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LOGARITHMIC A-HYPERGEOMETRIC SERIES II

GO OKUYAMA∗ AND MUTSUMI SAITO

Abstract. In this paper, following [6], we continue to develop
the perturbing method of constructing logarithmic series solutions
to a regular A-hypergeometric system.

Fixing a fake exponent of an A-hypergeometric system, we con-
sider some spaces of linear partial differential operators with con-
stant coefficients. Comparing these spaces, we construct a funda-
mental system of series solutions with the given exponent by the
perturbing method. In addition, we give a sufficient condition for
a given fake exponent to be an exponent. As important examples
of the main results, we give fundamental systems of series solutions
to Aomoto-Gel’fand systems and to Lauricella’s FC systems with
special parameter vectors, respectively.

1. Introduction

Let A = (a1, . . . ,an) = (aij) be a d × n-matrix of rank d with
coefficients in Z. Throughout this paper, we assume the homogeneity
of A, i.e., we assume that all aj belong to one hyperplane off the origin
in Qd. Let N be the set of nonnegative integers. Let IA denote the
toric ideal in the polynomial ring C[∂x] = C[∂1, . . . , ∂n], i.e.,

IA = 〈∂u
x − ∂v

x |Au = Av, u,v ∈ Nn〉 ⊆ C[∂x].

Here and hereafter we use the multi-index notation; for example, ∂u
x

means ∂u1
1 · · · ∂un

n for u = (u1, . . . , un)
T . Given a column vector β =

(β1, . . . , βd)
T ∈ Cd, let HA(β) denote the left ideal of the Weyl algebra

D = C〈x, ∂x〉 = C〈x1, . . . , xn, ∂1, . . . , ∂n〉

generated by IA and

n∑
j=1

aijθj − βi (i = 1, . . . , d),
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2 GO OKUYAMA∗ AND MUTSUMI SAITO

where θj = xj∂j. The quotient MA(β) = D/HA(β) is called the A-
hypergeometric system with parameter β, and a formal series annihi-
lated by HA(β) an A-hypergeometric series with parameter β. The
homogeneity of A is known to be equivalent to the regularity of MA(β)
by Hotta [4] and Schulze, Walther [9].

Logarithm-free series solutions toMA(β) were constructed by Gel’fand
et al. [2, 3] for a generic parameter β, and more generally in [8].

Note that the logarithmic coefficients of A-hypergeometric series so-
lutions are polynomials of log xb (b ∈ L) [5, Proposition 5.2], where

L := KerZ(A) = {u ∈ Zn |Au = 0}.
To construct logarithmic series solutions, the second author [6] intro-

duced a method of perturbation by a finite subset B = {b(1), . . . , b(h)} ⊂
L, and explicitly described logarithmic series solutions for a fake expo-
nent and a set B that satisfy certain conditions [6, Theorems 5.4, 6.2
and Remarks 5.6, 6.3].

In this paper, following [6], we continue to develop the perturbing
method of constructing logarithmic series solutions to a regular A-
hypergeometric system.

Fixing a fake exponent of an A-hypergeometric system, we consider
some spaces of linear partial differential operators with constant coeffi-
cients. Comparing these spaces, we construct a fundamental system of
series solutions with the given exponent by the perturbing method. In
addition, we give a sufficient condition for a given fake exponent to be
an exponent. As important examples of the main results, we give fun-
damental systems of series solutions to Aomoto-Gel’fand systems and
to Lauricella’s FC systems with special parameter vectors, respectively.

This paper is organized as follows. In Section 2, we first recall a
power series to perturb from [6], associated with a fake exponent v
and a linearly independent subset B of L. In particular, we discuss
properties of each term au(s) appearing in the series (for the definition
of au(s), see (1)), and modify the series by changing the range of
the sum from NSw(v) in [6] to N which incorporates B. We give a
refinement of [6, Theorem 6.2] as Theorem 2.7.

In Section 3, for a fake exponent v of the A-hypergeometric ideal
HA(β) with respect to a generic weight vector w, we recall the struc-
ture of the ideal Qv associated with the fake indicial ideal findw(HA(β))
and that of its orthogonal complement Q⊥

v defined in [8, Sections 2.3
and 3.6]. We introduce ideals PN and PB of C[s], and their orthogo-
nal complements P⊥

N and P⊥
B . Then we discuss relations among these

ideals. Under a certain condition, we can derive Q⊥
v as the image of a

linear map from P⊥
N (Proposition 3.11, Theorem 3.14).
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In Section 4, we give a sufficient condition for a fake exponent v to
be an exponent (Proposition 4.1). Then we construct a fundamental
system of solutions with the exponent v (Theorem 4.4) by applying
Theorem 2.7 and the results of Section 3 under the condition that B
is a basis of L, which is the main theorem of this paper.

In Sections 5 and 6, we deal with the Aomoto-Gel’fand systems and
Lauricella’s FC systems, which are important examples of HA(β). We
discuss a fundamental system of solutions to HA(0) in each system. In
each case, we have a unique fake exponent v = 0. Taking a basis B of
L, we can obtain a fundamental system of series solutions for β = 0.

2. Refinement of [6, Theorem 6.2]

In this section, we refine [6, Theorem 6.2].
Recall that for v = (v1, . . . , vn)

T ∈ Cn its support supp(v) and its
negative support nsupp(v) are defined as

supp(v) := {j ∈ {1, . . . , n} | vj 6= 0},
nsupp(v) := {j ∈ {1, . . . , n} | vj ∈ Z<0},

respectively.
For v ∈ Cn and u ∈ Nn, set

[v]u :=
n∏

j=1

vj(vj − 1) · · · (vj − uj + 1).

Here recall that N = {0, 1, 2, · · · }.
Note that we can uniquely write u ∈ Zn as the sum u = u+ − u−

with u+,u− ∈ Nn and supp(u+) ∩ supp(u−) = ∅.
Let B = {b(1), . . . , b(h)} ⊂ L. We write the same symbol B for the

n× h matrix (b(1), . . . , b(h)).
Set

supp(B) :=
h⋃

k=1

supp(b(k)) ⊂ {1, . . . , n},

which means the set of all labels for nonzero rows in B.
Let s = (s1, . . . , sh)

T be indeterminates, and let

(Bs)j :=
h∑

k=1

b
(k)
j sk ∈ C[s] := C[s1, . . . , sh]

for j = 1, . . . , n. Set

(Bs)J :=
∏
j∈J

(Bs)j ∈ C[s]
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for J ⊂ {1, . . . , n}. Note that (Bs)j = 0 if j /∈ supp(B), hence we have
(Bs)J = 0 if J 6⊂ supp(B).

Lemma 2.1. Let B = {b(1), . . . , b(h)} ⊂ L, u,u′ ∈ L and v ∈ Cn. Let
s = (s1, . . . , sh)

T be indeterminates. Then [v + Bs + u]u′
+
6= 0 if and

only if nsupp(v + u − u′) ⊂ supp(B) ∪ nsupp(v + u). In particular,
[v+Bs+u]u+ 6= 0 if and only if nsupp(v) ⊂ supp(B)∪nsupp(v+u).

Proof. Note that

[v +Bs+ u]u′
+

=
∏

j;u′
j>0

(vj + (Bs)j + uj) · · · (vj + (Bs)j + uj − u′
j + 1).

Hence, [v + Bs + u]u′
+

= 0 if and only if there exists j such that

vj + uj − u′
j ∈ Z<0, vj + uj ∈ N, and b

(k)
j = 0 for all k.

Hence [v + Bs + u]u′
+

= 0 if and only if nsupp(v + u − u′) 6⊂
supp(B) ∪ nsupp(v + u). □

Let w be a generic weight. Recall that v is called a fake exponent of
HA(β) with respect to w if Av = β and [v]u+ = 0 for all u ∈ L with
u+ ·w > u− ·w, where u ·w =

∑n
j=1 ujwj.

Throughout this paper, fix a generic weight w, a fake exponent v of
HA(β) with respect to w.

We abbreviate nsupp(v + u) to Iu for u ∈ L. In particular, I0 =
nsupp(v). Then the condition nsupp(v) ⊂ supp(B) ∪ nsupp(v + u) in
Lemma 2.1 can be rewritten as

I0 ⊂ supp(B) ∪ Iu.

For u ∈ L with I0 ⊂ supp(B) ∪ Iu, let

(1) au(s) :=
[v +Bs]u−

[v +Bs+ u]u+

.

Note that the denominator is nonzero by Lemma 2.1.

