature changes as σ2 → 3σ2/2 and 3σ2 → 2σ2, respec-
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tively. After the homodyne measurement on the leaf and node qubit in the p quadrature,

the measurement outcome of the leaf and node qubit in the p quadrature are rescaled by

multiplying the measurement outcome by
√

2 in a post-process as (pleaf + qnode)/
√

2 →
pleaf+qnode and (pleaf−qnode)/

√
2 → pleaf−qnode, respectively. The variances of the leaf

and node qubits in the p quadrature changes as 3σ2/2 → 3σ2 and 2σ2 → 4σ2, respec-

tively. Therefore, the probabilities to misidentify the bit value of the leaf and node qubits

in the p quadrature are the probabilities to misidentify the bit value of the qubit of the

variances 3σ2 and 4σ2, respectively.

We can reduce the misidentifying error probabilities occurred in the construction of

the hexagonal cluster state in the same way. We generate the 5-tree cluster state from

the 3-tree cluster states and the 4-tree cluster state by using fusion gate with the highly-

reliable measurement on the leaf qubit of the 3-tree cluster state and the node qubit of

the 4-tree cluster state with the highly-reliable measurement (Fig. 4.3 (d)). Finally, we

construct the hexagonal cluster state from the six 5-tree cluster states with the highly-

reliable measurement on the Bell measurement between leaf qubits (Fig. 4.3 (e)).

In step 4, we generate the 3D cluster state deterministically. Hence, the highly-reliable

measurement can not be used and the 3D cluster state is generated from the hexagonal

cluster states by using the fusion gate with the highly-reliable measurement between the

leaf qubits of the neighboring hexagonal cluster states without the highly-reliable mea-

surement (Fig. 4.3 (f)). In this step, the unheralded error, which corresponds to the

probability to misidentify the bit value of the qubit of the variance 3σ2, accumulates on

the node qubits. We define this error probability as EBell. We can eventually obtain the

3D cluster state composed of the node qubits whose variance and squeezing level in the p

quadrature are σ2 and −10log102σ2, respectively.

By contrast, the conventional method, where the fusion gate with the highly-reliable

measurement is not used and the 3D cluster state is generated by using only the CZ gate

between neighboring nodes, yields the variance 5σ2 and the squeezing level −10log1010σ2

of node qubits in the p quadrature, respectively. Therefore, the single-qubit level QEC and

the fusion gate with highly-reliable measurement can avoid the degradation of the squeez-

ing level during the construction of the 3D cluster state. This relaxes the requirement on

the squeezing level of the initial single qubit considerably as will be calculated in the next

section.
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Figure 4.3: The 3D cluster state construction. (a) The preparation of the 3-tree cluster
state by using the CZ gate. (b) The single-qubit level QEC using the additional ancilla
qubit with the highly-reliable measurement. (c)–(e) The construction of the hexagonal
cluster state from the 3-tree qubit with the highly-reliable measurement. (f) The construc-
tion of the 3D cluster state from the hexagonal cluster states, where the entanglement is
generated between the neighboring hexagonal cluster states without the highly-reliable
measurement.
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4.5 Threshold calculation for TMBC

In this section, we calculate the threshold value for the 3D cluster state prepared by using

the highly-reliable measurement. In this calculation, it is assumed that the 3D cluster state

is prepared using the proposed method with the qubit of the variances finite value σ2 in q

and p quadrature, that is, the initial variances of the qubit before the CZ gate in Fig. 4.3

(a) are σ2 in q and p quadrature.

We define the unheralded error probability Etot per one node qubit of the 3D cluster

state in the p quadrature. The Etot results from four causes, which correspond to the error

originated from the node qubit itself, the unheralded errors during highly-reliable mea-

surements in steps 2 and 3, and the error during the deterministic fusion gate in step 4.

The unheralded error of the node qubit itself Enode occurs, when the magnitude of the

true deviation value of the node qubit is more than
√

π/2. The error probability Enode

is given by Epost with the variance in p quadrature σ2. The unheralded error probabil-

ity in the single-qubit level QEC (step 2) ESQE is given by Epost with the variance in p

quadrature 4σ2. The unheralded errors during highly-reliable measurements occurs in the

two processes of step 3. One is in the 4- and 5-tree cluster states construction by using

the Bell measurement shown in Fig. 4.3 (c) and (d). The probabilities of misidentifying

the bit value on the node qubit in the Bell measurement are both Epost(4σ2) given by

Epost with the variance in p quadrature 4σ2. The other unheralded error process of the

highly-reliable measurement in step 3 is the bit value misidentification on the leaf qubits

by using the fusion gate in Fig. 4.3 (c)-(e). The error probability Epost(3σ2) is given by

Epost with the variance in p quadrature 3σ2. The measurement error in the deterministic

entanglement generation between neighboring node qubits occurs in the Bell measure-

ment between the leaf qubits of the hexagonal cluster states without the highly-reliable

measurement (Fig. 4.3 (f)). This unheralded error probability EBell corresponds to the

probability of misidentifying the bit value on the qubit of the variance 3σ2 without the

highly-reliable measurement. This process requires two Bell measurements per one node

qubit as shown in Fig. 4.3 (f)

For simplicity, we firstly calculate the Etot in the leading order. Later we will take more

detailed calculation by the simulation of the QEC for topologically protected measurement-

base quantum com by using the minimum-weight perfect matching algorithm.
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The error probability Etot in the leading order can be obtained as

Etot = Enode(σ2)+ESQE +6×Epost(3σ2)

+ 2×Epost(4σ2)+2×EBell. (4.25)

We estimated the required squeezing level for continuous variable-FTQC in the leading

order as follows. Let us first consider the case without analog QEC. By virtue of the

highly-reliable measurements, the correlated error probability on the 3D cluster state is

now very small and can be neglected safely. In fact, for around 10 dB squeezing with

vup = 2
√

π/5, the unheralded error probability Epost(3σ2) and Epost(4σ2) is order of

10−5 and 10−4, which is much smaller than the unheralded error probability EBell of

about 1.5 %. Hence, since we can ignore the correlated errors on the 3D cluster state, the

error probability Etot can be fairly well characterized by the single parameter σ2 under

the phenomenological noise model, where the required squeezing level for topologically

protected measurement-base quantum com is 2.9-3.3% [27, 57]. We define the required

squeezing level as the squeezing level that provides Etot = 3.0%, and the numerical cal-

culation in the leading order without analog QEC yields the required squeezing level of

10.5 dB with vup = 2
√

π/5. We can further improve the tolerable standard deviation by

using analog QEC. In Chap.3, we numerically simulated the improvement of the topolog-

ically protected measurement-base quantum computation performance in the analog QEC

with the phenomenological noise model, and obtained the improvement on the required

squeezing level by 1.2 dB in comparison to the digital QEC. Hence, we can obtain the

required squeezing level 9.3 dB in the leading order with analog QEC.

To proceed to the detailed calculation of Etot, we simulate the QEC for topologically

protected measurement-base quantum com by using the minimum-weight perfect match-

ing algorithm. In Fig. 4.4, the logical error probabilities are plotted as a function of the

standard deviation. The results confirm that our method can also suppress errors with the

independent error model, and the threshold for the standard deviation can be improved

from 0.208 to 0.228, which corresponds to squeezing level from 10.6 dB to 9.8 dB. In

the numerical calculation, we set the upper limit vup to 2
√

π/5 in order to adopt the

independent error model. Therefore, continuous variable-FTQC with analog QEC and

the highly-reliable measurement can improve the required squeezing level for topologi-

cally protected measurement-base quantum com by 6.2 dB in comparison to the existing
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scheme for continuous variable-FTQC [4].

Resource requirement

Finally, we examined the resource required per node qubit composing the 3D cluster

states, namely the average number of the 3-tree cluster states to construct the hexago-

nal cluster state. The average number of the 3-tree cluster states to construct the 5-tree

cluster state can be counted as R5tree = (1/PSQEC + 2)/P2
Bell, where PSQEC and PBell are

the success probability of the single-qubit level QEC and of the Bell measurement with

highly-reliable measurement, respectively. PSQEC and PBell are calculated as PSuc(4σ2)

and PSuc(3σ2)× PSuc(4σ2), respectively, where PSuc(3σ2) (PSuc(4σ2)) is the success

probability of the highly-reliable measurement on the qubit of the variance is 3σ2 (4σ2).

Similarly, the average number of the 3-tree cluster states to construct the hexagonal

cluster state can be counted as RHexa = (1/P2
Bell−II + 1)× (2/P3

Bell−II), where PBell−II is

equal to PSuc
2(3σ2). Therefore, the resources per the hexagonal cluster states RHexa with

vup = 2
√

π/5 can be estimated as 9.2× 106 to achieve the required squeezing level 9.8

dB, since PSuc(3σ2) and PSuc(4σ2) with the squeezing level 9.8 dB are 34.6 % and 30.2

%, respectively.

Threshold value for the 3D cluster state without the single-qubit level QEC

We would like to mention the threshold value without the single-qubit level QEC for the

node qubit. In the single-qubit level QEC, we use the ancilla qubit whose finite squeezing

level is equal to that of the node qubit. Even if we do not employed the single-qubit level

QEC, the proposed scheme with analog QEC does work well. In such a case, the measure-

ment error probability of the node qubit Enode(σ2) in Eq. (35) increases to Enode(3σ2),

which is avoided when the single-qubit level QEC is employed. As a result, the threshold

of the squeezing level is degraded from ∼ 9.8 dB to ∼ 10.3 dB.

4.6 Discussion and conclusion

In this chapter, we have proposed a high-threshold FTQC to alleviate the required squeez-

ing level for continuous variable-FTQC by harnessing analog information contained in

the GKP qubits. The proposed method consists of applying analog QEC to the surface

code and constructing the cluster state for the topologically protected measurement-base
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quantum com with a low error accumulation by using the highly-reliable measurement.

We have numerically shown that the required squeezing level can be improved to less than

10 dB with analog QEC on the 3D cluster states prepared by using the fusion gate with

the highly-reliable measurement. Furthermore, we have numerically investigated validity

of analog QEC for the surface code against the Gaussian quantum channel with ideal syn-

drome measurements. The numerical results have shown the analog QEC also achieves

∼0.607 close to the hashing bound of the quantum capacity of the Gaussian quantum

channel. To the best of our knowledge, no method to provide the optimal performance

has been reported except for analog QEC.

To generate the GKP qubit, several methods have been proposed [36, 37, 38, 58, 39,

40, 41, 42]. In particular, a promising proposal [37] recently exists to prepare a good GKP

qubit in circuit quantum electrodynamics with the squeezing level around 10 dB [51].

This suggests that the GKP qubit with the squeezing level around 10 dB will be able to

generate within the reach of near-term experimental set-up. Our method can achieve this

experimental requirement for the squeezing level, taking a step closer to the realization

of large-scale quantum computation. Hence, this is the novel application of the analog

information for the practical large scale measurement-base quantum com.

