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Baleen whales have lost their functional teeth and begun to
use their baleen plates to feed on small prey. Modern baleen
whales exhibit different types of feeding strategies, such as
lunging, skimming and so on. The evolution of feeding
strategy in the Chaeomysticeti is an important step in
considering niche partitioning and diversification, feeding
efficiency and gigantism, and evolution and extinction.
This study analyses the rostrum morphology to test the
hypothesis that specific rostral morphologies facilitate
special feeding strategies, using modern species and their
observed feeding strategies. By this means, the convergence of
rostral morphology can be recognized in the closest groups in
the morphospace. As a result, the two linages (Balaenidae and
Caperea marginata) are recognized to have convergent rostral
morphology. In addition, an early member of the
Chaeomysticeti, Yamatocetus canaliculatus, and most fossil
species are plotted in or close to the cluster of lunge feeders.
The original feeding strategy of the Chaeomysticeti could be
more similar to lunge feeding than to skim feeding. Fossil
relatives of the two linages showing transitional conditions
indicate that they shifted to skim feeding independently. The
evolution of the feeding strategy of the Chaeomysticeti is
possibly more complex than that was thought.

© 2022 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
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1. Introduction
Baleen whales have lost their functional teeth and use their baleen plates to feed on zooplankton and
small fish. Modern baleen whales exhibit three different types of feeding (figure 1 and table 1), such
as skim feeding in balaenids and Caperea marginata, lunge feeding in most balaenopterids, and benthic
suction in Eschrichtius robustus, and they have different combinations of feeding strategies. Lunge
feeding is characterized by ‘intermittent engulfment and subsequent filtration’ [1]. Modern
balaenopterids have throat grooves that expand to allow a huge volume of water intake, together
with schools of prey [2]. On the other hand, skim feeding is characterized by ‘generating continuous
negative pressure within the mouth cavity’ with a steady forward propulsion [3]. Skim feeders, such
as balaenids, have a body that allows efficient cruising, but at slower speeds than those available to
balaenopterids [4]. Interestingly, some species of mysticetes show a wider range of feeding methods.
For example, Balaenoptera borealis can perform both skim and lunge feeding [5,6], which allows them
to feed on smaller prey, in the first case, and larger prey or a greater density of prey, in the second [3].

The evolution of the Mysticeti feeding strategy in the toothed baleen whale has been well
studied recently, using the morphology of the tooth, skull and mandible. Before baleen-assisted filter
feeding was evolved, toothed mysticetes employed variable feeding strategies, such as suction,
suction-assisted filter and suction-assisted raptorial feeding [7–14].

On the other hand, later mysticetes, such as true baleen whales (the Chaeomysticeti), have been
investigated, but not in the way that toothed baleen whales have. The Chaeomysticeti are a group of
toothless mysticetes containing all extant baleen whales. Identifying the evolution of feeding strategies
of the Chaeomysticeti will be an important step in considering niche partitioning and diversification,
feeding efficiency and gigantism, and evolution and extinction in detail.

Several recent studies have described the original feeding strategy of the Chaeomysticeti. An early
review paper on feeding mechanism of the Mysticeti noted that fossil mysticetes were structurally
similar to balaenopterids and Eschrichtius robustus [15]. A later review more clearly showed that lunge
feeding was the strategy used by archaic baleen whales because none of them display arched rostra
like the Balaenidae or a robust rostrum like Eschrichtius robustus [16]. This view is compatible with the
result of a later study, which suggested that the early Chaeomysticeti Toipahautea waitaki was
considered as a possible gulp-feeder, based on the mandible structures [17]. Later, a study of injuries
to fossil mysticetes reported that osteosclerotic ribs can be seen in primitive mysticetes [18]. These ribs
suggest that the earliest Chaeomysticeti employed benthic feeding.

Recently, the Eomysticetidae, an early group of the Chaeomysticeti, has come to be considered a skim
feeder based on its lack of lunge feeder features, such as having a delicate temporomandibular joint,
non-laterally deflected coronoid process of the mandible and anteroposteriorly expanded rostrum [19].
The study also emphasized that members of the Eomysticetidae are skim feeders like the Balaenidae
‘as the next diverging lineage of mysticetes suggests that skim feeding may reflect the primitive mode
of feeding among the Chaeomysticeti’ (figure 1). These informative and frontier studies enable the
development of hypotheses and have increased interest in the evolution of feeding strategy among
the Chaeomysticeti.