Lemma 2.2. Let u,u′ ∈ L. Assume that u satisfies I0 ⊂ supp(B)∪Iu.
Then the following hold.

(i) au(s) 6= 0 if and only if Iu ⊂ supp(B) ∪ I0, if and only if
supp(B) ∪ Iu = supp(B) ∪ I0.

(ii) If Iu ∪ Iu−u′ 6⊂ supp(B) ∪ I0, then ∂u′
+(au(s)x

v+Bs+u) = 0.

Proof. (i) We have [v + Bs]u− = 0 if and only if there exists j such

that [vj +
∑h

k=1 skb
(k)
j ]−uj

= [vj]−uj
= 0, namely vj ∈ N, vj + uj ∈ Z<0,
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and b
(k)
j = 0 for all k. Hence it is equivalent to saying that there exists

j such that j ∈ Iu \ (supp(B) ∪ I0), or Iu 6⊂ supp(B) ∪ I0.
By the assumption, the inclusion Iu ⊂ supp(B)∪ I0 is equivalent to

the equality supp(B) ∪ Iu = supp(B) ∪ I0.
(ii) Suppose that Iu ∪ Iu−u′ 6⊂ supp(B) ∪ I0. Note that

∂u′
+(au(s)x

v+Bs+u) = au(s)[v +Bs+ u]u′
+
xv+Bs+u−u′

+ .

Hence, if Iu 6⊂ supp(B) ∪ I0, then ∂u′
+(au(s)x

v+Bs+u) = 0 by (i).
If Iu ⊂ supp(B)∪I0, that is, Iu−u′ \(supp(B)∪Iu) 6= ∅, then we have

[v +Bs+ u]u′
+
= 0 and ∂u′

+(au(s)x
v+Bs+u) = 0 by Lemma 2.1. □

We recall the definitions related to NSw(v) for a fake exponent v
from [6] and modify them.

Let

G :=
{
∂g

(i)
+ − ∂g

(i)
−
∣∣ i = 1, . . . ,m

}
denote the reduced Gröbner basis of IA with respect to w with ∂g

(i)
+ ∈

inw(IA) for all i. Note that the G in [6, Section 4] should be the reduced
Gröbner basis. Set

C(w) :=
m∑
i=1

Ng(i).

A collection NSw(v) of negative supports Iu (u ∈ L) is defined by

NSw(v) := {Iu |u ∈ L. If Iu = Iu′ for u′ ∈ L, then u′ ∈ C(w).} .
In addition, define

NSw(v)
c := {Iu |u ∈ L} \ NSw(v).

We modify the definition of NSw(v). To do this, in this paper we
make the following assumption.

Assumption 2.3. A subset B = {b(1), . . . , b(h)} ⊂ L is linearly inde-
pendent, hence rank(B) = h, and satisfies

I0 ⊂ supp(B) ∪ Iu

for any u ∈ L.

Remark 2.4. (1) In the proofs of Lemma 2.6 and Theorem 2.7 be-
low, we need the condition I0 ⊂ Iu−u′ ∪supp(B) for any u,u′ ∈
L, which Assumption 2.3 guarantees.

(2) If a linearly independent set B satisfies I0 ⊂ supp(B), then it
satisfies Assumption 2.3. For example, this condition holds for
each of the following cases:
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(i) supp(B) = {1, . . . , n},
(ii) nsupp(v) = ∅.

(3) If B is a basis of L, then B satisfies

supp(B) ∪ Iu = supp(B) ∪ I0

for all u ∈ L. Indeed, since B is a basis of L, we see that if
j /∈ supp(B) then uj = 0 for all u ∈ L. This implies that
Iu \ supp(B) = I0 \ supp(B) for all u ∈ L.

Define a subset N of NSw(v) as a modification of NSw(v) by

(2) N := {Iu |u ∈ L, supp(B) ∪ Iu = supp(B) ∪ I0} ∩ NSw(v),

and set

N c := {Iu |u ∈ L, supp(B) ∪ Iu = supp(B) ∪ I0} ∩ NSw(v)
c.

Consider the subset L′ of L defined by

(3) L′ := {u ∈ L | Iu ∈ N}.

By definition, we see that L′ ⊂ C(w).
Let

KN :=
⋂
I∈N

I,

and define the homogeneous ideal PN of C[s] for N as

(4) PN :=

〈
(Bs)I∪J\KN

∣∣∣∣ I ∈ N , J ∈ N c

〉
.

In addition, we define the orthogonal complement P⊥ for a homoge-
neous ideal P ⊂ C[s] as

P⊥ := {q(∂s) ∈ C[∂s] | (q(∂s) • h(s))|s=0 = 0 for all h(s) ∈ P}(5)

= {q(∂s) ∈ C[∂s] | q(∂s) • P ⊂ 〈s1, . . . , sh〉},

where C[∂s] := C[∂s1 , . . . , ∂sh ], and the symbol • denotes the natural
action of C[∂s] on polynomials of C[s]. Since P and 〈s1, . . . , sh〉 are
both homogeneous, P⊥ is homogeneous with respect to the usual total
ordering.

Example 2.5. (cf. [6, Examples 3.3, 4.8, 6.4]) Let n = 5, d = 3, and

A =

 1 1 1 1 1
−1 1 1 −1 0
−1 −1 1 1 0

 .
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Let β = (1, 0, 0)T and w = (1, 1, 1, 1, 0). Then v = (0, 0, 0, 0, 1)T is the
unique exponent, and

G = {∂x1∂x3 − ∂2
x5
, ∂x2∂x4 − ∂2

x5
},

where the underlined terms are the leading ones. Put g(1) := (1, 0, 1, 0,−2)T

and g(2) := (0, 1, 0, 1,−2)T . Recall that

NSw(v) = {∅ = I0, {5}},
NSw(v)

c = {{1, 3}, {2, 4}, {1, 3, 5}, {2, 4, 5}, {1, 2, 3, 4}}.

Let B := {g(1), g(2)}. Then we have supp(B) = {1, 2, 3, 4, 5}, and

N = NSw(v),

N c = NSw(v)
c,

KN = ∅.

The homogeneous ideal PN ⊂ C[s] = C[s1, s2] and the vector space
P⊥
N ⊂ C[∂s] = C[∂s1 , ∂s2 ] are given as

PN = 〈(Bs){1,3}, (Bs){2,4}〉 = 〈s21, s22〉,
P⊥
N = {q(∂s1 , ∂s2) ∈ C[∂s1 , ∂s2 ] | q(∂s1 , ∂s2) • 〈s21, s22〉 ⊂ 〈s1, s2〉}

= C1 + C∂s1 + C∂s2 + C∂s1∂s2 .

We consider another case. Let B1 = {g(1)}. Then we have supp(B1) =
{1, 3, 5} and

N1 = NSw(v) = {∅ = I0, {5}},
N c

1 = {{1, 3}, {1, 3, 5}},
KN1 = ∅.

The homogeneous ideal PN1 ⊂ C[s] and the vector space P⊥
N1

⊂ C[∂s]
are given as

PN1 = 〈(B1s)
{1,3}〉 = 〈s2〉,

P⊥
N1

= {q(∂s) ∈ C[∂s] | q(∂s) • 〈s2〉 ⊂ 〈s〉} = C1 + C∂s.

Throughout this paper, put

m(s) := (Bs)I0\KN .

The following lemma guarantees that we may plug s = 0 into the series
appearing in Theorem 2.7.
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Lemma 2.6. Let N be the set defined by (2), and let u,u′ ∈ L. Then,
under Assumption 2.3, each term of the power series for m(s) · au(s) ·
[v +Bs+ u]u′

+
in the indeterminates s is divided by (Bs)Iu∪Iu−u′\KN .

Proof. By [6, Lemma 6.1], there exists a formal power series g(y) in
the indeterminates y = (y1, . . . , yn) such that

au(s) · [v +Bs+ u]u′
+

=
[v +Bs]u−

[v +Bs+ u]u+

· [v +Bs+ u]u′
+

=

(
(Bs)Iu\I0

(Bs)I0\Iu
· (Bs)Iu−u′\Iu

)
· g((Bs)1, . . . , (Bs)n)

=
(Bs)(Iu∪Iu−u′ )\I0

(Bs)I0\(Iu∪Iu−u′ )
· g((Bs)1, . . . , (Bs)n).

Hence we have

m(s) · au(s) · [v +Bs+ u]u′
+

= (Bs)I0\KN · (Bs)(Iu∪Iu−u′ )\I0

(Bs)I0\(Iu∪Iu−u′ )
· g((Bs)1, . . . , (Bs)n)

= (Bs)Iu∪Iu−u′\KN · g((Bs)1, . . . , (Bs)n),

and the assertion holds. □

We can refine the main results [6, Theorem 5.4, Theorem 6.2] as
follows.

