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Abstract 17 

We have developed various types of jigs for resources recycling focusing 18 

primarily on plastic-plastic separation. The RETAC jig could be used to separate plastics 19 

heavier than water (specific gravity (SG) > 1.0) with different SGs while the hybrid jig—20 

a process combining jig and flotation—was developed to separate plastics with similar 21 

SGs but different surface wettabilities. Meanwhile the reverse jig—a RETAC jig with a 22 

top screen—is used to separate plastics lighter than water with different SGs.  23 

In this study, a novel method that combines the principle of reverse and hybrid 24 

jig, called “reverse hybrid jig separation” was developed to separate plastics lighter than 25 

water having similar SGs but different surface wettabilities. The tests were carried out 26 

with wastes from an eco-cable wire recycling facility in Japan, which is composed of 27 

polyethylene (PE) and cross-linked polyethylene (XLPE). The reverse hybrid jig 28 

separation results showed that bubble attachment to and detachment from plastic particles 29 

could affect separation efficiency. In addition, the effects of particle size on separation 30 

efficiency were also evaluated. 31 

 32 
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1. Introduction 35 

Plastics have become ubiquitous in our daily life with applications ranging from 36 

simple packaging materials to more complicated applications in electronic devices and 37 

automobiles (Jeon et al., 2018a; Tabelin et al., 2021a; Thiounn and Smith, 2020). The 38 

total production and consumption of plastics, including waste generation, have increased 39 

over the last couple of decades (Plastic waste partnership working group, 2020). 40 

Fossil fuel-based plastics are further classified into either thermoplastic or 41 

thermosets. Thermoplastics are polymers that soften when heated and solidify upon 42 

cooling, a property that allows them to be remolded and recycled (i.e., material recycling). 43 

In contrast, thermosets are polymers that set into a mold once and cannot be re-softened 44 

or remolded again (Plastic waste partnership working group, 2020). 45 

There are two common types of plastic recycling: (1) material recycling wherein 46 

plastics are recovered and reused, and (2) thermal recycling whereby plastics are used as 47 

fuel for power generation. Thermal recycling is more widely used to manage plastic 48 

wastes than material recycling. However, some plastics like polyvinyl chloride (PVC), 49 

are unsuitable for thermal treatment because they could generate harmful compounds like 50 

chlorine gas (Cl2) and dioxins that have adverse effects to industrial processes, the 51 

environment and human health, so they usually end up in landfills (Ito et al., 2019a; 52 
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Tabelin et al., 2021b; Phengsaart et al, 2018). 53 

Aside from challenges in recycling PVCs, this plastic also contains tribase—a 54 

lead compound added into PVC as a thermal stabilizer (Tsunekawa et al., 2011). Lead is 55 

a toxic heavy metal notorious for causing irreversible damage to the still-developing 56 

nervous systems of fetus, babies and children (Silwamba et al., 2020a, b; Tabelin et al., 57 

2018, 2020). Because of this, the use of PVC as sheath and insulation of electric wires 58 

has been gradually replaced by more eco-friendly plastics and are marketed as “eco-59 

cables”. An eco-cable is an environmentally benign electric wire/cable that uses 60 

environmentally friendly materials and materials with a reduced environmental footprint 61 

like polyethylene (PE) and cross-linked polyethylene (XLPE) (Mo et al., 2013).  62 

Among the many types of plastics, polyolefin—plastics that have a specific 63 

gravity (SG) lower than water (< 1)—are the most popular class of plastics (Plastic waste 64 

partnership working group, 2020). These include polypropylene (PP) and polyethylene 65 

(including low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), 66 

Medium-density polyethylene (MDPE), and high-density polyethylene (HDPE)), and in 67 

2018, PlasticsEurope (2019) reported that PP, LDPE/LLDPE, and HDPE/MDPE 68 

constituted 19.3%, 17.5%, and 12.2%, respectively of overall global plastic consumption. 69 

XLPE is a variant of PE (usually HDPE) that was modified by using organic 70 
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peroxides, ionizing radiation or silane compounds to create cross-linking polymeric 71 

chains and change PE from being thermoplastic to become thermoset (Bang et al., 2004). 72 