We would like to mention that the CZ gate in Ref. [4] is performed by the measure-

ment on squeezed vacuum states on a 2D cluster state with ancilla GKP qubits used to

implement the single-qubit level QEC. Then, the fault-tolerant threshold of the squeez-

ing level is obtained from the error probability of the the single-qubit level QEC after

the CZ gate combining with the conventional fault-tolerant schemes. While in Ref. [4]

the threshold value 10−6 [17, 18, 15] to calculate the required squeezing level 20.5 dB

is employed, here we use the threshold value 0.67% obtained in Ref. [12] to calculate

the required squeezing level 16.0 dB to directly compare the existing scheme with the

proposed scheme, where the analog QEC is applied. We should note that it is unfair to

directly compare the present result with the required squeezing level 20.5 dB in Ref. [4],

since optimization of the squeezing level would not be not the main scope of Ref. [4].

We would also like to mention the physical implementation for continuous variable-

FTQC with our scheme. In our method, although the fusion gate is nondeterministic,

there are a number of studies for the architecture that deal with topologically protected

measurement-base quantum com with nondeterministic fusion gate [59, 60, 61]. Our

method can be implemented by these architecture straightforwardly. Considering these
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architecture, it is assumed that the hexagonal cluster state is prepared from the 3-tree

cluster state by a purely linear optical network, composed of beam splitter coupling, an

optical switch, and so on, while it is assumed that we can use the on-demand sources of

the 3-tree cluster state.

Furthermore, analog QEC and the highly-reliable measurement can be not limited

to the GKP qubit but widely applicable measurement-base quantum com using various

QEC codes [33, 34, 35], and is a versatile tool for improvement of the QEC performance

and the decision error of the bit value, which can incorporate with GKP qubit, cat code,

and other various codes used to digitize continuous variable states. Hence, we believe

this work will open up a new approach to QEC with digitized continuous variable states,

which will be indispensable to construct continuous variable-FTQC.
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Figure 4.4: Simulation results for the logical error probabilities of the surface code by
using the 3D cluster state prepared by the proposed method for vup = 2

√
π/5 with noisy

syndrome measurements using (a) the digital QEC and (b) the analog QEC, respectively.
The simulation results for the digital QEC are obtained from 50000 samples. The simu-
lation results for the analog QEC are obtained from 10000 samples.
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Chapter 5

Tracking quantum error correction

In large scale quantum computation, a large number of physical qubits is needed to obtain

the highly accurate results of quantum computation. This required number of physical

qubits is one issue that we should struggle toward the implementation of large scale quan-

tum computation. In this chapter, we propose the method to reduce the number of qubits

required for the QEC during large scale quantum computation, where the logical-qubit

level QEC is partially substituted for the single-qubit level QEC. Since the single-qubit

level QEC can not correct the qubit-level errors, the bit and phase flip errors, we just track

the measurement outcomes in the single-qubit level QEC. Then, the QEC is performed by

using a set of tracked measurement outcomes in QECs to correct the qubit-level errors.

In the end of this chapter, we would like to introduce an another method to harness

analog information to reduce the error probability derived from the CZ gate using the

maximum-likelihood estimation and the highly-reliable measurement. The proposed CZ

gate will provide the way to reduce the required squeezing level for FTQC, which leads

to realize practical quantum computers.

5.1 Tracking quantum error correction

5.1.1 Logical-qubit level quantum error correction

To implement large scale quantum computation, a number of single (physical) qubits are

encoded into the logical qubit to correct errors on the logical qubit. Then, by using a

fault-tolerant manner such as a concatenation, the error probability of the logical-qubit

level QEC can be reduced to an arbitrary value, if the error probability on a physical qubit

is less than the threshold value that varies depending on a variety of the QEC code. Since

the logical-qubit level QEC is repeated during the quantum computation process, a large

number of physical qubits is needed to obtain the highly accurate results of quantum com-

putation. For example, for the Knill’s C4/C6 code [19], the required number of physical

qubits to prepare the level-l logical qubit and Bell state are 4× 12l−1 and 16× 12l−1,
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respectively, where l (≥ 1) is the concatenation level. In general, the QEC is repeatedly

performed by the only logical-qubit level QEC during the quantum computation process

as shown in Fig. 5.1 (a). Accordingly, this required number of physical qubits is one issue

that we should struggle toward the implementation of large scale quantum computation.

5.1.2 Tracking quantum error correction

We explain the method that the logical-qubit level QEC is partially substituted for the

single-qubit level QEC [5] in the repeated QEC process as shown in Fig. 5.1 (b). In our

method, we apply analog QEC [6] to the tracking QEC to improve the QEC performance.

Since the single-qubit level QEC can reduce the error probability and the number of qubits

required for the single-qubit level QEC is less than that for the logical-qubit level one,

the substitution of the logical-qubit QEC for the single-qubit level one will reduce the

required number of qubits.

To provide an insight into our method, we focus on the tracking QEC with the two

QECs cycle, where the QEC after the Gaussian quantum channel is repeated twice as

shown in Fig. 5.1. As a specific QEC code, we use the Knill’s C4/C6 code [19], where

the error correction in the C4/C6 code is based on quantum teleportation (see also [6] for

details of analog QEC and the C4/C6 code). The quantum teleportation process refers to

the outcomes Mp and Mq of the Bell measurement on the encoded qubits, and determines

the amount of displacement. We obtain the Bell measurement outcomes of bit values mpi

and mqi for the i-th physical GKP qubit of the encoded data qubit and encoded qubit of the

encoded Bell state, respectively. In addition to bit values, we also obtain deviation values

∆pmi and ∆qmi for the i-th physical GKP qubit. In our method, the first and second QECs

are performed by the single- and logical-qubit level QEC, respectively. Since the single-

qubit level QEC can not correct the qubit-level error, we just track the measurement

outcomes in the first QEC. After the two QECs, we obtain a set of the likelihoods are

obtained from the results of the first and second QECs. From the set of the likelihoods in

the two QECs, we consider the following two possible events: one is the correct decision,

where the no qubit-level error occurs in both QECs. In this case, both true deviation

values of the first and second QECs, |∆(1)| and |∆(2)|, are less than
√

π/2 or more than
√

π/2. When both true deviation values are less than
√

π/2, |∆(1)| and |∆(2)| are equal

to |∆(1)
m | and |∆(2)

m |, respectively. When both true deviation values are more than
√

π/2,

|∆(1)| and |∆(2)| are equal to
√

π −|∆(1)
m | and

√
π −|∆(2)

m |, respectively. The other is the
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Figure 5.1: Introduction of the tracking QEC. (a) The conventional QEC with the two
QECs cycle, where the QECs are performed with the only logical-qubit level QEC. (b)
The tracking QEC with the two QECs cycle, where the first logical-qubit level QEC in
the conventional method is substituted for the single-qubit level QEC.

incorrect decision, where the single error occurs in one of two QECs. In this case, one

of two true deviation values of the first and second QECs are greater than
√

π/2, and

satisfies |∆̄(1)| = |∆m
(1)| and |∆̄(2)|+ |∆(2)

m | =
√

π , or satisfies |∆̄(1)|+ |∆(1)
m | =

√
π and

|∆̄(2)| = |∆(2)
m |, respectively. Hence, the likelihoods for the correct decision without and

with analog QEC are calculated by

Fcorr = pcorr
2 +(1− pcorr)

2, (5.1)

Fana
corr = f (|∆(1)

m |) f (|∆(2)
m |)

+ f (
√

π −|∆(1)
m |) f (

√
π −|∆(2)

m |), (5.2)

respectively, where pcorr is given by Eq. (2.77). The likelihoods for the incorrect decision

without and with analog QEC are calculated by

Fin = 2(1− pcorr)pcorr, (5.3)

Fana
in = f (|∆(1)

m |) f (
√

π −|∆(2)
m |)

+ f (
√

π −|∆(1)
m |) f (|∆(2)

m |), (5.4)

respectively. By considering these likelihoods of the joint event and choosing the most

likely candidate, we can reduce the decision error on the entire code word in the second

logical-qubit level QEC. By contrast, in the conventional method, the two QECs are in-

dependently performed by the only logical-qubit level QEC. Although we focus on the
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tracking QEC with the GKP qubits, we note that the tracking QEC with the discrete vari-

ables can be also performed, where the likelihoods are given by only Eqs. (5.1) and (5.3).

In our method, we utilize analog QEC using Eqs. (5.2) and (5.4) to transform the QEC

performance of the single-qubit level QEC into that of the approximately logical-qubit

level QEC as shown in the numerical calculations.

We describe the details of the tracking QEC using the C4/C6 code with two QEC

cycles. Fig. 5.2 shows the tracking QEC in the first cycle, that is, the single-qubit level

QECs in the p and q quadratures, where the deviations of physical qubits composed of

the logical data qubit are measured by ancilla qubits and corrected using the displacement

operation independently. In the first cycle, we obtain the deviation values ∆(1)
pmi and ∆(1)

qmi

for the i-th physical qubit in the q and p quadratures, respectively. In the second cycle,

we obtain the bit values kpmi and kqmi, and deviation values ∆(2)
pmi and ∆(2)

qmi in the p and

q quadratures, respectively. We note that the displacement operation in the single-qubit

level QEC is not necessarily for our method, since the displacement operation can be

performed in the logical-qubit level QEC all at once.

As a simple example to describe the tracking QEC, we explain the QEC with concate-

nation level 1. As described in Chap. 3, we decide the logical bit value Mq,L=1 and Mp,L=1

by using the parity check operator obtained from the measurement outcome kqmi and kpmi,

respectively. When the measurement outcome (kqm1,kqm2,kqm3,kqm4 ) is (0,0,1,0) in the q

quadrature, we consider two error patterns as described in Chap. 3. Considering the two

error patterns, where a single error on the third qubit and the triple errors on the physical

qubits except for the third qubit, we then calculate the likelihood for the level-1 qubit pair

(0,0) F0,0 with the analog QEC as

F0,0 = Fana
in,1Fana

in,2Fana
corr,3Fana

in,4 +Fana
corr,1Fana

corr,2Fana
in,3Fana

corr,4. (B1)

Fana
corr,i is the likelihood of no error and double errors on the i-qubit in the single-qubit

level and the logical-qubit level QECs, and described by

Fana
corr,i = f (|∆(1)

qmi|) f (|∆(2)
qmi|)

+ f (
√

π −|∆(1)
qmi|) f (

√
π −|∆(2)

qmi|). (B2)

Fana
in,i is the likelihood of a single error on the i-qubit in one of the single-qubit level and
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Figure 5.2: A quantum circuit for the tracking QEC for two QEC cycles. The logical
data qubit |ψ̃⟩L=l with the concatenation level l is composed of the n = 4×3l−1 physical
qubits. SQECi (i = 1,2, · · · ,n) denotes the single-qubit level QEC for the i-th qubit,
where the single-qubit level QECs in the p and p quadratures are implemented by ancilla
physical qubits |0̃⟩ and |+̃⟩, respectively.

the logical-qubit level QECs, and described by

Fana
in,i = f (|∆(1)

qmi|) f (
√

π −|∆(2)
qmi|)

+ f (
√

π −|∆(1)
qmi|) f (|∆(2)

qmi|). (B3)

We similarly calculate the F0,1,F1,0, and F1,1 likelihood for the bit value of qubit pairs

(0,1), (1,0), and (1,1). In a similar manner of the logical-qubit level QEC, we determine

the level-1 logical bit value Mq,L=1 in the q quadrature by comparing F0,0 + F0,1 with

F1,0 +F1,1. In the tracking QEC without the analog QEC, likelihoods F0,0, F0,1, F1,0, and

F1,1 are given by the same joint probability

F3
corrFin +FcorrF3

in, (B4)

where Fcorr and Fin are defined by Eqs. (3.2) and (3.3) in Chap. 3, respectively. Therefore,

the tracking QEC without the analog QEC is not error-correcting code but error-detecting

code, whereas that with the analog QEC is the error-correcting code. The likelihood for

the level-l (l ≧ 2) bit value can be calculated by the likelihood for the level-(l − 1) bit

value in a similar manner.