Theorem 2.7. Let N be the set defined by (2). Set

FN (x, s) :=
∑
u∈L′

au(s)x
v+Bs+u,

and

F̃N (x, s) := m(s)FN (x, s),

where L′ is defined by (3).

Then (q(∂s) • F̃N (x, s))|s=0 are solutions to MA(β) for any q(∂s) ∈
P⊥
N .

Proof. Let u′ ∈ L and u ∈ L′. If ∂u′
+(au(s)x

v+Bs+u) 6= 0, then we have
Iu∪ Iu−u′ ⊂ supp(B)∪ I0 by Lemma 2.2, and hence supp(B)∪ Iu−u′ =
supp(B)∪ I0 by Assumption 2.3. Thus Iu−u′ /∈ N implies Iu−u′ ∈ N c.
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Similar to the arguments in the proofs of [6, Theorem 5.4, Theorem
6.2], we see that

(∂u′
+ − ∂u′

−) • F̃N (x, s)

=
∑

u∈L′,Iu−u′∈N c

m(s)∂u′
+(au(s)x

v+Bs+u)

−
∑

u∈L′,Iu+u′∈N c

m(s)∂(−u)′+(au(s)x
v+Bs+u).

Let q(∂s) ∈ P⊥
N . Then the series (q(∂s) • F̃N (x, s))|s=0 is a solution to

MA(β) if (
q(∂s) •

(
m(s)∂u′

+au(s)x
v+Bs+u

))
|s=0

= 0

for any u ∈ L′ and u′ ∈ L with Iu−u′ ∈ N c.
By Lemma 2.6, each coefficient of

m(s)(∂u′
+au(s)x

v+Bs+u)

= m(s)au(s)[v +Bs+ u]u′
+
xv+Bs+u−u′

+

in the indeterminates s is divided by (Bs)Iu∪Iu−u′\KN , hence belongs
to PN . By the definition of P⊥

N , the assertion holds. □

3. Relations between P⊥
N and Q⊥

v

In this section, we recall Qv and its orthogonal complement Q⊥
v de-

fined in [8, Section 2.3], and discuss relations between P⊥
N and Q⊥

v . For
the definitions of PN and P⊥

N , see (4) and (5).
Consider the fake indicial ideal findw(HA(β)) of HA(β) with respect

to w:

findw(HA(β)) := 〈Aθx − β〉+ ĩnw(IA) ⊂ C[θx] := C[θ1, . . . , θn].

Here ĩnw(IA) is the distraction of the initial ideal inw(IA) with respect
to w (cf. [8, Section 3.1]). Related to the reduced Gröbner basis G =

{∂g
(i)
+ −∂g

(i)
− | i = 1, . . . ,m} of IA with respect to w with ∂g

(i)
+ ∈ inw(IA)

for all i, define

G(i) := I−g(i) \ I0 = {j ∈ {1, . . . , n} | vj ∈ N, g(i)j − vj > 0}
for i = 1, . . . ,m. Since

ĩnw(IA) =

〈
[θx]g(i)

+
:=

∏
j; g

(i)
j >0

g
(i)
j −1∏
ν=0

(θj − ν)

∣∣∣∣ i = 1, . . . ,m

〉
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by [8, Theorem 3.2.2], we see that its primary component at a fake
exponent v is

(6) ĩnw(IA)v =

〈
([θ]

g
(i)
+
)v :=

∏
j∈G(i)

(θj − vj)

∣∣∣∣ i = 1, . . . ,m

〉
.

We obtain the homogeneous ideal Qv of C[θx] from findw(HA(β))v
by replacing θj 7→ θj+vj for j = 1, . . . , n (cf. [8, Section 2.3]). Namely,

(7) Qv = 〈Aθx 〉+

〈 ∏
j∈G(i)

θj

∣∣∣∣ i = 1, . . . ,m

〉
.

The orthogonal complement Q⊥
v of Qv is defined by

Q⊥
v := {f ∈ C[x] |ϕ(∂x)(f) = 0 for all ϕ = ϕ(θx) ∈ Qv}.

Note that Q⊥
v is a graded C-vector space with the usual grading.

Proposition 3.1. Let f(x) be a polynomial. Then xvf(logx) is a so-
lution to findw(HA(β)) if and only if f(x) satisfies the following con-
ditions:

(i) f(x) ∈ C[xG] := C[xg(1), . . . ,xg(m)].

(ii) ∂G(i)

x • f(x) = 0 for all i = 1, . . . ,m.

Here

xG := (xg(1), . . . ,xg(m)) =

(
n∑

j=1

g
(1)
j xj, . . . ,

n∑
j=1

g
(m)
j xj

)
for x = (x1, . . . , xn).

Proof. By [8, Theorem 2.3.11], the function xvf(logx) is a solution to
findw(HA(β)) if and only if f(x) ∈ Q⊥

v . From f(x) ∈ 〈A∂x〉⊥, we see
(i) [5, Lemma 5.1]. (ii) follows from Equation (6). □
Example 3.2 (Continuation of Example 2.5). Note that v − g(1) =
(−1, 0,−1, 0, 3)T and v − g(2) = (0,−1, 0,−1, 3)T . Thus we see that

G(1) = I−g(1) \ I0 = nsupp(v − g(1)) \ nsupp(v) = {1, 3},
G(2) = I−g(2) \ I0 = nsupp(v − g(1)) \ nsupp(v) = {2, 4}.

The ideal Qv ⊂ C[θx] = C[θ1, θ2, θ3, θ4, θ5] is given as

Qv = 〈θ1+θ2+θ3+θ4+θ5,−θ1+θ2+θ3−θ4,−θ1−θ2+θ3+θ4, θ1θ3, θ2θ4〉.
In addition, we see that

Q⊥
v = C · 1 + C · xg(1) + C · xg(2) + C · (xg(1)) · (xg(2)).
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To compare Qv with PN , we consider the graded ring homomor-
phism ΦB : C[θx] → C[s] defined by θj 7→ (Bs)j for j = 1, . . . , n.
By the linear independence of B, we see that ΦB is surjective. Define
PB := ΦB(Qv). By the ring isomorphism theorem, ΦB induces the ring
isomorphism

Φ̃B : C[θx]/Φ−1
B (PB) ' C[s]/PB.

Since 〈Aθx〉 is vanished by ΦB, we have

(8) PB =
〈
(Bs)G

(i)
∣∣∣ i = 1, . . . ,m

〉
.

Proposition 3.3. Let J ∈ NSw(v)
c. Then G(i) ⊂ J \ I0 for some i.

Proof. By definition and [6, Lemma 4.2], we see that there exists u ∈
L\C(w) such that J = Iu and ∂u+ /∈ inw(IA). Hence ∂

u− = inw(∂
u−−

∂u+) is divided by some ∂g
(i)
+ . Let j ∈ G(i) = I−g

(i)
+

\ I0. Then vj ∈ N

and vj − g
(i)
j ∈ Z<0. Since g

(i)
j ∈ Z>0, we see that g

(i)
j ≤ −uj and

vj + uj ≤ vj − g
(i)
j < 0. Thus we have j ∈ Iu \ I0 = J \ I0. □

Three ideals Qv, PN , and PB are related as follows.

Proposition 3.4. Let Qv, PN , and PB be the ones in (7), (4), and
(8), respectively. Then, the following hold.

(i) m(s) · PB ⊂ PN ⊂ PB. In particular, if KN = I0, then PN =
PB.

(ii) If B is a basis of L, then Φ−1
B (PB) = Qv.

Proof. (i) Let I ∈ N and J ∈ N c. Since J ∈ NSw(v)
c and KN ⊂ I0,

I ∪ J \KN contains some G(i) by Proposition 3.3. Hence the inclusion
PN ⊂ PB holds.

For any i = 1, . . . ,m, since −g(i) /∈ C(w) we see that I−g(i) ∈
NSw(v)

c. If I−g(i) /∈ N c, then

(9) supp(B) ∪ I−g(i) 6= supp(B) ∪ I0.

By Assumption 2.3, (9) implies that G(i) = I−g(i)\I0 6⊂ supp(B). Hence

we have (Bs)G
(i)

= 0. If I−g(i) ∈ N c, then

m(s)(Bs)G
(i)

= (Bs)
I0∪I−g(i)

\KN ∈ PN .