XLPE does not melt at 120°C and has better thermal stability, mechanical strength and 73 

corrosion resistance compared with PE. Because of its thermosetting property, XLPE 74 

cannot be recycled together with PE via conventional melting. XLPE can, however, be 75 

recycled via other methods like powdered filler recycling—an approach using 76 

pulverization and co-melting with other thermoplastics—to produce filler materials 77 

(Bang et al., 2004), supercritical fluid processing method using thermo-plasticizing 78 

technology for de-crosslinking (Goto et al., 2011; Tokuda et al., 2003) and pyrolysis (Mo 79 

et al., 2013). 80 

Because XLPE cannot be recycled together with PE, the separation of these 81 

plastics for more efficient recycling is required. Majority of plastic-plastic separation 82 

methods used today are based on separation techniques developed in mineral processing 83 

(Hori et al., 2009a, 2009b; Ito et al., 2010, 2019a, 2019b, 2020; Phengsaart et al., 2020; 84 

Tsunekawa et al., 2005, 2012) while metal separation-extraction strategies for mixed 85 

metal-plastic wastes like E-wastes are modified from hydrometallurgy (Calderon et al., 86 

2020; Choi et al., 2020, 2021; Jeon et al., 2018b, 2020a, 2020b) or pyrometallurgy (Inano 87 

et al., 2019). Among all separation methods, jig separation—a type of gravity separation 88 
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that separate the particles based on their motion in fluid—is one of the oldest and most 89 

widely used in mineral processing especially for coal cleaning because of its simple 90 

operation, low cost and high efficiency (Tsunekawa et al., 2005). 91 

The authors have developed the RETAC jig (Fig. 1 (a)) for plastic recycling and 92 

modified the RETAC jig into a reverse jig (Fig. 1 (b)) and a hybrid jig (Fig. 1 (c)) (Hori 93 

et al., 2009a, 2009b; Ito et al., 2010, 2019a, 2019b, 2020; Tsunekawa et al., 2005, 2012). 94 

The reverse jig can separate plastics floating on the water surface (Ito et al., 2010) while 95 

the hybrid jig can separate plastics having similar specific gravities by attaching air 96 

bubbles selectively onto hydrophobic plastics (Hori et al., 2009b). Using this jig 97 

technologies, it is possible to separate several kinds of plastics by incorporating them in 98 

various recycling unit operations (Fig. 2). For example, plastics can be separated by sink-99 

float separation using water to recover float and sink products. The sink product (SG > 100 

1.0) then goes to either a RETAC jig or a hybrid jig depending on the SGs of plastics 101 

(Jeon et al., 2019; Phengsaart et al., 2018, 2020; Tsunekawa et al., 2005). Meanwhile, the 102 

floating products (SG < 1.0) can be treated by the reverse jig if the difference in SGs 103 

between plastics is substantial. Unfortunately, these previous variants of the RETAC jig 104 

cannot treat floating plastics having similar SGs like PE and XLPE.  105 

To address this issue, we developed the reverse hybrid jig (Fig. 1 (d)) to separate 106 
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floating plastics having similar SGs. In addition, the effects of particle size on separation 107 

efficiency and how wetting agents and water pulsation affect bubble attachment during 108 

reverse hybrid jig separation were elucidated in this study. 109 

 110 

 111 

Fig. 1. A schematic illustration of (a) RETAC jig, (b) reverse jig, (c) hybrid jig, and (d) 112 

reverse hybrid jig. 113 

 114 
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115 

Fig. 2. Flowchart of plastic separation using advanced jig technology. 116 

  117 
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2.  Outline of the reverse hybrid jig 118 

     The TACUB (BATAC) jig is widely used in coal cleaning and the RETAC jig 119 

(Fig. 1(a)) is a modified TACUB (BATAC) jig for plastics sinking in water (Tsunekawa 120 

et al., 2005). A reverse jig (Fig. 1 (b)) was developed to separate plastics floating on water 121 

(Ito et al., 2010). The hybrid jig (Fig. 1 (c))—a combination of jig and flotation 122 

technologies—is a modified RETAC jig for separation of hydrophobic and hydrophilic 123 

plastics having similar specific gravities by attaching air bubbles selectively onto the 124 

hydrophobic plastics (Hori et al., 2009b). In this study, a reverse hybrid jig (Fig. 1 (d)) 125 

was developed to separate floating plastics having similar SGs but different wettability.  126 