We here estimate the required number of physical qubits to implement the two QECs.

In the C4/C6 code with the concatenation level l (l ≥ 1), the logical qubit is composed
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of the 4× 3l−1 physical qubits, and the preparation of the logical qubit and the logical

Bell pair level l consumed 4×12l−1 and 16×12l−1, respectively [23, 19]. Therefore, the

required number of physical qubits for the logical-qubit level QEC is 16× 12l−1, where

the logical-qubit level QEC consumes the logical Bell pair. By contrast, the required

number of physical qubits for the single-qubit level QEC is 2 × 4× 3l−1, where each

physical qubit composing the logical data qubit consumes two ancilla physical qubits to

correct the small deviation in the q and p quadratures. In the case of the QEC process

with the two-QEC cycle, the number of the physical qubits for the conventional method

R(2,l)
con and proposed method R(2,l)

pro are

R(2,l)
con = 2×16×12l−1, (5.5)

R(2,l)
pro = 2×4×3l−1 +16×12l−1, (5.6)

respectively. Hence, the proposed method for the two-QEC cycle reduces by R(2,l)
con −R(2,l)

pro

= 16× 12l−1 − 8× 3l−1 physical qubits with the concatenation level l. Similarly, the

conventional and proposed methods for the n-QEC cycle, consume the physical qubits

R(n,l)
con and R(n,l)

con as

R(n,l)
con = n×16×12l−1, (5.7)

R(n,l)
pro = 2(n−1)4×3l−1 +16×12l−1, (5.8)

respectively. Hence, the proposed method for the n-QEC cycle can reduce R(n,l)
con −R(n,l)

pro =

(n−1)×
{

R(2,l)
con −R(2,l)

pro

}
physical qubits, where the single- and logical-qubit level QECs

are performed in the first (n− 1)-QECs and the n-th QEC, respectively. Finally, we de-

scribe the reduction rate of the number of physical qubits per n-QEC cycle. For the n-QEC

cycle using C4/C6 code with the level l, the reduction rate is obtained by

R(n,l)
con −R(n,l)

pro

R(n,l)
con

=
2(n−1)×4l−1 −n+1

2n×4l−1 . (5.9)
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5.2 Numerical calculations

To validate the effectiveness of our proposed method, we calculate the failure probability

of the QEC and the number of physical qubits required in the QEC using the Monte Carlo

method. We examine the tracking QEC performance, taking the conventional logical-

qubit level QEC without the analog QEC as a reference. We simulate the QEC after the

Gaussian quantum channel is repeated twice as described in Sec. 5.1.2. In this simulation,

we use the Knill’s C4/C6 code [19] for the concatenation and assume that the encoded data

qubit, encoded Bell state, and the physical qubits are prepared perfectly, and the variance

of the GKP qubits of the encoded data qubit is increased to σ2 only by the Gaussian

quantum channel. In the noise channel of the Gaussian quantum channel with n-cycles,

the logical-qubit suffers from each of n-noise channels independently by the same amount

of the noise.

In Fig. 5.3, the failure probabilities for the q (p) quadrature up to level 5 of the con-

catenation are plotted as a function of the noise level as the standard deviation of the

Gaussian quantum channel. The noise is given by the sum of the noise of the first and

second QECs, where the encoded state suffers from the same amount of the noise in the

first and second QECs. We here define the threshold for the two-QEC cycle as; if the

sum of the noise of two cycles is below the threshold, the failure probability with the

concatenation level l can be reduced super exponentially as l becomes large. Hence, all

the lines plotted as a function of a noise level for various concatenation level l meet at

a single point, indicating the threshold value. In Fig. 5.3, we have plotted the failure

probabilities (a) without the analog QEC and (b) with the analog QEC for the conven-

tional two logical-qubit level QECs and the proposed method, respectively. In the case of

the Gaussian quantum channel, the displacement errors in the q and p quadrature occur

independently. Considering the CSS code, where errors in the q and p quadrature can

be treated separately, the failure probabilities for the q and p quadrature has the same

value. As shown in Fig. 5.3, the conventional method without and with the analog QECs

achieve the threshold values of the standard deviation values ∼ 1.11 and ∼ 1.21, respec-

tively. These threshold values are identical to twice of those obtained for the single cycle

of the logical-qubit level QEC ∼ 0.555 and ∼ 0.607 in Ref. [6], respectively. It results

from the fact that the failure probability of the two-QEC cycle for the conventional method

is calculated by 2×P(1−P), where the probability P is the failure probability of the sin-
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gle cycle of the logical-qubit level QEC. This is because the sequential logical-qubit level

QECs are performed independently after the each of two noise channels, and the event to

fail in the logical-qubit level QEC occurs independently.

Fig. 5.3 (a) show that the tracking QEC degrades the threshold of the standard devi-

ation by ∼ 0.17 without the analog QEC. Fig. 5.3 (b) show that the tracking QEC also

degrades the threshold of the standard deviation by ∼ 0.07 with analog QEC. However,

the degradation with the analog QEC is smaller than that without the analog QEC. More

specifically, we compare the ratio of failure probabilities between the tracking QEC with-

out and with the analog QEC at the same noise level of the standard deviation and the

same concatenation level. For example, the ratio for the analog QEC with the concate-

nation level 1 is obtained by 0.00421/0.00375 ∼ 1.1, similarly the ratios with the con-

catenation level 2 and 3 are ∼ 1.2 and ∼ 1.4, respectively, by contrast, the ratios without

the analog QEC with the concatenation level 1, 2 and 3 are ∼ 1.8, ∼ 3.7 and ∼ 13.8,

respectively. Hence, it is clear that the ratios of the proposed method with the analog

QEC are greater than that without the analog QEC. In addition, it is remarkable that the

tracking QEC with the analog QEC in Fig. 5.3 (b) suppresses errors more effectively

than the conventional method without the analog QEC. Furthermore, it is also remark-

able that the ratios of the tracking QEC with the analog QEC become greater as the noise

level of the standard deviation become smaller, and the analog QEC makes the perfor-

mances of the single-qubit level QEC almost identical to that of the logical-qubit level

QEC in a low noise level. These results show the virtue of use of analog information.

On the basis of these results, for the 2-QEC cycle, we can conclude that the proposed

method with analog QEC in the practical noise level can achieve efficient resource reduc-

tion by 16× 12l−1 − 8× 3l−1 physical qubits with the concatenation level l with only a

small impact on the QEC performance, where the reduction rate for the 2-QEC cycle is

(2×4l−1 −1)/(4×4l−1) = 1/2−1/(4×4l−1). Hence, the reduction rate becomes close

to 50 % for larger l, where the reduction rates are 25, 43.8, 48.4, 49.6 and 49.9 for the

level 1, 2, 3, 4, and 5, respectively.

In the following, we consider admissible noise level of the Gaussian quantum chan-

nel for the tracking QEC. In practice, fault-tolerant quantum computation should be per-

formed with a noise level smaller than the threshold value so as not to spend huge amounts

of single qubits to prepare logical qubits with the required concatenation level l. To eval-

uate our proposed method, we assume that the single- and logical-qubit level QECs are
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performed with one-tenth of the threshold value according to Refs. [62, 63]. For simplic-

ity, we use the threshold value as the rate of the misidentifying the bit value of the GKP

qubit. In the logical-qubit level QEC, the threshold of the noise level per cycle ∼ 0.555

and ∼ 0.607 for without and with analog QEC correspond to the error rate of the misiden-

tifying the bit value ∼ 11.0 % and ∼ 14.3 %, respectively, where the error rate of the

misidentifying is obtained by 1− pcorr given in Eq. (2.77) in Chap. 2. Therefore, we set

the rate of the misidentifying the bit value as ∼ 1.1 % and ∼ 1.43 % which correspond

to a noise level ∼ 0.346 and ∼ 0.362. As shown in Fig. 5.3 (a), there is a gap of failure

probabilities between the conventional and proposed method with the set noise level of

∼ 2×0.346 = 0.692 without the analog QEC. By contrast, the failure probabilities of the

proposed method with the analog QEC is almost same as that of the conventional method

with the set noise level ∼ 2×0.362 = 0.724 as shown in Fig. 5.3 (b).

5.3 Discussion and conclusion

In this chapter, we have proposed the tracking QEC with analog QEC to reduce the num-

ber of qubits required for large scale quantum computation, bringing up the advantages

of the GKP qubits in practical quantum computation. In the proposed method, the single-

qubit level QEC is combined with the standard logical-qubit level QEC, in a way that

a part of the logical-qubit level QEC is substituted by the single-qubit level QEC dur-

ing the quantum computation. Furthermore, we propose to apply the analog QEC to

the tracking QEC to improve the QEC performance. Regarding the possible experimen-

tal implementation, the proposed tracking QEC will be applicable to repeated quantum

nondemolition measurements and adaptive control in a superconducting cavity resonator

setup [64, 65, 66], which can be regarded as repeated single-qubit level QECs.

The numerical results for the two-QEC cycle showed that the proposed method with

analog QEC reduces the required number of the qubits without degrading the QEC per-

formance. The tracking QEC with analog QEC reduces the number of physical qubits

required for the C4/C6 code by 16×12l−1 −8×3l−1 for the 2-QEC cycle with the con-

catenation level l, and the reduction rate for is 1/2− 1/(4× 4l−1), where the reduction

rates are 25, 43.8, 48.4, 49.6 and 49.9 for the level 1, 2, 3, 4, and 5, respectively.

Furthermore, it has been shown that the analog QEC makes the performances of the

single-qubit level QEC almost identical to those of the logical-qubit level QEC under the
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condition of a practical noise level. To the best of our knowledge, this approach is the

first practical attempt to utilize both the single- and standard logical-qubit level QECs to

alleviate the requirement of the number of qubits. Hence, the proposed method has a great

advantage in implementing fault-tolerant quantum computation with continuous variables

and will open a new way to practical quantum computers.
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Figure 5.3: Simulation results for the failure probabilities of the two QECs for the q (p)
quadrature with the C4/C6 code using the conventional (blue line) and proposed method
(red line). GQC describes the Gaussian quantum channel. The results without the analog
QEC (a) and with the analog QEC (b) are represented for the concatenation level 1 (solid),
level 2 (dashed), level 3 (dashed-dotted), level 4 (open circles), and level 5 (filled circles),
respectively. The thresholds are indicated by the vertical dashed lines with ∼ 1.11, ∼
0.942, ∼ 1.21, and ∼ 1.14. The vertical dashed lines with ∼ 0.692 and ∼ 0.724 indicate
the standard deviation for the practical noise level defined in the main text.
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Appendix for Chap. 5: Method to reduce the propagation error in
the CZ gate

In the end of this chapter, we would like to introduce an another method to harness ana-

log information to realize practical quantum computers, where the highly-reliable gate

operation using the maximum-likelihood estimation reduces error propagation caused by

the CZ gate between GKP qubits. In our method the ancilla qubits are put between the

controlled and target qubits, and measured to estimate the deviations of the controlled and

target qubits by using the maximum-likelihood estimation.