Modern baleen whale feeding behaviours have been observed directly [20] and through examination
of gut contents [5]. However, there are many soft tissues, such as the expandable ventral pouch and the
synovial craniomandibular joint that can be seen in the modern baleen whales but not in fossils [21].
In addition, fossil specimens are rare, incomplete and are deposited in institutions globally. These
facts make it difficult to access them to take photos or measurements and to examine specimens
directly [22].

In the head, the rostrum, palate, temporomandibular joint and teeth/baleen in particular are
associated with feeding strategy [14]. Previous studies have focused on the mandible, especially in the
Cetotheriidae and Balaenopteridae [23–30]. As noted above, previous studies have sought to identify
the early feeding strategy of the Chaeomysticeti, but have not provided a final assessment [31]. The
rostrum seems to be an important element to consider with respect to feeding strategy, but it is easily
detached and not commonly preserved in fossils.

The objective of this study is to add additional data to take into account the early feeding strategy of the
Chaeomysticeti, using a poorly analysed but possibly closely related element, the rostrum. The hypothesis
that specific rostral morphologies facilitate specific feeding strategies can be tested using known modern
baleen whale feeding strategy. Then, comparing the positions of earlier chaeomysticetes in the
morphospace of the rostrum provides polarity of feeding strategy evolution. Finally, the recognition of the
convergence of the rostral morphology of extant species can be used to support the hypothesis.
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2. Materials and methods
The anatomical terms used here follow Mead & Fordyce [32]. Skull data were collected from 77 specimens
seen in previous studies (figure 2 and table 2; see also the electronic supplementary material, file S2). They
include 16 extant species of 61 specimens representing all extant baleen whales. Extinct toothless baleen
whales (members of the Chaeomysticeti) were selected through the preservation of their rostrum. The
rostrum is a combination of thin bones. Some specimens were reconstructed using a preserved left or
right side of the specimens.

2.1. Institutional abbreviations
AMNH, American Museum of Natural History, New York, USA. GNHM, Gamagori Natural History
Museum, Japan. KMNH, Kitakyushu Museum of Natural History, Fukuoka, Japan. LACM, Natural
History Museum of Los Angeles County, Los Angeles, USA. MFM, Mizunami Fossil Museum, Gifu,
Japan. MGB, Museo Geopalaeontologico G. Capellini, Bologna, Italy. MNHN, Muséum National
d’Histoire Naturelle, Paris, France. MPST, Museo Paleontologico di Salsomaggiore Terme, Italy. MUSM,
Museo de Historia Natural, Universidad Nacional Mayor de San Marco, Lima, Peru. NMB,
Natuurmuseum Brabant, Tilburg, The Netherlands. NMNS, National Museum of Nature and Science,
Tsukuba, Japan. PMBC, Phuket Marine Biological Center, Puket, Thailand. SAM, South Australian
Museum, Adelaide, Australia. SBAER, Soprintendenza per i Beni Archeologici dell’ Emilia Romagna.
SBAER, Soprintendenza per i Beni Archeologici dell’Emilia Romagna, Italy. SMNS, Staatliches Museum
für Naturkunde, Stuttgart, Germany. USNM, National Museum of Natural History, Smithsonian
Institution, Washington, DC, USA. ZM, IZIKO South African Museum, Cape Town, South Africa.

2.2. Data collection
Landmark acquisition was managed using the TPS program package, including tpsUtil v1.78 and tpsDig
v2.31 [33]. Semi-landmarks (figure 3) were measured on each specimen. Lines on the margin of the skull
were taken as semi-landmarks between right and left anterolateral ends of the rostrum on pictures in
dorsoventral view. They were divided into 50 semi-landmarks at equal distances. Non-shape
information (size and rotation) was removed from the landmark configurations using the New
Procrustes Fit implemented in MorphoJ 1.07a [34].

2.3. Morphometric analysis
Geometric morphometric analysis was used to access the shape variation of the rostrum morphology and
test the hypothesis that specific rostral morphologies facilitate specific feeding strategies. All analyses
were run using MorphoJ 1.07a [34].

Principal component analysis (PCA) was used to reduce the dimensionality of the data, and to
display the major axes of variation for extant and extinct true baleen whales [34]. In the analysis, PCA

Balaenidae

Caperea marginata

Eschrichtius robustus

Balaenopteridae

skim feeding

skim feeding

multiple prey
capture stategy

lunge feeding

Figure 1. Modern baleen whale phylogeny and feeding strategies.
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was used to identify the positions of earlier chaeomysticetes in the morphospace with the modern species
(figure 5) and to recognize the convergence of the rostral morphology of extant species categorized by
linages (figure 6). If specific rostral morphologies facilitate specific feeding strategies, then clusters of
phylogenetically separated linages with the same feeding strategies will be closely associated.