Fig. 1(d) shows a schematic diagram of the reverse hybrid jig where particles 127 

move up and down under the top screen, and the particles are separated based on 128 

differences in levitation velocity (Ito et al., 2010). The top screen is made up of a metal 129 

mesh (1×1 mm openings). An aeration tube fitted with air stones is installed under the 130 

separation chamber and an air pump is connected to the tube. Ragging materials—6 mm 131 

diameter alumina balls—were placed on the bottom screen to create uniform water flow 132 

and air bubble distribution within the separation chamber. When bubbles attach 133 

selectively onto hydrophobic particles, the apparent specific gravity (SGapparent) becomes 134 

lower and the reverse hybrid jig can potentially separate particles based on the differences 135 
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in their SGapparent similar to those reported by Ito et al. (2020) for the hybrid jig. 136 

  137 
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3.  Materials and methods 138 

3.1   Samples 139 

  Polyethylene (PE, SG = 0.92) and cross-linked polyethylene (XLPE, SG = 0.93) 140 

were used in this study and the samples were obtained from an electric wire recycling 141 

plant (Kuniosa Metal Co. Ltd., Japan). The samples were crushed by an orient mill 142 

(VH16, Seishin Enterprise Co. Ltd., Japan) and sieved to obtain 4 size fractions (+2.8−4.0 143 

mm, +4.0−5.6 mm, +5.6−6.7 mm and +6.7−8.0 mm). 144 

 145 

3.2   Reagents 146 

  Methyl isobutyl carbinol (MIBC, Wako Pure Chemical Industries Ltd., Japan)—147 

a reagent widely utilized in flotation as a frother to stabilize bubbles in solution—and 148 

tannic acid (TA, Wako Pure Chemical Industries, Ltd., Japan)—a wetting agent 149 

(sometimes called collector or depressant, depending on its role)—were used in the 150 

reverse hybrid jig separation experiments. 151 

 152 

3.3   Reverse hybrid jig separation experiments 153 

Reverse hybrid jig separation experiments were carried out under the following 154 

conditions: displacement of 20 mm, frequency of water pulsation equal to 30 cycles/min, 155 
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conditioning time of 5 min (air generation without water pulsation), and separation time 156 

of 3 min (air generation with water pulsation). The amounts of samples, water, air flow 157 

rate, MIBC dosage and TA dosage are shown in Table 1. After the reverse hybrid jig 158 

separation, products were divided into six layers from the top and collected using a 159 

vacuum sampling system. Materials in the layers were separated by hand to determine the 160 

purity of each layer. 161 

 162 

Table 1. Experimental conditions of the reverse hybrid jig separation. 163 

 164 

  165 

Variables Conditions 

PE 150 g 

XLPE 150 g 

Water 18 L 

MIBC 20 ppm 

TA 0–500 ppm 

Air flow rate 500 mL/min 

Conditioning time 5 min 

Separation time 3 min 
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3.4  Measurements of attached-bubble volume 166 

  In our previous study, we developed a special laser-assisted measurement setup 167 

for the determination of attached-bubble volume on plastic particles during water 168 

pulsation to estimate suitable conditions for surface modification (Ito et al., 2020; Fig. 3).  169 

  In this setup, air bubbles are introduced by a pump under the particle bed, and 170 

when bubbles attached to particles, an equivalent water level rise is recorded. This water 171 

level rise is accurately measured and recorded by the laser-based level sensor system (IL-172 

S100, Keyence Corporation, Japan), and the attached-bubble volume can then be 173 

calculated from changes in water level inside the separation chamber before and after 174 

bubble introduction. Measurements of attached-bubble volume were carried out under 175 

static and pulsed water conditions (Ito et al., 2020). 176 

 177 
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 178 

Fig. 3 A schematic diagram of the laser-assisted measurement setup for the determination 179 

of attached-bubble volume. 180 

 181 

3.4  Surface tension and bubble size measurement 182 

 Surface tension of water with different TA dosages was measured using a 183 

temperature-controlled reaction vessel connected to a tensiometer (Krüss K100, Krüss 184 