Hence we have m(s) · PB ⊂ PN .
(ii) Since B is a basis of L, we have Ker(ΦB) = 〈Aθx〉. Thus the

assertion ΦB
−1(PB) = Qv holds from (7). □
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Example 3.5 (Continuation of Example 2.5 and 3.2). Consider the
case where B = {g(1), g(2)}. Then we have m(s) = (Bs)∅ = 1, and

PB = 〈(Bs)G
(1)

, (Bs)G
(2)〉 = 〈s21, s22〉 = PN .

Furthermore, since B is a basis of L, we see that

Φ−1
B (PB) = Φ−1

B (〈(Bs)G
(1)

, (Bs)G
(2)〉) = 〈θ1θ3, θ2θ4〉+ 〈Aθx〉 = Qv.

Consider the other case where B1 = {g(1)}. Then we have m(s) =
(B1s)

∅ = 1, and

PB1 = 〈(B1s)
G(1)〉 = 〈s2〉 = PN1 .

We see that B1 does not span L and that

Φ−1
B (PB1) = Φ−1

B1
(〈(B1s)

G(1)〉) = 〈θ1θ3〉+ 〈Aθx〉 ⊊ Qv.

We consider relations between P⊥
N and P⊥

B , and between P⊥
B and

Q⊥
v . Recall the construction of a basis of orthogonal complements in [8,

Section 2.3].
Let P be a homogeneous ideal of C[s]. Fix any term order ≺ on

C[s], and let H ⊂ C[s] be the reduced Gröbner basis of P with respect
to ≺. For any µ ∈ Nh with sµ ∈ in≺(P ), there exist unique cµ,ν ∈ C
for ν ∈ Nh with |ν| = |µ| and sν /∈ in≺(P ) such that

pµ(s) := sµ −
∑

ν∈Nh; |ν|=|µ|,
sν /∈in≺(P )

cµ,νs
ν ∈ P.

We obtain pµ(s) by taking the normal form modulo H for the monomial
sµ. For ν ∈ Nh with sν 6∈ in≺(P ), define the homogeneous polynomial
qν(∂s) of degree |ν| by

qν(∂s) :=
1

ν!
∂ν
s +

∑
µ∈Nh; |µ|=|ν|,
sµ∈in≺(P )

cµ,ν

µ!
∂µ
s ∈ C[∂s].

Lemma 3.6. Let P be a homogeneous ideal of C[s]. Fix any term
order ≺ on C[s], and let H ⊂ C[s] be the reduced Gröbner basis of P
with respect to ≺. Then

{pµ(s) | sµ ∈ in≺(P )}
and

{qν(∂s) |ν ∈ Nh with sν /∈ in≺(P )}
form C-bases of P and P⊥, respectively.
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Proof. This is similar to [8, Proposition 2.3.13]. □
Lemma 3.7. Let P and P̃ be homogeneous ideals of C[s]. Then P ⊂ P̃

if and only if P⊥ ⊃ P̃⊥.

Proof. Assume that P ⊂ P̃ . By definition, P⊥ ⊃ P̃⊥ is clear.

Conversely, assume that P⊥ ⊃ P̃⊥. Fix any term order ≺ on C[s],
and let H̃ be the reduced Gröbner basis of P̃ .

Let {q̃ν(∂s) |ν ∈ Nh with sν /∈ in≺(P̃ )} be the C-basis of P̃⊥ as in
Lemma 3.6. Let p ∈ P . Applying the division algorithm with respect

to H̃ to p, we can express p as

p = p̃+
∑

λ;sλ /∈in≺(P̃ )

dλs
λ

with some p̃ ∈ P̃ and dλ ∈ C. For each ν ∈ Nh with sν 6∈ in≺(P̃ ),
since [∂µ

s • sλ]|s=0 = µ!δµ,λ for any µ and λ, where δµ,λ denotes the
Kronecker delta, we have

[q̃ν(∂s) • p]|s=0

=

q̃ν(∂s) •
p̃+

∑
λ;sλ /∈in≺(P̃ )

dλs
λ


|s=0

=
∑

λ;sλ /∈in≺(P̃ )

dλ
[
q̃ν(∂s) • sλ

]
|s=0

=
∑

λ;sλ /∈in≺(P̃ )

dλ


 1

ν!
∂ν
s +

∑
µ∈Nh; |µ|=|ν|,
sµ∈in≺(P̃ )

cµ,ν

µ!
∂µ
s

 • sλ


|s=0

= dν .

It follows from the assumption P⊥ ⊃ P̃⊥ that dν = 0 for all ν ∈ Nh

with sν /∈ in≺(P̃ ). Hence, we have p ∈ P̃ . □
Let C[∂z] := C[∂z1 , . . . , ∂zh ] be the ring of partial differential opera-

tors with constant coefficients in indeterminates z = (z1, . . . , zh). To
describe relations between P⊥

N and P⊥
B , and between P⊥

B and Q⊥
v , we

define an action of C[∂z] on C[∂s] and a ring homomorphism ΨB from
C[∂s] to C[x].

For U(∂z) ∈ C[∂z] and q(∂s) ∈ C[∂s], we define a C-linear operation
U(∂z1 , . . . , ∂zh) ⋆ q(∂s) by

U(∂z1 , . . . , ∂zh) ⋆ q(∂s) := (U(∂z) • q(z))|z=∂s ∈ C[∂s].
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Lemma 3.8. The following hold for the ⋆-operation.

(i) Let k = 1, . . . , h and q(∂s) ∈ C[∂s]. Then

∂zk ⋆ q(∂s) = q(∂s)sk − skq(∂s) ∈ C〈s, ∂s〉.
(ii) Let U(∂z), U

′(∂z) ∈ C[∂z], and q(∂z) ∈ C[∂s]. Then

U(∂z) ⋆ (U
′(∂z) ⋆ q(∂s)) = (U(∂z)U

′(∂z)) ⋆ q(∂s).

(iii) Let U(∂z) =
∏N

ν=1 lν(∂z) ∈ C[∂z] be the product of non-zero
linear homogeneous polynomials lν(∂z), and let q(∂s) ∈ C[∂s].
Then there exists r(∂s) ∈ C[∂s] such that U(∂z)⋆ r(∂s) = q(∂s).

Proof. (i) For any k = 1, . . . , h, and µ ∈ Nh, we have

∂zk ⋆ ∂
µ
s = µk∂

µ−ek
s = ∂µ

s sk − sk∂
µ
s .

(ii) It suffices to show that the equality holds for U(∂z) = ∂λ
z ,

U ′(∂z) = ∂µ
z , and q(∂s) = ∂ν

s with λ,µ,ν ∈ Nh. We see that

∂λ
z ⋆ (∂µ

z ⋆ ∂ν
s ) = ∂λ

z ⋆ ((∂µ
z • zν)||z=∂s)

= [ν]µ∂
λ
z ⋆ ∂ν−µ

s

= [ν]µ(∂
λ
z • zν−µ)|z=∂s

= [ν]µ[ν − µ]λ∂
ν−µ−λ
s

= [ν]λ+µ∂
ν−(λ+µ)
s

= (∂λ+µ
z • ∂ν

s )|z=∂s

= ∂λ+µ
z ⋆ ∂ν

s ,

and hence the assertion holds.
(iii) We show the statement by induction on N . First, let U(∂z) be

a non-zero linear homogeneous polynomial, and let q(∂s) ∈ C[∂s]. By
changing coordinates, we may assume that U(∂z) = ∂z1 . Put

q(∂s) =
∑
ν∈Nh

dν∂
ν
s .

Then

r(∂s) =
∑
ν∈Nh

dν
ν1 + 1

∂ν+e1
s

satisfies U(∂z) ⋆ r(∂s) = q(∂s).

Next, fix N > 1, and let U(∂z) =
∏N

ν=1 lν(∂z) such that lν(∂z)
are non-zero linear homogeneous polynomials. Assume that the as-
sertion holds for any product of non-zero linear homogeneous polyno-
mial of degree less than N . By the induction hypothesis, there exist
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r(∂s), r̃(∂s) ∈ C[∂s] such that

l1(∂z) ⋆ r̃(∂s) = q(∂s),

(
N∏
ν=2

lν(∂z)

)
⋆ r(∂s) = r̃(∂s).