Method to reduce the error propagation

The maximum-likelihood estimation is an effective tool to estimate the values of param-

eters. In the proposed method, we apply the maximum-likelihood estimation to estimate

the true deviation of the GKP qubit to reduce the error propagation cased by the CZ gate.

In Fig.5.4 (a), we show a quantum circuit in which the true deviation of the qubit A is

estimated using an ancilla qubit A1. After the CZ gate, the true deviation of the qubit A

in q quadrature is projected onto the deviation of the qubit A1 in p quadrature as

δp,A1 → δp,A1 −δq,A. (5.10)

By measurement of the qubit A in p quadrature, we obtain the value δp,A1 − δq,A. Then,

we can estimate the deviation value of the qubit A in q quadrature as (δp,A1 − δq,A)/2,

considering the Gauss-Markov theorem in statistics. This is because the true deviation

of the qubit A obeys posterior probability that is Gaussian distribution of mean (δp,A1 −
δq,A)/2 with variance σ2/2 after measurement of the qubit A1. After the displacement by

−(δp,A1−δq,A)/2 in the q quadrature, the variance of the qubit A in q quadrature reduces

from σ2 to σ2/2, while the variance of the qubit A in p quadrature increase from σ2

to 2σ2. This maximum-likelihood estimation is based on the fact that the measurement

deviation values from the GKP qubits are obeyed the Gaussian distribution independently.

Next, we consider estimating the deviation value δq,A using n ancilla qubits. Fig. 5.4 (b)

shows a quantum circuit to estimate the deviation value δq,A using the n ancillae. By
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(a)

(b)

Figure 5.4: A quantum circuit for the maximum-likelihood estimation of the true devia-
tion value of the qubit A. (a) A quantum circuit for the maximum-likelihood estimation
using a single ancilla qubit A1. (b) A quantum circuit for the maximum-likelihood esti-
mation using n ancilla qubits. D̂ is a displacement operation to correct the deviation.

measurement of the qubit Ai in p quadrature, we obtain the deviation value δp,Ai − δq,A.

Then, we can estimate the deviation value δq,A as

(
n

∑
i=1

δp,Ai −δq,A)/(n+1), (5.11)

by using the maximum-likelihood estimation. Here we assumed the all variance are equal

to σ2. As a result, the variance of the qubit A in q quadrature reduces from σ2 to σ2/(n+

1), while the variance of the qubit A in p quadrature increases from σ2 to (n+1)σ2.

We propose a method to reduce the error propagation in the CZ gate by combining the

highly-reliable measurement proposed in Sec. 4.3 and the maximum-likelihood estima-

tion of the true deviation value of the GKP qubit. In Fig. 5.5, a quantum circuit for the

proposed CZ gate is showed. In our method the controlled qubit C, |ψ̃⟩C, and target qubit

T, |Φ̃⟩T, are entangled using Bell measurement on the qubit A, |+̃⟩A, and qubit B, |+̃⟩B.

At step 1 in Fig. 5.5 the variances of the qubits A and B in q quadrature, which are

propagated on the qubit C and T, are reduced using the maximum-likelihood estimation
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Figure 5.5: A quantum circuit for our method. Step 1 describes a quantum circuit for the
maximum-likelihood estimation of the true deviation values of the qubit A and B. Step 2
describes the highly-reliable measurement for the qubit A and B in the p quadrature.

with ancilla qubits Ai and Bi, respectively. On the other hand the variances of qubits

A and B in p quadrature are increased by error propagation. Here we assumed the all

variances are equal to σ2 before step 1. Then the variance of qubit A (B) in q and p

quadrature are equal to σ2/(n+1) and (n+1)σ2 after step 1, respectively. At step 2 we

measure the qubits A and B in p quadrature and obtain the bit value for the qubits A and

B, which is called as Bell measurement. Then, the feedforward operation according to

the measurement result for the qubits A and B is performed on for the qubits T and A,

respectively. If this feedforward operation is performed correctly, the CZ gate between

qubits C and T is successfully implemented. As a result, the variance of the qubit C and T

in p quadrature changes from σ2 to σ2+σ2/(n+1) using our method, while the variance

of the qubit C and T in p quadrature changes to 2σ2 using the conventional (direct) CZ

gate. Therefore, our method can reduce the error propagation caused by the CZ gate, if

the feedforward operation is performed correctly.

Numerical calculations
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Figure 5.6: Simulation results for the measurement error probabilities of the CZ gate
using the conventional and proposed method. The failure probabilities using the con-
ventional method (bold line) and proposed method are represented for n=1 (solid), n=2
(dashed ), n=3 (dot-dot-dashed) with the upper value vth =

√
π/8 for the highly-reliable

measurement.

To evaluate the effectiveness of our method, we compare the error propagation of con-

ventional method using the direct CZ gate with that of our method using the maximum-

likelihood estimation and the highly-reliable measurement. For the direct CZ gate, the

error propagation increases the error probability Econ that the bit value in p quadrature

is misidentified, since the variance of the qubit in p quadrature increases by σ2 after the

direct CZ gate. On the other hand, the error propagation in our method increases the error

probability Epro that the bit value in p quadrature is misidentified, since the variance of

the qubit in p quadrature increases by σ2/(n+1). In addition to Epro, we count the error

probability EBell that the Bell measurement on qubit A and B is failure. Therefore, if

Epro + EBell < Econ, we consider that the proposed CZ gate is more error-tolerant than the

conventional CZ gate.

To valid our method, we numerically calculated the error probability Econ and Epro+

EBell for the several number of ancilla qubits, n, assuming that all variances of the GKP

qubit before the CZ gate are equal to σ2. In the calculations, we set the upper limit value

vup =
√

π/8, because our method is saturated around
√

π/8 and can not improve the

performance of our method further above
√

π/8. In Fig. 5.6, Econ for the conventional

CZ gate and Epro+ EBell are plotted as a function of the squeezing level s of the GKP qubit

for conventional (bold) and proposal with n = 1 (solid), 2 (dotted), and 3 (dashed-dotted),
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where the squeezing level s is equal to −10log102σ2. Numerical results show that our

method improves the error tolerance when the squeezing level s is more than 7.8 dB. In

Fig. 5.6, the success probability of our method is plotted as a function of the squeezing

level of the GKP qubit for conventional (bold) and proposal with n = 1 (solid), 2 (dotted),

and 3 (dot-dot-dashed).

To reduce the required squeezing level for large-scale quantum computation, our

method can applied to the method to implement FTQC proposed in chapter. 4, where

the required squeezing level for FTQC is around 10 dB. By substituting the proposed CZ

gate for the conventional CZ gate, the required squeezing level will be reduced. Con-

sidering the error probability of the direct CZ gate with 10 dB, it is estimated that our

method with n = 1 and 2 can reduce the required squeezing level for FTQC by ∼0.3 and

∼0.8 dB, respectively. In future work, we will apply the proposed CZ gate to the method

proposed in Chap. 4 to reduce the required squeezing level. In the work, we will show

that our method of implementation of FTQC with the CZ gate proposed in this Appendix

can reduce the required squeezing level to about 9 dB.
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Chapter 6

Analog entanglement distillation

The entanglement distillation (purification) protocol is an essential tool to distribute the

entangled states with a high-fidelity between a distant party, which is used to implement

quantum information processing such as quantum key distribution, quantum communica-

tion based on quantum repeaters, teleportation, dense coding, distributed quantum com-

putation, and so on. In this chapter, we focus on a so-called quantum privacy amplification

protocol [67]. Firstly, we model the quantum privacy amplification protocol for ideal and

approximate GKP qubits. Next, we propose the quantum privacy amplification protocol

with the GKP qubit using analog information to improve the entanglement distillation

performance. In the proposed method, the highly-reliable measurement is applied to the

conventional entanglement distillation protocol. Finally, we numerically calculate the

performance of the quantum privacy amplification protocol to valid our method.

6.1 Entanglement distillation

The performance of quantum information processing based on the entangled states de-

pends on the fidelity of the entangled states. Since the entangled states with a high-fidelity

is are essential for secure communication and quantum computation with a high-fidelity,

the preparation of the high-fidelity entangled states sheared by a distant party is very

important task. The entanglement distillation (purification) is a method to distribute high-

fidelity entangled states to distant parties through a quantum channel even if the quantum

channel is noisy. As a simple example to explain the entanglement distillation, we focus

on a quantum privacy amplification protocol [67] that can be implemented by a sequence

of local operations between distant parties, Alice and Bob, where the operations depend

on the measurement results of the sheared entangled states and agreement using commu-

nication between them. In this section, we apply the GKP qubits to the quantum privacy

amplification protocol. Firstly, we briefly describe the quantum privacy amplification pro-
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tocol with discrete variables to compare that with GKP qubits. Secondly, we explain how

to apply the GKP qubits to a quantum privacy amplification protocol.

6.1.1 Quantum privacy amplification with discrete variables

Fig. 6.1 shows a schematic diagram for the introduction of the quantum privacy amplifi-

cation with discrete variables.

We briefly describe the quantum privacy amplification presented in Ref. [67]. Fig.

6.1 shows a schematic diagram for the introduction of a quantum privacy amplification

with discrete variables. We assume that Alice and Bob receive the qubit pairs supplied

through a quantum channel by Eve who prepares and sends the pure Bell state |Φ+⟩⟨Φ+|
as shown in Fig. 6.1, where |Φ+⟩ is described as

|Φ+⟩= 1√
2
(|00⟩+ |11⟩). (6.1)

After the quantum channel, the pure Bell state is degraded as

|Φ+⟩⟨Φ+| → ρ = a |Φ+⟩⟨Φ+|+b |Ψ−⟩⟨Ψ−|

+ c |Ψ+⟩⟨Ψ+|+d |Φ−⟩⟨Φ−| , (6.2)

where |Φ±⟩ and |Ψ−⟩ are given as

|Ψ±⟩= 1√
2
(|01⟩± |10⟩), (6.3)

|Φ−⟩= 1√
2
(|00⟩− |11⟩), (6.4)

respectively. Suppose that Alice and Bob share two qubit pairs represented by ρ1 and ρ2.

Alice performs a unitary operation UA on each of her two qubits, where UA is described

as

UA =
1√
2

 1 −i

−i 1

 . (6.5)

On the other hand, Bob performs a unitary operation UB on each of their two qubits,

where UB is described as

UB =
1√
2

 1 i

i 1

 . (6.6)
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Figure 6.1: Introduction of a quantum privacy amplification with discrete variables. Alice
and Bob share the Bell pairs ρ1 and ρ2 sent from Eve. After operations UA, UB, and CNOT
gate, targeted qubits are measured in the computational basis.