GmbH, Germany). Bubble size measurement in reverse hybrid jig separation chamber 185 

were carried out at different concentrations of TA and captured using a high-speed digital 186 

camera. The captured images were analyzed using an image analysis software (WinRoof 187 

v.5, MITANI Corporation, Japan) for 100 bubbles (10 random bubbles from 10 images). 188 

 189 
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4.  Results and discussion 190 

4.1 Effects of bubble attachment on reverse hybrid jig separation 191 

4.1.1 Effects of tannic acid addition  192 

 Fig. 4a shows the volume of bubbles attached to the +5.6−8.0 mm PE and XLPE 193 

with and without TA. The attached bubble volume measured for XLPE was higher than 194 

that of PE regardless of TA concentration and the biggest difference was observed at 200 195 

ppm. The attached bubble volumes to PE and XLPE were also higher at low TA 196 

concentrations (50–100 ppm) and decreased with increasing TA concentrations. This 197 

suggests that plastics become hydrophilic because of the addition of TA but TA addition 198 

caused the sizes of bubbles to increase (Fig. 4b). The bigger bubble size may explain the 199 

higher attached bubble volume on the plastic surface (Fig. 4(a)).  200 

Separation tests with a reverse hybrid jig were carried out for mixtures of PE and 201 

XLPE (150 g each) under various TA concentrations but the purity of the recovered 202 

products was low (XLPE: 54 % as top (1st) layer, PE: 43 % as bottom (6th) layer, TA 250 203 

ppm) (Fig. 5(a)), which could be attributed to excess attached bubble volume on particles. 204 

By visual observation during the reverse hybrid jig separation, some of the attached-205 

bubbles detached from particles when water pulsation is applied. To further understand 206 

this phenomenon, the effects of water pulsation on bubble detachment behavior from the 207 
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plastic surface was investigated in the next section. 208 

 209 

Fig. 4. (a) attached-bubble volume as a function of TA concentration and (b) bubble 210 

diameter as a function of TA concentration. 211 

  212 
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4.1.2 Detachment behavior of attached bubbles and reverse hybrid jig separation 213 

using a two-step approach 214 

The effects of water pulsation on the detachment behavior of bubbles attached 215 

to plastic surfaces were investigated using a special laser-assisted measurement setup (Fig. 216 

3). Air bubbles were introduced for 3 minutes to facilitate attachment to plastic particles 217 

(Ito et al. 2020). After which, the air pump was turned off and water pulsation was applied 218 

using a hand pump and changes in the attached-bubble volume were measured at 250 219 

ppm of TA. The results showed that attached-bubble volume decreased with the number 220 

of water pulsation and became constant after 4 pulsations (Fig. 6) and based on these 221 

results the SGapparent of XLPE and PE are 0.86 and 0.92, respectively (Ito et al., 2020). 222 

Therefore, reverse hybrid jig separation was carried out using a two-step 223 

approach: (i) jigging with air introduction for 5 minutes, and (ii) jigging for 3 minutes 224 

without air introduction. Fig. 5 shows the improvement of purity of products using the 225 

two-step method (Fig. 5 (b)); that is, 88% XLPE was recovered as top products (1st layer), 226 

a 34% improvement from 54% obtained using the one-step approach (Fig. 5 (a)). 227 

Similarly, PE purity in bottom products (6th layer) increased from 43% to 74% using the 228 

two-step approach. These results suggest that the plastics were separated by differences 229 

in bubble detachment behavior and by controlling bubble introduction into the separation 230 
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chamber, effective separation could be achieved. For the reverse hybrid jig, both 231 

attachment and detachment of bubbles are important parameters. However, the number 232 

of attached bubbles on particles is a function of particle size, so to further understand the 233 

bubble attachment-detachment process, the effects of particle size on reverse hybrid jig 234 

separation was investigated in the next section. 235 

 236 

 237 

Fig. 5 Distribution of XLPE and PE in top (1st layer) and bottom (6th layer) products after 238 

the reverse hybrid jig separation (a) one-step approach (air introduction without jigging 239 

for 5 min and jigging with air introduction for 3 min), and (b) two-step approach (jigging 240 

with air introduction for 5 min and jigging without air introduction for 3 min.). 241 