The feeding strategies of recently established extant species Balaenoptera ricei and extinct true baleen
whales were assigned as unknown (not observed) [35]. Interestingly, B. ricei dives deep and forages at or
near the sea floor during the day [36], which is an unusual feeding strategy of balaenopterids.

Table 1. Known variation in feeding strategy among extant mysticetes. See cited references in the electronic supplementary
material, file S1.

scientific name feeding style reference

Balaena

mysticetus

skim feeding Pivorunas, 1979; Nemoto, 1970

Eubalaena

japonica

skim feeding Pivorunas, 1979; Nemoto, 1970

Eubalaena

glacialis

skim feeding Pivorunas, 1979; Nemoto, 1970

Caperea

marginata

skim feeding Pivorunas, 1979; Nemoto, 1970

Eschrichtius

robustus

multiple prey capture strategy. Benthic lateral

suction (Scammon, 1874; Kasuya and Rice,

1970; Pivorunas, 1979) skim feeding and gulp

(Nemoto, 1970; Jefferson et al., 2008) capable

of lunge feeding (Werth, 2000)

Scammon, 1874; Kasuya and Rice, 1970;

Pivorunas, 1979; Nemoto, 1970

Megaptera

novaeangliae

lunge feeding, bottom feeding (Hain et al.,

1995)

Pivorunas, 1979; Jurasz and Jurasz, 1979;

Frisch-Jordan et al., 2019

Balaenoptera

acutorostrata

lunge feeding Pivorunas, 1979

Balaenoptera

bonaerensis

lunge feeding Pivorunas, 1979

Balaenoptera

edeni

lunge feeding Pivorunas, 1979; Iwata et al., 2017

Balaenoptera

brydei

lunge feeding Pivorunas, 1979

Balaenoptera

borealis

multiple prey capture strategy. Skim feeding for

smaller, and lunge feeding (lunging) for

larger or greater density of prey (Brodie and

Vikingsson, 2009)

Ingebrigtsen, 1929; Pivorunas, 1979; Nemoto,

1959, 1970; Brodie, 1975; Brodie and

Vikingsson, 2009; Horwood, 2018; Segre

et al., 2021

Balaenoptera

physalus

lunge feeding Pivorunas, 1979

Balaenoptera

musculus

lunge feeding Pivorunas, 1979

Balaenoptera

omurai

lunge feeding Jefferson, 2008

Balaenoptera

ricei

unknown unknown (Rosel et al., 2021); bottom or near-

bottom feeding? (Soldevilla et al., 2017)
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2.4. Cladograms
To consider the evolution of feeding strategies among the Chaeomysticeti, the estimated feeding strategies
of extinct true baleen whales from PCA (figure 6 and table 3) are adapted to match previous phylogenetic

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77

Figure 2. Outline of analysed true baleen whale specimens. Numbers are given in table 2 and the electronic supplementary
material, file S2.
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Table 2. Specimens that were used for analyses in this study. See cited references in the electronic supplementary material,
file S2.