By (ii), we have

U(∂z) ⋆ r(∂s) =

(
l1(∂z)

(
N∏
ν=2

lν(∂z)

))
⋆ r(∂s)

= l1(∂z) ⋆

((
N∏
ν=2

lν(∂z)

)
⋆ r(∂s)

)
= l1(∂z) ⋆ r̃(∂s)

= q(∂s),

and hence the assertion holds. □

Lemma 3.9. Let U(∂z) ∈ C[∂z], q(∂s) ∈ C[∂s], and f(s) ∈ C[[s]].
Then

[q(∂s) • (U(s)f(s))]|s=0 = [(U(∂z) ⋆ q(∂s)) • f(s)]|s=0 .

Proof. We show that the statement holds for any monomial operator
U(∂z) = ∂µ

z by induction on |µ|. Firstly, the assertion is clear for
µ = 0.

Secondly, assume that µ = ek for k = 1, . . . , k, hence U(∂z) =
∂µ
z = ∂zk . Note that [skq(∂s) • f(s)]|s=0 = 0 for any k = 1 . . . , h,

q(∂s) ∈ C[∂s], and f(s) ∈ C[[s]]. Thus, by Lemma 3.8, we see that

[q(∂s) • (U(s)f(s))]|s=0

= [(q(∂s)sk) • f(s)]|s=0

= [(skq(∂s) + ∂zk ⋆ q(∂s)) • f(s)]|s=0

= [sk(q(∂s) • f(s))]|s=0 + [(∂zk ⋆ q(∂s)) • f(s)]|s=0

= [(∂zk ⋆ q(∂s)) • f(s)]|s=0 .

Hence the assertion holds for |µ| = 1.
Finally, fix µ ∈ Nh with |µ| > 1. Let U(∂z) = ∂µ

z , q(∂s) ∈ C[∂s],
and f(s) ∈ C[[s]]. Assume that the assertion holds for any Ũ(∂z) = ∂µ̃

z

with |µ̃| < |µ|. Then there exists k such that µk > 0. Applying the
induction hypothesis to the operators ∂zk and ∂µ−ek

z , respectively, we
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see from Lemma 3.8 (ii) that

[q(∂s) • (U(s)f(s))]|s=0

=
[
q(∂s) •

(
sk · sµ−ekf(s)

)]
|s=0

=
[
(∂zk ⋆ q(∂s)) •

(
sµ−ekf(s)

)]
|s=0

=
[(
∂µ−ek
z ⋆ (∂zk ⋆ q(∂s))

)
• f(s)

]
|s=0

= [(U(∂z) ⋆ q(∂s)) • f(s)]|s=0 .

Hence the assertion holds. □
We define a ring homomorphism ΨB : C[∂s] → C[x] as

(10) ΨB(q(∂s))(x) := q(xB) = q

(
n∑

j=1

b
(1)
j xj, . . . ,

n∑
j=1

b
(h)
j xj

)
for q(∂s) ∈ C[∂s]. Note that ΨB is injective by the linear independence
of B.

Proposition 3.10. Let q(∂s) ∈ C[∂s]. Then[
q(∂s) •

(
m(s)xv+Bs

)]
|s=0

= xvΨB (m(∂z) ⋆ q(∂s)) (logx),

where logx := (log x1, . . . , log xn).

Proof. Note that we can regard xv+Bs as the formal series xve(logx)Bs

in s, where

(logx)Bs :=
n∑

j=1

h∑
k=1

(log xj)b
(k)
j sk.

Put r(∂s) := m(∂z) ⋆ q(∂s). Then, by Lemma 3.9,[
q(∂s) •

(
m(s)xv+Bs

)]
|s=0

=
[
(m(∂z) ⋆ q(∂s)) • xv+Bs

]
|s=0

=
[
r(∂s) • xv+Bs

]
|s=0

= [r((logx)B)xv+Bs]|s=0

= xvΨB(r(∂s))(logx).

□
Proposition 3.11. The following hold.

(i) m(∂z) ⋆ P⊥
N ⊂ P⊥

B ⊂ P⊥
N . In particular, if KN = I0, then

P⊥
N = P⊥

B .
(ii) m(s) ∈ PN if and only if m(∂z) ⋆ P

⊥
N = {0}.

(iii) If PN = m(s) · PB, then m(∂z) ⋆ P
⊥
N = P⊥

B .
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Proof. (i) P⊥
B ⊂ P⊥

N is clear by Lemma 3.4 (i) and Lemma 3.7. Let
q(∂s) ∈ P⊥

N . Then, for any f(s) ∈ PB, Lemma 3.9 shows that

[(m(∂z) ⋆ q(∂s)) • f(s)]|s=0 = [q(∂s) • (m(s)f(s))]|s=0 .

It follows from Lemma 3.4 (i) that the right hand side is 0. Hence we
have m(∂z) ⋆ P

⊥
N ⊂ P⊥

B .
(ii) Assume that m(s) ∈ PN . Let q(∂s) ∈ P⊥

N . Put m(∂z) ⋆ q(∂s) =∑
ν aν∂

ν
s , where aν ∈ C. Then, by Lemma 3.9, we have

ν!aν = [(m(∂z) ⋆ q(∂s)) • sν ]|s=0

= [q(∂s) • (m(s)sν)]|s=0 = 0

for any ν ∈ Nh. Hence, we have m(∂z) ⋆ q(∂s) = 0.
Conversely, assume that m(∂z) ⋆ P

⊥
N = {0}. Let q(∂s) ∈ P⊥

N . Then,
Lemma 3.9 shows that

[q(∂s) • (m(s)f(s))]|s=0 = [(m(∂z) ⋆ q(∂s)) • f(s)]|s=0 = 0

for any f(s) ∈ C[s]. Thus we have q(∂s) ∈ 〈m(s)〉⊥, that is, P⊥
N ⊂

〈m(s)〉⊥. By Lemma 3.7, m(s) ∈ PN .
(iii) In (i), we have seen m(∂z) ⋆ P⊥

N ⊂ P⊥
B . We show its reverse

inclusion. Let q(∂s) ∈ P⊥
B . By Lemma 3.8 (iii), there exists r(∂s) ∈

C[∂s] such that q(∂s) = m(∂z) ⋆ r(∂s). It suffices to show that r(∂s) ∈
P⊥
N . Let f(s) ∈ PN . By the assumption, we have f(s) = m(s)g(s) for

some g(s) ∈ PB. By Lemma 3.9, we see that

[r(∂s) • f(s)]|s=0 = [r(∂s) • (m(s)g(s))]|s=0

= [(m(∂z) ⋆ r(∂s)) • g(s)]|s=0

= [q(∂s) • g(s)]|s=0 = 0.

Hence we have the assertion. □

Example 3.12. (cf. [6, Examples 3.2 and 4.7]) Let A =

[
1 1 1 1
0 1 3 4

]
and let w = (3, 1, 0, 0). Then the reduced Gröbner basis of IA is

G = {∂x1∂
2
x3

− ∂2
x2
∂x4 , ∂x2∂

2
x4

− ∂3
x3
, ∂2

x1
∂x3 − ∂3

x2
, ∂x1∂x4 − ∂x2∂x3}.

Here underlined terms are the leading ones. Thus we have

inw(IA) = 〈∂x1∂
2
x3
, ∂x2∂

2
x4
, ∂2

x1
∂x3 , ∂x1∂x4〉.

Put

g(1) = (1,−2, 2,−1)T , g(2) = (0, 1,−3, 2)T ,

g(3) = (2,−3, 1, 0)T , g(4) = (1,−1,−1, 1)T .
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Let β = (−2,−1)T , and let

B = (g(1), g(2)) =


1 0
−2 1
2 −3
−1 2

 .

Note that supp(B) = {1, 2, 3, 4}. Take v = (0,−2,−1, 1)T as a fake
exponent. Then we have

N = {{2}, {3}, {2, 3} = I0},
N c = {{1, 2}, {1, 3}, {1, 4}, {2, 4}, {1, 2, 4}, {1, 3, 4}},
KN = ∅.

Furthermore, we have

G(1) = I−g(1) \ I0 = {1}, G(2) = I−g(2) \ I0 = {4},

G(3) = I−g(3) \ I0 = {1}, G(4) = I−g(4) \ I0 = {1}.
Thus the ideals PN and PB are

PN = 〈(Bs){1,2}, (Bs){1,3}, (Bs){2,4}〉
= 〈s1(−2s1 + s2), s1(2s1 − 3s2), (−2s1 + s2)(−s1 + 2s2)〉
= 〈s21, s1s2, s22〉

and

PB = 〈(Bs){1}, (Bs){4}〉 = 〈s1,−s1 + 2s2〉 = 〈s1, s2〉,
respectively. The orthogonal complements P⊥

N and P⊥
B are

P⊥
N = C1 + C∂s1 + C∂s2

and

P⊥
B = C1,

respectively. In this case, note that

m(s) = (Bs)I0\KN = (Bs){2,3} = (−2s1 + s2)(2s1 − 3s2) ∈ PN .