Then Alice and Bob each perform the CNOT gate between each of his two qubits. After

the CNOT gate, they measure the target qubits in the computational bases ( Z basis ). If

two measurement outcomes of the bit value coincide, they keep the control qubits and

the remaining pair ρ ′
1 is used for next round of the protocol. Otherwise, both pairs are

discarded. We can see the effect of this protocol in comparison the diagonal element of

ρ1 with that of ρ ′
1. Assuming the diagonal elements of ρ1 is defined as

{
a,b,c,d

}
, those

of ρ ′
1,
{

A,B,C,D
}

, are given by

A =
a2 +b2

P
, B =

2cd
P

, C =
c2 +d2

P
, D =

2ab
P

, (6.7)

where P is the probability that two measurement outcomes of the bit value coincide, and

P is equal to (a+b)2 +(c+d)2. By using this procedure repeatedly, Alice and Bob can

generate the Bell pair that is close to a pure Bell state, for example, in case where a > 1/2

and b = c = d. Accordingly, the aim of a quantum privacy amplification is to achieve a

maximum value of the probability (fidelity) of the state |Φ+⟩⟨Φ+| ∼ 1

6.1.2 Quantum privacy amplification with ideal GKP qubits

We explain a quantum privacy amplification protocol with ideal GKP qubits in Fig. 6.2

(a), where the squeezing level of GKP qubits is degraded only by the Gaussian quantum

channel, and initial and ancilla GKP qubits are ideal. In the case of ideal GKP qubits, Eve

prepares and sends the Bell state of ideal GKP qubits described as

|Φ̃+⟩ideal =
1√
2
(|0̃0̃⟩ideal + |1̃1̃⟩ideal). (6.8)
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After the Gaussian quantum channel with a noise level ξ 2, Alice and Bob are received

the Bell state composed of GKP qubits with the finite squeezing level corresponding to

−10log10(2ξ 2). To recover the GKP qubits from degrading the squeezing level, Alice and

Bob perform the single-qubit level QEC in the q and p quadratures on each of their two

qubits as shown in Fig. 6.2 (b). When the single-qubit level QEC succeeds, the squeezing

level of their GKP qubits recovers to be infinite. When the single-qubit level QEC fails,

the qubit-level errors occur on the Bell state, although the squeezing level recovers to be

infinite. For the failure of the single-qubit level QEC in the q quadrature on the qubit of

one of Alice and Bob, |Φ̃+⟩ is degraded to |Ψ̃+⟩. Hence, we can consider the degradation

affected by the Gaussian quantum channel and the single-qubit level QEC as

|Φ̃+⟩ideal ⟨Φ̃
+| → pa |Φ̃+⟩ideal ⟨Φ̃

+|+ pb |Ψ̃−⟩ideal ⟨Ψ̃
−|

+ pc |Ψ̃+⟩ideal ⟨Ψ̃
+|+ pd |Φ̃−⟩ideal ⟨Φ̃

−| , (6.9)

where the pa, pb, pc, and pd are the probabilities derived from the single-qubit level QEC

operation for the q and p quadratures. These probabilities are given by

pa = 1− pb − pc − pd, (6.10)

pb = 4×Eξ 2
2(1−Eξ 2)

2, (6.11)

pc = pd = 2×Eξ 2(1−Eξ 2)
3 +2×Eξ 2

3(1−Eξ 2), (6.12)

where the probability Eξ 2 with a noise level ξ 2 is calculated as

Eσ2 = 1−Pσ2, (6.13)

where Pσ2 is obtained by Eq. (2.77) as

Pσ2 =
∫ √

π
2

−
√

π
2

dx
1√

2πσ2
exp(−x2/2σ2). (6.14)

We assumed that the ancilla GKP qubits used for the single-qubit level QECs are ideal

GKP qubits. Then, in the same way as the quantum privacy amplification with the discrete

variables, Alice and Bob share two Bell states and perform unitary operations UA and UB,

respectively. After the CNOT gate, measurement on their targeted qubits, and agreement

using communication between them, the set of diagonal elements
{

pa, pb, pc, pd
}

trans-
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form to
{

pA, pB, pC, pD
}

that are calculated by Eq. (6.7):

pA =
pa

2 + pb
2

P
, pB =

2pc pd

P
, (6.15)

pC =
pc

2 + pd
2

P
, pD =

2pa pb

P
, (6.16)

Consequently, the aim of the quantum privacy amplification for the GKP qubit is to im-

prove the probability from pa to pA = p2
a/P after the quantum privacy amplification,

where P is equal to p2
a + p2

b + p2
c + p2

d.

For the next round of the protocol, we can calculate the set of diagonal elements{
pA,2, pB,2, pC,2, pD,2

}
as

pA,2 =
pA

2 + pB
2

P2
, pB,2 =

2pC pD

P2
, (6.17)

pC,2 =
pC

2 + pD
2

P2
, pD,2 =

2pA pB

P2
, (6.18)

respectively, where P2 = p2
A,2 + p2

B,2 + p2
C,2 + p2

D,2. The set of diagonal elements for the

nth-round of the protocol is recursively given by

pA,n =
p2

A,n−1 + p2
B,n−1

Pn
, (6.19)

pB,n =
2pC,n−1 pD,n−1

Pn
, (6.20)

pC,n =
p2

C,n−1 + p2
D,n−1

Pn
, (6.21)

pD,n =
2pA,n−1 pB,n−1

Pn
, (6.22)

respectively, where Pn = p2
A,n−1 + p2

B,n−1 + p2
C,n−1 + p2

D,n−1
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Figure 6.2: Introduction of a quantum privacy amplification with ideal GKP qubits (a)
and approximate GKP qubits (c). The single-qubit level QEC (SQEC) is performed by
the CNOT gate interacting between the qubit of thet Bell pair and ancilla qubit, and the
feedforward (displacement ) operation depending on the measurement outcome of the
ancilla qubit. Dq and Dp represent the feedforward operations for the q and p quadratures,
respectively.
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6.1.3 Quantum privacy amplification with approximate GKP qubits

In the case of approximate GKP qubits, we need to consider the error probabilities derived

from the initial finite squeezing level during the single-qubit level QEC, except for the

Gaussian quantum channel. In the protocol with the approximate GKP qubits in Fig.

6.2 (c), Eve firstly prepares the GKP qubits with the variances (σ2,σ2) in the q and p

quadratures, respectively. She, then, generates the Bell state by using the CNOT gate

between the control qubit 2 and targeted qubit 1. After the CNOT gate, the variances of

the qubit 1 and qubit 2 of the Bell state transform as σ2

σ2


1

→

 σ2

2σ2


1

,

 σ2

σ2


2

→

 2σ2

σ2


2

. (6.23)

After the Gaussian quantum channel, Alice and Bob receive the Bell pair, where the

variances of two GKP qubits are described as σ2

2σ2


1

→

 σ2 +ξ 2

2σ2 +ξ 2


1

, (6.24)

 2σ2

σ2


2

→

 2σ2 +ξ 2

σ2 +ξ 2


2

, (6.25)

respectively. Then, in the same way as the case of ideal GKP qubits |Ψ̃+⟩ideal , we consider

the degradation affected by the Gaussian quantum channel and the single-qubit level QEC

on the Bell state with the finite squeezing level, |Ψ̃+⟩, as

|Φ̃+⟩⟨Φ̃+| → pa |Φ̃+⟩⟨Φ̃+|+ pb |Ψ̃−⟩⟨Ψ̃−|

+ pc |Ψ̃+⟩⟨Ψ̃+|+ pd |Φ̃−⟩⟨Φ̃−| , (6.26)

where the pa, pb, pc, and pd are given by Eqs (6.10)-(6.12) up to replacing Eσ2 →
E3σ2+ξ 2 . The probability E3σ2+ξ 2 with a noise level ξ 2 and the variance σ2 is calcu-

lated by Eq. (6.13). We assumed that the variances of the ancilla qubits used for the

single-qubit level QEC are σ2 in the q and p quadratures, respectively. After the single-

qubit lebel QEC as depicted as SQEC1 and SQEC2 in Fig.6.2 (c), Alice and Bob perform

the CNOT gates on two noisy Bell states after unitary operations UA and UB, respectively.
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After the CNOT gate, the variances of qubits 1, 2, 3, and 4 in the q and p quadratures

transform as shown in Fig. 6.2 (c): 2σ2

σ2


1

→

 2σ2

3σ2


1

,

 σ2

2σ2


2

→

 σ2

3σ2


2

, (6.27)

 σ2

2σ2


3

→

 3σ2

2σ2


3

,

 2σ2

σ2


4

→

 3σ2

σ2


4

, (6.28)

respectively. Then, they measure the target qubits ( qubits 3 and 4 ) in the q quadrature.

Unlike the case of ideal GKP qubits, there is the probability of the measurement error on

the qubits with the variance 3σ2. If two measurement outcomes of the bit value coincide,

they keep the control qubits ( qubits 1 and 2 ) and perform the feedforward operation

on control qubits depending on the measurement outcomes of target qubits, respectively.

After the feedforward operation, the variances of the qubits 1 and 2 are described as σ2

3σ2


1

,

 σ2

3σ2


2

, (6.29)

respectively. After agreement using communication between them, the set of diagonal

elements
{

pa, pb, pc, pd
}

transform to
{

p′a, p′b, p′c, p′d
}

( up to normalization ):

p′a =
{
(1−E3σ2)

2 +E2
3σ2

}
(p2

a + p2
b)+2E3σ2(1−E3σ2)(pa pc + pb pd), (6.30)

p′b = 2
{
(1−E3σ2)2 +E2

3σ2

}
pc pd +2E3σ2(1−E3σ2)(pb pc + pa pd), (6.31)

p′c =
{
(1−E3σ2)2 +E2

3σ2

}
(p2

c + p2
d)+2E3σ2(1−E3σ2)(pa pc + pb pd), (6.32)

p′d = 2
{
(1−E3σ2)2 +E2

3σ2

}
pa pb +2E3σ2(1−E3σ2)(pa pd + pb pc), (6.33)

respectively. Then, to recover the variances to initial ones, Alice and Bob firstly perform

the single-qubit level QECs depicted as SQEC3 in Fig.6.2 (c). The variances of the qubits

1 and 2 transform as σ2

3σ2


1

→

 2σ2

σ2


1

,

 σ2

3σ2


2

→

 2σ2

σ2


2

, (6.34)
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respectively. The set of diagonal elements
{

p′a, p′b, p′c, p′d
}

transform to
{

p′′a , p′′b, p′′c , p′′d
}

(

up to normalization ):

p′′a =
{
(1−E4σ2)

2 +E2
4σ2

}
p′2a +2E4σ2(1−E4σ2)p′d, (6.35)

p′′b = 2
{
(1−E4σ2)2 +E2

4σ2

}
p′b +2E4σ2(1−E4σ2)p′c, (6.36)

p′′c =
{
(1−E4σ2)2 +E2

4σ2

}
(p′2c + p′2d)+2E4σ2(1−E4σ2)p′b, (6.37)

p′′d = 2
{
(1−E4σ2)2 +E2

4σ2

}
p′d +2E4σ2(1−E4σ2)p′a, (6.38)

respectively. Finally, one of Alice and Bob performs the single-qubit level QEC. Given

Alice performs the single-qubit level QEC on her qubit 1 depicted as SQEC4 in Fig.