family scientific name
Specimen
number or ID ID Reference

Balaenidae Balaena mysticetus — 1 Nishiwaki and

Kasuya, 1970

Eubalaena australis Table XXV, fig. 5 2 Cuvier, 1823

Eubalaena australis Table XXV, fig. 7 3 Cuvier, 1823

Eubalaena australis — 4 Van Beneden and

Gervais, 1868

Eubalaena australis USNM 267612 5 Best, 2008

Eubalaena australis — 6 Jefferson et al., 1999

Eubalaena glacialis Table XXV, fig. 11 7 Cuvier, 1823

Eubalaena glacialis USNM 23077 8 True, 1904

Eubalaena glacialis — 9 Allen, 1908

Eubalaena japonica 61A 10 Omura, 1969

Eubalaena japonica 61B 11 Omura, 1969

Eubalaena japonica — 12 Omura, 1958

Neobalaenidae Caperea marginata — 13 Jefferson et al., 1999

Caperea marginata ZM 39768 14 Best, 2008

Caperea marginata OM VT227 15 ー

Caperea marginata MM002235 16 Fordyce and Marx,

2012

Caperea marginata — 17 Beddard, 1901

Eschrichtiidae Eschrichtius robustus M-804A 18 Nakamura and Kato,

2014

Eschrichtius robustus M-804B 19 Nakamura and Kato,

2014

Eschrichtius robustus AMNH 34260 20 Andrews, 1914

Eschrichtius robustus USNM A13803 21 Andrews, 1914

Balaenopteridae Megaptera novaeangliae USNM 269982 22 Best, 2008

Megaptera novaeangliae USNM 21492 23 True, 1904

Megaptera novaeangliae USNM 16252/13656 24 True, 1904

Megaptera novaeangliae Milwankee Public

Museum

25 True, 1904

Megaptera novaeangliae 26 Van Beneden and

Gervais, 1868

Megaptera novaeangliae 27 Cope, 1871

Balaenoptera acutorostrata — 28 Van Beneden and

Gervais, 1868

Balaenoptera acutorostrata ZM 41590 29 Best, 2008

Balaenoptera acutorostrata NMNS M42450 30 Marx et al., 2016

Balaenoptera acutorostrata — 31 Arnold et al., 1987

Balaenoptera bonaerensis 71J2793 32 Omura, 1975

(Continued.)
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Table 2. (Continued.)

family scientific name
Specimen
number or ID ID Reference

Balaenoptera bonaerensis 71J2883 33 Omura, 1975

Balaenoptera acutorostrata AY69B 34 Omura, 1975

Balaenoptera acutorostrata USNM 20931 35 True, 1904

Balaenoptera acutorostrata USNM 13877 36 True, 1904

Balaenoptera acutorostrata NFL 37 —

Balaenoptera bonaerensis ZM 39861 38 Best, 2008

Balaenoptera borealis — 39 Van Beneden and

Gervais, 1868

Balaenoptera borealis USNM 504244 40 Best, 2008

Balaenoptera borealis — 41 Nishiwaki and

Kasuya, 1971

Balaenoptera borealis AMNH 34871 42 Andrews, 1916

Balaenoptera brydei TN9903 43 Yamada et al., 2006

Balaenoptera brydei — 44 Omura, 1959

Balaenoptera edeni 77N62, Plate 1 45 Omura et al., 1981

Balaenoptera edeni 78N33, Plate 2 46 Omura et al., 1981

Balaenoptera edeni KINMEN01 47 Yamada et al., 2006

Balaenoptera edeni — 48 Jefferson et al., 1999

Balaenoptera edeni — 49 Junge, 1950

Balaenoptera ricei USNM 594665 50 Rosel et al., 2021

Balaenoptera ricei USNM 572922 51 Rosel et al., 2021;

Best, 2008

Balaenoptera musculus — 52 Van Beneden and

Gervais, 1868

Balaenoptera musculus — 53 Jefferson et al., 1999

Balaenoptera musculus USNM 124326 54 Best, 2008

Balaenoptera musculus

brevicauda

— 55 Omura, 1970

Balaenoptera omurai NMNS M32505 56 Wada et al., 2003

Balaenoptera omurai PMBC11621 57 Yamada et al., 2006

Balaenoptera omurai SAM M21245 58 Yamada, Kemper

et al., 2006

Balaenoptera physalus USNM 237566 59 Best, 2008

Balaenoptera physalus Philadelphia Academy

of Natural Science

60 True, 1904

Balaenoptera physalus USNM 16039 61 True, 1904

extinct taxa

stem Balaenopteroidea

or Cetotheriidae

Titanocetus sammarinensis MGB1CMC1729073 62 Bisconti, 2006

Balaenidae Balaenella brachyrhynus NMB 42001 63 Bisconti, 2005

(Continued.)
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hypotheses. The feeding strategies among the Chaeomysticeti have been shifted from certain primitive
feeding strategies to modern baleen whales, which have variable feeding strategies. Here previous
phylogenetic hypotheses are combined with the results to recognize the polarity in feeding strategy.

Numerous phylogenetic hypotheses for baleen whales exist, and some show a clade of the Balaenidae
and Caperea marginata (e.g. [19,30]), which is not supported by molecular phylogenetic analyses. Ones of
trees are confluent with phylogenetic relationships of the Balaenidae and Caperea marginata based on
molecular data [37–40]; these are used in this study. These hypotheses do not reach consensus on
contents of the Cetotheriidae, branching patterns of the Balaenopteridae, Cetotheriidae and other so-
called cetotheres, and the position of some key basal taxa (Titanocetus sammarinensis, Aglaocetus moreni
and Atlanticetus patulus). Such phylogenetic hypotheses can be recognized in two types in this study.
The two patterns differ in their placement of so-called cetotheres in the crown group (Type A [41–47])
or placing many ‘cetotheres’ basal to the Balaenidae (Type B [7,48]).