Hence, by Proposition 3.11, we have

m(∂z) ⋆ P
⊥
N = {0}.

Lemma 3.13. Let q(z) ∈ C[z] := C[z1, . . . , zh] be a homogeneous
polynomial in indeterminates z of degree r. Then

q(∂s) •
(
1

r!
(xBs)r

)
= q(xB) = ΨB(q(∂s))(x).
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Here,

xBs :=
n∑

j=1

h∑
k=1

xjb
(k)
j sk

denotes the quadratic form associated with B.

Proof. We show the assertion by induction on r. In the case of r = 1,
the assertion is clear. Fix r > 1 and assume that the assertion holds
for any homogeneous polynomial of degree less than r. Let µ ∈ Nh

with |µ| = r and µk > 0. Then, by the chain rule and the induction
hypothesis, we see that

∂s
µ •
(
1

r!
(xBs)r

)
= ∂s

µ−ek •
(
∂sk •

(
1

r!
(xBs)r

))
= (xB)k · ∂sµ−ek •

(
1

(r − 1)!
(xBs)r−1

)
= (xB)k(xB)µ−ek = (xB)µ = ΨB(∂

µ
s )(x).

□

Two vector spaces Q⊥
v and P⊥

B are related as follows.

Theorem 3.14. Let ΨB be the homomorphism in (10). Then, P⊥
B =

Ψ−1
B (Q⊥

v ) and dimC(P
⊥
B ) ≤ dimC(Q

⊥
v ). Furthermore, if B is a basis of

L, then ΨB(P
⊥
B ) = Q⊥

v and dimC(Q
⊥
v ) = dimC(P

⊥
B ).
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Proof. Let deg(q(z)) = r. Then, it follows from Lemma 3.13 that

∂G(i)

x • q(xB) = ∂G(i)

x •
{
q(∂s) •

(
1

r!
(xBs)r

)}
= q(∂s) •

{
∂G(i)

x •
(
1

r!
(xBs)r

)}

= q(∂s) •

∂G(i)

x •

 1

r!

∑
µ∈Nn;|µ|=r

r!

µ!
xµ(Bs)µ


= q(∂s) •

 ∑
µ∈Nn;|µ|=r

∂G(i)

x • xµ

µ!
(Bs)µ


= q(∂s) •

 ∑
µ∈Nn;|µ|=r,supp(µ)⊃G(i)

xµ−e
G(i)

(µ− eG(i))!
(Bs)µ


=

∑
µ∈Nn;|µ|=r,supp(µ)⊃G(i)

xµ−e
G(i)

(µ− eG(i))!
{q(∂s) • (Bs)µ}

for any i. Here eG(i) :=
∑

j∈G(i) ej denotes the indicator vector of G(i).

Since ∂p
s • sq = p!δp,q for any p, q ∈ Nh with |p| = |q|, by Proposition

3.1 we have

q(xB) ∈ Q⊥
v ⇐⇒ ∂G(i)

x • q(xB) = 0 for all i = 1, . . . ,m

⇐⇒ q(∂s) • (Bs)µ = 0

for all i and all µ ∈ Nn with |µ| = r, supp(µ) ⊃ G(i)

⇐⇒ q(∂s) ∈ P⊥
B .

Here, the second equivalence follows from the linear independence of
the monomials xµ. The third equivalence follows from the linear in-
dependence of B, because it yields that the ideal PB is spanned as a
vector space by the polynomials whose terms are of the form (Bs)µ

with supp(µ) ⊃ G(i) for some i. Thus we have P⊥
B = Ψ−1

B (Q⊥
v ).

Moreover, we have the inequality dimC(P
⊥
B ) ≤ dimC(Q

⊥
v ) because

ΨB(PB
⊥) = ΨB

(
Ψ−1

B (Q⊥
v )
)
⊂ Q⊥

v and ΨB is injective.

Assume that B is a basis of L. Note that each xg(k) =
∑n

j=1 g
(k)
j xj

can be represented by a linear combination of (xB)1, . . . , (xB)h. Let
f(x) ∈ Q⊥

v . Then, by Proposition 3.1 and the above result, there
exists q(∂s) ∈ P⊥

B such that f(x) = q(xB). Thus we have f(x) =
ΨB(q(∂s))(x). □
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4. Fundamental systems of solutions

In this section, we construct a fundamental system of series solutions
with a given exponent to MA(β). We recall that the homogeneity of A
yields the regular holonomicity of MA(β). This means that, for a fixed
generic weight w, the solution space to MA(β) has a basis consisting of
canonical series with starting monomial xv(logx)b for some exponent
v and b ∈ Nn. Note that each xv(logx)b is derived as the initial
monomial of a solution to the indicial ideal indw(HA(β))v, or of an
element of Q⊥

v . For the detail, see [8, Sections 2.3, 2.4, and 2.5] and
Proposition 3.1.

Throughout this section, we assume that B is a basis of L. Since
B satisfies Assumption 2.3 (see Remark 2.4), we have the following
homomorphisms by Propositions 3.1, 3.10, and Theorem 3.14:

(11)
P⊥
N → P⊥

B ' Sol(findw(HA(β))v),
q(∂s) 7→ m(∂z) ⋆ q(∂s) ↔ xvΨB(m(∂z) ⋆ q(∂s))(logx).

Here, Sol(findw(HA(β))v) denotes the solution space of the fake indicial
ideal findw(HA(β))v.

Proposition 4.1. If m(s) /∈ PN , then v is an exponent.

Proof. Assume that m(s) /∈ PN . Then, by Proposition 3.11 (ii), there
exists q(∂s) ∈ P⊥

N such that m(∂z) ⋆ q(∂s) 6= 0. We see from Theorem
2.7 that

(q(∂s) • F̃N (x, s))|s=0

=
∑
u∈L′

(
q(∂s) • (m(s)au(s)x

v+Bs+u)
)
|s=0

= (q(∂s) • (m(s)xv+Bs)|s=0

+
∑

u∈L′\{0}

(
q(∂s) • (m(s)au(s)x

v+Bs+u)
)
|s=0

is a solution to MA(β). By Proposition 3.10, we have

(q(∂s) • (m(s)xv+Bs)|s=0 = xvΨB(m(∂z) ⋆ q(∂s))(logx),

hence this solution has a non-zero starting term. Hence v is an expo-
nent. □
Example 4.2 (Continuation of Example 3.12). Let A and v be the
ones in Example 3.12. Recall that m(s) ∈ PN , which is a necessary
condition for the fake exponent v not to be an exponent. We see that
v is not an exponent from the following calculation. Note that

θ1 − 2θ3 − 3θ4 + 1 ∈ 〈Aθx − β〉.
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Then we have

0 ≡ θ1θ3(θ1 − 2θ3 − 3θ4 + 1)

= θ21θ3 − 2θ1θ
2
3 − 3θ1θ3θ4 + θ1θ3

= θ1(θ1 − 1)θ3 − 2θ1θ3(θ3 − 1)− 3θ1θ3θ4

= x2
1x3∂

2
x1
∂x3 − 2x1x

2
3∂x1∂

2
x3

− 3x1x3x4∂x1∂x3∂x4

≡ x2
1x3∂

3
x2

− 2x1x
2
3∂

2
x2
∂x4 − 3x1x3x4∂x2∂

2
x3

modulo HA(β). Hence

x2
1x3∂

3
x2

− 2x1x
2
3∂

2
x2
∂x4 − 3x1x3x4∂x2∂

2
x3

∈ HA(β),

and

x1x
2
3∂

2
x2
∂x4 ∈ in(−w,w)(HA(β)).

Since

x1x
2
3∂

2
x2
∂x4 • xv = x1x

2
3∂

2
x2
∂x4 • x−2

2 x−1
3 x4 6= 0,

v is not an exponent.

Corollary 4.3. Assume that B is a basis of L. If |I ∪ J | > |I0| for
any I ∈ N and J ∈ N c, then v is an exponent.