6.2(c), the variance transforms as 2σ2

σ2


1

→

 σ2

2σ2


1

. (6.39)

The set of diagonal elements
{

p′′a , p′′b, p′′c , p′′d
}

transform to
{

pA, pB, pC, pD
}

( up to nor-

malization ):

pA = (1−E3σ2)p′′2a +E3σ2 p′′c , (6.40)

pB = (1−E3σ2)p′′2b +E3σ2 p′′d, (6.41)

pC = (1−E3σ2)p′′2c +E3σ2 p′′a , (6.42)

pD = (1−E3σ2)p′′2d +E3σ2 p′′b, (6.43)

respectively. Consequently, we can implement the quantum privacy amplification with

approximate GKP qubits to improve the probability from pa to pA/P, where P is equal

to pA + pB + pC + pD. For the next round of the protocol, we can calculate the set of

diagonal elements
{

pA,2, pB,2, pC,2, pD,2
}

by replacing pa → pA, pb → pB, pc → pC,

and pd → pD in Eq. (6.26). Similarly, the set of diagonal elements for the nth-round{
pA,n, pB,n, pC,n, pD,n

}
of the protocol is recursively calculated.
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Figure 6.3: Numerical results for the probabilities pa and pA using the conventional and
proposed methods with ideal GKP qubits. The probabilities are plotted as a function of
a noise level ξ 2 of the Gaussian quantum channel for several upper limit vup = 0 (black
line),

√
π/6 (blue line), and 3

√
π/8 (red line) for pa (solid), pA for 1st-round (dashed),

pA,2 for 2nd-round (open circles, and pA,3 for 3rd-round (filled circles), respectively.

6.2 Proposed quantum privacy amplification using the highly-

reliable measurement

In our method, we apply the highly-reliable measurement to the quantum privacy am-

plification protocol to improve the performance of the quantum privacy amplification at

the cost of the success probability of the measurement. For the protocols with ideal and

approximate GKP qubits, we can reduce the measurement error of the bit value by dis-

carding when we obtain the amplitude of the measurement deviation value bounded by

vup. In the protocol with ideal GKP qubits described in Sec. 6.1.2, the highly-reliable

measurement is utilized for the single-qubit level QEC to reduce the measurement er-

ror Eξ 2 . Accordingly, the probability pA described in Eq. (6.15) increases by using the

highly-reliable measurement. In the protocol with approximate GKP qubits described in
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Sec. 6.1.3, the highly-reliable measurement is utilized to reduce the measurement error in

the single-qubit level QEC, E3σ2+ξ 2 , the measurement error of the qubits 3 and 4 after the

CNOT gate, E3σ2 , and the measurement error in the single-qubit level QEC on qubit 1 and

2, E4σ2 and E3σ2 . Accordingly, the probability pA described in Eq. (6.40) increases by

using the highly-reliable measurement. In the next section, we will numerically show the

improvement of the probabilities pA. Strictly speaking, we might consider the correlated

errors on the Bell pair in the case of approximate GKP qubits. This is because the dis-

placement errors on the control and targeted qubits are propagated each other through the

CNOT gate in the preparation of the Bell pair. As a result, this correlated errors prevent

us from briefly describing the measurement error probabilities Eσ2 . However, as shown

in Appendix for this chapter, we show that it is reasonable to ignore the effect of the cor-

related errors on a quantum privacy amplification with GKP qubits by using numerical

calculations.

6.3 Numerical calculations

To confirm validity of our quantum privacy amplification protocol, we numerically cal-

culate the error probabilities pi (i = a,b,c,d), p j ( j = A,B,C,D), and p j,n for ideal and

approximate GKP qubits. Then, we evaluate the performance of our method by compar-

ing between pa, pA, and pA,n for the nth-round of the conventional method with that of

the proposed method. We note that the quantum privacy amplification protocol works,

if pA,n is greater than pa in a noise level more than a threshold value. In Fig. 6.3, the

error probabilities pa and pA,n (n = 2,3) using the conventional and proposed methods

with ideal GKP qubits are plotted as a function of a variance of a noise level ξ 2 of the

Gaussian quantum channel for several rounds for 1st-round (dashed), pa,2 for 2nd-round

(open circles), pa,3 for 3rd-round 3 (filled circles). We assume that the squeezing levels of

the GKP qubits used to prepare the Bell state and perform the single-qubit level QEC are

7 dB (a) 10 dB (b) 15 dB (c), and the upper limits vup for the highly-reliable measurement

are vup = 0 (black line),
√

π/6 (blue line), and 3
√

π/8 (red line). The results in Fig. 6.3

show that our method can improve the performance of the quantum privacy amplification

with ideal GKP qubits, since the threshold values of a noise level are improved by using

the highly-reliable measurement as vup increases, where the threshold value with the con-

ventional method is ∼ 0.42. In Figs. 6.4(a), (b), and (c), the error probabilities using the
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conventional and proposed methods with approximate GKP qubits are plotted. In the cal-

culations, we assumed that the squeezing level of approximated GKP qubits prepared by

Alice, Bob, and Eve is same. Fig. 6.4 show that our method improves the performance of

the quantum privacy amplification with approximate GKP qubits, since the threshold val-

ues of a noise level are improved by our method. It is remarkable that our method works

even with the initial squeezing level 7 dB as shown in Fig. 6.4 (a). Furthermore, a note-

worthy fact in Fig. 6.4 (b) is that our method achieves the maximum probability (fidelity)

pA,n ∼ 1.0 by contrast with the conventional method that achieves the pA,n ∼ 0.88.

6.4 Discussion and conclusion

In this work, we have presented analog-assisted quantum privacy amplification protocol

with GKP qubits by using the highly-reliable measurement proposed that reduces the

probability of misidentifying the bit value of the GKP qubit. We firstly have modeled a

quantum privacy amplification protocol with ideal and approximate GKP qubits. Then,

we applied the highly-reliable measurement to the protocol to improve the performance

of the quantum privacy amplification protocol. The numerical results have showed that

the proposed method has a great advantage in enhancing the performance of a quantum

privacy amplification even with a very noisy channel, where the conventional method can

not work. Hence, our method will bring up virtue of the highly-reliable measurements

with continuous variables in quantum communication with continuous variables, and open

up a promising avenue to quantum communication with continuous variables.
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Figure 6.4: Numerical results for the probabilities pa and pA using the conventional and
proposed methods with approximate GKP for the initial squeezing level of the single GKP
qubit prepared, 7 dB (a) 10 dB (b) 15 dB (c). The probabilities are plotted as a function of
a noise level ξ 2 of the Gaussian quantum channel for several upper limit vup = 0 (black
line),

√
π/6 (blue line), and 3

√
π/8 (red line) for pa (solid), pA for 1st-round (dashed),

pA,2 for 2nd-round (open circles, and pA,3 for 3rd-round (filled circles), respectively.
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Appendix for Chap. 6: Effect of correlated errors

In Sec. 6.1.3, we explain the quantum privacy amplification protocol with approxi-

mate GKP qubits, ignoring the effect of the correlated error. In this appendix, we inves-

tigate the effect of the correlated error. In the case of approximate GKP qubits, the devi-

ations of the control and targeted qubits are propagated between the two qubits through

the CNOT gate. For example, we consider the preparation of the Bell pair by using the

CNOT gate on the control qubit C and the targeted qubit T. The CNOT gate transforms

the true deviation of two qubits in the q and p quadratures as

∆q,C → ∆′
q,C = ∆q,C, (A1)

∆p,C → ∆′
p,C = ∆p,C −∆p,T, (A2)

∆q,T → ∆′
q,T = ∆q,T +∆q,C, (A3)

∆p,T → ∆′
p,T = ∆p,T, (A4)

where ∆q,C (∆p,C) and ∆q,T (∆p,T) are the true deviation values of qubits C and T in the

q and p quadratures, respectively. Assuming that the true deviations ∆q,C, ∆p,C, ∆q,D,

and ∆p,D obey the Gaussian distribution with the variance σ2, the ∆′
p,C and ∆′

q,T obey the

Gaussian distribution with the variance 2σ2. We here note that the two variables ∆′
q,C

and ∆′
q,T have a particular correlation with each other, since the variable ∆′

q,T includes

the variable ∆′
q,C. Similarly, the two variables ∆′

p,C and ∆′
p,T have a correlation with each

other. Hence, we can not describe independently each of the measurement error derived

from ∆′
q,C and that derived from ∆′

q,T. Accordingly, the correlated errors prevent us from

briefly describing the probabilities pi (i = a,b,c,d,A,B,C,D) by using Eσ2 .

To investigate an effect of the correlated errors on the quantum privacy amplifica-

tion protocol, we numerically simulate the probability pa described in Eq.(6.26) by using

Monte Carlo method. In the simulation, the Bell pair is prepared from the two qubits

with the finite squeezing level, and the Gaussian quantum channel independently adds

the deviation to the variables of the two qubits. In the single-qubit level QEC, ancilla

qubits with the finite squeezing level are interacted with the qubits of the Bell pair, and

measured. In Fig. 6.5, the error probabilities pa for several squeezing level of initial GKP
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Figure 6.5: The effect of the correlated errors. The probabilities pa are plotted as a func-
tion of a noise level ξ 2 of the Gaussian quantum channel for the initial squeezing level of
the single GKP qubit 7 dB (black) (a) 10 dB (blue) (b) 15 dB (red) (c). The numerical
results plotted as a solid line are calculated by Eq. (6.26), and open circles are simulated
by using Monte-Carlo method.

qubits are plotted as a function of a noise level ξ 2 of the Gaussian quantum channel. Nu-

merical results showed that the correlated error does not affect the probabilties pa in a

practical squeezing and a noise level, where the proposed method works well. Hence, we

can ignore the correlated error in our numerical calculations.
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Chapter 7

Quantum communication with the
GKP qubits

Besides implementing continuous variable fault-tolerant quantum computation, the GKP

qubits will be recognized as an important technological element to implement the con-

tinuous variable long-distance quantum communication, which is an important ingredient

of the secure quantum internet [68] to implement secure communications [69, 70], dis-

tributed quantum cryptographic protocols, and so on. This is because the GKP qubit has

a superb error tolerance against the disturbance of a noise channel, comparing with the

other continuous variable code such as the cat code and the binomial code. In fact, we

have shown that the GKP qubit can provide an optimal performance against the Gaussian

quantum channel [6]. Furthermore, in Ref. [71], the GKP qubit can significantly outper-

form all other continuous variable codes, with respect to the bosonic pure-loss channel

(i.e. photon loss channel) after the optimal recovery operation.

Toward long-distance quantum communication with continuous variables, a quantum

repeater is indispensable element, where quantum repeaters between the sender Alice

and the receiver Bob are needed to achieve the polynomial scaling of the efficiency with

the total distance between Alice and Bob. In this chapter, we propose the method to

implement resource-efficient quantum repeater protocol by harnessing analog information

contained in the GKP qubit. In the proposed method, we apply the GKP qubit with the

high-reliable measurement to ”all photonic quantum repeater protocol” [72] in order to

investigate the potential for quantum communication with the GKP qubit. Furthermore,

we apply the analog QEC [6] to the encoded measurement to improve the performance of

our protocol.
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7.1 Quantum communication and quantum repeater

We briefly describe the concept of quantum communication. Quantum communication is

a method to generate a secure network by transmitting either quantum or classical signals

over distances using the quantum mechanics. Such a secure network enable us to imple-

ment cryptography, communication complexity, quantum bit-string commitment, large-

scale distributed quantum computation, etc. One of the most advanced technological field

using quantum communication is quantum key distribution (QKD). QKD establishes a

secret key between the two distant parties named the sender Alice and the receiver Bob,

where light pulses are generally transmitted through an optical fiber. A number of practi-

cal studies have already been demonstrated. If these parties are far beyond the attenuation

length of the channel between parties, errors induced by the channel attenuation become a

major barrier for efficient quantum communication over continental scales. In such a sit-

uation quantum repeaters are likely to be needed and work by dividing the long-distance

link into a number of segments with a repeater at each station.