3. Results
3.1. Principal component analysis
The first two PCs combined explain 70.0% of the variation (PC1 = 50.6%, PC2 = 19.4%, PC3 = 17.8%,
PC4 = 6.4%, PC5 = 1.7%, PC6 = 0.9%), and the results of Procrustes ANOVA in the shape of feeding
strategies were significant ( p < 0.001) (electronic supplementary material, file S3).

Principal component 1 represents a contrast of the lateral margin at the anteroposterior middle level of
the rostrum and relative length of the rostrum. To the right end (the positive side) of PC1, the rostrum is

Table 2. (Continued.)

family scientific name
Specimen
number or ID ID Reference

Balaenopteridae Archaebalaenoptera

castriarquati

SBAER 240536 64 Bisconti, 2007a

Balaenopteridae Protororqualus cuvieri — 65 Bisconti, 2007b

Balaenopteridae Incakujira anillodefuego GNHM Fs-098-12 66 Marx and Kohno,

2016

Balaenopteridae Balaenoptera siberi — 67 Pilleri, 1989

Balaenopteridae Plesiobalaenoptera

quarantellii

MPST 240505 68 Bisconti, 2010

Cetotheriidae Piscobalaena nana NMNH SAS1617 69 Marx et al., 2017

Cetotheriidae Diorocetus hiatus USNM 16783 70 Kellogg, 1968

Neobalaenidae Miocaperea pulchra SMNS 46978 71 Marx and Fordyce,

2016

Isanacetus and related

clade

Isanacetus laticephalus MFM 28501 72 Kimura and Ozawa,

2002

Isanacetus and related

clade

Pelocetus calvertensis USNM 11976 73 Kellogg, 1965

Isanacetus and related

clade

Parietobalaena palmeri USNM 10677 74 Kellogg, 1968

Isanacetus and related

clade

Atlanticetus patulus USNM 23690 75 Kellogg, 1968

Isanacetus and related

clade

Mixocetus elysius LACM 882 76 Kellogg, 1934

Eomysticetidae Yamatocetus canaliculatus KMNH VP 000,017 77 Okazaki, 2012
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wider, has swollen lateral margins and is shorter. By contrast, to the left (the negative side), the rostrum is
slender and its lateral margins are straight (figure 4). Eschrichtius robustus and Balaenoptera borealis as
multiple prey capture feeders have negative PC1 scores associated with straight rostra and narrow bases.
Lunge feeders (most of balaenopterids) and some skim feeders (Eubalaena australis and Caperea marginata)
have near-zero to positive PC1 scores associated with wide and short rostra. Most fossil taxa have near-
zero to positive PC1 scores and are most similar in rostrum morphospace to the lunge feeders
(balaenopterids but B. borealis).

Principal component 2 is characterized by changes in the narrowness of the rostra. Positive PC2 scores
were related to a wide base and sharp rostrum that can be seen in skim feeders (Balaenidae and Caperea
marginata). Eschrichtius robustus (a benthic suction + skim + lunge feeder) and Balaenoptera borealis (a
skim + lunge feeder) have near-zero PC2 scores. Negative PC2 scores were associated with decreased
sharpness of rostra, as can be seen in some lunge feeders (Balaenoptera musculus and B. omurai).

Fossil taxa are most closely associated with the cluster of the Balaenopteridae made up of lunge
feeders in the morphospace (figure 5). Most importantly, the early Chaeomysticeti Yamatocetus
canaliculatus shows a negative PC2 score, in the context that most balaenopterids are scored negative
PC2, which make Yamatocetus canaliculatus closest to the clusters of the Balaenopteridae instead of
skimmers (the Balaenidae and Caperea marginata).

Three fossil taxa are plotted far from all extant species such as Balaenella brachyrhynus, Piscobalaena
nana and Balaenoptera siberi. Balaenella brachyrhynus is plotted close to the 90% confidence ellipse for
skim feeders and outside of 90% confidence ellipses of both skim and lunge feeders. Piscobalaena nana
is plotted equally distant from the lunge feeders (balaenopterids) and Eschrichtius robustus and
Balaenoptera borealis, which exhibit a multiple prey capture strategy. Balaenoptera siberi was plotted far
from the others, but the cluster of lunge feeders is the closest of all clusters. In addition, Diorocetus
hiatus was plotted near the lunge feeder cluster.