  242 
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 243 

Fig. 6 Attached-bubble volume on PE and XLPE as a function of water pulsation without 244 

air introduction 245 

  246 
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4.2  Effects of particle size on reverse hybrid jig separation 247 

      Crushed plastic samples were divided into 4 size fractions (+2.8−4.0 mm, 248 

+4.0−5.6 mm, +5.6−6.7 mm, and +6.7−8.0 mm) and reverse hybrid jig tests using the 249 

one-step approach were carried out for mixtures of PE and XLPE (150 g each) of each 250 

size fraction (Fig. 7). The results showed that the purity of XLPE in the top products (1st 251 

layer) and the purity of PE in the bottom products (6th layer) increased with increasing 252 

size and higher purity products were obtained in the coarser size fraction at a TA 253 

concentration of 250 ppm. These results could be explained by the terminal velocity of a 254 

particle with attached bubbles. In conventional jig separation, separation occurs because 255 

of the difference of particle settling velocities while in the reverse jig (also reverse hybrid 256 

jig), separation of particles is facilitated by the difference of their levitation velocities (Ito 257 

et al., 2010; Phengsaart et al., 2020). Jig separation (or reverse jig) could achieve better 258 

separation efficiency when the difference of terminal settling velocity (or terminal 259 

levitation velocity) is larger. During particle settling (or levitation), there is initially no 260 

size effect because of the similar initial velocities of particles. With time, however, the 261 

particle’s acceleration becomes zero and particles reach their terminal velocities, a 262 

parameter that is influenced by particle size as shown in Eq. 1 (in laminar flow).  263 

𝑣∗ 𝑣∗ 𝜌  𝜌
∗

   Eq. 1 264 
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where  v∞H
*  is the terminal velocity of a heavy particle with spherical shape [m/s] 265 

v∞L
*  is the terminal velocity of a light particle with spherical shape [m/s] 266 

ρH  is the density of heavy particle [kg/m3] 267 

ρL  is the density of light particle [kg/m3] 268 

g  is the gravitational acceleration [m/s2] 269 

μ  is the viscosity of fluid [Pa·s] 270 

D*  is the equivalent volume diameter [m] 271 

Note: the terminal velocity difference (v∞H * − v∞L
 *) is larger when the plastic size (D) is 272 

coarser. 273 

 For jig separation with the presence of bubbles (hybrid and reverse hybrid jig), 274 

the terminal velocity difference is also influenced by the number of attached bubbles on 275 

the particle surface that changes their apparent SGs (Hori et al., 2009b; Ito et al., 2020). 276 

Because the average bubble size is around 1 mm (Fig. 4(b)), fewer bubbles could attach 277 

to fine particles, so the difference of apparent density becomes small in the fine fraction 278 

causing little terminal velocity difference (v∞H * − v∞L
 *). This indicates that the terminal 279 

velocity difference (v∞H * − v∞L
 *) is larger when the plastic size (D) is coarser, which is 280 

in line with the results of reverse hybrid jig separation shown in Fig. 7. These results also 281 

suggest that the terminal velocity calculated from apparent density is an important 282 
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parameter for reverse hybrid jig separation. 283 

 284 

Fig. 7. The distribution of XLPE and PE in top products (1st layer) and bottom products 285 

(6th layer) after the reverse hybrid jig separation in 250 ppm TA solution (one-step 286 

approach) of PP and XLPE with (a) +2.8−4.0, (b) +4.0−5.6, (c) +5.6−6.7 mm, and (d) 287 

+6.7−8.0 mm size fraction. 288 

  289 
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5. Conclusions 290 

     In this study, we developed a novel method to separate floating plastics having 291 

similar SGs called the “reverse hybrid jig”. The separation of PE and XLPE from waste 292 

eco-cable was successfully carried out using this advanced jig separation technique. 293 

Moreover, product purity was improved by employing a two-step approach: (1) jigging 294 

with air introduction, and (2) jigging without air introduction. The reverse hybrid jig 295 

separation efficiency was strongly influenced by both bubble attachment to and 296 

detachment from plastic particles. In addition, the effects of particle size and apparent 297 

SGs on the levitation velocities and separation efficiency were discussed in line with the 298 

results of the reverse hybrid jig separation with different size fractions. 299 
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