Proof. For any I ∈ N and J ∈ N c, we see that

|I ∪ J \KN | = |I ∪ J | − |KN | > |I0| − |KN | = |I0 \KN |
because both of I and I0 contain KN . Since the degree of m(s) =
(Bs)I0\KN is less than that of any (Bs)I∪J\N , m(s) cannot belong to
PN . By Proposition 4.1, v is an exponent. □
Theorem 4.4. Assume that B is a basis of L, and that PN = m(s)·PB.
Then v is an exponent, and the set

{(q(∂s) • F̃N (x, s))|s=0 | q(∂s) ∈ P⊥
N}.

spans the space of series solutions in the direction of w to MA(β)
with exponent v. In particular, for q(∂s) ∈ P⊥

N , the solution (q(∂s) •
F̃N (x, s))|s=0 has the starting term xvΨB(m(∂z) ⋆ q(∂s))(logx).

Proof. By definition, PB 6= C[s]. It follows from the assumption that
m(s) /∈ PN . Hence, by Proposition 4.1, v is an exponent. Moreover,
by Proposition 3.11, the homomorphism (11) is surjective. Hence we
have

dimC(P
⊥
N ) ≥ dimC(P

⊥
B ) = dimC(Q

⊥
v ) = dimC(Sol(findw(HA(β))v))

≥ dimC(Sol(indw(HA(β))v)).
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By [8, Proposition 2.3.6, Theorem 2.5.1, and Corollary 2.5.11], the
regularity of MA(β) indicates that the dimension of the space of series
solutions with the exponent v coincides with dimC(Sol(indw(HA(β))v)).
Hence, by Theorem 2.7, we have the former half of the assertion.

The latter half of the assertion follows from Proposition 3.10. □

Example 4.5 (Continuation of Examples 2.5, 3.2, and 3.5). Consider
the case where B = {g(1), g(2)}. Then, B satisfies the assumption in
Theorem 4.4. Recall that m(s) = (Bs)∅ = 1, and

PB = 〈(Bs)G
(1)

, (Bs)G
(2)〉 = 〈s21, s22〉 = PN .

Hence, we see by Proposition 4.1 that v is an exponent, and that

{1, ∂s1 , ∂s2 , ∂s1∂s2}

is a basis of P⊥
B . Hence xvf(logx) is a solution to findw(HA(β))v if

and only if

f ∈ 〈1,xg(1),xg(2), (xg(1)) · (xg(2))〉C.

By the uniqueness of an exponent, the above space coincides with the
space of solutions to MA(β). Note that the holonomic rank of MA(β)
is four (cf. [8, Example 3.5.2]).

Example 4.6. [8, Examples 3.6.3, 3.6.11, 3.6.16] Let d = 3, n = 9
and

A =

1 1 1 1 1 1 1 1 1
0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2

 .

Let w = (2, 0, 0, 0,−1, 0, 0, 0, 2), β = (1, 1, 1)T = a5. Consider an
exponent v = (0, 0, 0, 0, 1, 0, 0, 0, 0)T . Then KNB

= I0 = ∅. The
reduced Gröbner basis consists of the following twenty binomials

{∂g
(i)
+ − ∂g

(i)
− | i = 1, 2, . . . , 20},

where

g(1) := (0, 1,−1, 0,−1, 1, 0, 0, 0)T , g(2) := (0, 0, 0, 1,−1, 0,−1, 1, 0)T ,

g(3) := (0, 0, 0, 1,−2, 1, 0, 0, 0)T , g(4) := (0, 1, 0, 0,−2, 0, 0, 1, 0)T ,

g(5) := (1,−1, 0,−1, 1, 0, 0, 0, 0), g(6) := (0, 0, 0, 0, 1,−1, 0,−1, 1),

g(7), . . . , g(20).
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Hence we have

{G(i) = I−g(i) \ I0 | i = 1, . . . , 20}
= {G(1) = {2, 6}, G(2) = {4, 8}, G(3) = {4, 6}, G(4) = {2, 8},

G(5) = {1}, G(6) = {9}, {1, 8}, {2, 7}, {1, 3}, {1, 6}, {3, 4},
{1, 9}, {3, 7}, {4, 9}, {6, 7}, {7, 9}, {2, 9}, {3, 8}, {3, 9}, {1, 7}}.

Let

B = [g(1), g(2), g(3), g(4), g(5), g(6)] =



0 0 0 0 1 0
1 0 0 1 −1 0
−1 0 0 0 0 0
0 1 1 0 −1 0
−1 −1 −2 −2 1 1
1 0 1 0 0 −1
0 −1 0 0 0 0
0 1 0 1 0 −1
0 0 0 0 0 1


.

Then

PN = PB

= 〈(s1 + s4 − s5)(s1 + s3 − s6), (s2 + s3 − s5)(s2 + s4 − s6),

(s2 + s3 − s5)(s1 + s3 − s6), (s1 + s4 − s5)(s2 + s4 − s6),

s5, s6, s2(s1 + s4 − s5), s1(s2 + s3 − s5),

s1s2, s2(s1 + s3 − s6), s1(s2 + s4 − s6)〉
= 〈s1s2, s1s3, s1s4, s2s3, s2s4, s23, s24, s21 + s3s4, s

2
2 + s3s4, s5, s6〉,

where the last generator set gives the reduced Gröbner basis with re-
spect to the lexicographic order < with s1 > s2 > s3 > s4 > s5 > s6.
We see that

{ν ∈ N6 | sν /∈ in<(PB)} = {0, e1, e2, e3, e4, e3 + e4},
and hence we immediately have

q0 = 1, qe1 = ∂s1 , qe2 = ∂s2 , qe3 = ∂s3 , qe4 = ∂s4 .

As to the last generator qe3+e4 , since

cµ,e3+e4 =

{
−1 (if µ = 2e1, 2e2)

0 (otherwise)
,

we have

qe3+e4 = ∂s3∂s4 +
∑

µ;|µ|=2

cµ,e3+e4

1

ν!
∂µ
s = ∂s3∂s4 −

1

2
∂2
s1
− 1

2
∂2
s2
.



LOGARITHMIC A-HYPERGEOMETRIC SERIES II 25

Hence a C-basis of Q⊥
v is given by

{1,xg(1),xg(2),xg(3),xg(4), (xg(3))·(xg(4))− 1

2
(xg(1))2− 1

2
(xg(2))2}.

5. Aomoto-Gel’fand systems

In this section, let

A = {ai,j | 1 ≤ i ≤ m, m+ 1 ≤ j ≤ m+ l},
where ai,j = ei + ej, and {e1, . . . , el+m} is the standard basis of Zl+m.

Then ZA = {a ∈ Zl+m |
∑m

i=1 ai =
∑m+l

j=m+1 aj}, rank(A) = m+l−1,

and rank(L) = ml − (m+ l − 1) = (m− 1)(l − 1), where

L = {[cij]1≤i≤m,m+1≤j≤m+l ∈ Mm×l(Z) |
∑
i,j

cijaij = 0}.

Since A is normal, (that is, NA = ZA∩R≥0A), IA is a Cohen-Macaulay
ideal and hence rank(MA(β)) = vol(A) for any β (see [3]).

Take a weight vector w satisfying wi,j > wp,q whenever (i, j) 6= (p, q),
i ≤ p, and j ≤ q.

Then the reduced Gröbner basis of IA with respect to w equals

G = {∂(g
(i,j)
(p,q)

)+ − ∂(g
(i,j)
(p,q)

)− | i < p, j < q},
and

inw(IA) = 〈∂i,j∂p,q | i < p, j < q〉,

where g
(i,j)
(p,q) := Ei,j + Ep,q − Ei,q − Ep,j ∈ L and Ei,j are matrix units.

The weight w induces a staircase regular triangulation, which is
unimodular (cf. [10, Example 8.12]); for example, let m = 2, l = 4, the
standard pairs are[

∗ ∗ ∗ ∗
∗ 0 0 0

]
,

[
0 ∗ ∗ ∗
∗ ∗ 0 0

]
,

[
0 0 ∗ ∗
∗ ∗ ∗ 0

]
,

[
0 0 0 ∗
∗ ∗ ∗ ∗

]
,

where let the row-numbers be 1, . . . ,m and the column-numbers m +
1, . . . ,m+ l.

For general l,m, the standard pairs correspond to the paths from
the southwest corner to the northeast corner going only northward or
eastward. In this way, we see

vol(A) =

(
m+ l − 2

m− 1

)
.

Let

B := {b(i,j) := g
(i,j)
(i+1,j+1) | 1 ≤ i < m, m+ 1 ≤ j < m+ l}.
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Then B is a basis of L and supp(B) = {1, . . . ,m+ l}, hence B satisfies
Assumption 2.3. Let s = (s(i,j))1≤i<m,m+1≤j<m+l be indeterminates

such that s(i,j) corresponds to b(i,j). For convenience, set s(i,j) := 0
unless (i, j) ∈ {1, . . . ,m− 1} × {m+ 1, . . . ,m+ l − 1}. Then

(Bs)(µ,ν) =
∑

1≤i<m
m+1≤j<m+l

s(i,j)(g
(i,j)
(i+1,j+1))(µ,ν)

= s(µ,ν) − s(µ,ν−1) − s(µ−1,ν) + s(µ−1,ν−1).