The newly described modern species Balaenoptera ricei is supposed to be a lunge feeder as it was
plotted near the centre of the lunge feeders’ cluster. More reports on this mysterious whale’s field
research will help to identify the truth.

Two linages of skimmers, the Balaenidae and Caperea marginata, are most closely associated (figure 4). Two
linagesofmultiplepreycapture feeders,Eschrichtius robustusandBalaenoptera borealis, aremost closelyassociated.

4. Discussion
4.1. Earlier feeding strategy of the Chaeomysticeti was not skimming
Yamatocetus canaliculatus from the early Oligocene (about 29–28 Ma) is an early member of the
Eomysticetidae, which is the most basal family among the Chaeomysticeti, the true baleen whales [9,49].

Figure 3. Example semi-landmark in the ventral view of Balaena mysticetus skull.
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Importantly, not only Yamatocetus canaliculatus (number 77 in figure 5), but also most of the analysed
fossil taxa are plotted in or close to the cluster of lunge feeders, instead of among skim and multiple prey
capture strategy clusters in the analysis, as noted in the Results section. This result indicates that the
earlier feeding strategy of the Chaeomysticeti in earlier times was not skimming, as it is in modern
balaenids and Caperea marginata.

The holotype of Eomysticetus whimorei preserving the anterolateral borders of the rostrum is not
included in the analyses because of their limited preservation, but is similar to the rostrum of
Yamatocetus canaliculatus in its proportions [50]. It is highly possible that the rostrum of Yamatocetus
canaliculatus represents the rostrum shape of the Eomysticetidae.

The early chaeomysticetes, Sitsqwayk cornishorum and Tokarahia kauaeroa, are key taxa, but their
holotypes do not preserve the rostrum. Another key early Chaeomysticeti, Toipahautea waitaki, also
cannot be included in these analyses because of the limited preservations of the rostrum, but it
appearss to have had a wide posterior part to its rostrum, unlike those of modern balaenids. This
species is considered to be a possible lunge feeder, based on its mandible structures [17].

In addition, another early member of the Chaeomysticeti, Horopeta umarere, was considered a lunge
feeder based on the presence of features shared with the Balaenopteridae lunge feeders, such as a
laterally bowed robust mandible and a posterolaterally deflected triangular coronoid process [51].
These taxa indicate that the feeding strategy of early or Oligocene Chaeomysticeti was not skim
feeding, and it may have been a primitive version of lunge feeding.

Eomysticetidae are thought of as skim feeders because of their lack of balaenopterid mandible
features and phylogenetic branching patterns of the modern skimmers Balaenidae and Eomysticetidae
(figure 1) [19]. Indeed, elimination is a powerful logical thinking tool. However, we may not be able
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Figure 4. The results of PCA showing the IDs of modern taxa. Ovals represent 90% confidence intervals for each distinctive feeding
strategy of the extant taxa. Diagrams of the shape changes in the positive directions are given along each axis. Numbers and letters
are IDs and abbreviations of scientific names (table 2).
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to use elimination for all cases, such as postulating the feeding strategies of the past whales, because
some feeding strategies might have vanished. If some feeding strategies exist and do not survive to
the present, they do not allow us to develop a complete set of feeding strategies to eliminate.

In this study, one possibility is eliminated (skim feeding), but the primitive feeding strategy cannot be
determined from among the feeding strategies of modern baleen whales because the real strategy might
not exist in the present. However, the analysis indicates that the feeding strategy of the Chaeomysticeti
was close to lunge feeding, but was not the same as the lunge feeding employed by modern
balaenopterids. Thus, the fossil taxa are considered to be a kind of primitive feeder (table 3).

4.2. Appearance and shift of the two skim feeder linages through Chaeomysticeti evolution
The results suggest that specific rostral morphologies facilitate specific feeding strategies among modern
mysticetes (figure 5). Skim feeders show slender rostra with medially excavated lateral borders of the
rostrum. Baleen whales using a multi-prey capture strategy show a straight and moderate width of
the rostrum. Lunge feeders show wide rostra with laterally expanded borders.