7.2 Idea of quantum repeater with with the GKP qubit us-

ing analog information

In this section, we briefly explain the quantum repeaters protocol with the highly-reliable

measurement. Fig. 7.1 shows a schematic drawing of the proposed protocol, where there

are four steps. In step 1, each of nodes prepares the “binding ”cluster state (Fig. 7.1 (a)).

The binding cluster state is composed of the leaf qubits and the encoded qubits, and is

used to generate the entanglement between the neighboring repeaters. In this protocol,

we assumed that the encoded qubit is encoded by varnava’s code [73]which is used for

“All photonic quantum repeaters” [72]. As an example, we here consider the binding

cluster state with the ten leaf qubits. The binding cluster state is prepared by using the

entanglement generation with the highly-reliable measurement described in chapter 4 (

see also subsection 5.1.3 ).
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7.3 Proposed quantum repeater protocol

In this section, we explain the method to implement quantum repeater protocol with the

GKP qubit in detail, where analog information contained in the GKP qubit is utilized

to improve the performance of quantum communication. Fig. 7.1 shows the schematic

description of our protocol, consisting of Alice, Bob, the senders, and the repeaters. The

proposed method consists of four steps. We will briefly describe each step of the proposed

method in the following.

Step 1 Preparing and sending the encoded states

In step 1, firstly, each of nodes prepares the encoded cluster states composed by the

GKP qubits, which is referred to as the “binding”cluster state in this work (Fig. 7.1 (a)).

The binding cluster state is composed of the leaf qubits and the encoded qubits. To safely

generate the entanglement between the neighboring repeaters, the binding cluster state

is encoded by the Varnava’s code [73], which has been used for “All photonic quantum

repeaters” [72] based on photon qubits. As an example, we here consider the binding

cluster state with the ten-leaf qubits (Fig. 7.1(a)). The binding cluster state is prepared

using the fusion gate with the highly-reliable measurement to prevent decreasing in the

squeezing level and reducing the probability of the misidentifying the bit value (see also

Appendix A for the construction of the binding cluster). The reducing probability of

the misidentification of the bit value leads to reduce the qubit-level error caused by the

feedforward operation according to the outcome of the Bell measurement in the fusion

gate.

Secondly, each of nodes sends the binding cluster state to neighboring repeaters as

shown in Fig. 7.1 (b). After the transmission loss channel L , the variances of the GKP

qubit in the q and p quadrature decrease as depicted in Sec. 2. In this work, we assume

that the GKP qubits suffer from the same amount of the photon loss channel L after the

transmission.

Step 2 Fusion gate with the highly-reliable measurement on leaf qubits

In the step 2, each of repeaters receives the binding cluster states and implements the
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fusion gate between the leaf qubits with the highly-reliable measurement to reduce the

accumulation of the error as shown in Fig. 7.1(c). In the fusion gate, firstly, the 50:50

beam splitter transforms the variables in the q and p quadrature

√
η q̂ai →

√
η/2(q̂ai + p̂bi), (7.1)

√
η p̂ai →

√
η/2(p̂ai + q̂bi), (7.2)

√
η q̂bi →

√
η/2(q̂ai − p̂bi), (7.3)

√
η p̂bi →

√
η/2(p̂ai − q̂bi), (7.4)

where q̂ai (q̂bi) and p̂ai ( p̂bi) the variables of the qubit ai(bi) (i = 1,2,3,4,5) in the q and

p quadrature, respectively (Fig. 7.1(c)).

Secondly, each of repeaters measures the leaf qubit ai and qubit bi in the p quadra-

ture using homodyne detector. The measurement outcome of the leaf qubits
√

η/2qmi

and
√

η/2qmi in the q and p quadrature are rescaled to qmi and pmi by multiplying the

measurement outcome by
√

2/η in a post-process, respectively. We here mention the

transformation of the variances of the leaf qubits. After the coupling by the 50:50 beam

splitter, the variances of the leaf qubits ai and bi in the q and p quadrature changes as

σ2
out,qai → (σ2

out,qai +σ2
out,pbi)/2, (7.5)

σ2
out,pai → (σ2

out,pai +σ2
out,qbi)/2, (7.6)

σ2
out,qbi → (σ2

out,qai +σ2
out,pbi)/2, (7.7)

σ2
out,pbi → (σ2

out,pai +σ2
out,qbi)/2, (7.8)

respectively. After the rescaling by multiplying the measurement outcome by
√

2/η in a

post-process, the variances transform

(σ2
out,qai +σ2

out,pbi)/2 → (σ2
out,qai +σ2

out,pbi)/η , (7.9)

(σ2
out,pai +σ2

out,qbi)/2 → (σ2
out,pai +σ2

out,qbi)/η , (7.10)

respectively.

Thirdly, each of repeaters applies the highly-reliable measurement to measurement

outcome of the leaf qubits, and determines whether the highly-reliable measurement suc-

ceeds or not. In the highly-reliable measurement, if both the measurement deviations are
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less than upper limit vup, each of repeaters decides that the fusion gate with the highly-

reliable measurement is succeeds. On the other hand, if both the measurement deviations

are more than the upper limit vup, or either of one of the two deviations is more than vup,

each of repeaters decides that the fusion gate with the highly-reliable measurement fails.

By using the highly-reliable measurement, the qubit level error of misidentifying the bit

value in p quadrature, which accumulates on the encoded qubit, can be reduced.

Step 3 Encoded measurement without the highly-reliable measurement

In step3, if the fusion gate with the highly-reliable measurement is succeeds, each of

repeaters measures the encoded qubit, which is entangled with the successful leaf qubits,

in the p quadrature to keep the entanglement between neighboring repeaters as shown

in Fig. 7.1(d). In the encoded measurement in p quadrature, the error probability of

misidentifying the bit value can be reduced by using the Varnava’s code [73]. On the

other hand, if the fusion gate with the highly-reliable measurement fails, each of repeaters

measures the encoded qubit in the q quadrature to discard the entanglement as shown in

Fig. 7.1(d). In the case of the failed fusion gate, the probability of misidentifying the bit

value will be high, which occurs the qubit-level error on Alice and Bob after feedforward

operation according to the measurement outcome. To reduce this qubit level error, the

encoded measurement qubits are measured in the q quadrature (see also Appendix for

Chap.7 C for the details of the measurement on the encoded qubits).

Step 4 Entanglement generation between Alice-Bob

In the last step of the proposed protocol, each of repeaters sends the measurement

results to Alice and Bob. The number of the leaf qubits and the upper limit vup need to

be determined so that the entanglement between Alice and Bob generates almost deter-

ministically. Then, Alice and Bob implement the feedforward operation according to the

measurement results from all repeaters, and the entanglement between Alice and Bob is

finally generated (Fig.7.1 (e)).
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Figure 7.1: A schematic drawing of the GKP quantum repeater protocol with the highly-
reliable measurement. (a) The “binding”cluster state. (b) Each of nodes sends the binding
cluster state to neighboring repeaters. (c) The implementation of the fusion gate on the
leaf qubits with the highly-reliable measurement. (d) The measurement on the encoded
qubits. (e) The entanglement generation between the neighboring node, and Alice and
Bob finally obtain the entanglement after feedforward operation.
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7.4 Analysis

To evaluate the proposed protocol, we calculate the error probability in the q (p) quadra-

ture, which is accumulated on the entanglement generated between Alice and Bob, EX
AB

(EZ
AB). To obtain the EX

AB (EZ
AB), we calculate the average of the error probability in the p

quadrature on each of repeaters,EZ
R . The EZ

R results from four causes, which correspond

to the unheralded error originated from the unheralded errors during the construction of

the binding cluster EAcc, misidentifying the bit value of the leaf qubit with the highly-

reliable measurement E lea f
PS , the unheralded errors during the encoded measurement in

the q quadrature EX
Enc, and the unheralded errors during the encoded measurement in the

p quadrature EZ
Enc. The unheralded error EAcc in the leading order is given by

EAcc = 17×EPS(4σ2)+13×EPS(3σ2), (7.11)

where the unheralded error EPS(4σ2) and EPS(3σ2) are given by Pcor
ps /(Pcor

ps +Pin
ps) with

the variance in the p quadrature 4σ2 and 3σ2. The unheralded error E lea f
PS occurs, when

the fusion gate with the highly-reliable measurement fails. E lea f
PS is given by EPS with the

variance

2(σ2
out,qai +σ2

out,pbi)/η (7.12)

described in Eq.(15). The unheralded error EX
Enc occurs, when the encoded measurement

encoded by the Varnava’s code in the p quadrature fails. The unheralded errors EX
Enc and

EZ
Enc are calculated by

EX
Enc = 3× (ex +3× ez)

2, (7.13)

EZ
Enc = 3× (3× ex

2), (7.14)

where ex and ez are the probability of misidentifying the bit value of the GKP qubit with

the variances σ2
x and σ2

z , respectively. The probability ex (ez) is given by

ex(z) =
∫ √

π
2

−
√

π
2

dx
1√

2πσ2
x(z)

exp(−x2/2σ2
x(z)). (7.15)
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Figure 7.2: The probability of X and Z error. The probability EX
AB ( blue solid line) and

the success probability of the entanglement generation between Alice and Bob Psuc ( red
dotted line) are plotted as a function of a distance between Alice and Bob LAB for the
binding cluster state with the ten laef qubits, the initial squeezing level 15 dB, and the
number of repeaters 129.

Then, the error probability EZ
R is calculated by

EZ
R = E lea f

PS +EAcc +EX
Enc +4×EZ

Enc (7.16)

(see also Appendix for Chap. 7. B for the detailed calculation). Hence, the error prob-

ability EX
AB, EZ

AB, and EY
AB which occur on the entanglement between Alice and Bob is

calculated as

EX
AB = EZ

AB =
1
4
{1− (1−2ER)

NR/2}, (7.17)

EY
AB = EX

AB ×EZ
AB, (7.18)

where NR is the number of repeaters.

To evaluate our method based on the GKP qubit, we compare our method with the

method based on photon qubit such as Azuma et al.’s method [72]. In Fig. , the proba-

bility EX
AB and the success probability of the entanglement generation between Alice and

Bob Psuc are plotted as a function of a distance between Alice and Bob LAB by using the

binding cluster state with the ten laef qubits for the initial squeezing level 15 dB and the
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number of repeaters 129. In this calculation, we assume that the variances of the initial

single GKP qubit in q and p quadrature σ2 = e−2r/2 in each of nodes has a variance,

and the transmittance η is equal to 10−(l×0.17)/10. LAB is equal to (2NR + 3)× l, where

l is a distance between two neighboring repeaters. Numerical results showed that our

method can achieve the value (LAB, EX
AB, Psuc, Nqubit) = (800 km, 4.7%, 49%, 130) for the

upper limit vup=0.214
√

π , where Nqubit is the number of photons prepared at each node

for each blind cluster state, respectively. By contrast, Azuma et al.’s method achieve the

value (LAB, EX
AB, Psuc, Nqubit) = (800 km, 4.1%, 60%, 24,440). Therefore, our method

can achieve the comparative performance with Azuma et al.’s method, and it is also re-

markable that the number of the GKP qubits required for our method is several orders of

magnitude less than the number of the photon qubits required for Azuma et al.’s method.