Lemma 5.1. Let β = 0. Then v = 0 is a unique exponent.

Proof. Since inw(IA) is square-free, every fake exponent is an exponent
by Theorem 3.6.6 in [8].

Let v be an exponent. Then there exists a standard pair (a, σ) =
(0, σ) corresponding to v such that

vj = 0 (j /∈ σ), Av = β = 0.

Since the submatrix Aσ = (aj)j∈σ is invertible and satisfies Aσvσ = 0,
we have v = 0. □

From now on, let β = 0 and v = 0. Hence I0 = ∅ = KNB
.

Lemma 5.2. (i) {(ij), (pq)} ∈ N c = NSw(v)
c for i < p, j < q.

(ii)) Let J ∈ N c = NSw(v)
c. Then there exist i < p, j < q such that

J ⊃ {(ij), (pq)}.

Proof. (i) This follows from G
(ij)
(pq) = nsupp(v−g

(ij)
(pq)) = nsupp(−g

(ij)
(pq)) =

{(ij), (pq)}.
(ii) This is immediate from Proposition 3.3. □

Proposition 5.3.

PB = 〈(Bs){(i,j),(p,q)} | i < p, j < q〉 = 〈s(i,j)s(p,q) | i ≤ p, j ≤ q〉.

Proof. The first equality follows from Lemma 5.2. We show the second
equality. Since, for any i, j, p, q with i < p and j < q,

(Bs){(i,j),(p,q)} = (s(i,j) − s(i,j−1) − s(i−1,j) + s(i−1,j−1))

× (s(p,q) − s(p,q−1) − s(p−1,q) + s(p−1,q−1)) ∈ RHS,

we only need to show the reverse inclusion. We introduce the total order
< on X := {((i, j), (p, q)) | 1 ≤ i ≤ p < m,m + 1 ≤ j ≤ q < m + l}
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defined by

((i, j), (p, q)) < ((i′, j ′), (p′, q′))

⇐⇒


i < i′,

or [i = i′ and j < j ′],

or [(i, j) = (i′, j ′) and p > p′],

or [(i, j, p) = (i′, j ′, p′) and q > q′].

We prove by induction on the totally ordered set (X , <).
First, for the minimum element ((1,m + 1), (m− 1,m + l − 1)), we

have

s(1,m+1)s(m−1,m+l−1) = (Bs){(1,m+1),(m,m+l)} ∈ LHS.

Next, fix ((i, j), (p, q)) 6= ((1,m+1), (m−1,m+ l−1)) with 1 ≤ i ≤
p < m and m + 1 ≤ j ≤ q < m + l. Suppose that s(i′,j′)s(p′,q′) ∈ LHS
for all ((i′, j ′), (p′, q′)) < ((i, j), (p, q)). Then the leading monomial in

(LHS 3) (Bs){(i,j),(p+1,q+1)} = (s(i,j) − s(i,j−1) − s(i−1,j) + s(i−1,j−1))

× (s(p+1,q+1) − s(p+1,q) − s(p,q+1) + s(p,q))

is s(i,j)s(p,q). It follows from the induction hypothesis that s(i,j)s(p,q) ∈
LHS. Hence we have the assertion. □
Corollary 5.4.

P⊥
B =

〈
∂p
s | sp /∈ 〈s(i,j)s(p,q) | i ≤ p, j ≤ q〉

〉
C

= 〈∂s(i1,j1) · · · ∂s(ir,jr) | i1 < · · · < ir, j1 > · · · > jr〉C.
Furthermore,

dimC(P
⊥
B ) =

min{l−1,m−1}∑
r=0

(
l − 1

r

)(
m− 1

r

)
=

(
l +m− 2

m− 1

)
.

Proof. The first part follows from Proposition 5.3. For the second part,
compare the coefficients of zm−1 in the following:

l+m−2∑
k=0

(
l +m− 2

k

)
zk = (1 + z)l+m−2 = (1 + z)l−1(1 + z)m−1

= (
l−1∑
p=0

(
l − 1

p

)
zp)(

m−1∑
q=0

(
m− 1

q

)
zm−1−q)

=
∑
p,q

(
l − 1

p

)(
m− 1

q

)
zm−1−q+p.
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□
Corollary 5.5.

{((∂s(i1,j1) · · · ∂s(ir,jr)) • FN (x, s))|s=0 | i1 < · · · < ir, j1 > · · · > jr}

forms a fundamental system of solutions to MA(0).

Proposition 5.6.

Q⊥
0 =

〈
r∏

k=1

(xg
(ik,jk)
(ik+1,jk+1))

∣∣∣∣∣ i1 < i2 < · · · < ir
j1 > j2 > · · · > jr

〉
C

.

Proof. This is immediate from Theorem 3.14 and Corollary 5.4. □
Example 5.7. Let m = 2. This case corresponds to the Lauricella’s
FD (e.g. see [1, §3.1.3]). Then vol(A) =

(
l+m−2
m−1

)
= l, and

P⊥
B = 〈1, ∂s(1,3) , ∂s(1,4) , . . . , ∂s(1,l+1)

〉C.

Example 5.8. Let l = m = 3. Then vol(A) =
(
l+m−2
m−1

)
=
(
4
2

)
= 6, and

P⊥
B = 〈1, ∂s(1,4) , ∂s(1,5) , ∂s(2,4) , ∂s(2,5) , ∂s(1,5)∂s(2,4)〉C.

6. Lauricella’s FC

Let

A := {ai := e0 + ei, a−i := e0 − ei | i = 1, 2, . . . ,m}.
In this case, A is normal, and the A-hypergeometric systems correspond
to Lauricella’s FC [7]. Then

ZA = {a ∈ Zm+1 |
m∑
i=0

ai ∈ 2Z},

and

L = {l ∈ Z2m |
∑

i=±1,...,±m

li = 0, li − l−i = 0 (1 ≤ i ≤ m)}.

We have rank(L) = 2m− (m+ 1) = m− 1.
Take a weight w so that

w1 + w−1 > w2 + w−2 > · · · > wm + w−m.

Then

inw(IA) = 〈∂1∂−1, ∂2∂−2, . . . , ∂m−1∂−(m−1)〉,
and the reduced Gröbner basis G is given by

G = {∂g
(i)
+ − ∂g

(i)
− | i = 1, 2, . . . ,m− 1},
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where g(i) = ei + e−i − em − e−m. Set B := {g(i) | i = 1, 2, . . . ,m −
1}. Since B is a basis of the free Z-module L, it satisfies Assumption
2.3. Note that supp(B) = {±1, . . . ,±m}. Let s = (si)1≤i≤m−1 be

indeterminates such that si corresponds to b(i) := g(i). The standard
pairs are pairs of ∗-place {ϵ(i)i | i ∈ [1,m−1]}∪{±m} (ϵ : [1,m−1] →
{±1}) and 0-place its complement.

Hence vol(A) = 2m−1.

Lemma 6.1. Let β = 0. Then v = 0 is a unique exponent.

Proof. The proof is similar to Lemma 5.1. □

Proposition 6.2.

PB = 〈(Bs){±i} | i = 1, . . . ,m− 1〉 = 〈s2i | 1 ≤ i ≤ m− 1〉.

Proof. We have G(i) = I−g(i) \ I0 = {±i} and

(Bs){±i} =

(
m−1∑
ν=1

sνg
(ν)
+i

)(
m−1∑
ν=1

sνg
(ν)
−i

)
= s2i .

□

Proposition 6.3.

P⊥
B =

〈
∂p
s | sp /∈ 〈s2i | 1 ≤ i ≤ m− 1〉

〉
C

= 〈∂I
s =

∏
i∈I

∂si | I ⊂ {1, . . . ,m− 1}〉C,

and

Q⊥
0 = 〈

∏
i∈I

(xg(i)) | I ⊂ {1, . . . ,m− 1}〉C.

Furthermore,

dimC(Q
⊥
0 ) = 2m−1.

Proof. This is immediate from Lemma 3.6, Theorem 3.14, and Propo-
sition 6.2. □

Corollary 6.4. {((
∏

i∈I ∂si) • FN (x, s))|s=0 | I ⊂ [1,m − 1]} forms a
basis of solutions of MA(0).
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