The most strongly supported specific rostral morphology and feeding strategy is that of skim feeders,
as the Balaenidae and Caperea marginata show convergent evolution. Using molecular phylogenetic
analyses, Caperea marginata forms a clade with the Balaenopteridae instead of the Balaenidae [37–40].
The Balaenidae and C. marginata are not a monophyletic group, but the two linages share rostrum
features and a feeding strategy gained through convergent evolution.

The rostra of the Balaenidae and Caperea marginata are medially excavated in dorsoventral views,
anteriorly narrow and posteriorly dramatically wide. In addition, they share a long and open palatal
maxillary sulci, short zygomatic processes and atrophied coronoid process, which differ from those of

0.20

Balaenidae

skim feeders

multiple feeders

lunge feeders

Caperea marginata

Eschrichtius
robustus

Balaenoptera borealis

0.10

63BRA

Balaenopteridae

67SIB

71MIO

51RIC

64ARC

65PRO
74PAR 50RIC 75ATL

62TIS
76M

IX70DIO
66INC

77YAM

68PLE 72ISA73PEI

59PIS

0

–0.10

–0.20
–0.15 –0.10 –0.05 0

principal component 1

pr
in

ci
pa

l c
om

po
ne

nt
 2

0.05 0.10 0.15 0.20

Figure 5. The same results as in figure 4 showing IDs of fossils and Balaenoptera ricei, which are unknown in feeding strategies.
Ovals represent 90% confidence intervals for each distinctive feeding strategy of extant taxa. Diagrams of the shape changes in the
positive directions are shown along each axis. Numbers and letters are IDs and abbreviations of scientific names (table 2).
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the Balaenopteridae [52,53]. These features are also probably convergent across the two groups, and their
palatal maxillary sulci are maintained with much longer baleen plates than those of balaenopterids.

Having medially excavated lateral borders of the rostrum could be related to having cross-flow filtering
during skim feeding. Previously, balaenids were thought to do skim feeding by dead-end filtering [54].
Currently, we know that cross-flow filtering is the way for balaenids [54–56]. One advantage of cross-
flow filtering is minimizing clogging, as the fluid is filtered by the flow parallel to the filter surface [57].
Holding a large filtering surface inside of the mouth and a smaller anterior entrance to the mouth is an
advantage of using cross-flow filtering for the Balaenidae and Caperea marginata, with their long baleen
plates. The fluid dynamics of the Balaenidae skim feeding can be described as follows [56]. Water
including particles enters from the anterior tip of the mouth, which features an opening due to the lack
of the baleen plates. The fluid flows transversely between the baleen plates. This means that a water
orientation from anterior to posterior naturally moves cross-flow against the series of the baleen plates,
which allows them to have their large (dorsoventrally high and anteroposteriorly long) filtering surface.
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Figure 6. Feeding strategy evolution among the Chaeomysticeti: true baleen whales with two types of phylogenetic hypotheses.
Thin green lines indicate linages with unknown primitive feedings. Thick lines represent shifts from primitive feeding to skim feeding
in blue, to multiple prey capture strategy in green, and lunge feeding as seen among modern balaenopterids in red.
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Why are the lateral borders excavated medially? Their excavation is not related to the distribution of
baleen plate, as the palatal maxillary sulci showing the base of the baleen plates are distributed in a
straight pattern, not a curved one, following the lateral borders of the rostrum. Thus, a reason for
having the medially excavated lateral borders would be to fill the gap between the very narrow
anterior part and the much wider posterior sensory structures such as the orbit and crania. It seems
likely that, from a hydrodynamic point of view, the gap is better filled with a stream shape line.

Here, the evolutionary history of the feeding strategy of the Chaeomysticeti is partially described,
given with many limits. We still do not have a clear idea of the early feeding strategy of early
chaeomysticetes, but this did not involve skim feeding, and it might be close to lunge feeding, as
discussed above. Previous phylogenies have used molecular data and estimated feeding strategy

Table 3. Estimated feeding strategies for extinct taxa and Balaenoptera ricei.