Furthermore, we apply the analog QEC [6] to the encoded measurement to improve

the performance of our method (see also Appendix for Cap. 7. C for the explanation of

the analog QEC for the Varnava’s code). In this calculation, we numerically simulated

the QEC for the Varnava’s code using the Monte Carlo method. From the numerical

calculation, we obtained the results that the analog QEC can reduce the EX
Enc and EZ

Enc by

several orders of magnitude.

7.5 Discussion and conclusion

In this chapter, we propose the resource-efficient quantum repeater protocol toward long-

distance quantum communication with the GKP qubits. Numerical results show that our

method can achieve the comparative performance with the conventional methods based

on photon qubits. Furthermore, our method can reduce the number of the GKP qubits

required for quantum communication by several orders of magnitude less than the con-

ventional method. In addition, we have obtained the results that our analog quantum error

correction can improve the performance of our method. Furthermore, our method can be

not limited to the GKP qubit but widely applicable to improve the performance of the

quantum repeater protocols, which can incorporate with GKP qubit, cat code, and other

various codes used to digitize continuous variable states. Hence, we believe the proposed

method will open up a new approach to quantum repeater protocol with digitized con-

tinuous variable states, which will be indispensable to construct quantum communication

with continuous variables.
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Appendix for Chap. 7 A: Construction of the binding cluster

We apply the highly-reliable measurement to a large-cluster state construction to prevent

the deviation of the GKP qubit from propagating during the entanglement generation,

which can lead to preventing the squeezing level from decreasing during the construction

of a large-cluster state. We explain how to apply the highly-reliable measurement to the

construction of the binding cluster state composed of the ten leaf qubits as shown in Fig.

7.1 (a). In the proposed method, there are four steps. In step 1, we prepare the 3-tree

cluster composed of a node qubit and two ancilla qubits by using the CZ gate (7.3. 5 (a)).

The CZ gate, which corresponds to the operator exp(-iq̂Cq̂T), transforms

q̂C → q̂C, p̂C → p̂C − q̂T , (7.19)

q̂T → q̂T, p̂T → p̂T − q̂C, (7.20)

where q̂C (q̂T) and p̂C ( p̂T) are the q and p quadrature operators of the controlled (target)

qubit, respectively. In terms of the deviation, we here consider the error propagation

caused by the CZ gate operation. The CZ gate operation displaces the deviation for the q

and p quadrature as

∆q,C → ∆q,C, ∆p,C → ∆p,C −∆q,T, (7.21)

∆q,T → ∆q,T, ∆p,T → ∆p,T −∆q,C, (7.22)

where ∆q,C (∆q,T) and ∆p,C (∆p,T) are true deviation values in the q and p quadrature of

the controlled and target qubit, respectively. Since the true deviation is obeyed Gaussian

distribution randomly and independently, the variance of the controlled qubit and target

qubit in p quadrature changes as

σ2
p,C → σ2

p,C +σ2
q,T, (7.23)

σ2
p,T → σ2

p,T +σ2
q,C, (7.24)

where σ2
q,C(σ

2
q,T) and σ2

p,C(σ
2
p,T) are the variance of the controlled and target qubit in the

q and p quadrature, respectively. On the other hand, the variance in the q quadrature does

not change. Therefore, the CZ gate causes the increase in probability of misidentifying of
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the bit value in p quadrature. For the 3-tree cluster state, the variance of the node qubit

and the ancilla qubits in the p quadrature increase from σ2 to 3σ2 and 2σ2 after the CZ

gate, respectively. We assumed that the variance of the initial single GKP qubit is σ2 in

the q and p quadrature.

In step 2, we generate the 4-tree cluster state from the two 3-tree cluster states by using

the Bell measurement on the ancilla qubit and the node qubit with the highly-reliable mea-

surement (7.3 (b)). After the feedforward operation according to the Bell measurement

outcome, the 4-tree cluster state is generated. This entanglement generation by using the

Bell measurement can avoid the deviation of the qubit from propagating, and prevent the

variances of the qubits from increasing. Moreover the highly-reliable measurement can

reduce the measurement error which leads to bit level error on the node and ancilla qubits

in the p quadrature after feedforward operation. We can obtain the 4-tree cluster state

composed of the node qubits whose variance in the q and p quadrature are σ2 and 3σ2,

respectively. On the other hand, in conventional method, where the 4-tree cluster state is

generated by using only the CZ gate, the variance and squeezing level of node qubits in

the q and p quadrature are σ2 and 4σ2, respectively. As a result, our method can prevent

the squeezing level from decreasing. Hence, iteration of the entanglement generation by

using the Bell measurement with the highly-reliable measurement offers a substantially

lower error probabilities in constructing a large-cluster state. Following Ref. [52], in this

note, we call this entanglement generation with the highly-reliable measurement as the

fusion gate. Similarly, we generate the 5- and 6-tree cluster states as shown in Fig. 7.3

(c). The 5-tree cluster states is generated from the 3- and 4-tree cluster states. The 6-tree

cluster states is generated from the two 4-tree cluster states.

In step 3, we generate the (3,3)-tree cluster state from the three 5-tree cluster states and

the 6-tree cluster state as shown in Fig. 7.3 (d). Then, we generate the (5,3,3)-tree cluster

state from the five (3,3)-tree cluster states and the 6-tree cluster state ( Fig. 7.3 (e) ). In

step 4, we obtain the binding cluster state from the two (5,3,3)-tree cluster states as shown

in Fig. 5 (f). After the construction of the binding cluster state, the variances of the node

the q and p is σ2 and 3σ2, respectively. Therefore, the fusion gate with highly-reliable

measurement can avoid the degradation of the squeezing level during the construction of

the binding cluster state. This can considerably reduce the measurement error probabil-

ity. By contrast, the conventional method, where the fusion gate with the highly-reliable

measurement is not used and the binding cluster state is generated by using only the CZ
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gate, larger variance than proposal.

Appendix for Chap. 7 B: The encoded measurement

We describe the encoded measurement on the binding cluster in the q and p quadrature,

which allow us to safely generate the entanglement. We explain the encoded measure-

ment in the q quadrature to generate the entanglement between the nodes. Let NAi be the

set of qubits coneected to the qubit Ai. If we would like to reduce the error of misidenti-

fying the bit value of qubit Ai, we implement a majority voting among the measurement

outcomes from any qubit B j ∈ NAi. This is because the qubit Ai and B j are stabilized

by operator ẐAi X̂B j. Hence, in the case of the binding cluster states as shown in Fig.

7.1(a), the encode measurement on the qubit Ai (i = 1,2,3) is encoded by the three-qubit

bit-flip code. Considering the three qubits A1, A2, and A3, the error probability EZ
Enc

is calculated by EZ
Enc = 3× (3× ex

2). In the encoded measurement in the p quadrature,

we implement the majority voting among the measurement outcomes from three logical

qubits ALi (i = 1,2,3). The measurement outcome of the logical qubit ALi is obtained

by XAi ∏B j∈NAi ZB j ( j = 1,2,3), where XAi and ZB j are the measurement outcomes of the

qubit Ai and B j in the p and q quadrature, respectively. Hence, the error probability EX
Enc

is calculated by EX
Enc = 3× (ex +3× ez).

Appendix for Chap. 7 C: Analog quantum error correction for the
Varnava’s code

We briefly explain how to apply the analog QEC to the Varnava’s code. As a simple

example, we describe the encoded measurement in the q quadrature, where the encode

measurement on the qubit Ai (i = 1,2,3) is encoded by the three-qubit bit-flip code.

Specifically, when we obtain the measurement outcome of the bit value XB j and the devi-

ation values ∆XB j for the j-th physical GKP qubit ( j = 1,2,3), we implement a majority

voting among the measurement outcomes XB j. If the result of a majority voting is ±1, we
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decide that the the encode measurement outcome on the qubit Ai is ±1. Therefore, we

can apply the analog QEC to the encode measurement to reduce the decision error of the

encode measurement outcome (see also Ref. [6]). If the measurement outcomes of the

physical GKP qubits XB1, XB2, and XB3 are (1,0,0), then we consider two error patterns,

considering that the outcomes without qubit-level error should be (0,0,0) or (1,1,1). The

first pattern is a single error on the physical qubit B1 and the second pattern is the double

errors on the physical qubits B2 and B3. We then calculate the likelihoods for the first F1

and second pattern F2 as

F1 = f (
√

π −|∆XB1|) f (|∆XB2 |) f (|∆XB3|), (7.25)

F2 = f (|∆XB1|) f (
√

π −|∆XB2|) f (
√

π −|∆XB3|), (7.26)

respectively, where likelihood function f (|∆XB j |) is given by

f (|∆XB j |) =
1√

2πσ2
exp(−|∆XB j |

2/(2σ2)). (7.27)
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Figure 7.3: The construction of the binding cluster state with the highly-reliable mea-
surement. (a) The preparation of the 3-tree cluster state by using the CZ gate. (b) The
generation of the 4-tree cluater state from the two 3-tree cluster states by using the Bell
measurement with the highly-reliable measurement. (c) The construction of the 5-tree
cluater state. (d) The construction of the (3,3)-tree cluater state. (e) The construction of
the (5,3,3)-tree cluater state. (e) The construction of the binding cluster state.
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Chapter 8

Summary and conclusions

In this thesis we have investigated fault-tolerant quantum computation, and quantum com-

munication with GKP qubits. We have presented several methods to implement quantum

computation and quantum communication that offer various novel and practical futures.

In Chap. 3, we have proposed the analog QEC and numerically demonstrated the

improvement of QEC performance using the several quantum error correcting codes such

as the three-qubit flip code, the Knill’s C4/C6 code, a surface code. Numerical results

have shown that the analog QEC with the C4/C6 code and a surface code provides an

optimal performance against Gaussian quantum channel.

In Chap. 4, we have presented a method to implement large-scale quantum computa-

tion, which consists of two parts. One is to apply analog QEC [6] to a surface code. The

other is a construction of the cluster state for the topologically protected measurement

based quantum computation [9, 10, 11, 12] with a low error accumulation. By achieving

the requirement of the squeezing level around 10 dB, the proposed method can consider-

ably take a step closer to the realization of large-scale quantum computation.

In Chap. 5, to reduce the number of qubits required for the QEC during large-scale

quantum computation, the tracking QEC has been presented, where the logical-qubit level

QEC is partially substituted with the single-qubit level QEC.

In Chap. 6, to improve the entanglement distillation performance, we have proposed

the entanglement distillation protocol with the GKP qubit using highly-reliable measure-

ment. In the proposed method, we have applied the highly-reliable measurement to a

quantum privacy amplification protocol with the ideal and approximate GKP qubit.

In Chap. 7, we have presented a method to implement a long-distance and resource-

efficient quantum communication with GKP qubits. In the proposed method, the highly-

reliable measurement has been used to enhance tolerance against photon loss through an

optical fiber.

These presented methods offer the way of secure and high-fidelity quantum compu-
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tation and quantum communication. Although the technologies required to build a large-

scale quantum computer remain daunting, the proposed methods are motivation enough

for researchers in the world to to focus resources into funding the technologies to realize

large-scale quantum computation and long-distance quantum communication.
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