ID family scientific name
close feeding strategy of
extant whales

estimated feeding
strategy

50, 51 Balaenopteridae Balaenoptera ricei lunge feeding lunge feeding

62 stem Chaeomystideti Titanocetus

sammarinensis

lunge feeding a primitive feeding

63 Balaenidae Balaenella

brachyrhynus

more or less the same

distances from lunge

and skim feeders

transitional feeding

strategy from a

primitive one to

skim feeding

64 Balaenopteridae Archaebalaenoptera

castriarquati

lunge feeding a kind of lunge feeding

65 Balaenopteridae Protororqualus cuvieri lunge feeding a kind of lunge feeding

66 Balaenopteridae Incakujira

anillodefuego

lunge feeding a kind of lunge feeding

67 Balaenopteridae Balaenoptera siberi lunge feeding a kind of lunge feeding

68 Balaenopteridae Plesiobalaenoptera

quarantellii

lunge feeding a kind of lunge feeding

69 Cetotheriidae Piscobalaena nana more or less the same

distances from lunge

and multiple prey

capture strategies

possibly could do some

feeding ways

70 Cetotheriidae Diorocetus hiatus lunge feeding a primitive feeding

71 Neobalaenidae Miocaperea pulchra lunge feeding a primitive feeding

72 Isanacetus and related

clade

Isanacetus laticephalus lunge feeding a primitive feeding

73 Isanacetus and related

clade

Pelocetus calvertensis lunge feeding a primitive feeding

74 Isanacetus and related

clade

Parietobalaena palmeri lunge feeding a primitive feeding

75 Isanacetus and related

clade

Atlanticetus patulus lunge feeding a primitive feeding

76 Isanacetus and related

clade

Mixocetus elysius lunge feeding a primitive feeding

77 Eomysticetidae Yamatocetus

canaliculatus

lunge feeding a primitive feeding
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polarity as above to consider evolution of the feeding strategy among the Chaeomysticeti. As noted in the
methodology section, two types of phylogenetic hypotheses are used to consider feeding strategy
evolution among true baleen whales. Both types of phylogenetic hypotheses support more or less the
same trends of the feeding stage of evolution of the Chaeomysticeti (figure 6).

In the feeding strategy history of the Chaeomysticeti, skim feeders independently appeared at least
twice in the Balaenidae and Caperea marginata linages from some sort of primitive feeders. This
hypothesis is supported by fossil relatives of the two linages (figure 6).

Miocaperea pulchra is a fossil relative of Caperea marginata [58]. In this study, Miocaperea pulchra
(number 71 in figure 5) is plotted in the clusters of lunge feeders, and its position is close to the
cluster of skim feeders. It can be estimated as a transitional feeder from a primitive to skim feeding
(table 3). The species shows laterally slightly expanded lateral borders of the rostrum.

The feeding strategy of Balaenella brachyrhynus, a fossil taxon of the Balaenidae, was unknown, because
of the lack of completemandibles [59]. However, feeding strategies of Pliocene balaenidswere thought to be
different from those of modern balaenids due to their different conditions of the skull andmandible [60,61].
In this study, Balaenella brachyrhynus (number 63 in figure 5) is plotted at more or less the same distances
from the clusters of lunge and skim feeders, and a moderate rostrum condition is shown between the
clusters of the lunge and skim feeders. These facts imply that the Balaenidae and Caperea linages
changed their feeding strategy from primitive feeding, which is considered to have been similar to lunge
feeding, to skim feeding through moderate rostrum morphologies.

5. Conclusion
This study examined the relationships of the rostrum shape among fossils and modern baleen whales and
recognized convergent evolution of the feeding strategy and rostral morphology in modern baleen whales.
As a result of analyses, the most basal family Eomysticetidae andmost fossil taxawere plotted in or close to
the cluster of the lunge feeders. This eliminated the possibility that skim feeding in the way that modern
balaenids and Caperea marginata do is not an adequate feeding strategy of the early Chaeomysticeti. Skim
feeders have slender rostra with a medially excavated lateral border of the rostrum. On the other hand,
lunge feeders show very wide rostra. The result suggested convergent evolution of skim feeder rostrum,
which is slender and medially excavated. These results imply that two linages (the Balaenidae and
Caperea marginata) shifted from primitive to skim feeding independently.

Because the lunge feeders are amonophyletic group, we cannot recognize convergence of lunge feeding
among themodern baleenwhales. Thus, althoughmost fossil chaeomysticetes are plotted near to the centre
of the cluster of lunge feeders, they nevertheless cannot be recognized as lunge feeders, which is a limitation
of this study. The lunge feeding of modern balaenopterids is among the most specialized feeding strategies,
and it is employed by many derived anatomical features. Thus, this specialized condition of the feeding
strategy is not likely to resemble the primitive feeding of the Chaeomysticeti. To determine how
primitive feeding strategies worked, data on other anatomical features are needed.
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